Little Things that Make a Difference: **Endophytes in Forestry Mary Ridout** George Newcombe Forest, Rangeland, and Fire Sciences University of Idaho

How we define an endophyte

Organisms that live in plant tissues without causing apparent harm to the host (Petrini, 1991) FungiBacteriaNematodes

Endophyte ecology

- Endophytes are found in all plants
- They are found in large numbers
 - A single pine needle may contain 3 to 10 organisms that can be cultured
 - As many may be "unculturable"

Endophyte ecology

 They spread by soil, wind, water, seed, and other endophytes

Endophytes form dynamic communities in the host that affect host fitness— but may be host specific

Mutualistic benefits

- Insect resistance
- Disease resistance
- Thermotolerance
- Drought tolerance
- Improved nutrient uptake
- Better growth and survival

Can Endophytes Improve Forest Health?

Fundamental objectives

 Identify endophytes endophytes can contribute to out-planting success, growth and disease and insect resistance in PNW forestry

 Develop a better understanding of endophyte interactions in forest ecology through controlled assays and establishment of out plantings for long-term monitoring

Collections from the UIEF

- Ten trees per species
 - 100 needles
 - 20 cm root tissue per tree
- Total recovery: ~7000 endophytes!
- Morchella elata—black morel
- Greenhouse/nursery isolates

► Needles

Roots 🛑

Endophytes in forest trees

Diseases in forest trees

- White pine blister rust
- Root diseases
 - Armillaria root rot—*Armillaria* sp.
 - Laminated root rot—Phellinus weirii
 - Schweinitzii root and butt rot—Phaeolus schweinitzii
- Nursery root diseases
 - Fusarium sp.
 - Cylindorcarpon sp.
 - Phytophthora

Implications for root diseases

- Nursery diseases and the predisposing factor phenomenon (Manion, 1991)
 - Species of *Fusarium* and *Cylindrocarpon* are common in forest nurseries and may colonize asymptomatic seedlings (James, 1985)
 - Cylindrocarpon infection is significantly lower in natural regeneration (Axelrood, 1998)

There goes the neighborhood — endophyte succession

- Exclusionary principles
- Successional infection processes
- Replacement
- Implications in managed forests
 - Natural regeneration
 - Out planting

Implications for root diseases

 Can seedling *Fusarium* infection predispose plantings to disease and insect attack and reduce fitness?

• Can inoculation with endophytes reduce seedling infection by *Fusarium* and improve out plantings long term?

Fusarium root rot in conifer seedlings

- 360 Ponderosa seedlings
- 16 treatments
- Endophyte treatments reduced mortality and symptoms in seedlings

Sterile DI Control

Morchella elata

Why Morel?!?

- Morchella sp. found as an endophyte in cheatgrass (Bromus tectorum) (Baynes et al., 2011)
- Morchella increased biomass and fecundity of cheatgrass (Baynes et al., 2011)
- Morchella elata (black morel) increased coleoptile elongation and growth in Zea mays (Yu and Newcombe, unpublished)
- Morel forms mycorrhizal associtations with pines (Dahlstrom et al., 2000)

 Inoculation with Morchella elata increased thermotolerance of seed of Bromus tectorum (Baynes et al., 2011)

Heat, fire, and drought

 Is there ecological significance in relationship of thermotolerant, fire adapted and drought-tolerant endophytes and forest hosts?

Root endophytes of interest

- Thermotolerant genera isolated from root tissues
 - Eupenicillium
 - Talaromyces
 - Byssochlamys
 - Penicillium
 - Paecilomyces

Eupenicillium sp.

- Tolerate extreme conditions
 - pH (2.6 to 8.3)
 - High salts—100 μM NaCl
 - 2°C to 40°C—known to survive pastuerization temperatures
 - Drought

Nutritional implications

- Eupenicillium sp. and phosphate solubilization
- Endophytes may improve nitrogen uptake similar to mycorrhizae (Jumpponen et al, 1998)
- Endophytes may contribute to nitrogen use efficiency (Alberton et al., 2010)
- Better nutrient uptake and assimilation
 - Better growth and health
 - Greater stress resistance

Reforestation and forest health

Reforestation and forest health

On-going research

 Establishment of outplantings inoculated with endophytes for long-term monitoring

 Finding disease and stress tolerance assays with implications for endophyte selection in forestry

References

- Alberton O, Kuyper TW, and Summerbell RC. 2010. Dark septate root endophytic fungi increase growth of Scots pine seedlings under elevated CO₂ through enhanced nitrogen use efficiency. Plant and Soil 328: 459-470.
- Axelrood PE, Chapman WK, Seifert KA, Trotter DB, and Shrimpton G. 1998. *Cylindrocarpon and Fusarium root colonization* of Douglas-fir seedlings from British Columbia reforestation sites. Canadian Journal of Forest Research. 28: 1198–1206.
- Baynes, M, Newcombe G, Dixon L, Castlebury L, and O'Donnell K. 2011. A novel plant/fungal mutualism associated with fire. Fungal Biology 116: 133-144.
- Dahlstrom JL, Smith JE, Weber NS, 2000. Mycorrhiza-like interaction by *Morchella* with species of the *Pinaceae* in pure culture synthesis. Mycorrhiza 9: 279-285.
- Ganley RJ, and Newcombe G. 2006. Fungal endophytes in seeds and needles of *Pinus monticola*. Mycological Research 110: 318-327.
- James, Robert L. 1985. Studies of *Fusarium associated with containerized conifer seedling* diseases: (2). Diseases of western larch, Douglas-fir, grand fir, subalpine fir, and ponderosapine seedlings at the USDA Forest Service Nursery, Coeur d'Alene, Idaho. USDA Forest Service Northern Region, Forest Health Protection Report 85-12. 7 pp.
- Jumpponen A, Mattson KG, Trappe JM (1998) Mycorrhizal functioning of *Phialocephala fortinii*: interactions with soil nitrogen and organic matter. Mycorrhiza 7:261–265.
- Manion PD, 1981. Tree Disease Concepts. Pearson Education: Australia.
- Miller JD, Sumarah MW, and Adams GW. 2008. Effect of a rugulosin-producing endophyte in *Picea glauca* on *Choristoneura fumiferana*. Journal of Chemical Ecology34: 362–368.
- Redman RS, Seehan KB, Stout RG, Rodriquez RJ, Henson JM. 2002. Thermotolerance generated by plant/fungal symbiosis. Science 298: 1581.
- Redman RS, Kim YO, Woodward CJDA, Greer C, Espino L, Doty SL, Rodriguez RJ. 2011. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS ONE 6(7): e14823. doi:10.1371/journal.pone.0014823.