The Forest Health/Nutrition Experiment: Preliminary Root Chemistry Results

Peter G. Mika 2002 IFTNC Annual Meeting

IFTNC Forest Health / Nutrition Experimental Locations (1994-1996)

1994
1995
1996

Design of the experiment

- Sites stratified by 4 rock types and 3 vegetation types
- A core N and K 4-treatment experiment at all sites
- Additional fertilizer treatments tailored to site conditions
- Large experimental plots to monitor mortality

Sites Established: 1994-1996 by Rock Type and Vegetation Series

	Douglas-fir	Grand fir	Cedar/ Hemlock	TOTAL
Granite	K,B (1) K (2) N,B (1)	K (4)	K (2)	10
Basalt	N (1) R (2)	K (3)	N (1) R (2)	9
Metamorphic		K (1)	K (3)	4
Mixed	N (2)	K (2)	K (1) N (3)	8
TOTAL	9	10	12	31

N-Rate (N), Repeated N-Rate (R), N-K Response Surface (K), Bark Beetle (B)

Nitrogen Rate Design

0#N/a	100#N/a	200#N/a	300#N/a	600#N/a
0#K/a	0#K/a	0#K/a	0#K/a	0#K/a
	100#N/a	200#N/a	300#N/a	600#N/a
	@ 8 years	@ 8 years	@ 8 years	@ 8 years
	100#N/a @4 years	200#N/a @ 4 years	300#N/a @4 years	
0#N/a 170#K/a			300#N/a 170#K/a	

N-K Response Surface Design

Core Design

Today's Topic: DF Root Chemistry

- Background
- Sample Collection and Chemical Analysis
 - Sugars, Starchs, Phenols, and Tannins
- Results of Statistical Analysis
 - Fertilizer Treatment Effects
 - Influence of Time Since Treatment
 - Influence of Site Conditions:
 - Rock Type
 - Vegetation Series

6-YEAR NET VOLUME RESPONSE By K Status and Treatment

Douglas-fir in the Intermountain Region 6-year Mortality

K Status:

Poor

Good

ARMILLARIA INFECTION RATE Relationship to Thermochemical Budget

Epnenoi:Esugar (X 10-4)

Adapted from Entry et al 1991

ROOT PHENOLICS:SUGAR RATIOS Grangemont Root Rot Study

I reatment

С

0.6

0.4

0.2

0.0

a

b

b

В

D

25

20

15

10

Phenol (%)

Habitat Type Series

Root Chemistry by Treatment

Root Chemistry Ratios by Treatment

Root Chemistry Ratios by Treatment

Root Sugar by Treatment and Years Since Fertilization

Sites Sampled

	Vegetation Series								
	DF			GF		WRC/WH			
	Years Since Fertilization								
	6	5	4	6	5	4	6	5	4
Basalt	2			1				1	
Granite	1	1				1	1		
Mixed		1				2	1		1
Metamorphic					1			1	

Root Phenol/Sugar Ratios by Treatment and Years Since Fertilization

Years since Fertilization

Root Tannin/Sugar Ratios by Treatment and Years Since Fertilization

Root Starch by Treatment and Years Since Fertilization

Root Chemistry by Rock Type

Root Chemistry Ratios by Rock Type

Root Chemistry Ratios by Rock Type

Root Chemistry by Vegetation Series

Root Chemistry Ratios by Vegetation Series

Root Chemistry Ratios by Vegetation Series

Conclusions

- Some evidence that fertilization does impact root chemistry, but effects may be short-lived.
- Root chemistry does vary significantly across rock types and vegetation types.
 - Sites on granites and glacial tills appear to be different than those on basalts and metamorphics.
 - Generally, root chemistries on DF and GF sites tend to be similar to each other but different than those on WRC and WH sites.