Relationships Between Surficial Soil Deposits and Timber Productivity Using Soil Survey Data

Mark Kimsey

2005 IFTNC Annual Meeting April 5, 2005

Forest Productivity

A function of complex interactions between local geology, topography, and climatic variables.

Often, many of these interactions are confounded by the deposition of a surficial soil deposit.

© QT Luong / terragalleria.com

Typic Udivitrand

Bw ~ 16" volcanic ash

- primary rooting zone
- increases site water holding capacity

2Bw ~ 43" residual basalt

- rooting structures evident
- similar water holding cap.
- minimal coarse fraction

Typic Udivitrand

Bw ~ 16" volcanic ash

- primary rooting zone
- primary soil water holding capacity

2BC ~ 56" residual metased

- high coarse fraction
- low water holding capacity
- minimal root development

How do we integrate forest productivity with information on surficial soil deposits and underlying parent material?

A Case Study of the Clearwater Soil Survey Project

1979 - 1999

Clearwater Soil Survey Area

Soil Survey Data Collection

- Soil profile data
 - Horizon description
 - Surficial deposit delineation
 - Soil classification
 - Parent material calls
 - Topographic relationships

- Timber productivity data*
 - Height/Age pairs for site trees
 - Decadal increment growth
 - Site index values for each tree specie
 - Basal area
 - Habitat type association(*Not available at all pits)

Preliminary Analysis of Soils and Douglas-fir Productivity

Summary Survey Statistics for PSME

- 16 residual soil parent materials
 - Alluvial, amphibolite, anorthosite, basalt, csgneiss, cs-quartzite, cs-schist, dacite, gneiss, granite, granodiorite, landslides, quartz diorite, quartzite, schist, tertiary sediments
 - WPI: Min. 4.2, Mean 15.4, Max. 26.2
- 1 common soil surficial deposit
 - Volcanic Ash
 - Min. 0", Mean 12.6", Max. 28"
- 62 soil series

Volcanic Ash Distribution

Volcanic Ash Model Variables

Summary Survey Statistics for PSME

• 245 forest plots with recorded Douglas-fir growth measurements

- Site Index: Min. 42, Mean 82.3, Max. 117

- Basal Area: Min. 60, Mean 200, Max. 360

Kriged Douglas-fir Productivity

Modeling Douglas-fir Productivity

 Multiple linear regression was performed on a matrix of environmental, topographic, and soil variables

- Interactions between these variables were analyzed for model enhancement
- A stepwise procedure was employed to eliminate variables that failed to explain a significant portion of the overall variance (alpha = 0.2)

Modeling Douglas-fir Productivity

- MLR model accuracy:
 - F-Value = 2.77 (p=0.0001)
 - $R^2 = 0.55$
 - CV = 11.9
 - RMSE = 9.9
 - Variable significance
 - X (0.0011)
 - Y (0.0073)
 - Solar Insolation (p=0.0613)
 - Elevation*Habitat Type (0.0003)
 - Lithology*Vegetation Series*Ash Class (p=0.0003)

Douglas-fir Productivity & Ash Class

Summary

- The presence of volcanic ash significantly affects Douglas-fir productivity across the soil survey area
- Tentative results show that Andisols behave differently than their andic and vitrandic counterparts
- Rock type and volcanic ash are major factors in determining local Douglas-fir productivity
- More modeling efforts are required to fully realize the potential of the soil survey data and the complex interactions behind the variables

Acknowledgements

- USDA-NRCS
 - Orofino, Lewiston & Moscow Branch Offices
- Potlatch Corp.
- IFTNC personnel

Thank You, Any Questions?

