Distributions of soil chemistry test results by rock type

Yu Xiao and Jim Moore University of Idaho

Introduction

- Soil nutrient levels are primary determinants of forest productivity.
- An understanding of site soil nutrient environments is helpful in determining fertilizer prescriptions.
- Soil fertility management is key to long-term sustainable productivity of forest soils.

Introduction

 Comparing soil test values with empirical distribution allow site fertility ranking.

 Nutrients data from natural soils in Idaho, Montana, Oregon and Washington

Douglas-fir Sites: 90 stands

Forest Health Sites: 31 stands

Seedling Sites: 10

Umatilla Sites: 9

Okanagon Sites: 8

Click Sites: 6

Total stands: 154

Rock Type Distribution

Basalt: 54 stands

- Granite: 31

- Mixed: 33

Metasedimentary: 28

Sedimentary: 8

Total stands: 154

- Variables Analyzed:
 - Soil mineralizable N (ppm)
 - Available P, S, B and Cu (ppm)
 - Exchangable K, Mg and Ca (meq 100 g⁻¹)
 - pH
 - Not every stand has all above variables

- ANOVA was used to test rock type differences in various nutrient variables
- Means were compared for nutrients that were significant among rock types
- SAS was used in statistical analyses
- Weibull function was used to smooth relative distribution of sites over a nutrient sample

Results

- Mineralizable N, available P, exchangeable K and Ca are significantly different among rock types at 90% level
- No clear differences in exchangeable Mg, available S, B and Cu among rock types

Comparison of means among rock types

Rock type	Min_N	Av_P	Ex_K	Ex_Mg	Ex_Ca
Basalt	39.3b	3.68ab	1.38a	1.93a	9.76ab
Granite	32.7b	6.80a	0.74b	0.81c	6.51d
Sedimentary	51.2a	3.02ab	0.94b	2.10a	10.89a
Metasedimen tary	51.7a	2.13b	0.93b	1.40b	9.22bc
Mixed	51.1a	3.97ab	0.84b	1.14bc	8.20c

Conclusions

- Rock type contributes significant differences to soil nutrient levels.
- Sites on basalt are rich in K, Mg and B, but generally poor in N, S and Cu
- Soils on granite are most abundant in P, but poor in N, Mg and S
- Some soils from mixed category are only poor in B, but most are relatively rich in other nutrients

Conclusions

- Soils on metasedimentary rocks are rich in S, but poor in P, K, Mg, Ca and Cu
- Soil pHs are similar across rock types and may not be a major factor in determining soil nutrient levels.