Nitrogen, potassum and forest health results – a synthesis of 10 years of data

Peter G. Mika IFTNC Annual Meeting April 8, 2008

Ten-year Net Response to N Fertilization by Initial Potassium Condition for Douglas-fir

Gross VolumeNet VolumeMontana Donderosa Dine StridyMontana Londerosa Dine Stridy

4-year Volume Response Montana Ponderosa Pine Study

N only
N + K
Linear (N only)
Linear (N + K)

Design of the experiment

- Sites stratified by 4 rock types and 3 vegetation types
- A core N and K 4-treatment experiment at all sites
- Additional fertilizer treatments tailored to site conditions
- Large experimental plots to monitor mortality

IFTNC Forest Health / Nutrition Experimental Locations (1994-1996)

Sites Established: 1994-1996 by Rock Type and Vegetation Series

	Douglas-fir	Grand Fir	Cedar/ Hemlock	TOTAL
Granite	K (3), N (1)	K (4)	K (2)	10
Basalt	N (1), R (2)	K (3)	N (1), R (2)	9
Metamorphic		K (1)	K (3)	4
Mixed	N (2)	K (2)	K (1), N (3)	8
TOTAL	9	10	12	31

K=N - K Response Surface, N=N Rate Trial, R=Repeated- N Trial

Treatments

Core (31 sites): Control, 170 #K, 300#N, 170#K+300#N • Nitrogen rate trial (12 sites): DF and WRC series, basalt or mixed rock types 100#N, 200#N, 600#N Repeated application at 4 and 8 years at 4 sites • N-K response surface (19 sites): GF series, granite and metasedimentary rock types Various combinations of N and K, allowing estimation of a response surface S and micronutrients 65#S, 65#S+5#B+10#Cu+10#Zn+1#Mo Added to 300#N+170#K plot

Today's focus: N and K Fertilizer Effects

- On growth: N and K response surface
- On mortality
 - What's dying
 - Causes of mortality
 - N and K response surfaces for mortality

Topics not covered:

- S and Micronutrient (B, Cu, Mo, Zn) Effects
- No statistically significant effects on either growth or mortality

Repeated N applications

4-year response to 8-year application will be measured this year with results presented at next year's annual meeting

Sites Remaining: 2008 by Rock Type and Vegetation Series

	Douglas-fir	Grand Fir	Cedar/ Hemlock	TOTAL
Granite	K (3), N (1)	K (2)	K (1)	7
Basalt	N (1), R (1)	K (2)		4
Metamorphic	Carl Droke	K (2)	K (3), N (1)	6
Mixed	N (2)	K (2)	N (2)	6
Tertiary Sediments			K (2), N (1), R (2)	5
TOTAL	8	8	12	28

K=N - K Response Surface, N=N Rate Trial, R=Repeated- N Trial

Stand Initial Characteristics

	Mean	Minimum	Maximum
Mean DBH	7.5	3.3	15.2
BA/a	96	30	290
CCF	108	33	266

Species	Composition (% of initial BA/a)		
DF	51	0	98
PP	22	0	97
GF	14	0	68

Foliar N Concentration Control-plot Distribution

N and K Effects: DF Foliar Nitrogen

species=DF N Concentration (%) 1.3 1.1 0.9 0.7 0.5 0.3 350 0.1 300 250 -0.1 200 -0.3 150 K Rate (lb/a) 600 100 500 400 300 50 200 N Rate (lb/a) 100 0 0

N and K Effects: DF Needle Weight

Foliar K Concentration Control-plot Distribution

N and K Effects: DF Foliar Potassium

N and K Effects: GF Foliar Potassium

Vector Analysis Results: N and K

Species	Results	Prognosis:
	N deficiency	Growth response to N
DF	even for high N rates	even at high N rates
	K dilution	No growth response to K
	N deficiency but only	Growth response to low N rates but
GF	for moderate N rates	negative response to high N rates
	K deficiency?	Perhaps some growth response to K
	N deficiency but only	Growth response to low N rates but
PP	for moderate N rates	declining response at high N rates
	K dilution	No growth response to K

The Fertilizer Growth Effect Model Multiplicative model: $\ln(G_{trt}) = \mu + I + C + \beta_1^* N + \beta_2^* N^2 + \beta_3^* K + \beta_4^* K^2 + \beta_5^* NK$ where G = growth (diameter, BA, or height growth/tree) I = installation effect (random) C = covariate adjustments for initial plot density, initial tree size, plot mortality N = nitrogen rate (lbs/a) K = potassium rate (lbs/a) Thus, $G_{trt} = \exp(\mu + I + C + \beta_1 * N + \beta_2 * N^2 + \beta_3 * K + \beta_4 * K^2 + \beta_5 * NK)$ $= \exp(\mu + I + C)^* \exp(\beta_1 * N + \beta_2 * N^2 + \beta_3 * K + \beta_4 * K^2 + \beta_5 * NK)$ = G_{con}*Fertilizer Effect Therefore, Fertilizer Effect is a growth multiplier

Control plot 10-year diameter growth/tree by Rock Type and Vegetation Series

Growth multiplier: Diameter Growth/tree

Growth multipliers N effects on per-tree growth

🔶 DBH 💶 BA 📥 Height

DF basalt --- DF mixed **DF** granite **GF** basalt **GF** mixed GF granite **GF** metased WRC mixed WRC metased WRC tert sed

DF basalt **DF** mixed **DF** granite **GF** basalt **GF** mixed **GF** granite **GF** metased WRC mixed WRC metased -WRC tert sed

DF basalt --- DF mixed --- DF granite

WRC mixed -- WRC metased -- WRC tert sed

Distribution of sites with species-specific growth data

Species-specific growth multipliers: 10-year tree diameter growth

🔶 DF 🚽 GF 📥 PP

Species-specific growth multipliers: 10-year tree height growth

🔶 DF 🚽 GF 📥 PP

Growth multipliers: DF Periodic height growth

← years 1-4 --- years 5-8

Summary: N and K Effects on Growth

- Diameter and basal area growth showed a strong relationship to rate of N application but not to K. The effect was proportional to N rate at lower rates but declined at high N rates.
- Most of the fertilizer effect occurred within the first 4 years after treatment, but significant N effects were still present in years 5-6. High N rates extended the duration of response.
- Height growth was increased by N application, but the amount was slight and the duration of response was short.
- N effects varied by series and rock type with rock type differences more pronounced on drier vegetation series

What's Dying?

	Total Trees	Dead Trees	% Mortality
All Species	49422	4436	9.0
Douglas-fir	19504	1454	7.5
Grand Fir	12718	1645	12.9
Ponderosa Pine	7500	294	3.9
Western Red Cedar	4222	458	10.8
Lodgepole Pine	2108	270	12.8
Western Larch	1771	94	5.3
hand to have a to	Mean DBH	Inner Quar	tile Range
All Trees	6.26	3.13 -	- 8.55
Dead Trees	3.78	0.64 -	- 5.76

10-year Mortality by Cause stems/a

Tree Species

Causes of Mortality

Size of Mortality

Mortality	D	BH (inches)
Cause	Mean	Inner-Quartile Range
Competition	1.95	0.43 to 2.92
Weather	5.96	3.62 to 7.86
Disease	6.03	3.34 to 7.92
Insects	7.53	4.91 to 9.61

10-year Mortality by Cause BA/a

unknown competition disease weather insect other

Causes of Mortality

The Fertilizer Mortality Effect Model Multiplicative model: $\ln(M_{trt}) = \mu + I + C + G + \beta_1^* N + \beta_2^* N^2 + \beta_3^* K + \beta_4^* K^2 + \beta_5^* NK$ where M = mortality (10-year trees, BA or volume/acre) I = installation effect (random) C = covariate adjustments for initial plot density, plot growth N = nitrogen rate (lbs/a) K = potassium rate (lbs/a) Thus, $M_{trt} = \exp(\mu + I + C + G + \beta_1 * N + \beta_2 * N^2 + \beta_3 * K + \beta_4 * K^2 + \beta_5 * NK)$ = exp(μ +I+C+M)*exp(β_1 *N+ β_2 *N²+ β_3 *K+ β_4 *K²+ β_5 *NK) = M_{con}*Fertilizer Effect Therefore, Fertilizer Effect is a mortality multiplier

Control Plot 10-year Mortality (% volume/a) by Rock Type and Vegetation Series

Mortality multiplier: % Trees/a

Mortality multiplier: % Volume/a

Mortality multipliers N effects on % mortality/a

Mortality multiplier: % Trees/a

Series= WRC/WH Rock Type= Metasediment

Mortality multiplier: % Trees/a

Series= GF Rock Type= Basalt

DF basalt --- DF mixed 📥 DF granite GF basalt **GF** mixed GF granite **GF** metased WRC mixed WRC metased WRC tert sed

🔶 DF basalt 🚽 DF mixed 📥 DF granite

N Rate (Ibs/a)

--- GF basalt --- GF mixed --- GF granite --- GF metased

WRC mixed ---- WRC metased ----- WRC tert sed

Mortality multipliers N effects on % volume/a mortality

🔶 DF 🚽 GF 📥 PP

Mortality multiplier: % Volume/a

Cause=Insects

% Volume/a 1.5 1.4 1.3 1.2 1.1 350 300 250 200 150 100 1.0 0.9 K Rate (lb/a) 0.8 50 0 0 600 500 400 300 200 100 N Rate (lb/a)

Mortality multiplier: % Volume/a

Cause= Disease

Mortality multipliers N effects on % volume/a mortality

Competition - Insects - Disease - Weather

Summary of Mortality Effects

- Mortality rates were strongly linked to N application rates. Like growth, mortality increases were proportional to N rate at lower rates but declined at higher rates.
- The N rate-mortality relationship varied significantly by rock type, vegetation series, and mortality measure
- There was no evidence that K applications modified mortality rates in any consistent fashion.
- Increased mortality from N application seemed mostly caused by weather or disease agents.

Further Work

 Repeated application analysis Modeling site-related effects on growth and mortality relationships to N application rate Examining site subsets for possible relationships of K application rate to growth and mortality

DF basalt DF mixed **DF** granite **GF** basalt **GF** mixed **GF** granite **GF** metased **WRC** mixed **WRC** granite WRC metased WRC tert sed

Mortality multipliers N effects on % trees/a mortality

Mortality multipliers N effects on % volume/a mortality

Mortality multipliers N effects on % trees/a mortality

N Rate (lbs/a)

DF basalt **DF** mixed 📥 DF granite GF basalt **GF** mixed GF granite **GF** metased WRC mixed WRC metased WRC tert sed

DF basalt DF mixed 🛨 DF granite -GF basalt GF mixed GF granite **GF** metased WRC mixed WRC metased WRC tert sed

DF basalt --- DF mixed --- DF granite

--- GF basalt --- GF mixed ---- GF granite ---- GF metased

WRC mixed ---- WRC metased ----- WRC tert sed

