SITE-SPECIFIC DOUGLAS-FIR ALLOMETRIC RELATIONSHIPS: NUTRIENT MANAGEMENT STUDY

> Adam Robertson IFTNC

Background

Applicable for a wide geographic range

Generalize site variation

Common Equation limitations

Purpose of Project

 Goal: To provide site specific nutrient budget for Douglas-fir

 Objective: Determine if site type is a factor in Douglas-fir biomass production

 Null Hypothesis: Rock and vegetation type do not effect biomass regression equations

Other Equations

- Brown 1978
 - Idaho and Montana
 - Obh range: 1-11 cm (0.4- 4.33 inches)
- Marshall & Wang 1995
 British Columbia
 Dbh range: 1.9-21.3 inches
- Gholz 1979
 - Oregon Cascades
 - Diameter Range: 2-162 cm (0.78-63.78 inches)

Study Design

- Sample size: 72 trees
- Ory Grand Fir forest type
- Two rock types- Basalt and Quartzite.
- Obh Sample Stratification

 Stands are chosen that meet the specified site criteria

Stand mensuration data collected

Cruise data stratified

Sample trees selected

Bark samples and cores

The crown measured & divided

Samples Weighed

The stem is cut and weighted.

Stem samples collected

Lab Procedure

- Samples processed and oven dried
 - Foliage
 - Branches
 - Discs
 - Bark & Cores

Analysis

- Oven dry weights determined
- Ratios determined
 - Branch/foliage
 - Wood/bark

Site Information

Site	Lovell Valley	Ruby Bugs	Canus
Site Index	77	69	73
Vegetation Series	Dry Grand fir	Dry Grand fir	Dry Grand fir
Rock Type	Quartzite	Quartzite	Basalt
Soil Moisture/Temp Regime	Xeric/Frigid	Xeric/Frigid	Xeric/Frigid
Height-Growth Ratio- referenced from ring counts after "release" with 30ft interval	.86 ft/yr	.66 ft/yr	1.17 ft/yr

Quartile

Preliminary Stem Results

Lovell, Ruby, Canus Total Stem Weights

All Sites Stem Weights Predicted vs Actual

Marshall & Wang, and Gholz estimates showed no statistical difference (.05 alpha) when compared to actual weights

All Sites Predicted vs Actual Stem Weights (natural log)

Natural log of weights actual and predicted were computed as a way to linearize the data.

Rock Type Comparison

Results also showed no statistically significant difference between stem weights as a function of rock type.

Using Brown's for Large Stems...

- Brown's 1978 work is meant for crown biomass estimation.
- Large differences are present when Browns equations are used to estimate large diameter stems
- Brown's equations aren't appropriate for all tree components and sizes

All Sites Predicted vs Actual Stem Weights (In)

Example of large difference shown when using Brown's stem equation out of its range

First dbh Quartile- Predicted vs Actual

A statistical difference between actual and Browns predicted weights in trees 10cm – 25cm dbh (3.9 inches-10 inches).

Products

- Regression equation for Douglas-fir
- Validation/ Model Correction
- Allometric relationships
- Various reference tables, and predictors

Conclusion

- Statistically significant difference is present between Brown and our smallest trees (some were still larger than Brown's listed range)
- Thus far no significant difference is shown for rock type with stem data, suspect crowns will show difference
- No statistical difference between sample weights and Gholz's equation and Marshall's equation for stem
- All of these relationships will be re-explored after crown data is complete, and the remaining sites have been collected.
- Use Brown where appropriate

QUESTIONS or COMMENTS

References

- Brown, J.K., 1978. Weight and density of crowns of Rocky Mountain conifers. U.S. For. Serv. Res. Pap. INT-197: 56.Gholz
- Feller, M.C., 1992. Generalized versus site-specific biomass regression equations for *Pseudotsuga menziesii* var. *menziesii* and *Thuja plicata* in coastal British Columbia. Bioresour. Technol., 39: 9-16.
- Gholz, H.L., Grier, C.C., Campbell, A.G. and Brown, A.T., 1979. Equations for estimating biomass and leaf area of~plants in the pacific northwest. Greg. State Univ. Sch. For. I&s. Pap., 41: 39.
- Marshall, P.L. and Wang, Y., 1995. Above ground tree biomass of interior uneven-aged Douglas-fir stands. Canada-British Columbia Partnership Agreement on Forest Resource Development: FRDA II. Working Paper WPIS-003. University of British Columbia, Vancouver, 23 pp.
- Ter-Mikaelian, M.T., and Korzukhin, M.D. 1997. Biomass equations for sixty-five North American tree species. For. Ecol. Manage. 97: 1–24.
- Society of American Foresters. (2008). Productivity. In The Dictionary of Forestry. Retrieved March 31, 2010, from http://dictionaryofforestry.org/ dict/term/productivity.