Herbicide Soil Reactions and the Impact of Site Factors

Adam Robertson IFTNC Annual Meeting April 5, 2011

Vegetation Control methods

Site-Prep & Release

Mechanical

• Herbivory

• Fire

• Chemical- Herbicides

.....I am going to focus on herbicides

Vegetation Control...

 Increases site resources- Water, Nutrients, Light, & Real Estate

- Critical for seedling survival
- Aids in maximizing site productivity
- Levels of vegetation control depend on management objectives

... is efficacy dependant on site type?

Outline:

- Factors influencing herbicide movement & availability
- Benefits of vegetation control
 - Control timing and intensity considerations

Movement & Persistence

Herbicide Mobility

Organic Matter matters!

- Typically negative charged
- Lower pH means less repulsion and more bonding

Soils

- Particle Size-The greater the surface area (small particles, clay etc.) the greater the sorption
- Soil pH influences herbicide charge

Other Important Mobility Considerations...

- Water solubility of the herbicide
- Degradation rate
- Use rate, increased rate = increased risk

Herbicide Charge and Mobility

	No leaching	Possible leaching	Probable leaching
Herbicide charge	Cation	Weak Base or Non-ionic	Weak Acid

-The charge of the herbicide is very important factor

-Soil pH also influences the charge of some herbicides

-Most soils have Cation exchange

-Volcanic ash - Anion exchange

Common Herbicide Attributes

Herbicide	Mobility	Solubility (mg/L)	¹ /2 Life (days)
Glyphosate - Round-Up	Immobile	15,700	47
2, 4-D	High	900	10
Imazapyr – Chopper	Moderately	11,272	25-142
Fluroxpyr – Vista	High	4000	11-38
Metsulfuron-methyl - Escort XP, Oust Extra	High	2790	30
Sulfometuron-methyl – Oust	High	300	20-28
Picloram – Tordon	High	430	90
Triclopyr - Forestry Garlon	High	430	30
Clopyralid – Transline	High	1000	40

Mobility, Solubility & Presistance

What does this mean?

- Most of the listed herbicides, with a few exceptions, all have similar mobility classifications
- Very water soluble
- Very persistent
- What this doesn't tell us...
 - Effects from various slash loads
 - Effects from litter layer depth
 - Effects of broadcast burn
 - Effects of Volcanic ash on herbicide mobility
 - Effects of soil type

Why use Herbicides

Giving your plantations every possible advantage

Why use Herbicides?

Why:

- Growth response
- Seedling survival
- Increases growing season
- Reduced animal damage
 - **Considerations:**
 - **Competition Threshold**
- **Critical-Period Threshold**

Competition & Productivity

Losses in Productivity

Height - shade at half the tree height and higher

Diameter - 20% cover within 2.1m radius of tree

Wagner and Radosevich 1991

Competition & Productivity

- Maximum early growth requires vegetation control at planting
- Compensation for 1
 missed year at
 planting = at least 2
 more years of
 vegetation control

VMRC- Growth Response in DF Seedlings

Trt	2005 Applic ation	2006 Applic ation	2007 Applic ation	400 - 350 -
1	F-SP			8 300 -
2	F-SP	S-R		6 250 –
3	F-SP	S-R	S- R	8 200 -
4	F-SP	S-R G-R	S-R	150 - 100 - 100 -
5	F-SP	S-R G-R	S-R G-R	50 - 0 -

355 355 179144 33 2 3 4 5 1 **Treatment**

F-SP = Fall Site Prep S-R = Spring Release G-R = Glyphosate Release

Dinger & Rose 2009

IFTNC Fertilizer and Herbicide Rate Trial

- ~15 year old Ponderosa Pine
- Treated with herbicide, fertilizer, herbicide & fertilizer, and no treatment
- Combination of Herbicide and fertilizer has additive properties

DIAMETER RESPONSE

TRT	N- RATE	WEED- RATE	% Respon se
1	0	0	
2	0	2	55
3	0	4	46
4	29.3	0.59	53
5	29.3	3.41	57
6	100	0	10
7	100	2	80
8	170	0.59	40
9	170	3.41	85
10	200	0	23

IFTNC Tornilla Western Larch Demo

2-year Basal Area Response

- Volcanic ash over metasedimentary parent material
- Herbicide and fertilizer produced the best response
- Highest diameter response was for N+Herb, N,K,S and B +Herb, N,K,S,B,Cu,Zn,Mg and Fe +Herb at 44%
- Poorest growth response was the Herbicide-Only, which was 12%

Things to Consider

-Competition & Critical-Period Threshold -Herbaceous vs Woody Competition

Common Critical-Period Thresholds

- Time period in which weed control must occur to prevent yield loss
- Determined by attribute desired survival, basal area, height...

Wagner et at. 1999

Common Competition Thresholds

 Level of veg. where an abrupt increase or decrease in the rate-ofchange in tree growth or survival appears

 Influence of shrub and herbaceous vegetation cover on 5-year height (A) and basal area (B) of Douglas-fir

Woody vs Herbacious Competition

- 20-30% of site productivity achieved through woody species control
- 70-80% achieved by controlling the remaining herbaceous cover.
- 20% cover affects Douglas-fir productivity (usually herbaceous)
- Seedling height affected when cover is 120% of seedling height (usually woody)

Vegetation Control & Productivity

Wagner, 2000

Management Implications...

- Site type modifies herbicides effectiveness, availability and movement
- Herbicides are important treatments Intensive & Intermediate Silviculture
- Threshold guidelines that help managers determine timing & intensity of treatments
- Increases site resources
- We can increase productivity in the "Eastside", and veg. control is a key component that should be a priority

What we want to know

Can we accurately predict herbicide movement and effectiveness by site type?

- How does management activities (whole tree vs bole only, broadcast burn, thinning, etc) effect herbicides?
- What Herbicide and rates are best for common species by site type for release and site prep.?
- What are the "Critical-period thresholds" & "Competition thresholds" for common species by site type?
- Can a geospatial map be developed to guide herbicide uses by site type?

References

- America, W. S. (2007). *Herbicide Handbook.* Lawrence: Weed Science Society of America.
- Dinger, E. J., & Rose, R. (2009). Intergration of soil moisture, xylem water potential, and fall-spring herbicide treatments to achive the maximum growth response in newly planted Douglas-fir seedlings. *Canadian Journal of Forestry*, 1401-1414.
- Harrington, T. B., & Madsen, J. (2005). Silviculture Technology and applications for forest plantation establishment west of the Cascade Crest. Olypmia: USFS.
- Newton, M. (2010). Forestry. In Pacific Northwest Weed Management Handbook (pp. 275-295). Oregon State University.
- S.Preest, M. N. (1988). Growth and Water Relations of Douglas-fir (Pseudotsuga menziesii) Seedlings under Different Weed Control Regimes. Weed Science Society of America, 653-662.
- Shaw, T. M., & Johnson, L. R. (2007). Ponderosa Pine Growth Response to Different Levels of Nitrogen and Herbicide Treatments in Northeast Washington. Moscow: Intermountain Forest and Tree Nutrition Cooperative.
- Shaw, T. M., & Kimsey, M. J. (2010). Two-Year Growth Response of Western Larch to Various Combinations of Fertilizer and/or Herbicide at the Tornilla and Gold Creek Fertilization Demonstration Sites in Western Montana. Moscow: Intermountain Forest and Tree Nutrition Cooperative.
- Wagner, R. G. (2000). Competition and critial-period thresholds for vegetation management decisions in young conifer stands. *The Forestry Chronicle*, 961-968.
- Wagner, R. G., & Radosevich, S. R. (1991). Neighborhood predictors of interspecific competition in young Douglas-fir plantations. *Canadian Journal of Forestry*, 821-828.