Developing a Risk Rating System for Soil Susceptibility to Ground-Based Timber Harvest

Derrick Reeves, IFTNC Matthew Reeves, RMRS Ann Abbott, RMRS Deborah S. Page-Dumroese, RMRS Mark Coleman, IFTNC

Presentation Outline

- Soil matters
- Initial efforts
- Intro to detrimental soil disturbance
- Intro to Kootenai Forest
- Landtype designation
- Statistical analysis
- Modeling parameters
- Conclusions

Why Soil Matters

Man - despite his artistic pretensions, his sophistication, and his many accomplishments - owes his existence to a six inch layer of topsoil and the fact that it rains.

~Author Unknown

Does soil disturbance matter?

Project Introduction

- Primary objective: Correlate soil disturbance levels to physical site characteristics, harvest season, and harvest systems in Region 1 of the USFS.
- Secondary objective: Develop a method for utilizing Region 1 legacy soil monitoring data.

Results-All Harvest Systems

- Data conversion to consistent format
- All units were assigned a "mean soil disturbance value"
- MSD= $\sum (P_c \ge C) \div P_t$ (Reeves model)

Variable	p-Value
Forest	<.0001
Slope class	.6407
Aspect	.1214
Season of harvest	.5733
Soil texture	.6388
Harvest system	<.0001

MSD Associated with Ground-Based Harvest

- 112 units- harvested from 1999- 2009
- When ground-based harvest is analyzed alone, only Forest is significant

Variable	p-Value
Forest	<.0001
Slope class	.1304
Aspect	.7770
Season	.4005
Soil texture	.6653
Harvest system	.4744

Conclusions From Initial Study

- Ground-based harvest results in significantly more MSD than helicopter or skyline harvest
- Significant differences exist among forests using similar harvest systems
- Correlating soil disturbance to site variables will require standard monitoring protocol

Objectives

- Predictive model of detrimental soil disturbance due to ground-based timber harvest based on landscape characteristics, harvest season, and equipment type
- Produce geo-spatial model useful in timber harvest planning on the Kootenai National Forest
- Provide a methodology that could be used to produce a predictive model of soil disturbance based on landscape characteristics, harvest season, and harvest equipment

Intro to Detrimental Soil Disturbance (DSD)

- Maintenance of site productivity mandated by NFMA (1976)
- Soil quality standards (SQS) developed for each Region (last revision 1999)
- Areal extent of DSD defined as a combination of rutting, compaction, topsoil displacement, severe burning, erosion, and mass movement
- DSD as defined by R1 SQS must not exceed 15% of areal extent of harvest unit
- 85% of harvest unit must be in "satisfactory condition"

Kootenai National Forest

- 2.9 million acres within admin boundaries
- 93,000 acres designated wilderness (1)
- 6500 acres designated scenic areas (2)
- 200 mmbf timber sold FY 2006- present
- 5 year average of 41.34 mmbf sold

Data Collection

- DSD data collected for 196 ground-based harvest units
- Final data set includes 167 ground-based harvest units
- 87,744 monitoring points
- Only harvest units monitored for DSD post 1999 considered for study
- 9 landtypes
- 47.5% of Kootenai National Forest

Stratification Factors

- slope
- aspect
- harvest equipment used
- harvest type (intermediate or regeneration)
- landtype
- harvest season
- soil texture

Landtypes

- KNF comprised of 50 landtypes
- 7 landtypes classified as "soils of special concern" (Kuennen 2006)
- Stratified by:
- Physiography (landform, slope, aspect, elevation)
- Geology (parent material, rock outcrop)
- Vegetation

Landtype	Slope	Aspect	Elevation	Area	Number o	f harvest
					uni	ts
	%		m	ha	Winter	Non- winter
302	30-60	southerly	914-1280	17912	0	3
321	10-40	variable	762-1158	13050	5	1
322	15-35	variable	762-1524	32225	1	5
323	15-35	variable	762-1524	35754	7	23
324	15-35	variable	762-1219	37306	3	19
328	15-35	northerly	914-1646	20877	3	7
329	15-35	variable	914-1676	27414	7	10
352 355	20-60 20-50	northerly northerly	671-1707 914-1676	201000 187336	15 23	28 7

(Reproduced from Kuennen and Neilsen-Gerhardt 1995)

Landtype	Soil parent material	Dominant landform	Habitat type
302	compact glacial till	glaciated mountain slopes	Douglas fir/ snowberry
321	calcareous glacial till	drumlins/ moraines	Douglas fir/ pine grass
322	loess and volcanic ash over compact glacial till	moraines	western hemlock/ queencup beadlilly
323	loess and volcanic ash over calcareous glacial till	moraines	Douglas fir/ pine grass
324	calcareous glacial till	moraines	Douglas fir/ pine grass
328	loess and volcanic ash over calcareous glacial till	glaciated mountain slopes	subalpine fir/ twinflower
329	loess and volcanic ash over calcareous glacial till	moraines	subalpine fir/ twinflower
352	loess and volcanic ash over compact glacial till	glaciated linear mountain slopes	western red cedar/ queencup beadlilly
355	loess and volcanic ash over compact glacial till	glaciated rounded mountain slopes	western red cedar/ queencup beadlilly

Statistical Analysis

- ANOVA model:
- DSD= aspect, slope, harvest season, landtype, harvest season*landtype

 $r^2 = .376085$

 $\alpha = 0.10$

Variable	p-Value
Aspect	0.0217
Slope	0.0738
Harvest season	0.1637
Landtype	0.0002
Harvest season*landtype	0.0002

Results

Modeling Equation

 Areal extent of DSD (%)= intercept + aspect + (slope (%)* .0596) + harvest season + landtype + landtype*harvest season

Variable	Parameter estimate range
B ₀	4.22
Slope	0.06
Aspect	-3.67 (NW), 0.51 (NE)
Season	0.00 (Winter), 2.36 (Non-W)
Landtype	-3.49 (322), 7.11 (328)
LT* season (non-winter)	-9.94 (328), 4.57 (322)
LT* season (winter)	0.00

Geo-spatial representation of the statistical model predicting areal extent of **DSD** resulting from winter ground-based timber harvest

Geo-spatial representation of the statistical model predicting areal extent of DSD resulting from nonwinter ground-based timber harvest.

Non-winter

Winter

Statistical and Geospatial Correlation

About Models

"All models are wrong, some are useful"

-George Box 1979

Conclusions

- Correlating site characteristics with disturbance levels requires consistent monitoring and application of SQS
- Model appears to produce reasonable values over a broad spectrum
- More data collection needs to occur to validate the model
- Accurate documentation of harvest equipment is a necessity
- This risk analysis methodology can be used to:
 - create models predicting soil disturbance levels due to management activities
 - identify areas susceptible to increased disturbance levels where alternative management activities may be warranted

Acknowledgements

 Thanks to my collaborators, Matt Reeves, Ann Abbott, Deborah Page-Dumroese, Mark Coleman

• This project is funded by Region 1 of the USFS

References

Kuennen, L.J. and M.L. Neilsen-Gerhardt. 1995. Soil Survey of Kootenai National Forest Area, Montana and Idaho. USDA. Washington, D.C. 122 pp.

Contact Information

Derrick Reeves
Office phone: 208-885-7475
reev6460@vandals.uidaho.edu