Stocking Levels and Their Influence on Riparian Inputs

Presentation to IFTNC

Mark Teply Cramer Fish Sciences April 2011

markt@fishsciences.net 360.456.4621

Presentation Outline

- Brief Overview of our Study Objectives
- Maximum Stocking Levels Indicated by IDL's Continuous Forest Inventory (CFI)
- Response of LWD and SHD to Residual Stocking Levels by Forest Type

Current Riparian Practices

Carefully remove the mature timber from the Stream Protection Zone to prevent destruction of shade and vegetation filters. Leave 75 percent of the current shade over Class I streams. Standing trees including conifers, hardwoods, and snags will be left within 50 feet of the ordinary high water mark on each side of all Class I streams in the following minimum numbers per 1,000 feet of stream:

Trees per 1	,000 Fee	et Required	(each side)						
Class I	Class I	Class I	Class II*						
Stream Width									
Over 20'	10'-20'	Under 10'							
200	200	200	140						
42	42	42	-						
21	21	1-1							
4	1000								
	Class I S Over 20' 200 42	Class I Class I Stream Wid Over 20' 10'-20' 200 200 42 42	Stream Width Over 20' 10'-20' Under 10' 200 200 200 42 42 42						

Provide soil stabilization and water filtering along Class II streams that flow into Class I streams for 30
feet each side of the SPZ. No standing trees are required for Class II streams with the 5-foot SPZ.

Key Premises and Hypotheses

Key Premises: **Ecological differences exist** Biological maxima exist – They vary over space/time Key Hypotheses - They influence maximum possible LWD/SHD inputs They influence the rate of response to stocking

Overall Study Objectives

Identify Forest Types/Stands

> Simulate Harvest and Growth

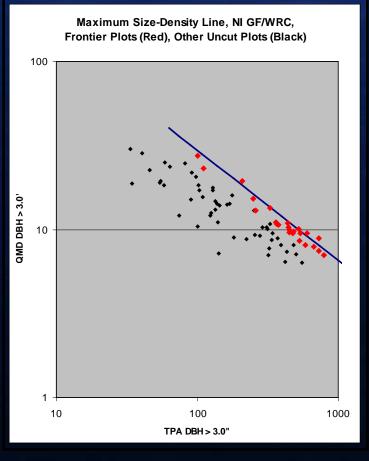
We seek to provide insight that leads to meaningful and implementable revisions to stand density targets

Simulate LWD and SHD

Simulate LWD/SHD for multiple forest types and residual stocking levels to use relationships to inform rule-making

Review Results

Identify Targets



Identifying Forest Types and Defining Stand Conditions

AREA NUMBER	PLOT	NUMBER	SUB PLOT NUMBER	HINOM	YEAR	T OF LAND	ANGF	I PLO	SECTION	FORTY	~	3HLL	CRUISEF	RS:
	- 1					MEASUF		.ρ EES					DATE:	
TREE NUMBER	SPECIES	DBH	LOG HEIGHT	ТОТАL НЕІСНТ	PRODUCT	AGE	MORTALITY	SAWLOG CULL	PERCENT	VIGOR CLASS	CROWN CLASS	TREE STATUS	% LIVE CROWN	NOTES
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 22														
23		DLING			EM6 L	NDER 4.5			1			5.0.0	OOT RAI	
DF	PP	WP	LPP	GF	AF	ES	WH	ALL) WRC	1740 WL	JUN	RE - PIN	5.9 F WB	YEW	HW
DIRECTIONS TO PLOT:														

 Based on analysis of **IDL's CFI data set** Randomly located plots - Across IDL lands Reliable and consistent • Used the CFI data to: Identify max size-density Inform simulation models

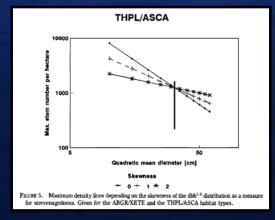
Identifying Maximum Size-Density Relationships

 Select Candidate Plots - From "Uncut" stands Identify Max SDI Line - Fit a log-log regression of TPA = $a + b^*QMD$ - Used trees g.t. 3.0" DBH - Iteratively fit/screen s.t. ~20+ "frontier" plots left - Fit a final regression and added s_{v.x} to intercept

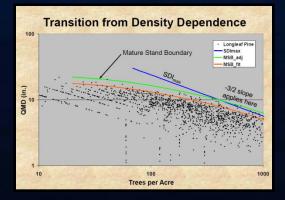
Investigating Differences and Trends in Maximum Size-Density

Koolenal Print 12 Calar Part 12 Part Oratio Lako	Instructions: For more information, click anywhere on the map to open the IDL Area Office web page responsible for that specific location.
Man Catalón Catalón Catalón Barres Barres	
Ponderos Ponderos Canvitar Canvitar Canvitar Canvitar Canvitar	7
Crate Magde Creek	
· · · · · · · · · · · · · · · · · · ·	ABERLINE h, t, s, Scrub line; general upper limit of shrub-like trees ABERLINE h, t, s, Ables laslocarpa stunted or wind-deformed Executions execution upper limit of continuous form
Persetta I alean	tundra

elpine tundra Scrub line, general upper linit of shrub-like tress ABIES UPPER SUBALPINE h. t.S. ABIES UPPER SUBALPINE h. t.S. ABIES CRANDIS, THUJA, TSUGA, ANDIOR PICEA SERIES PINUS PONDEROSA OR PINUS FLEXILIS SERIES grasslands Figure 4.--Generalised clinaz zonation of the coniferous forest peries in Montana.


CIENCES

Testing Regional Groups

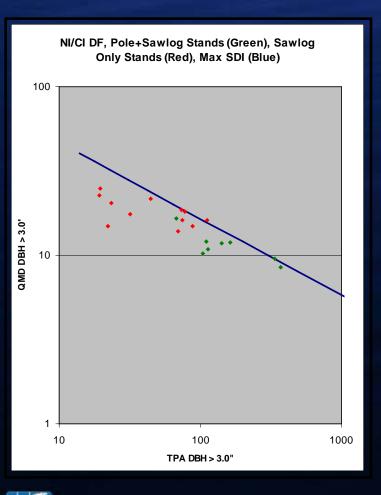

 Supervisory Areas Groups
 Different combinations to discriminate NI v. CI

- Testing Habitat Types
 - Pfister et al. 1977 Series
 - Considered meaningful Habitat Type Groups in Monserud (1984)

Investigating Differences and Trends in Maximum Size-Density

Sterba and Monserud 1993

CIENCES

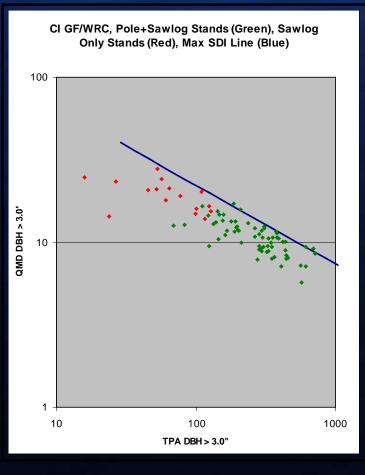

Shaw and Long 2009

Testing Structure

- Considered skewness per findings of Sterba and Monserud (1993)
- We found meaningful differences, but none were significant

 Therefore, dropped as a discriminator, but caution remains

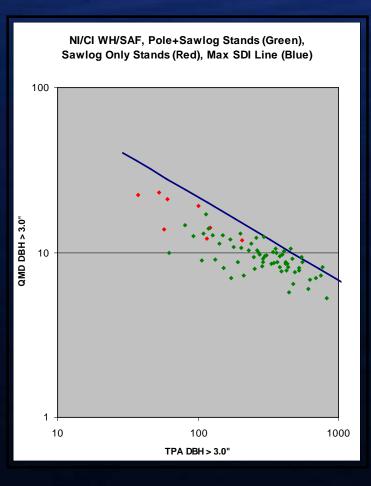
Forest Type: NI-CI DF


Forest Type Definition - Priest Lake/Kootenai to Craig Mtn/Maggie Cr. - Habitat Types 200-399 Max Stocking Levels - Frontier BA: 130 (25) - Self-thinned SDI: 300 - Self-thinned BA: 165 - Theoretical SDI: 355 - Theoretical BA: 190

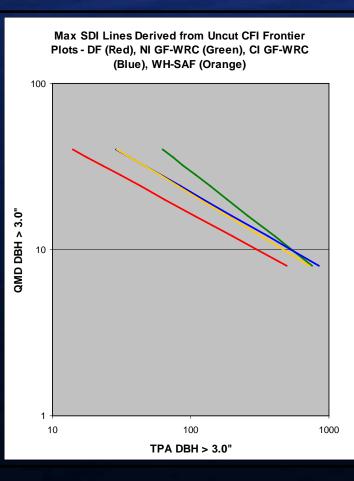
Forest Type: NI GF-WRC

NI GF/WRC, Pole+Sawlog Stands (Green), Sawlog Only Stands (Red), Max SDI Line (Blue) 100 2MD DBH > 3.0 10 1000 10 100 TPA DBH > 3.0"

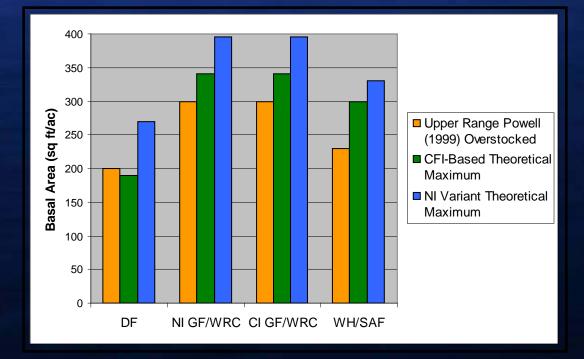
Forest Type Definition Priest Lake/Kootenai Valley to St. Joe - Habitat Types 500-569 Max Stocking Levels - Frontier BA: 275 (60) - Self-thin SDI: 530 - Self-thin BA: 290 - Theoretical SDI: 630 - Theoretical BA: 340


Forest Type: CI GF-WRC

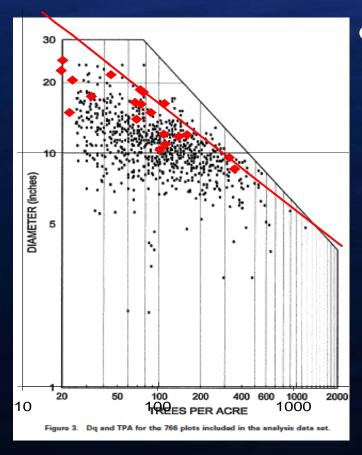
Forest Type Definition - Ponderosa/Clearwater to Craig Mtn/Maggie Cr – Habitat Types 500-569 Max Stocking Levels - Frontier BA: 250 (30) - Self-thin SDI: 530 - Self-thin BA: 290 - Theoretical SDI: 625 - Theoretical BA: 340


WWW.FISHSCIENCES.NET

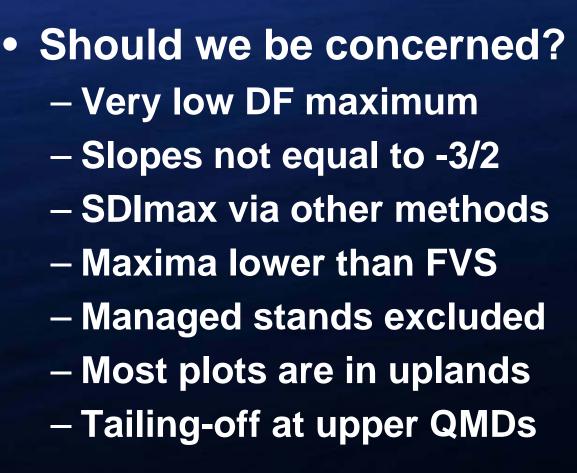
Forest Type: NI-CI WH-SAF


Forest Type Definition - Priest Lake/Kootenai to Craig Mtn/Maggie Cr. – Habitat Types 570-799 Max Stocking Levels - Frontier BA: 220 (30) - Self-thin SDI: 465 - Self-thin BA: 255 - Theoretical SDI: 550 - Theoretical BA: 300

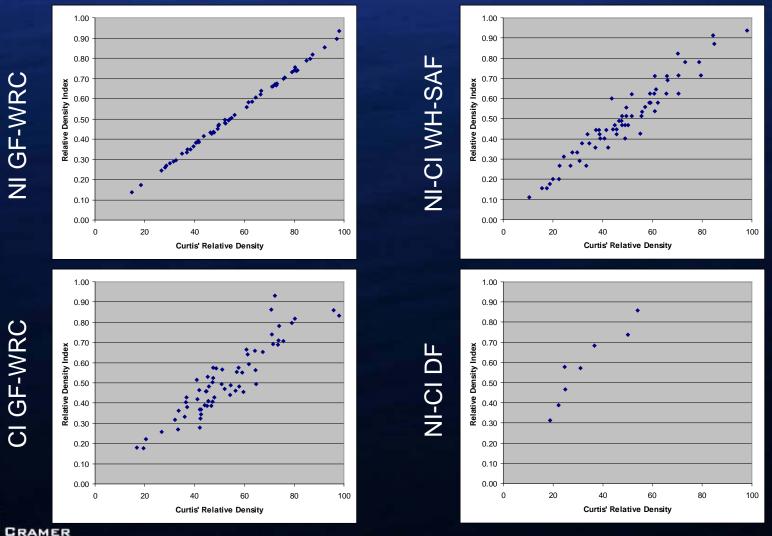
Forest Type Comparisons


Meaningful trends exist among SAs and HTGs - NI-CI DF is the lowest – NI GF-WRC is highest Others are intermediate Slopes tell a story, too - NI GF-WRC is ~ -3/2 - Others are \sim -2

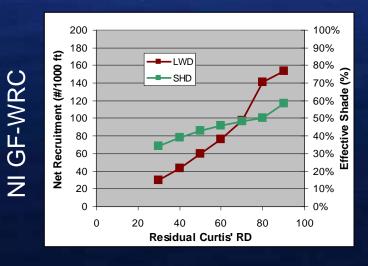
Forest Type Comparisons

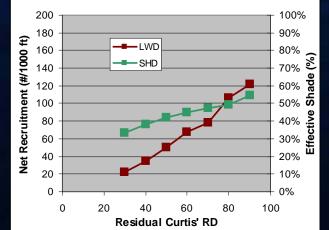


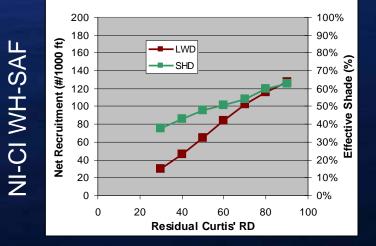
Trends among HTGs ~ other studies
Plausible differences among regions

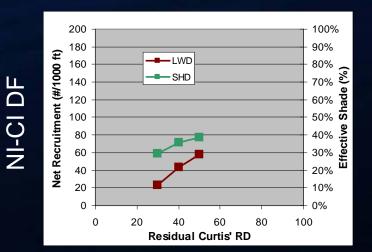

Several Concerns to Acknowledge

DF Max SDI v. Long and Shaw (2005) PP


Putting Relative Density onto a Common Scale - Curtis' RD




WWW.FISHSCIENCES.NET


SCIENCES

Response of LWD and SHD by Residual Curtis' RD

CI GF-WRC

CRAMER

SCIENCES

WWW.FISHSCIENCES.NET

Reviewing our Premises/Hypotheses

Key Premises: — Ecological differences exist — Biological maxima exist — They vary over space/time • Key Hypotheses: - They influence maximum possible LWD/SHD inputs - They influence the rate of response to **j** stocking

Discussion and Questions...

