Weathering potential of rocks

Mariann Johnston, IFTNC Reed Lewis, IGS Tom Frost, USGS

The Good Rock-Bad Rock Story

- Early findings of square death were related to site K status (mid to late 1980's)
- Implementation of Forest Health study, intended to incorporate both N and K, showed certain rock types as 'bad rocks' (mid-1990's)
- First geological approach of the IFTNC was to identify K-status of rocks as the good rock-bad rock indicator
- Seedling establishment study devised to compare tree establishment on good rocks and bad rocks (late 1990's)
- Geochemical analysis of seedling establishment rocks showed that K content was not a factor separating good from bad rocks (basalt=good rock but low K, quartzite=bad rock but high K)
- Good rocks and bad rocks are defined by the chemical and physical properties they impart to the soil, not by K status alone (today . . .)

Precambrian Belt Rocks

Metaseds: Bad Rocks?

- Metasedimentary rocks have been broadly categorized as 'bad rocks'
- Some of our least productive sites are on Belt metasedimentary rocks (eg Striped Peak quartzite)
- Some of our most productive sites are on Belt metasedimentary rocks (eg lower and middle Wallace)
- Productivity seems to be related to rock weathering characteristics
- How can we sort out the good from the bad within the metasedimentary rocks?

Weathering Potential Index

A geologist named Reiche developed a weathering potential index in the early 1940's. We applied a modification of his index to 446 geochemical analyses of rock samples collected in north Idaho by IGS and USGS personnel between 1990 and 2002.

WPI = $\frac{100*\text{moles}(\text{Na}_2\text{O}+\text{K}_2\text{O}+\text{MgO}+\text{CaO})}{\text{moles}(\text{Na}_2\text{O}+\text{K}_2\text{O}+\text{MgO}+\text{CaO}+\text{SiO}_2+\text{Al}_2\text{O}_3+\text{Fe}_2\text{O}_3)}$

This is simply representing the cations as a proportion of all the common rock-forming elements in the rock.

WPI Analyses

- 1. Broad IFTNC rock categories (basalt, granite, metasedimentary)
- Lithology: siltite, quartzite, basalt, etc. (32 groups)
- 3. Formal Nomenclature: Wallace, Prichard, Grande Ronde, etc. (16 groups)

1. WPI by Broad Rock Category

In the WPI analysis, this classification scheme was poor, because of the high variability within the granitic and especially metasedimentary rocks

2. WPI by Lithology: Metaseds

2. WPI by Lithology: Granites

2. WPI by Lithology: Basalts

3. WPI by Formal Nomenclature

This classification scheme worked OK as long as the carbonate members could be identified, but was still not as strong as lithology.

Summary

- 1. Broad categorization scheme
 - 1. WPI: $R^2 = 0.31$
 - 2. SiO_2 : R²=0.42
- 2. Lithology categorization scheme
 - 1. WPI: $R^2 = 0.85$
 - 2. SiO_2 : R²=0.80
- 3. Formal nomenclature categorization
 - 1. WPI: $R^2 = 0.60$
 - 2. SiO_2 : $R^2 = 0.53$

Conclusions

- Differences in stand productivity among various metasedimentary rocks are observable
- Potassium alone does not differentiate 'good' from 'bad'
- Weathering potential index (WPI) may provide a means of quantifying the 'good' and the 'bad' in rocks
- Lithology was the best descriptor of the variability in WPI values among 446 samples
- By associating site-specific IFTNC response data with WPI values, we can perform a correlation analysis to determine how well WPI describes productivity
- By associating WPI values with digital geologic map units, we may be able to assess stand productivity potential at a landscape level