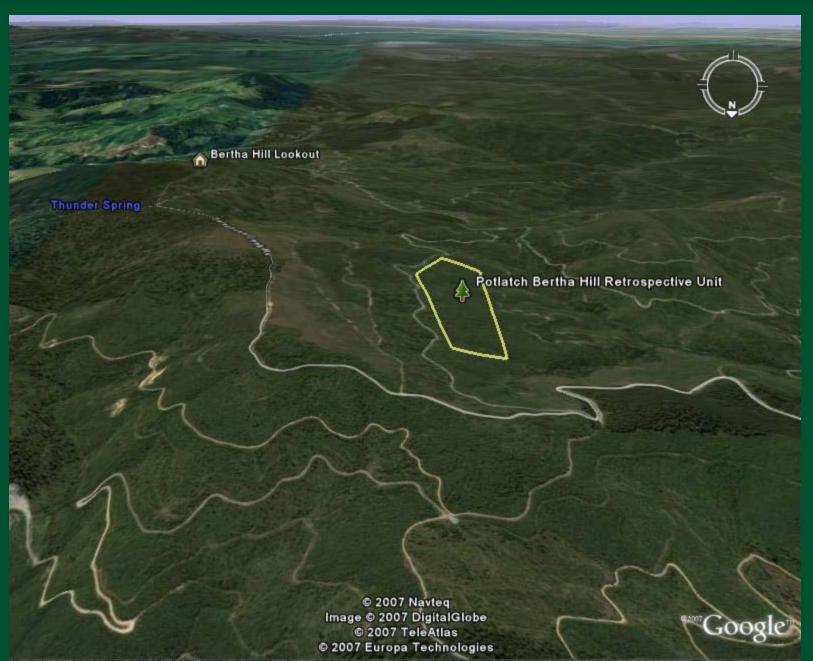
Long Term Growth and Nutrition Consequences of Intensive Treatment

Bertha Hill:


A Case Study

Mark Kimsey

2007 IFTNC Annual Meeting

Pointer 46°46'50.30" N 115°48'52.04" W elev 4320 ft Streaming ||||||||| 100%

Eye alt 8273 ft

Bertha Hill Timeline

Clear cut: 1979 – 1981

Mechanical Site Prep: Fall 1981

Jackpot/Broadcast Burn: 1982

Planted: Spring 1983 (Douglas-fir)

First Research Entry: 1988

Second Research Entry: 1996

Third Research Entry: 2006

Treatments

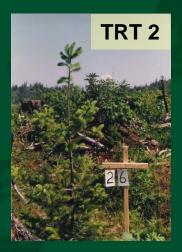
Treatment 1 – Undisturbed

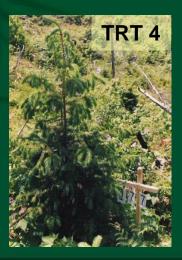
- No mechanical disturbance
- Fire exclusion

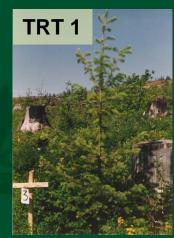
Treatment 2 – Undisturbed/Burn

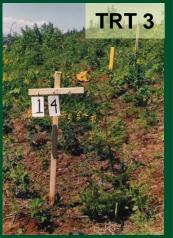
- No mechanical disturbance
- Broadcast burned

Treatment 3 – Scalp


- Straight blade dozer slash removal
- Competing vegetation "rooted out"
- Surficial soil and litter layer disturbance
- Fire exclusion


Treatment 4 – Pile/Burn


- Straight blade dozer slash pile
- Jackpot burned



Treatment 5 – Skid Trail

Treatment Assignment

Modified randomized block design:

Five Douglas-fir seedlings assigned to Treatments 1-4

Treatments 1-4 were replicated across nine plots

Ten Douglas-fir seedlings were assigned to Treatment 5 on two separate skid trails

Sampling Intensity:

- 45 DF seedlings per treatment (1-4)
- 20 DF seedlings for treatment 5
- Total sample size: 200

Plot Layout

Foliar Nutrition and Diagnostics

Nutrition Overview

Element	Function	Source	Deficiency
Nitrogen	Photosynthesis, biomass	Atmosphere	Almost always
Phosphorus	Metabolism	Rock	Seldom
Potassium	Stomatal control, defensive chemicals	Rock	Common
Sulfur	Photosynthesis, pest resistance	Atmosphere - Rocks	Common
Boron	Cell wall structure, translocation of sugars	Rock	Very Common
Copper	Photosynthesis, N processing	Rock	Occasional
Zinc	Enzyme structure	Rock	Occasional
Magnesium	Chlorophyll synthesis	Rock	Seldom
Iron	Respiratory metabolism	Rock	Seldom

Foliar N Concentration by Treatment

Foliar K Concentration by Treatment

Foliar S Concentration by Treatment

Foliar B Concentration by Treatment

Foliar Needle Wt. by Treatment

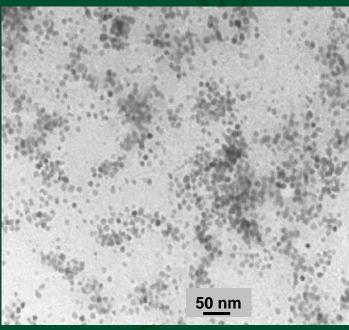
Soil Bulk Density

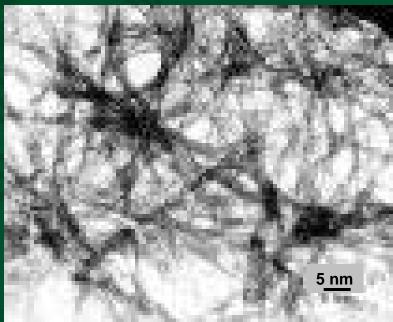


Bulk Density

	Mean (g cm ³)	Min	Max
Andic	0.90		
(n = 271)	(0.75-0.9)	0.46	1.68

Palouse Silt Loam ~ 1.2 g/cm³ Basalt Silty Clay Loam ~ 1.7 g/cm³


Photo and Data by McDaniel et al., 2005



Glass shard

Allophane/ Imogolite

Ferrihydrite

Soil Bulk Density by Depth and Treatment (1988 – 7 yrs post-harvest)

Soil Bulk Density by Depth and Treatment (1996 – 15 yrs post-harvest)

Soil Bulk Density by Depth and Treatment (2006 – 25 yrs post-harvest)

Foliage and Soil Summary

Foliar N, S, and B concentrations were significantly lower on scalp and skid trail treatments 6 yrs post-planting. Foliar N and S concentrations were significantly higher after 24 yrs on the pile/burn treatment. N and B foliar concentrations on the scalp treatment are similar to burn treatment levels after 24 years.

Foliar biomass showed significantly lower weights on scalp and skid trail treatments 6 and 24 yrs post-planting.

Mechanical site prep treatments showed significantly higher bulk densities up to 15 yrs post-treatment. Densities were not growth-limiting in the definitional sense.

Lower surface soil bulk density was significantly higher on mechanical site prep treatments after 25 yrs.

Growth Response to Treatment

DBH Response to Site Treatment vs. Undisturbed

Basal Area Response to Site Treatment vs. Undisturbed

Periodic Height Response to Site Treatment vs. Undisturbed

Total Height Growth by Year & Treatment

Volume Response to Site Treatment vs. Undisturbed

Growth Response Summary

Burn treatments show a 10-15% Basal Area increase over undisturbed conditions; while scalp and skid trail treatments show a significant >50% decrease 14 yrs post-planting. After 24 yrs, burn treatments continue to show a 15% increase over undisturbed conditions, and a 35% decrease for scalp and skid trail treatments.

Burn treatments show no overall significant increase in height growth 6, 14, and 24 yrs post-planting. However, scalp and skid trail treatments show >40% and >10% decrease in height growth over 6 and 14 yrs, respectively. Scalp and skid trails showed no significant height growth differences after 24 yrs.

Volume gained 10-15% on burn treatments after 14 and 24 yrs. Volume showed a significant loss of ~ 50% on scalp and skid trails after 24 yrs.

Conclusions

Foliar nutrient concentration levels of N, K, S, and B do not show large differences across treatments, but they do differ significantly.

Initial slash leaching could be responsible for higher concentrations across all treatments.

Lower foliar biomass on scalp and skid trails can be attributed to significantly lower foliar concentrations of N, S, and B.

Low foliar nutrients, decreased foliar biomass, and higher soil bulk densities significantly reduced growth on scalped and skid trail treatments.

