Impacts of forest biomass removal on soil quality and forest productivity

Brian Bell University of Idaho, IFTNC

Some Current Forestry Issues

- 73 million acres of Overstocked Forest in West (USFS, 2003)
- 40 million dead acres of beetle killed forest in BC/Alberta, 4 million CO/WY
- Longer fire season, increasing fire severity
- Increasing Cost of Transportation and biomass Removal
- Biomass removal can have negative impacts on future productivity

Solutions to Current Situation

- Thin forest to increase resiliency from Insects/disease, fires
 Utilizing low-value biomass for energy production (boilers, gasification, pyrolysis, fermentation)
- Future carbon markets?

How much wood can be utilized from a site?

Soil pool contains the most nutrient capital Harvesting trees removes aboveground nutrient capital

Objectives

- Determine the effects of slash removal rates on site productivity
- Can soil amendments mitigate the effects of slash removal
- Response to thinning affected by slash removal and amendment treatments

Experimental Design

Thinned and all slash retained (1x)

Unthinned control		Thinned and No slash retention (0)	
no amendment	fertilizer	no amendment	fertilizer
biochar	fertilizer & biochar	biochar	fertilizer & biochar
Thinned and All slash retained (1x)		Thinned and Double Slash retained (2x)	
no amendment	fertilizer	no amendment	fertilizer
biochar	fertilizer & biochar	biochar	fertilizer & biochar

Thinned to 40% of original volume 3 slash retention rates (none, All, or Double) Biochar will be added at 17,851 lbs/ac Fertilizer (N,P,K,S,B) at 562 lbs/ac

Data Collection

- Tree growth responses: Crown response, B.A., volume
- Soil physical/chemical properties: Bulk density, Macro/Micro nutrients, Soil Organic Matter content, Soil Moisture/Temperature
- Soil biological activity: Soil respiration (CO2 fluxes), Microbial Biomass, Enzyme activity

Questions

- How will the soil physiochemical/biological properties change due to thinning and different rates of slash retention?
- How will the soil physiochemical/biological properties change due to the different soil amendments?
- How will subsequent tree growth respond to the different biomass removal rates and can soil amendments compensate for the removal?

Expected Forestry results

- Thinning will increase growth of individual tree volume
- Fertilizer will have a short-term effect on growth
- Increasing amounts of slash retention will increase individual growth over the long-term

Expected Soil Results

- Positive relationship with increasing slash retention rates and soil physiochemical/biological properties; however these will not be detectable in the short-term
- Fertilizer will have a short-term effect on soil properties, but will dissipate with time
- Biochar will have increasing positive effect on soil properties with time

Q/A Thanks for your time!

Brian Bell, bell0084@vandals.uidaho.edu