The SMC, summary of results with emphasis of effects of thinning on fertilization response

Rob Harrison, Dave Briggs, Eric Turnblom, Bob Gonyea, Bert Hasselberg.

University of Washington.

N Roads	Vegetation control	
Harvest Level	Vegetation con	ntro
Bole only	Compaction	
Bole only to 5 cm	top Compaction	
Total tree	Tillese	
Total tree plus	Thiage	
No treatment	Tillage	

Contour Interval = 10 Meters

50 100 150 200 250 300 Meters

50

0

Results: Pre-RFNRP 1950's through 1960's

N rate (lb N/acre)

N rate (lb N/acre)

200 lb N/ac applied

Robert B. Harrison robh@u.washington.edu

Results of other studies

- 1) Hodge-podge of nutrients other than nitrogen makes conclusions difficult. Several studies indicate results similar to the 2nd above, and many indicate the central role of N.
- Clearly, both response to N and other nutrients is site controlled. Indicates need for larger scale studies on a wide variety of sites to pin response to site variables.

Conclusions of early studies

- "Nitrogen application evoked a growth response throughout a range of growing conditions. Magnitude of response is related to amount of nitrogen applied and response is still evident in 1975 from a 1962 application".
- 2) "Apparent response to the application of other elements is quite variable and no consistent picture emerges. There is no evidence of an economic response to the other elements".

RFNRP 1969-pres.

Installations of the PNW Stand Management Cooperative

College of Forest Resources University of Washington Box 352100 Seattle Washington 98195-2100

206-543-5355 phone 206-685-3091 fax

RFNRP Installations

Phase I Unthinned Natural Stands

- Douglas-fir & western hemlock
- established in 1969/70
- up to 4 fertilization treatments
- 20 years growth remeasurements

Phase II Thinned Natural Stands

- Douglas-fir & western hemlock
- established in 1971/72
- up to 4 fertilization treatments
- 20 years growth remeasurements

RFNRP Installations

. Phase III Young, Thinned Plantations

- Douglas-fir & western hemlock
- established in 1975
- up to 4 fertilization treatments
- 20 years growth remeasurements

Phase IV PCT Plantations

- Douglas-fir & western hemlock
- established in 1980
- up to 4 fertilization treatments
- 20 years growth remeasurements

Phase V Single Tree Screening Trials

- young noble fir & pacific silver fir
- established in 1986/88
- one fertilizer application
- 6 years growth remeasurements

Overall results of SMC studies Response vs. N rate. Sidell thesis.

Table 2. Pilchuck Tree Farm study established 1994, measured through 2002 (8 y growth). Each treatment is replicated 6 times (two each installation).

Measure	Control	N200	N200-P200	Control	N200	N200-P200	Con. vs. N200	Con. vs. N200-P200
	perc	ent change	<u> </u>	rela	ative perce	ent	probab	oility
QMD (in)	31	34	38	0	2	6	0.178	0.078
Volume (ft3/ac)	166	187	185	0	21	19	0.164	0.143
BA (ft2/ac)	67	79	75	0	12	8	0.152	0.227
HT40 (ft)	55	59	56	0	4	1	0.255	0.406

<u>Table 1.</u> Oregon Dept. Forestry study established 1995, measured through 1999 (4 y growth). Each treatment is replicated 6 times (two each installation).

Measure	Control	N200	Complete750	Control	N200	Complete750	Con. vs. N200	Con. vs. Complete
	perc	ent change	e	rela	tive perc	ent	probal	oility
QMD (in)	34	34	38	0	0	5	0.424	0.039
Volume (ft3/ac)	134	138	152	0	3	17	0.370	0.079
BA (ft2/ac)	76	80	91	0	4	15	0.253	0.011
HT40 (ft)	31	33	35	0	2	3	0.408	0.243

Results of RFNRP studies

- 1) N response averaging 20% (unthinned) -30% (thinned) with 400 kg N, highly site dependent.
- Clearly, both response to N and other nutrients is site controlled. Indicates need for larger scale studies on a wide variety of sites to pin response to site variables.
- 3) Effects of N fertilization appear to be very longlived.

SMC (1991+) No multi-element additions. SMC Type II, III and IV no fertilizer work at all

SMC Type I Installations -plantations with initial stocking 300-680 spa -Respace (PCT) before onset of competition

-7 core treatments (basic 7) ISPHa, ISPHa/2, ISPHa/4, ISPHa and ISPHa/2 min thin ISPHa repeated thin ISPHa heavy thin

2-8 plots for other work, including fertilization

Eric Sucre did his M.S. on 7 fertilized sites

Site Descriptives

	Ostrander Rd	East Twin	Roaring River	Silver Creek	Sandy Shore	Toledo	Twin Peaks
	(704)	Creek (705)	(718)	(722)	(725)	(726)	(736)
Latitude	46°12'47.46"	47°10'35.97"	44°39'10.8"	44°52'27"	47°53'49.09"	44°41′29.99"	47°56'53.05"
Longitude	122%50'48.91"	121°43'4.22"	122°42'15.6"	122°33'57.6"	122°46'25.22"	123°56'34.4"	124°27'22.75"
Elevation (m)	183	823	335	671	168	18	183
Average Slope	20%	30%	10%	10%	0%	15%	40%
Precipitation (mm yr ¹)	1175	1449	1778	1190	751	1726	1552
USDA Soil Suborder	Palehumult	Dystroxerept	Palehumult	Dystrudept	Dystroxerept	Dystrudept	Durothod
Soil Texture	Fine-Ioamy	Loamy-skelatal	Fine	Fine-Ioamy	Sandy-Skeletal	Fine-Ioamy	Sandy-Skeletal
Stand establishment	1976	1976	1982	1982	1980	1984	1984
SI 50 (before treatment, m)	37	27	39	37	37	41	37

Soil & Site Properties Examined

- Climatic data
- Elevation
- % Slope
- Relative Density (RD)
- Quadratic Mean Diameter (QMD)
- Site Index (SI)
- bulk density (Db)
- pH
- C:N ratio
- cation exchange capacity (CEC)*
- Inorganic nitrogen (NO₃⁻ and NH₄⁺)*

*Mineral Soil only

Total volume and 4-year PAI relative response for each treatment regime at the respected treatment intervals (224 kg ha⁻¹ of N as urea every 4 years). Standard errors are shown.

Dependent Variable	Ν	Equation	Adj-R ²
All DMR's	40		0.500
i otal volume	42		0.592
		61.0952pm30-50cm + 0.00106C0-15cm -0.027 PP1	
4-yr PAI	42	-13.59 + 0.08135NVV _{FF}	0.091
ISPHA			
Total Volume	14	-398.96 + 54.43RD + 4.852CN _{FF} - 4.98CN _{0-15cm}	0.722
	14	164.541 - 7.566CN _{0-15cm}	0.456
4-yr PAI	14	-57.066 + 3.6397NH _{4(15-30cm)}	0.622†
	14	-37.339 + 2.824NH _{4(30-50cm)}	0.368
ISPHA/2			
Total Volume	14	-238.22 + 41.24RD	0.712†
4-yr PAI	14	-144.39 + 34.397pH _{15-30cm} - 9.973%C _{30-50cm}	0.666
ISPHA/4			
Total Volume	14	-197.94 + 50.897RD + 12.29%C _{0-15cm}	0.882
		- 3.68NH _{4(30-50cm)} -0.041ELEV	
4-yr PAI	14	56.801RD - 5.56QMD + 77.51%N _{15-30cm} + 0.002CW _{FF}	0.881

+ Strongest single indepent variables shown in Fig. 3

Multiple regression equations for the relationships between the unstandardized residuals of total volume (m³ ha⁻¹) and 4-year PAI (m³ ha⁻¹ yr⁻¹) response to 224 kg N ha⁻¹ as urea (dependent variables) and various soil, site and stand variables (independent variables).

Results of SMC studies too few sites (7) for broad generalizations

 Response to N is site and stand controlled. Indicates need to couple fertilization with other silvicultural treatments, particularly stocking, and use RD or other stand properties to drive time of fertilization.

SMC "Type V" and CIPS paired-plot studies, now and future

	plot	DBH	ht	
	#	7.90	37	
1	25	6.57	35	200N
	23	6.58	36	
	24	6.69	36	-
2	33	6.76	35	
	12	6.79	39	200N
3	1/	6.85	30	2001
3	10	7.01	37	-
4	10	7.01	35	200N
4	5	7.26	38	20014
E	22	7.29	37	23
5	36	7.29	38	200N
6	13	7.44	38	
0	21	7.46	37	200N
7	20	7.53	35	- Call Meriday
- 1	4	7.54	37	200N
	28	7.68	39	
8	32	7.84	35	
Ŭ	9	7.88	38	200N
9	14	7.90	36	200N
	0	7.91	37	0001
10	20	7.97	39	2001
	26	8.23	35	-
	16	8 30	39	-
11	35	8.33	38	200N
10	8	8.55	35	
12	1	8.55	36	200N
12	15	8.59	37	
13	3	8.60	37	200N
	31	8.81	39	
14	27	8.91	37	200N
	29	8.93	36	
1	18	9.03	37	0001
15	11	9.05	36	200N
	2	9.05	36	-

SMC and CIPS "Star Wars" methods being developed for fertilization studies

Random assignment of treatment

Random assignment of treatments along Multiple "lines of flight"

An "installation" with multiple plots of multiple treatments

SMC "Carryover" studies fo long-term impact of fertilization

Figure 1. Douglas-fir stands at beginning of the study.

Figure 2. Stands after harvesting and slash distribution.

Figure 3. Stands following planting with identical stock.

Figure 4. Growth of young stands, with possible differentiation.

Figure 5. After 40 years. Possibility of studying subsequent rotations.

Regional Mean DBH with 200 and 400 lb Treatments

Regional Mean DBH with 1000 lb Treatments

Non-SMC absolutely incredible results of fertilization from BC

Growth and foliar nutrition of juvenile western hemlock and western redcedar plantations on low- and medium-productivity sites on northern Vancouver Island: response to fertilization and planting density

R.W. Negrave, C.E. Prescott, and J.E. Barker

Abstract: A factorial trial was established to examine the effects of planting density and fertilization on the growth of western redcedar (*Thuja plicata* Donn ex D. Don) and western hemlock (*Tsuga heterophylla* (Raf.) Sarg.) on nutrient-poor (CH) sites and nutrient-medium (HA) sites. Two levels of NPK fertilization were crossed with three levels of planting density (500, 1500, and 2500 stems/ha). Fifteen years after establishment and 10 years after the last fertilizer application, height, individual stem volume increment, stand volume, 5 year periodic annual increment (PAI), and 5 year periodic height increment were all increased by fertilization. Fertilization of CH sites increased annual stand volume increment by 753%–2552% and 122%–209% for hemlock and cedar, respectively; fertilization of HA sites increased PAI by 94%–264%. Volume growth response to fertilization was greater on HA than on CH sites. Increasing stand density reduced height growth on CH sites but not on HA sites. These results suggest that competition for nutrients can be a significant growth-limiting factor even before canopy closure occurs and that treatment of ericaceous sites may not be justified by productivity increases.

Species ^a	Fertilization ^b	Stand density (stems/ha)	Height (m)	Stand volume (m ³ /ha)	Mortality (%)	Height increment (m/year)	Stem volume increment (dm ³ /year)	Periodic annual increment (m ³ ·ha ⁻¹ ·year ⁻¹)
CH sites								
Cw	F0	500	5.36 (0.59)	10.39 (3.41)	0.8 (1.6)	0.39 (0.05)	3.38 (1.20)	1.65 (0.57)
Cw	F0	1500	4.53 (0.55)	15.17 (6.73)	0.4 (0.8)	0.31 (0.04)	1.54 (0.68)	2.27 (0.97)
Cw	F0	2500	4.08 (0.33)	17.49 (3.51)	0.4 (0.8)	0.24 (0.04)	1.00 (0.24)	2.50 (0.62)
Cw	F1	500	7.15 (0.49)	25.27 (5.35)	4.3 (3.5)	0.48 (0.04)	7.78 (1.57)	3.67 (0.74)
Cw	F1	1500	6.73 (0.61)	54.47 (17.05)	0.8 (0.9)	0.39 (0.05)	4.79 (1.43)	7.03 (2.15)
Cw	F1	2500	5.72 (1.05)	51.79 (23.74)	2.3 (2.7)	0.37 (0.07)	2.90 (1.27)	7.10 (3.17)
Hw	F0	500	3.65 (0.26)	1.63 (0.58)	6.3 (4.4)	0.20 (0.05)	0.55 (0.15)	0.25 (0.08)
Hw	F0	1500	3.17 (0.29)	2.28 (1.01)	5.9 (3.9)	0.20 (0.03)	0.27 (0.10)	0.38 (0.15)
Hw	F0	2500	2.27 (0.19)	1.03 (0.28)	3.1 (2.2)	0.10 (0.03)	0.08 (0.02)	0.19 (0.05)
Hw	F1	500	8.06 (1.21)	21.13 (8.38)	8.2 (3.7)	0.53 (0.12)	6.97 (2.73)	3.13 (1.24)
Hw	F1	1500	5.92 (1.01)	22.23 (9.43)	6.3 (6.1)	0.33 (0.11)	2.33 (0.98)	3.24 (1.44)
Hw	F1	2500	5.95 (1.35)	36.74 (24.21)	2.3 (2.7)	0.32 (0.14)	2.07 (1.39)	5.04 (3.45)
HA sites								
Cw	F0	500	5.85 (1.24)	13.87 (7.11)	5.5 (4.7)	0.35 (0.06)	4.14 (1.85)	1.90 (0.85)
Cw	F0	1500	5.08 (0.84)	22.01 (9.12)	1.6 (1.3)	0.32 (0.07)	2.14 (0.83)	3.11 (1.22)
Cw	F0	2500	4.23 (1.75)	30.22 (30.79)	1.6 (1.3)	0.21 (0.15)	1.70 (1.63)	4.19 (4.01)
Cw	F1	500	7.29 (0.99)	26.87 (10.53)	7.4 (8.1)	0.47 (0.07)	8.28 (3.38)	3.68 (1.38)
Cw	F1	1500	7.66 (1.17)	85.63 (33.51)	3.5 (4.5)	0.49 (0.10)	8.22 (3.51)	11.48 (4.63)
Cw	F1	2500	7.27 (0.78)	114.07 (34.18)	3.1 (2.9)	0.46 (0.03)	6.36 (1.89)	15.14 (4.21)
Hw	F0	500	7.65 (1.99)	19.36 (14.00)	5.5 (2.7)	0.46 (0.12)	5.83 (4.12)	2.71 (1.94)
Hw	F0	1500	7.12 (2.67)	40.82 (34.55)	7.0 (6.6)	0.43 (0.23)	4.29 (4.01)	5.61 (4.91)
Hw	F0	2500	7.04 (3.45)	61.69 (63.27)	7.4 (5.6)	0.44 (0.27)	3.83 (3.85)	8.59 (8.74)
Hw	F1	500	9.65 (0.63)	39.61 (6.83)	16.4 (13.6)	0.61 (0.05)	13.51 (2.52)	5.39 (0.96)
Hw	F1	1500	11.68 (0.73)	148.75 (29.26)	12.9 (9.0)	0.81 (0.09)	15.95 (2.98)	20.48 (4.27)
Hw	F1	2500	11.61 (1.16)	190.40 (59.13)	8.6 (0.9)	0.83 (0.09)	11.27 (3.01)	25.56 (6.98)

Table 1. S	ize (2002),	growth (1997	-2002), and	mortality (to 2002)	variables.
------------	-------------	--------------	-------------	-------------	----------	------------

Note: CH site, nutrient poor conditions; HA site, nutrient medium conditions.Values are means with SEs given in parentheses. ^{*a*}Cw, western redcedar; Hw, western hemlock. ^{*b*}F0, unfertilized; F1, fertilized.