Comparison of impacts on soils between CTL and WT harvesting

Han-Sup Han

Department of Forest Products University of Idaho

Cut-to-length (CTL) system

Whole tree (WT) system

Objective of this study

The goal of this study was to broaden the existing knowledge on soil impacts from WT and CTL harvesting by:

- quantifying the trail areas (i.e. extent) used for primary wood transport
- measuring degree of soil compaction after harvesting activities
- developing models to predict % increase of soil bulk density and soil resistance to penetration

Study Method

Study site

Ν

Site descriptions

Unit	Area (acre)	Soil	Stand composition	Ave. DBH (in.)	Ave. tree height (ft)
CTL 1	12.05	ashy silt loam	Grand fir (68.1%) Douglas fir (19.7%) Lodgepole pine (7.9%) Wostorn Jarch (4.3%)	10.6	66
WT 1	14.85				
CTL 2	9.88				
WT 2	11.24		Western alon (4.3 %)		

Before harvesting

After harvesting

CTL Harvesting System

Harvesting : May 31 – June 16 2005 (17 days)

Valmet 500T

Valmet 890

WT Harvesting system

Harvesting: May 31 – June 14 2005 (15 days)

Timbco hydro

CAT D-5

Processor : Kumatsu PC220LC

Loader : Kumatsu PC200LC

How do we measure soil compaction?

Soil resistance to penetration

Soil bulk density

Soil resistance to penetration

- Soil moisture content: 25 30%
- Sampling points: every 100 ft on all trails

track (L) - center – track (R) - reference (off-trails)

soil depth: 3 in., 6 in., and 9 in.

Soil bulk density

- Core sampling
- Sampling points: every 200 ft on all trails
 - center track (L or R) reference (off-trail)
 - soil depth : 3 in., 6 in., and 9 in.

Data collection

Number of machine pass

- Collected during harvesting operations
- Machine pass = one empty trip + one loaded trip of skidder or forwarder

Slash data: CTL units only

- Collected 20 slash sample data (heavy and light) from each CTL harvest unit
- Downed wood debris survey (Brown 1974)
 - Heavy: 8.2 lbs/ft²
 - Light : 1.5 lbs/ft²
 - Bare: None

Data collection

Trail map

 Collected trail location points using Trimble Geo XT at every 50ft along the centerline of trails

Width of trails

- Every 50 ft on the odd number trails
- Measured width of center and track on the CTL forwarding trails

Forwarding/Skidding trails

	Width of trails			I enoth of trails	Area of trails	
Unit	n	Mean (ft)	S.D. (ft)	(ft/ac)	acre	%
CTL 1	75	11.92	0.60	713	2.34	19.47
CTL 2	78	11.84	0.54	745	2.00	20.25
WT 1	117	14.65	2.58	781	3.90	26.28
WT 2	82	15.18	2.87	700	2.73	24.28

Slash on the CTL forwarding trails

Soil Moisture Content

Changes in soil resistance to penetration after harvesting

% increase of soil resistance to penetration

Changes in soil bulk density harvesting

Soil depth (in.)

% increase of soil bulk density

Skid trail area: CTL vs. WT

Harvesting system	Harvest unit	Trail width (ft)	Trail length	Skid trail area in the harvesting units	
	(acre)		(ft)	acre	%
CTL	21.93	11.88	15,946	4.34	19.86
WT	26.09	14.93	19,459	6.63	25.41

Harvesting system	Harvest unit (acre)	Trail width (ft)	Track width	Trail length (ft)	Compacted area in the harvesting units	
			(11)		acre	%
CTL	21.93	11.88	5.87	15,946	2.15	9.80
WT	26.09	14.93	-	19,459	6.63	25.41

Model to predict % increase of soil resistance to penetration

(Soil moisture content was 25 - 30%)

Harvesting system	Soil Depth		R ²
CTL	3 in.	% increase = 1844.06 + 32.60In(N*) – 20.26In(D*) – 233.16In(I*) – 84.58(S1) – 42.37(S2)	0.59
	6 in.	% increase = 1240.70 + 46.37In(N) – 16.26In(D) – 151.03In(I) – 55.00(S1) – 34.56(S2)	0.65
	9 in.	% increase = 1284.78 + 50.82In(N) – 20.90In(D) – 155.58In(I) – 25.92(S1) – 17.98(S2)	0.67
WT	3 in.	% increase = 1177.87 + 13.23ln(N) – 17.58ln(D) – 146.06ln(l)	0.53
	6 in.	% increase = 1293.22 + 22.99In(N) – 16.57In(D) – 161.72In(I)	0.53
	9 in.	% increase = 1238.61 +19.67In(N) - 20.78In(D) - 148.93In(I)	0.54

* N: number of machine passes, D: distance (ft) from landing area, I: initial value of soil resistance to penetration, S1: heavy slash = 1 and others = 0,and S2: light slash = 1 and others = 0

Model to estimate % increase of soil bulk density

(Soil moisture was 25 - 30%)

Harvesting system	Soil Depth		R ²
CTL	3 in.	% increase = 79.43 + 0.11ln(N) – 9.36ln(D) – 104.70ln(l) – 13.63(S1) – 12.63(S2)	0.55
	6 in.	% increase = 36.01 + 3.63ln(N) – 2.79ln(D) – 51.92ln(l) – 8.49(S1) – 3.02ln(S2)	0.37
	9 in.	% increase = 58.10 + 2.41ln(N) – 4.87ln(D) – 65.99ln(l) – 3.65(S1) – 2.65(S2)	0.40
	3 in.	% increase = 17.69 + 5.72ln(N) - 1.16ln(D) - 106.50ln(l)	0.47
WT	6 in.	% increase = 57.78 + 3.57In(N) - 6.95In(D) - 47.95In(I)	0.49
	9 in.	% increase = 62.08 +3.73In(N) - 7.63In(D) - 41.64In(I)	0.36

* N: number of machine passes, D: distance (ft) from landing area, I: initial value of soil bulk density, S1: heavy slash = 1 and others = 0, and S2: light slash = 1 and others = 0

% increase in soil resistance to penetration (S.R.P) with increase of the number of machine pass

(Soil moisture: 25 - 30%)

Changes of % increase in soil bulk density over various initial values of soil bulk density

(Soil moisture: 25 - 30%)

Conclusion

 CTL system used less trail areas in a harvest unit: CTL (20%) vs. WT (25%)

At 25 ~ 30% soil moisture content,
 ✓ In the track of trail, both CTL and WT harvesting caused a high level of soil compaction.
 ✓ In the center of trail, CTL tends to leave less degree of soil compaction than WT.

% increase of soil resistance to penetration and bulk density:

 Decreased with increase of soil depth
 Increased with increase of the number of machine passes
 Decreased with increase of distance from landing
 Decreased with increase of initial value of soil resistance to penetration and bulk density

In CTL harvesting, slash covered ~70% of the forwarding trails and tended to be effective in minimizing soil compaction.

Questions?