Ecological Roles of Soil Fungi: Management Implications

Raini Rippy

Deborah S. Page-Dumroese, Ned B. Klopfenstein, Mee-Sook Kim, Paul J. Zambino, and Marty F. Jurgensen

2005 IFTNC Annual Meeting

- <u>All</u> fungi are heterotrophs

 obtain energy from organisms than can photosynthesize
- <u>Some</u> fungi are saprophytes
 obtain energy from dead organisms
- <u>Some</u> fungi are biotrophs and/or symbionts

 obtain energy from a living host
 mycorrhizae, lichens, pathogens

Fungi comprise 60-90% of microbial biomass in forest soils

Primary Functions of Fungi

- Decomposition of organic matter
- Carbon cycling
- Movement of water and nutrients
- Protection against some root pathogens

Groups of soil fungi

- Saprophytes
- Pathogens
- Mycorrhizae
- Antagonistic fungi
- Endophytes
- Lichens

Ecological Roles: Root Disease

- Important part of succession
- Openings provide food and shelter for wildlife
- Openings provide light and space for regeneration
- Contribute to nutrient recycling and soil formation

Root rot fungi can alter the structure of a forest

Seral and more root rotresistant species replace climax and less tolerant species, creating a mosaic pattern in the forest and maintaining diversity of both the trees and soil organisms

Ecological Roles: Saprophytes

- Dominant recyclers of carbon and organic nutrients in forest debris
- Important in litter decomposition, nutrient cycling, and energy flow
- Create decay products (white, brown, cubical, and stringy)
- Capture and retain nutrients that might be leached from root zone

Brown rots

- Soils with high contents of brown rot residues have increased waterholding capacity
- Can remain as humus in the soil for 300 years
- Soil layers with brown rot residues are major sites of ectomycorrhizal root development
- Make up to 30% of the soil volume in the upper foot of coniferous forest soils
- Brown cubical rots are also sites of nitrogen fixation

Ecological Roles: Mycorrhizae

- Increase plant nutrient supply
- May aid in seedling establishment
- Important food and habitat for invertebrates and vertebrates

Lori Carris

 Contribute to carbon storage in soil by altering the quality of soil organic matter

Ecological Roles: Antagonists

- Antagonistic fungi can be used to control pathogens, insects, nematodes through one of the following mechanisms:
 - Antibiosis
 - metabolic product of antagonist fungus inhibits or destroys another organism
 - Competition
 - antagonist fungus directly competes for another organism's resources (e.g. space, nutrients, oxygen, etc.)
 - Mycoparasitism
 - antagonist fungus invades another organism

Ecological Roles: Lichens

- Lichen metabolites contribute to biogeochemical weathering of rock and soil formation
- Nitrogen fixation
- Food and nesting material for other organisms
- Release important nutrients (N, K, P, S) when they decompose
- Used as indicators of atmospheric pollution

Ecological Roles: Endophytes

- Endophytes colonize living plant tissue without causing any immediate, negative effects
- May help with storage and distribution of nutrients and carbohydrates around the plant
- Produce beneficial secondary metabolites/ chemical compounds
 - antibiotic/antimicrobial activity

Fungi and Soil Formation

- Bind and aggregate particles
- Increase water retention in soils, thus increasing chemical weathering processes
- Release mineral nutrients in rock and organic matter for use by other organisms
- Some microfungi and lichens are components of biological soil crusts

Nutrient Cycling

- In organic soils, the nutrient pool is largely derived from the mineralization of plant litter by microbial activity
- Fungi are the dominant decomposers in aerobic environments
- Basidiomycetes (white and brown rots) are the most important forest floor dwelling fungi in recycling carbon stored in wood

-Fungi causing brown rot can be the major agents of carbon and mineral nutrient release from wood in coniferous forests

Social Value of Fungi

- Wild edible mushroom harvest
- Sources of medicines and natural dyes
- Culture and folklore

Lori Carris

Industrial Applications of Forest Fungi

- Biological control
 - Root diseases and wood decay
- Biodegradation
 - Resin acids
 - Wood preservatives
- Biopulping
- Bioremediation

Management Implications

Timber harvesting, grazing, fire, and application of fertilizers, herbicides, and pesticides can result in:

-reduction is soil organic matter levels
-changes in soil temperature and moisture
-changes in soil pH

which can negatively effect distribution and diversity of soil fungi

Organisms Regulate Ecosystems

- Seral species are more tolerant of endemic insects and pathogens than climax species
- Activities of these endemic organisms tend to "rogue" climax species and stressed trees
 - encouraging domination by seral species intermixed with "best adapted" individuals representing climax species

Wood Stake Decomposition Study Update

IFTNC Forest Health Sites

Installation	Parent Material	Habitat Type
336 Spirit Lake	Glacial till	THPL/PAMY
338 Snowden	Basalt	ABGR/ACCI
341 Grasshopper	Granite	THPL/ASCA
354 Huckleberry	Metasedimentary	ABGR/CLUN
355 Stanton	Metasedimentary	THPL/ASCA
362 Haverland	Granite	ABGR/PAMY

•

•

Huckdeery Haverland Meadows Spint Lake Source of the stanton Grasshopper

Preliminary Results

- Fungal isolations from stakes are completed
- Total number of stakes sampled = 3090
- Total number of isolates identified to date = 1329
- Total number of fungal isolates to still be identified ~ 250
- No collections were made from Snowden in spring 2004 – site was harvested
- Soil samples will be collected from five sites this spring

Distribution of Fungal Species on Both Insertion and Interface Stakes From Spring 2004 Stake Extractions

Site

Tools Available for Managers

- Species and population structure of fungi can be identified using molecular tools
- Molecular genetic techniques and GIS are helping to detect and predict diseases, such as root diseases
- Ability to identify forest fungi will help studies determine effects of management on these fungi

Summary

- Soil fungi form chemical and physical components, such as aggregates, involved in maintenance of structure and fertility in forest soils
- Important functions of soil fungi include nutrient cycling, nitrogen fixation, protecting trees against soil pathogens, contributing to soil structure, and improving soil moisture holding capacity
- Soil organisms are vital to ecosystem sustainability

Conclusion

- Specific habitat needs of most fungal species are poorly understood
- Therefore, it is difficult to develop management objectives that address both timber production and maintenance of soil fungal communities
- Further research is needed to examine effects of forest management on soil fungal communities and subsequent soil quality/health

Acknowledgments

USDA Forest <u>Service – RMRS</u> Tom Rice Jennifer Hensiek Joanne Tirocke John Hanna James Donley Jonalea Tonn Geral McDonald Jane Stewart Josh Whitworth

Washington State University Lori Carris Jack Rogers

IFTNC

Leonard Johnson James Moore **Terry Shaw** Mariann Garrison-Johnston Peter Mika **Bob Atwood** Mark Kimsey **Carly Conklin** Yu Xiao

References

 Harvey, A.E., Graham, R.T., and McDonald, G.I. 1999. Tree species composition change – soil organism interaction: potential effects on nutrient cycling and conservation in interior forests. Pp. 137-145 In: Meurisse, R.T., Ypsilantis, W.G., Seybold, C. (tech. eds.) Proceedings, Pacific Northwest forest and rangeland soil organism symposium. Gen. Tech. Rep. PNW-461. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station.