Biochar: Effects on soil microbial activity and soil enzyme activity

Dan Smith, M.S. candidate smit7900@vandals.uidaho.edu

Introduction – Biochar

 Biochar By-product of pyrolysis

 Mobile-pyrolysis (in development) Pre-commercial thinning Logging residue Slash \rightarrow bio-oil

 Biochar Deposited onsite in forests

Introduction – Biochar

• Effects of biochar on forest soil?

- Numerous studies regarding agriculture
- Fewer studies on:
 Forest soil
 Forest soil microbiology
 Critical to forest health

Experiment – Biochar in forest soil

Objectives:

- Enzymes decomposition and nutrient cycling
 - Aminopeptidase, β-glucosidase, Chitinase,
 Phosphatase, Peroxidase
- Microbial activity (respiration)
- Fertilization
 - Urea 46-0-0
- Forest succession
 - Mature v. ~30 yr plantation

Dilution effect

Sand v. biochar

Methods – Installation

Field incubation cores
30 cores at 4 forest sites
6 treatments

5 replicates each

Installed Nov-Dec 2010

Treatments		
Amendment	Unfertilized	Fertilized
Non-amended	5	5
50% Biochar	5	5
50% Sand	5	5

Methods – Harvest and analyses

Harvested June-Aug 2011

Enzymes → Fluorimetric
Soil + enz substrate → product fluorescence

Microbial activity → SIR
Soil + glucose → CO₂

Soil moisture, pH, field temp

Amendment effect

Decrease (biochar)
Chitinase
↓ Chitin decomposition
Phosphatase
↓ Phosphorus cycling

No effect (biochar)

β-glucosidase Peroxidase

Decrease (sand, NOT biochar)
Peroxidase
Lignin decomposition

Enzyme Activity: Amendment Effect

Amendment effect

Increase (biochar)
Aminopeptidase
Proteins → amino acids

Forest succession Increase in plantation sites β-glucosidase

- Chitinase
- Peroxidase

• Amendment v. Fertilization effect

Urea fertilizer

Compensated for biochar-related activity reduction
Chitinase
β-glucosidase

No other significant correlations with fertilizer and enzymes

Enzyme Activity: Amendment v. Fertilization Effect

- Enzyme effects Proposed causes
 - Increase
 - Biochar co-location of enzyme and substrate
 - Field or lab analysis
 - Biochar favoring of exoenzyme producing microbes

Decrease

- Biochar sorption / blocking of enzyme or substrate
- Lower demand for enzymes

Results – Microbial activity

Microbial activity

- No significant effects
 - Amendment
 - Fertilization
 - Forest succession
 - Site

Other studies have shown biochar can increase biomass

Conclusions

• Enzyme activity

Unique aspects of biochar may influence C, N, and P cycling through alteration of chitinase, aminopeptidase, and phosphatase activity.

Changes may be altered by fertilization.

Total response of B-glucosidase, chitinase, and peroxidase activity to biochar may differ between plantations and mature forests.

No significant effects on microbial activity.

Acknowledgements

- Special thanks to:
 - Mark Coleman
 - Mark Kimsey
 - Jayred Potter
 - Debbie Page-Dumroese
 - Matt Morra
 - Terry Shaw
 - Joanne Tirocke

...and everyone else who has made this project possible