Site Type Initiative Initiative to Characterize Principal Factors that Define Forest Site-Types

Mark Kimsey IFTNC Annual Meeting April 6, 2010

Site Quality v. Site Type

- A site type is one realization of the many potential realizations of the concept of site quality
 - Site Type: A geospatially definable suite of climatic and edaphic variables modified by landform that interact to form a plant community with distinct carrying capacity and productivity.
 - Low carrying capacity/productivity = Low site quality
 - High carrying capacity/productivity = High site quality

Drivers of Site Quality


- Principal factors:
 - > Light
 - Aspect, latitude, cloudiness, slope
 - > Moisture
 - Precipitation, soil available water
 - > Temperature
 - Soil/air temperature, elevation, slope/aspect
 - > Nutrients
 - Parent material elemental composition, rock weathering, organic matter
- Site quality is an expression of a complex interaction among these factors

Context

- Management decisions based on current knowledge of site quality expressions of these complex interactions
- Ability to accurately predict site quality elusive
 - Process models include site factors that effect landscape NPP
 - Not applicable to the stand level
 - Empirical quantitative models capture 60-80% site variation
 - Typically applicable only to site types and datasets modeled
 - Rarely account for site nutrient status

Relevance

IFTNC has shown that soil parent material influences site quality

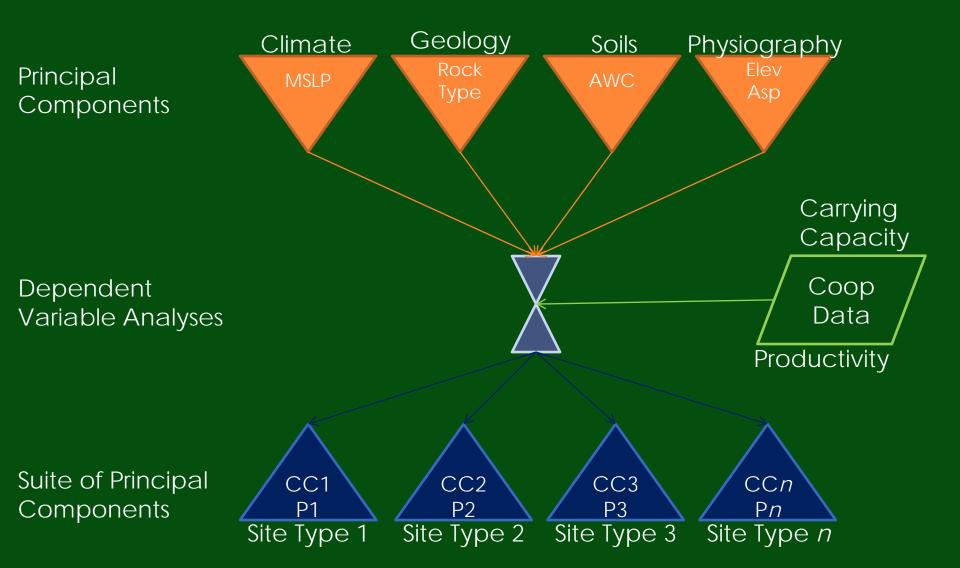
Relevance

• Capture static vs. dynamic site factor effects

- Static factors remain constant under management and climate change
 - Physiographic position, soil parent material
- Dynamic factors respond to management and climate change
 - Moisture availability, temperature regimes
- Newly available digital spatial resources
 - > Geology and soil layers
 - Climate data

Question?

Can integrating geology and surficial soils with climate and physiographic variables improve site quality models?


STI Objectives

 Identify site factors driving carrying capacity and optimal productivity

 Develop models to estimate site quality based on these identified factors

 Create regional, geospatial tools that predict site quality

Flow Chart View

Ollect CFI and cruise data from IFTNC cooperators

- Create two databases:
 - > Single Entry: >10,000 plots
 - Multiple Entry: Plots filtered by density and development criteria
- Single entry datasets analyzed for carrying capacity
- Multiple entry datasets analyzed for productivity
- Stand/Plot coordinates linked to geospatial site factor layers

Site Type Measures

• Carrying capacity

- Stand Density Index
 - Reineke's -3/2 self-thinning boundary line
 - Stratify densities by species and test for site affects on line intercept and slope

Productivity

- > 2nd log analysis: height/age ratio, PAI volume
 - Control for density effects
 - Control for stand development

Statistical Modeling

- Stochastic Frontier Analysis
- Principal Components
- Clustering
- Linear/Nonlinear regression
 - > Multiple Adaptive Regression Splines
 - > Geographically Weighted Regression

Model Products

Predictive Models

 Mathematical equations defining relationships between site carrying capacity/productivity and site factors

Geospatial Models

 GIS-based productivity and density layers developed by predictive models

Management Products

Define nutrient supply effects on site quality

 Establish which site factors respond to management and/or climate change

 Develop density targets for optimal growth range by site type

 Aid in species selection and target breeding efforts

Project Development

- Project Proposed: 2009 IFTNC SC Meeting
- Technical Advisory Meeting: July 2009
- Study Plan: Winter 2009
- Privacy agreements and data transfer: Spring 2010
- Hire Post-Doctoral Biometrician: May 2010
- Develop databases: Summer 2010
- Density/Productivity Analyses: Fall/Winter 2010/11
- Project Completion: Spring 2011
- Present Findings: 2011 Annual Meeting
- Publish Results: Summer 2011