TASS III: The Next Generation...

of a Growth & Yield Model for Complex Stands

TASS Trek - we're going where few have gone before....

Jim Goudie, Research Leader Stand Development Modelling Group Research and Knowledge Management Branch

Ministry of Forests and Range

The star ship TASS crew

- Ken Mitchell (scientist emeritus, Captain Kirk)
- Jim Goudie (SDMG research leader, Captain Picard)
- Catherine Bealle Statland (complex stand development, Counselor Deanna Troi)
- Mario Di Lucca (G&Y applications specialist, Lt. Commander Data)
- Roberta Parish (Quantitative population biology, Dr. Beverly Crusher)
- Ken Polsson (programmer/analyst, Geordi La Forge)
- Shelley Grout (software application specialist TIPSY, Lt. Tasha Yar, security)
- George Harper (hardwoods) (Q)
- Ian Cameron (Azura Formetrics; biometrics/modelling, Commander Riker)
- Stephen Stearns-Smith (SSS and Assoc.;extension specialist Worf)
- Past member: Albert Nussbaum

Ken "Captain Kirk" Mitchell Circa 1975 COLUMBIA

Ministry of Forests and Range The Best Place on Earth

eniltuO

- About TASS
- TASS I II III history
- TASS III modifications
 - o tRAYci light model
 - o Crown profiles
 - o Crown competition
 - o Mortality
- TASS Graphical User Interface
- PLOTSY

Ministry of Forests and Range

Forest Scienc

Program

TASS – Tree And Stand Simulator

 \triangleright

40+ years and still exploring space

(because it is spatial)

TASS and TIPSY provides managed stand yield tables for use in:

- Timber Supply Review (AACs)
- Silvicultural prescriptions and strategies
 - Predictions of non-timber forest values

TASS I:

1963-1968

Dr. Ken Mitchell, UBC grad and Yale PhD (1968) (Yale Bulletin No. 75)

Two-dimensional crown modelling

TASS II:

1968 – present 1975 For. Sci. Monograph 17

T<mark>ass III</mark>

8

1996 – present

Three-dimensional crown modelling and light model (tRAYci)

Ministry of Forests and Range

TASS II Key Components

- •Height Growth = f(potential, light)
- Crown morphology (branch extension)
- Competition
- Mortality
- Ring characteristics
 - size, juvenile-mature wood, relative density, strength, cell characteristics

Crown Growin

11

Ministry of Forests and Range

Competition - Mortality

Bole Increment

<mark>Outline</mark>

- About TASS
- TASS I II III history
- TASS III modifications
 - o tRAYci light model
 - o Crown profiles
 - o Crown competition
 - o Mortality
- TASS Graphical User Interface
- PLOTSY

4

April 7, 2010: 6:00pm

South

Forest Science

Program

North

18

Latitude 50° N

19

Program

Relative height growth

Ministry of

Forests and Range

<mark>Outline</mark>

- About TASS
- TASS I II III history
- TASS III modifications
 - o tRAYci light model
 - o Crown profiles
 - o Crown competition
 - o Mortality
- TASS Graphical User Interface
- PLOTSY

22

Ministry of Forests and Range

Forest Science

Program

Crown Profiles

BRITISH

he Best Place on Earth

Ministry of

Forests and Range

23

25

Ministry of

Forest Science Forests and Range

Program

Crown profile samples

Spacios	No troos	No Branches		
Species	110. 11665	Radius	Total	
Hwc	154	1619	8307	
Fdc	150	1302	3751	
Ва	63	510	1121	
Ss	96	504	2006	
Si	60	863	2763	
PI	115	1106	1761	
Total:	638	5904	19709	

26

Ministry of Forests and Range

<mark>Outline</mark>

- About TASS
- TASS I II III history
- TASS III modifications
 - o tRAYci light model
 - o Crown profiles
 - o Crown competition
 - o Mortality
- TASS Graphical User Interface
- PLOTSY

70

Ministry of Forests and Range

Crown - columns of growing space

Allows only <u>one</u> live canopy layer per grid column – Overtopped canopy layers die

30

Supports <u>multiple</u> live canopy layers per grid column -Light governs understory growth and mortality

noiiiieqmo2 - nwor2

31

<mark>Outline</mark>

- About TASS
- TASS I II III history
- TASS III modifications
 - o tRAYci light model
 - o Crown profiles
 - o Crown competition
 - o Mortality (our nemesis, the Borg)
- TASS Graphical User Interface
- PLOTSY

Mortality steps

- Collected all stem-mapped PSPs
- Input tree list and x-y coordinates into TASS
- Estimated the PACL of each tree at each measurement
- Used this derived PACL and other variables to predict the probability of death (or survival).
- Tried several approaches but now,

Classification And Regression Trees (CART)

- *Classification* for categorical variables (i.e. live or dead) or *Regression* for continuous variables
- Random forests is the most well known software
- While similar in concept to principle components analysis (which creates linear combinations of variables), this routine is non-paramentric (no assumptions necessary about the underlying distribution) and uses if-then-else logic.
- Results are fairly straightforward to interpret, however, the algorithms are very complex
- Need to decide:
 - The criteria for predictive accuracy
 - When to stop splitting
 - What is the "right-sized" tree (i.e., over fitting can be a problem)

34

Classification And Regression Trees (CART)

Leaf Label is node number and probability of survival

Lives/Dies label is simply based on probability of survival: e.g., at node 2 < 0.979 → Dies

Individuals will live or die based on probabilities and random draws, not the Lives/Dies label.

BRITISH

he Best Place on Earth

Ministry of Forests and Range Forest Science Program

Moving through the Tree - If the test statement is True, go left

We have coded in the CART mortality algorithm for testing purposes. When satisfied that it is working "correctly" (i.e., passes test of reasonableness), then we use the information (e.g., variables, interactions) to conduct logistic regression.....

Forest Science

Program

Logistic Regression

- generic tool for fitting a dichotomous dependent variable (e.g. Live-Dead) to categorical and continuous independent variables.

$$P_s = \left(\frac{1}{1 + e^{\beta X}}\right)^L$$

 $\beta X = b_0 + b_1 C_1 + b_2 C_2 \dots + b_n C_n + b_{12} C_1 C_2 + \dots + b_{nm} C_n C_m$

with individual covariates (C_i) and possible interaction terms that are selected in part from the CART results.

Ministry of Forests and Range

Forest Science

<mark>Outline</mark>

- About TASS
- TASS I II III history
- TASS III modifications
 - o tRAYci light model
 - o Crown profiles
 - o Crown competition
 - o Mortality

TASS Graphical User Interface (the holodeck) PLOTSY

Ministry of Forests and Range

About TASS III

OK

This software is licensed for use only. There are no rights expressed or implied in providing this software for sale or commercialization. The ministry makes no warranties and is not liable for any consequences resulting from its use.

Version 2.0.4 alpha

Copyright BC Ministry of Forests and Range, 2010

Developed by Research Branch, Ministry of Forests and Range, Victoria BC.

TASS III - Tree And Stand Simulator

Distributed free of charge at the discretion of the ministry.

Acknowledgements...

TASS Graphical User Interface (the holodeck)

Stand Definition Plot Length Width 50.00 m 50.00	m	Advanced Features
Initial Regeneration Planting Natural Reg Initial Growth Grow Until Year	P P Existing stand initiation Edit S V 2011.00 Or until Year = 2110	lant 1200/ha 100% Fdc site 35.0 in itand.
<u>H</u> elp	Defaults	<u>C</u> ancel <u>N</u> ext >>
11	j.	

Ministry of Forests and Range

Yie	ld Table	e Outp	ut (file	TASS_smily_	1.t3	d)						
Disp	DisplayColumns											
S	Stand and Stock Table Output (file: TASS_smily_1.t3d)											
	I III		Mortality Output (file: TASS_smily_1.t3d)									
		Dier										
			Carbon	and Biomass Output	(file: TA	ASS_smily_1.t3d)						
Y.	A <u>c</u>	15	Display									
		Ac	Stand	Dead Tree List Ou	itput (f	ile: TASS_smily_1.t3c	d)					
2		(yr		Display	TAS	ব						
2	E C		Stand	Stand Regions: Sta		Tree List O	utput (file: TA	SS_smily_1.t3d)				
2			Âge			Display						1
2	8 5					Stand Regi	ions: Stand		Colui	nn headings	Apply	Select columns
2	16			Chand Trees								
2	12		Ę	Stand Tree		ID			Basal	Bole	Crown Crown	Foliar 🔺
	13		E E	nge code		Code Ag	je X	YSpecHeigh	: DBH Area	a Volume	AreaLength	Volume m3
2	15		έ			1 4	19 1.61	48.56 Fdc 29.2	43.11 0.146	5 1.555	53.9 14.09	88.89 -
2	11			50 17		24	19 4.42	48.91 Fdc 20.4	24.67 0.048	8 0.410	20.4 5.34	1.56
2	18		11	50 146		54	13.04	48.40 Fdc 25.0	29.09 0.060	0.607	24.3 9.12	28.06
2	19		12	50 148		64	9 16.15	48.62 Fdc 20.8	22.59 0.040	0.325	18.8 7.15	16.43
2	26		11	50 189		12 4	9 33.32	48.08 Fdc 30.7	40.24 0.12	1.416	43.0 12.48	68.01
	21		15	50 205		14 4	19 39.02	48.66 Fdc 32.3	39.22 0.12	1.421	35.3 11.50	57.05
	<u>H</u> elp		16	50 224		16 4	19 44.47	48.55 Fdc 19.8	5 29.02 0.060	5 0.551	36.6 9.27	18.15
		<i>'</i>	11	50 237		20 4	19 10 55	45.63 FOC 31.14	2 40.18 0.121 22 JC 0 021	0 0 0 5 0	38.6 12.22	60.89 26.22
1	1			50 254		32 4	19 10.33 19 11 20	45.33 Fdc 28.1	1 32.48 0.08.	1 977	25.8 5.25 45 6 12 29	30.33 80 47
3200	1					35 4	19 1 34	42 88 Edc 30 5	36 30 0 103	1 1 1 4 8	29 6 10 53	45 71
2270	16-1		1	£ 3		50 4	45.27	42.95 Fdc 25.6	27.45 0.05	0.551	18.9 8.01	20.07
	5		100	Sect 1		52 4	9 1.69	39.88 Fdc 28.8	33.11 0.080	6 0.922	25.1 8.84	35.41
5-x -	100	6-1	100	BC 1		67 4	19 44.47	39.98 Fdc 24.8	29.47 0.068	0.656	29.2 8.37	35.14
		-	3			68 4	47.92	40.27 Fdc 30.9	5 32.68 0.084	0.899	21.7 10.40	32.19
				1		75 4	9 18.87	36.75 Fdc 26.6	27.59 0.060	0.617	20.6 7.71	27.74 🚽
									Bit m			60

BRITISH COLUMBIA The Best Place on Earth

Ministry of Forests and Range

-

File View Window Help Image: Solution of the	► ■ 🔀
Image: Mark Winder Image: M	▶ 4 ▶ 280 ▶ 83
Graphics Output (file: TASS2) Region Rectangle row, col=0.00,0.00 length=50.00,50.(▼ Spin degrees (© 2-D crown 0 Height Scaling (> 280 C 3-D trees Use light model Tilt degrees (C PACL horiz. Show wind risi C PACL vert. Solid color	▶ 4 ▶ 280 ▶ 83
Region Rectangle row, col=0.00,0.00 length=50.00,50.() Spin degrees 4 [©] 2:D crown [©] length [©] 2:D crown [©] 3:D trees [©] length [©] length [©] 7:D crown [©] length [©] length [©] 7:D trees [©] length [©] length [©] 7:D trees [©] length [©] length [©] PACL horiz [©] Solid color [©] solid color [©] PACL vert [©] Solid color [©] solid color	 ▶ ▶ ₽ 83
	P 14 <u>R</u> edraw
Bep Spre s Close Help Spre s	Close

	H TASS III 1.0.3 File View Window Help		
1	□ 🖙 🖬 🕵 🗛 🔻 🖷 🛓 🖳	🏭 🖄 🔍 () 🗶	
	Region Rectangle row,col=0.00,0.00 ler C 2-D crown 0 Height G 3-D trees Use light mode C PACL horiz. Show wind risi C PACL vert. Solid color	Ingth=50.00,50.(Spin degrees Scaling Tit degrees Y shift	4 280 33 14 Redraw
	Help	S <u>a</u> ve as	Close

Ministry of Forests and Range

eniltuO

- About TASS
- TASS I II III history
- TASS III modifications
 - o tRAYci light model
 - o Crown profiles
 - o Crown competition
 - o Mortality

PLOTSY

47

TASS Graphical User Interface

Ministry of Forests and Range

Merch Volume & Juvenile Wood Volume

TASS III

Underlying philosophy unchanged:

Advancing the prediction of stand growth and yield by focusing on the spatial dynamics of individual tree crowns, the biological engine of tree growth.

TASS is a framework for synthesis of world-wide research on tree growth and stand development, with a focus on treatment response.

Forest Science

Program

Ministry of

Forests and Range

Thank you for your attention

Ministry of Forests and Range

