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ABSTRACT 

     Volcanic ash distribution, thickness, and its role in Douglas-fir (Pseudotsuga menziesii 

[Mirb.] Franco var. glauca) site index (SI) were determined for a forested region of north 

central Idaho. Ash thickness (AT) and Douglas-fir SI measurements were collected from 

local Natural Resource Conservation Service soil surveys and through newly installed field 

plots. Climatic, ecological, edaphic, geologic, and topographic data were collected from field 

observations or derived from digital elevation models. Three statistical models were 

developed to estimate AT and two models for predicting Douglas-fir SI. The modelled 

relationships were spatially displayed using a geographicl information system (GIS).  

     Statistical model 1 was developed to estimate AT using ecologically based plant 

associations as an explanatory variable. Climax plant associations moister than grand fir-

queen cup beadlily (Abies grandis/Clintonia uniflora) had consistently thick ash mantles and 

soils that would be classified as either Andisols or andic subgroups using Soil Taxonomy. 

Multiple linear regression (MLR) results showed that topographic factors accounted for ~ 29 

percent of the explained variance, with elevation accounting for ~ 18 percent alone. Plant 

associations accounted for ~ 71 percent of the explained variation in AT. The statistical 

model error of 10.7 cm was significantly lower than the >20 cm variation often found in local 

soil series. Overall model fit produced an R2 of 0.6. Results suggest that plant associations 

integrate many of the local factors that influence volcanic ash distribution. 

     Statistical model 2 was developed to determine AT for situations when climax plant 

associations are not physically observable. This model was based solely upon topographic 

factors. Predictive models were developed using MLR and geographically weighted 

regression (GWR). Results show that elevation, slope, plan curvature, and the wetness index 
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all significantly influence volcanic ash distribution. Similar to model 1, elevation explained 

the most variation in AT. GWR improved model fit and precision by 36 percent and 30 

percent, respectively, over the MLR model (R2
A = 0.64). The localized approach of GWR 

modelling showed that elevation, slope curvature, and the wetness index behaved differently 

depending on geographic location. This suggests that the global approach of MLR modelling 

is masking conditional landscape relationships that are unique and highly localized. 

    Volcanic ash and other climatic, edaphic, geologic, and topographic factors were used to 

predict Douglas-fir SI using both MLR and GWR in statistical model 3. Elevation, ash depth, 

slope, and aspect were significantly correlated with Douglas-fir SI. Elevation was found to be 

nonstationary, indicating that parameter estimates associated with elevation significantly 

change depending on the geographic location of an observation. SI showed a positive 

logarithmic response to increasing AT. GWR significantly improved MLR model fit by 28 

percent and reduced the sum of square errors by 54 percent (R2
A = 0.5). Residuals analysis of 

MLR SI estimates showed extreme SI overestimation in the south and west portion of our 

study area. This overestimation was significantly reduced in the GWR model. The significant 

fit and precision improvements of GWR models suggest that the complex interactions 

affecting Douglas-fir SI are better analyzed at the local level. 
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INTRODUCTION 

     Volcanic ash distribution and its potential effect on Douglas-fir (Pseudotsuga menziesii 

[Mirb.] Franco var. glauca) site index (SI) was modelled for a north central Idaho forest 

located in the Natural Resource Conservation Service (NRCS) ID-612 soil survey area. This 

area was selected for study based upon the large number of soil and timber productivity 

records available. Previous Douglas-fir SI studies within the Inland Northwest have shown 

either minimal or inconclusive effects of volcanic ash on tree height. Many of these studies 

were based on small datasets covering large geographic regions that ultimately confounded 

edaphic, climatic, and topographic variables. Another goal of our study was to provide a 

quantitative assessment of regional volcanic ash distribution. Statistical analyses of the ID-

612 soil survey data were conducted in an effort to determine if a large dataset of soil and 

timber productivity records within a small geographic area could provide more precise 

models for determining volcanic ash distribution and ultimately, Douglas-fir SI. Developed 

models were then spatially evaluated within a geographic information system (GIS). 

     The presence of volcanic ash is often associated with moist plant communities and 

moisture accumulating landscape positions within the Inland Northwest. These associations 

are variable across the region, and have never been quantified locally. Rough approximations 

of ash thickness (AT) can be determined through local soil survey units, but they provide 

only a range of potential thicknesses. In Chapter 1 of this dissertation, ash distribution and 

thickness were assessed using plant associations and topographic variables. Comparative 

analyses of mean AT by classed variable were performed. Environmental variables were 

used to model AT using multiple linear regression (MLR). Model fit and precision statistics 



                                                                                                                                                  2
       
were obtained to determine the model’s usefulness for estimating volcanic AT within north 

central Idaho.   

     Reliance on plant associations to derive ash distribution patterns may not always be an 

option. Management activities, biological predation, wildfire, or climate change often shift 

plant associations away from climax. These scenarios could confound a model that is reliant 

on the physical site expression of climax plant associations. In Chapter 2, volcanic ash 

distribution is modelled solely with topographic features. Topographic features were derived 

from a United States Geological Survey (USGS) 30-m digital elevation model (DEM) and 

were modelled using MLR and geographically weighted regression (GWR). GWR was 

conducted to assess the potential nonstationary effects of topography on AT, and to provide a 

local alternative to ordinary MLR modelling. The two statistical models were compared to 

determine the effectiveness of localized regression modelling in capturing additional sources 

of variation. Model results were then spatially displayed in a geographic information system 

(GIS). 

     Chapter 3 shifts the focus from volcanic ash to Douglas-fir SI modelling. The effects of 

edaphic, geologic, topographic, and climatic factors on Douglas-fir SI were evaluated. SI 

models were derived from these environmental variables using MLR and GWR. Statistical 

techniques used in Chapter 2 were applied to SI modelling. Model estimates and residuals 

were spatially displayed to show the strengths and weaknesses of the two models. The GWR 

approach performed well for estimating SI, and highlighted the potential consequences of 

assuming independent variable stationarity when it does not exist.  

     The goal and findings of this study is to provide forestland managers with important 

information on the distribution of volcanic ash and its effect on Douglas-fir SI within north 
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central Idaho. Statistical models developed within this study can be used in natural resource 

management prescriptions and applications. In addition, spatial maps have the potential to aid 

decision support systems and particularly enhance the selection of land based harvest systems 

(minimizing ash disturbance) and potential areas for fertilizer applications (increasing return 

on investment in more productive areas).     
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CHAPTER 1:  Ecological and Topographic Features of Volcanic Ash-Influenced Forest 

Soils 

ABSTRACT 

     Volcanic ash distribution and thickness were determined for a forested region of north 

central Idaho. Mean ash thickness (AT) and multiple linear regression (MLR) analyses were 

used to model the effect of environmental variables on AT. Slope and slope curvature 

relationships with AT varied on a local spatial scale across the study area. AT and aspect 

showed weak correlation. Elevation and ecologically based plant associations accounted for 

about 54 percent of the observed variation in AT. Climax plant associations moister than 

grand fir-queen cup beadlily (Abies grandis/Clintonia uniflora) had consistently thick ash 

mantles and soils that would be classified as either Andisols or andic subgroups using Soil 

Taxonomy. The statistical model error of 10.7 cm was significantly lower than the >20 cm 

variation often found in local soil series. This model quantitatively assesses AT and can be 

integrated into other local ecological models.   
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INTRODUCTION 

     Volcanic ash from eruptions along the Pacific Northwest Cascade Range has significantly 

influenced forest soils of the Inland Northwest, USA (Mullineaux, 1986; Shipley and Sarna-

Wojcicki, 1983). The Holocene era eruption of Mt. Mazama (now Crater Lake, OR) 

distributed >116 km3 of volcanic tephra across this region (Bacon, 1983; Zdanowicz et al., 

1999). Soils influenced by the deposition of Mt. Mazama tephra can be found throughout the 

western United States and into southwestern Canada (Figure 1.1). Soils formed in, or 

influenced by volcanic ash are important to forest management. Volcanic ash-influenced 

soils have lower bulk density, higher porosity, and higher water infiltration and retention than 

soils less influenced or unaffected by ash (McDaniel et al., 2005; Nanzyo et al., 1993; 

Nimlos, 1980; Warkentin and Maeda, 1980). Among the benefits of these soil properties is 

the reduction in drought stress on plant communities during extended summer dry periods.  

     Deposition of Mt. Mazama ash in the Columbia basin of eastern Washington State was 

estimated at approximately 15-20 cm thick, with thinning in areas more distal to the eruption 

(Busacca et al., 2001). The current distribution pattern of volcanic glass derived from the 

Mazama event is much different than this original deposition pattern. Busacca et al. (2001) 

found only weak tephra influence in soils of the southwest Columbia Plateau even though 

these areas are closest to the volcanic source of the tephra. Instead, glass content of the 

surface soils increases with increasing downwind distance from the source volcano.  

     Several mechanisms have been proposed as factors in the transformation of the original 

tephra sheet into the current mixed distribution patterns. Busacca et al. (2001) submit that 

extensive re-working of volcanic ash by wind occurred during the mid-Holocene drought 

(7,600 – 5,000 yr BP). Prevailing southwesterly wind patterns re-entrained unincorporated  
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                      ash across the western United States and southwestern Canada.   

The study area for this research project is located within the boxed  
area of north central Idaho (adapted from Williams and Goles,  
1968). 

 

 



                                                                                                                                                  7
       
volcanic ash and transported it downwind. This process of re-entrainment and re-deposition 

is enhanced by the physical characteristics of Mt. Mazama ash. Regional volcanic ash is 

characterized by low cohesiveness and a high percentage of silt-sized particles. These 

properties readily produce a soil that is susceptible to wind erosion when dry (Dubroeucq et 

al., 1998). Several additional mechanisms include: 1) burial of ash by episodic loess 

deposition and subsequent bioturbation by soil fauna, and 2) enhanced retention and capture 

under moist plant communities (Busacca et al., 2001; Hunter, 1988; McDaniel et al., 2005; 

Nimlos and Zuuring, 1982; Zobel and Antos, 1991). Such mechanisms may explain the 

extensive mixing often observed in ash surface layers found in mountainous regions of the 

Inland Northwest.  

     Nimlos and Zuuring (1982) suggest that precipitation and volcanic ash distribution is 

positively correlated in forested regions of western Montana. Volcanic ash in the atmosphere 

would be transmitted to the ground during rain and snow events. Higher elevations would 

accumulate greater concentrations of ash as air masses cooled and released precipitation. 

Nimlos (1980) observed that ash in western Montana does not occur in areas with 

precipitation less than 560 mm. On sites with annual precipitation ranging from 560 – 1000 

mm, ash is typically found on gentle or north-facing slopes, but not on very steep or 

southerly facing slopes. Locations that receive >1000 mm of annual rainfall exhibit ash soils 

on all landforms and slopes. Nimlos (1980) also suggested that the absence of volcanic ash at 

the base of south slopes <1000 m in elevation is attributable to wind action. Overland water 

movement would have redistributed the ash from shoulder and backslope to the foot and 

toeslope positions. Lack of ash in these slope positions suggests that wind, not water, was the 

primary eroding factor (Nimlos, 1980).   
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     Nimlos and Zuuring (1982) also attempted to predict ash distribution and thickness as a 

function of habitat type and terrain attributes. Their rationale for including forest vegetation 

habitat types was related to the relatively high water holding capacity of volcanic ash. Soils 

influenced by volcanic ash will have wetter soil moisture regimes (SMR) than those soils not 

influenced by volcanic ash. Consequently, moister SMR’s will shift plant communities 

toward climax (Barker, 1981; Cooper et al., 1991; Steele et al., 1981). It follows that thicker 

volcanic ash mantles would hold more water and thus support successively moister plant 

communities. However, Nimlos and Zuuring (1982) were unable to uncover any strong 

statistical correlation between habitat type and volcanic ash thickness. Additionally, terrain 

attributes and their transformations and interactions, could not reliably predict volcanic ash 

thickness. A potential explanation for poor model performance was a data gap in ash 

thickness ranges. Within their dataset, only 7 observations had ash mantles <10 cm and none 

were <8 cm. This lack of heterogeneity in observed ash thickness suggests that 

environmental variables associated with minimal ash influence were not accounted for in 

their model.      

     Recent Natural Resource Conservation Service (NRCS) soil surveys have extensively 

mapped volcanic ash-influenced forest soils in portions of the Inland Northwest. Ash 

distribution and ecological/topographic relationships can be assessed from these surveys; 

however, these soil survey relationships are often presented as a range in ash thickness. For 

example, volcanic ash thicknesses in Hugus and Bouldercreek soil series commonly found in 

our study area, have mapped variations >20 cm (Soil Survey Division, 2006). In a review of 

the correlation between forest soils and vegetation patterns, Hironaka et al. (1991) point out 

that habitat type and soil classification schemes are often fuzzy due to the level of variation 
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allowed in the abstract units. It is often difficult to assess whether these abstract units reflect 

ecological reality due to site disturbance.    

     As more information is gathered on the role of volcanic ash in forest productivity and 

management, natural resource managers may need finer resolution of ash distribution than a 

range in ash thickness. The inherent variation of soil surveys may not provide the level of 

accuracy needed for decision support systems. Absent the research of Nimlos and Zuuring 

(1982), few efforts to date have focused on quantitatively defining Mt. Mazama ash 

distribution and thickness within the Inland Northwest. This situation is partially due to the 

extensive diversity of landform, climate, and geographical extent of volcanic ash distribution 

throughout the Inland Northwest. As is evident from Nimlos and Zuuring’s (1982) work in 

western Montana, the data available for developing fine resolution assessments of volcanic 

ash distribution have been too limited to cover the variation in large geographical regions. 

     Quantitative ash distribution assessments must therefore be conducted over smaller 

geographic areas. This implies that sampling designs be constructed to elucidate critical 

environmental variables that contribute to ash distribution variation. Once identified, these 

variables can be sampled to capture the inherent variation in ash thickness. A potentially 

workable alternative is a statistical re-analysis of individual soil-site descriptions created 

during local NRCS soil surveys. Data of this nature would typically need to be converted 

from the raw field sheets to a database, but the process would reduce the time and financial 

resources necessary for quantifying volcanic ash distribution patterns.   

     Based on the above rationale, our objective was to select a relatively small geographic 

region within the Inland Northwest for which extensive soil and environmental data was 

available to: i) develop a dataset of volcanic ash depths, habitat types, and terrain attributes; 
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ii) conduct statistical analyses to assess relationships between ash thickness and selected 

vegetative and topographic features; and iii) determine the precision and fit of a statistical 

model to estimate the thickness of volcanic ash across a landscape. 

MATERIALS AND METHODS 

Study Area 

     The geographic area chosen for this study is the NRCS ID-612 soil survey region located 

in north central Idaho (Figure 1.1). This survey area encompasses ~336,250 ha of diverse 

climatic factors, habitat types, and complex terrain attributes. Landscapes of this region are 

generally characterized as mountainous in the north and east, while the south and west are 

characterized as basalt plateaus/benchland incised with deep canyons. Soil parent material 

varies widely from metasedimentary schists and quartzites to igneous granites and basalts. 

Eolian deposits of loess from the Columbia Basin and volcanic ash from the eruption of Mt. 

Mazama are often found as intermixed mantles. Elevation ranges from 300 m in the 

southwest to >1700 m in the north and east. Mean annual precipitation (MAP) roughly 

follows the elevational gradient, with <300 mm MAP in the southwest and >1500 mm in the 

northeast (Idaho State Climate Services, 2000). Ponderosa pine (Pinus ponderosa Dougl.) 

and Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco var. glauca) habitat types dominate 

the southern regions of the soil survey. Western redcedar (Thuja plicata Donn) and Western 

hemlock (Tsuga heterophylla [Raf.] Sarg.) dominate the warm, moist upland regions; with 

Subalpine fir (Abies lasiocarpa [Hook.] Nutt.) and Mountain hemlock (Tsuga mertensiana 

[Bong.] Carr.) predominant in the colder, higher elevations (Cooper et al. 1991).  
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Data Collection and Analysis  

     Nine hundred and twenty-one soil-site descriptions and their spatial coordinates were 

obtained from the Orofino, ID NRCS field office. Soil-site description locations were 

selected by NRCS field soil scientists to support the ID-612 soil survey. Records were 

collected by ~ 5 lead soil scientists over ~ 15 years. Location coordinates for the majority of 

the data were transcribed from aerial photos to a geographic information system (GIS). A 

small portion of the records was established using geographic positioning system (GPS) 

devices toward the end of the soil survey. For those locations obtained from aerial photos, we 

assumed the accuracy to be within the cell size of a United States Geological Survey (USGS) 

30-m digital elevation model (DEM).  

     Soil-site description locations were established to capture the range in terrain and soil 

property characteristics established for a soil series. Each soil series was created based on 

landscape features that showed similar soil development. Field records composed of volcanic 

ash thickness, terrain attribute, and habitat type observations were entered into a database 

from these detailed NRCS soil-site descriptions. The effective number of observations 

available for analysis varied since it was not unusual for certain field observations to not be 

recorded on the field form. A summary of the field descriptors and their potential influence 

on volcanic ash distribution is presented in Table 1.1.    

     Soil measurements were collected from 1-m soil pits established at each location. Soil 

horizons were described and recorded. Terrain attributes were collected by: 1) clinometer 

(slope), 2) compass (aspect), and 3) topographic maps (elevation). The continuous variables 

elevation (ELE), slope (SLP), and aspect (ASP) were grouped into discrete classes to 

facilitate the comparison of incremental changes in ash thickness with terrain attributes. ELE  
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Table 1.1. Selected ecological and topographic features and their potential significance in 
determining volcanic ash distribution patterns for a forested north central Idaho landscape 
(Cooper et al., 1991; Wilson and Gallant, 2000). 

Ecological/Topographic Features Significance 
Elevation (meters): ELE 
     200-400 
     400-600 
     600-800 
     800-1200 
     1200-1400 
     1400+ 

Climate, vegetation type, potential energy 

Slope (%): SLP 
     0-10 
     10-20 
     20-30 
     30-40 
     40-50 
     50-60 
     60+ 

Overland and subsurface flow, velocity, and 
runoff 

Aspect (°): ASP 
     Flat 
     N (342.6-27.5) 
     NE (27.6-72.5) 
     E (72.6-117.5) 
     SE (117.6-162.5) 
     S (162.6-207.5) 
     SW (207.6-252.5) 
     W (272.6-297.5) 
     NW (297.6-342.5) 

Solar irradiation, wind erosion/deposition 

Plan/Profile curvature: PRCU/PLCU 
     Linear 
     Concave 
     Convex 

Flow acceleration, erosion/deposition rate, 
converging/diverging flow, soil water content 

Plant Associations: 
     Vegetation Series: VS 
          Pinus ponderosa (PIPO) 
          Pseudotsuga menziesii (PSME) 
          Abies grandis (ABGR) 
          Thuja plicata (THPL) 
          Tsuga heterophylla (TSHE) 
          Tsuga mertensiana (TSME) 
          Abies lasiocarpa (ABLA)    
     Habitat Type: HT 
          Festuca idahoensis  (FEID) 
          Physocarpus malvaceus (PHMA) 
          Symphoricarpus albus (SYAL) 
          Linnaea borealis (LIBO) 
          Clintonia uniflora (CLUN) 
          Asarum caudatum (ASCA) 
          Adiantum pedatum (ADPE)    
          Gymnocarpium dryopteris (GYDR)      

Climate, topography, site productivity, 
disturbance  
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βkXn(i) = fixed effect for kth independent variable at location i, and εi = model error at 

was classed into 200-m intervals, SLP at 10 percent breaks, and ASP in 45-degree quadrants. 

Slope curvature values were derived from a USGS 30-m DEM using grid algebra in a GIS. 

The numerical curvature values were then grouped into their respective linear (L), concave 

(C), and convex (C) classes.  

     Average ash thickness (AT) by class was computed for each of the variables described 

above. Standard errors were computed and t-tests performed to test for significant differences 

in AT using an α-level of 0.1. Variables that showed significant class differences in AT were 

subsequently tested for use as predictor variables in a volcanic ash distribution model. Model 

variable measurements were assumed measured without error. This assumption was taken 

with caution, because of the reliance on: 1) data collected over a period of time by different 

field soil scientists, and 2) DEM-derived data with an accuracy of 30-m. Measurement error 

can lead to an inflated model error term, thus underestimating the F-statistic. This may lead 

to the elimination of variables that may have been significant if measured without error. 

Consequently, it cannot be assumed that insignificant independent variables have no effect 

on AT, because of potential observation and/or imputed error during data collection.  

     A stepwise variable selection procedure was used within the framework of a general linear 

model (GLM) to assess which categorical variables explained the greatest variation in AT. 

Variables that were within the upper 0.1 percentile of a Type III sums-of-squares F-

distribution were retained within the model. The equation can be generally stated as follows:  

AT(i) = μ + β1X1(i) + β2X2(i) + . . . + βkXn(i) + εi                          [Eq. 

1.1] 

where AT(i) = estimated ash thickness at observed location i, μ = overall ash thickness mean, 
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cient of location i. The prediction equation was deemed reliable if it produced a high coeffi

determination (R2) and low root mean square error (RMSE).   

RESULTS 

Topographic and Vegetative Indicators 

     Volcanic ash is highly correlated with ELE (Figure 1.2). Each 200-m increment is 

significantly different up to 1200 m (p <0.1). Above 1200 m, there is no significant 

difference in mean AT. Forest soils below 600 m in elevation have ash thicknesses  

≤10 cm. Many low elevation soils exhibit significant mixing of the shallow ash mantle with 

underlying soil material. These lower-elevation forest soils are classified as vitrandic 

subgroups of a soil order (Soil Survey Staff, 1999). Forest soils located at elevations between 

600 m and 1200 m have mean ash thicknesses 24 to 35 cm. These soils are classified as andic 

subgroups. Volcanic ash mantles have a mean thickness of about 45 cm above 1200-m 

elevation. Ash mantles deeper than 36 cm, and that meet several other NRCS criteria, are 

considered members of the order Andisols (Soil Survey Staff, 1999) or Andosols of the 

World Reference Base (FAO/ISRIC/ISSS, 1998). 

     Mean AT showed no significant decrease with increasing slope gradient (Figure 1.3). 

Mean AT showed little variation with a small range of 25 to 34 cm across all slope classes. 

Slopes <10 percent showed significantly less volcanic ash than all classes except the 60 

percent class. Ash depth increases up to the 20-to-30 percent SLP class; after which, there are 

no significant differences in AT by SLP class. The 20-to-30 percent class had significantly 

greater ash depths than all slope classes and was marginally greater than the 40 to 50 percent 

class (p = 0.12).   
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            Figure 1.2. Mean volcanic ash thickness as a function of elevation class in  
 north central Idaho. Y-axis bars represent standard errors, with letters 
               indicating significant differences (p < 0.1). 

 

 
               Figure 1.3. Mean volcanic ash thickness as a function of slope class in 
 north central Idaho. Y-axis bars represent standard errors, with letters  
 indicating significant differences (p < 0.1). 



                                                                                                                                                  16
       
     North aspects generally exhibit thicker ash mantles than south facing aspects (Figure 1.4). 

N, NW, and SE aspects show mean ash depths >32 cm. NE and W facing aspects have 

thinner ash caps (~30 cm), but are not significantly different than N, NW, or SE aspects. S, 

SW, and E aspects have significantly thinner ash mantles of about 27 cm. 

     Slope curvature shows that nonlinear surfaces retain a greater thickness of volcanic ash 

compared to linear surfaces (Figure 1.5). Concave and convex surfaces show mean ash 

depths >30 cm for both profile (PRCU) and plan (PLCU) surface curvature. Linear surfaces 

in both PRCU and PLCU are significantly lower (<25 cm) than either convex or concave 

surfaces. There was no statistical difference between concave and convex in either PRCU or 

PLCU slope curvature.  

     Vegetation series and habitat type plant associations showed the strongest relationship 

with AT (Figure 1.6). Overall, the ponderosa pine (PIPO) and Douglas-fir (PSME) 

vegetation series have very thin volcanic ash mantles (<3 cm) and show no significant 

change by habitat type within series. Grand fir (Abies grandis – ABGR [Dougl.] Lindl.) has 

the widest range in ash-influence of all vegetation series. Mean AT ranges from 0 to 40 cm 

depending on the underlying habitat type within series. The moist twinflower (Linnaea 

borealis – LIBO L.) habitat type of the ABGR vegetation series surprisingly shows no 

significant ash mantle (mean = 0 cm). AT in ABGR habitat types can be described as a 

function of increasingly moist understory indicator species, with the exception of LIBO. 

Habitat type rankings for AT would be LIBO < PHMA/SYAL < CLUN < ASCA; where 

PHMA, SYAL, CLUN, and ASCA represent ninebark (Physocarpus malvaceus [Greene] 

Kuntze), snowberry (Symphoricarpus albus [L.] Blake), queen-cup beadlily (Clintonia 

uniflora [Schult.] Kunth.), and wild ginger (Asarum caudatum Lindl.), respectively. These 
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 Figure 1.4.  Mean volcanic ash thickness as a function of aspect class in  
 north central Idaho. Y-axis bars represent standard errors, with letters  
    indicating significant differences (p < 0.1). 

 
 
 
 
 

 
 

 Figure 1.5.  Mean volcanic ash thickness as a function of profile  
 curvature class in north central Idaho.Y-axis bars represent standard  
 errors, with letters indicating significant differences (p < 0.1). 
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Figure 1.6. Mean volcanic ash thickness as a function of overstory and understory indicator 
plant species in north central Idaho. Y-axis bars represent standard errors, with letters 
indicating significant differences (p < 0.1) (Cooper et al., 1991). 
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rankings suggest that vitrandic intergrades would be more prevalent on PHMA/SYAL and 

LIBO habitat types, andic intergrades on CLUN, and Andisols on ASCA. 

     Changing from an ABGR to a western redcedar (THPL) vegetation series is accompanied 

by a 5-cm increase in mean AT when comparing across CLUN habitat types. This shift is not 

evident for the ASCA habitat type, which shows no significant differences between ABGR 

and THPL vegetation series. Maidenhair fern (Adiantum pedatum – ADPE L.) and oak-fern 

(Gymnocarpium dryopteris – GYDR [L.] Newm.) habitat types show a reduction of >7 cm in 

mean AT over ABGR/THPL-ASCA. Mean AT for CLUN and ADPE/GYDR habitat types 

suggest that andic intergrades would be most common, with Andisols (i.e., ash mantle >36 

cm) occurring primarily under an ASCA habitat type. Based on these observations, 

understory rankings of habitat type by increasing AT would be CLUN = ADPE/GYDR < 

ASCA. 

     The western hemlock (TSHE) series displayed the largest difference in AT between 

CLUN and ASCA habitat types (~28 cm). TSHE-CLUN habitat types show at least a 6-cm 

decrease in mean AT when compared to THPL-CLUN, however a TSHE-CLUN habitat type 

would still fall within the andic intergrade classification associated with other CLUN habitat 

types. AT in the ASCA habitat type is significantly greater for TSHE vegetation series than 

for any other series with observed ASCA habitat types. Mean ash depths on TSHE-ASCA 

are 54 cm, which would place them well within the Andisol soil order. 

     Mountain hemlock (TSME) and Subalpine fir (ABLA) series are typically found at higher 

elevations where air temperatures are relatively low and annual precipitation high. The 

warmer, moister ASCA habitat was not observed. Mean AT is greater on TSME-CLUN than 
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where, 

ith aspect k and profile curvature j,  

mean, 

ture, 

 of elevation in meters, 

 3 for profile curvature, k = 9 for aspect, l = 7 for slope, m = 7 for elevation, n = 13 

ABLA-CLUN, but the difference is statistically insignificant. Volcanic ash-thickness on 

these vegetation series is >36 cm, thus placing them into the Andisol order.   

Volcanic Ash Distribution Modeling 

     The class variables listed in Table 1.1 were added stepwise into a multiple linear 

regression equation. Variables were assumed to be independent and normally distributed. 

The final model, with selected variables acting as fixed effects on AT, is: 

                ATjklmno = μ + PRCUj + ASPk + SLPl + ELEm + VS*HTn + εjklmno                [Eq. 

1.2] 

ATjklmno is the estimated ash thickness for observation o with vegetation 

series*habitat  

     type  interaction n at elevation m on slope l w

μ is overall volcanic ash thickness 

PRCUj is the fixed effect of profile curva

ASPk is the fixed effect of aspect, 

SLPl is the fixed effect of percent slope, 

ELEm is the fixed effect

VS*HTn is the fixed effect of vegetation series*habitat interaction, 

εjklmno is the error term; 

where, j =

for vegetation series*habitat type interaction, and o = 1 for number of observations per 

location. 
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   All class variables listed in Table 1.1 explained a significant portion of variation in AT, 

xcept PLCU (p < 0.1) (Table 1. 2). Variables ranked from least to most in variance  

  

e
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 variables retained in a volcanic ash prediction 
analysis for a forested north central Idaho landscape. Partial variance indicates the percent of 

Profile Vegetation Series* 
pe 

 

 

 

 

 

 

 

Table 1.2. General linear regression model

the model R2 explained by each retained variable. 

† Significance level tested at α = 0.1. 

 Elevation Slope Aspect Curvature Habitat Ty

Partial 
Variance (%) 18.2 4.7 4.2 1.7 71.2 

Significance† <0.0001 0.006 0.04 0.03 <0.0001 
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, accounted 

e of explained variance at 71.2 percent. ELE was the second largest 

ndent on terrain attributes. 

es 

 

. First, 

tion series towards moister plant associations, thereby 

 

vial 

explained are PRCU < ASP < SLP < ELE < VS*HT. The interaction term, VS*HT

for the largest percentag

at 18.2 percent. SLP and ASP accounted for 8.9 percent combined, and PRCU explained the 

least at 1.7 percent. The overall model was significant (p <0.001) and accounted for 60 

percent of the observed variation in AT. A model RMSE of 10.7 cm and CV of 36 percent 

indicate that there is a significant amount of variation still unaccounted for; however, the 

model error is significantly lower than the variation found in local soil series.    

DISCUSSION 

Topographic and Vegetative Indicators 

     It is evident from the broad relationships presented that volcanic ash distribution is 

strongly associated with vegetation patterns and less depe

Elevation, although a terrain attribute, shows strong collinearity with local precipitation 

gradients and vegetative cover (data not shown). This situation suggests that elevation serv

as a proxy variable for interactions between precipitation and vegetation patterns and their

subsequent effect on ash distribution.   

     The historic role elevation played in volcanic ash deposition was probably two-fold

increasing elevation shifts vegeta

increasing vegetation cover and reducing erosional forces on initial ash deposits. Second,

lush vegetation cover at higher elevations would retain wind-transported volcanic ash from 

drier regions to the west of the study area. Variability in ash thickness at these elevations 

may be attributable to redistribution occurring between initial deposition and understory 

establishment. This period of minimal understory ground cover may have facilitated collu

and alluvial volcanic ash redistribution. It follows that at lower, drier elevations 
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canic 

isture retained within the soils after precipitation 

events would be less susceptible to evaporation from solar radiation. Oppositely, increased 

unincorporated volcanic ash would have been more susceptible to both wind and 

precipitation erosion.    

     Slope class did not have a negative impact on mean AT with slopes >60 percent sho

no significant decline in ash depths (Figure 1.3). The uniform distribution of mean AT ac

slope classes >30 percent indicates that increasing slope percent does not correspond wit

decreasing AT. This result supports other research on slope stability of volcanic ash.

review of volcanic ash soils, Warkentin and Maeda (1980) note that volcanic ash on free-

standing slopes are common in regions of high rainfall. They attribute this high degree

stability to the unique permeability of volcanic ash. However, site disturbance, low so

moisture, or discontinuities with buried subsoil surfaces are all factors that will enhance ash

erosion on steep slopes (Warkentin and Maeda, 1980).   

     The significantly lower mean AT in the 0-to-10 percent slope class may be due to the 

geographic location of these observations. A majority of these observations for nearly flat

terrain were on the benchlands of the south and southwest portion of the study area. This 

region is characterized by low elevation PSME and ABGR vegetation series, which oft

exhibit thin or mixed volcanic ash mantles. All remaining slope classes are uniformly 

scattered across the study area.  

     The prevalence of thicker ash mantles on north aspects may be attributable to several 

factors (Figure 1.4). North aspects typically support moister plant communities in our stu

area (Cooper et al., 1991). These moist plant communities may provide greater soil surfac

cover, which would decrease the impact of precipitation and overland water flow on vol

ash redistribution. Additionally, the mo
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r 

lcanic ash deposition after 

 

solar radiation on southerly aspects may have contributed to soil moisture loss and ash 

erosion. Giest and Strickler (1978) found volcanic ash soils of Oregon to be susceptible to 

wind erosion once in a dry state. Assuming that current southwesterly prevailing wind 

patterns were similar to historic post-eruption patterns, dry volcanic ash on south-facing 

slopes would be expected to be more susceptible to redistribution by wind and overland 

water flow than north aspects. The significant increase in AT on southeast slopes is 

anomalous to this theory and suggests that the overall effect of aspect on ash distribution is 

local and intricately tied with surrounding topographic and environmental factors.      

     The significant decrease in AT on linear surfaces shown in Figure 1.5 is partially 

correlated with the slope class these observations share. A review of the dataset shows that 

about 67 percent of the linear surfaces occur on slopes <10 percent with the remainder 

unevenly divided among several steeper slope classes. As detailed in the previous discussion

of slope classes, observations with gradients <10 percent are found primarily in the drie

benchland portions of the study area. The correlation between slope steepness and slope 

surface curvature within the dataset may mask local effects of slope curvature on AT. 

Surprisingly, convex surfaces in both profile and plan positions displayed no significant 

decrease in mean AT over concave surfaces. Other research on vo

the eruption of Mt. St. Helens has shown that concave surfaces support thicker ash mantles

than convex (Zobel and Antos, 1991). Our conflicting results may be due to the level of 

variation found within these classes. Standard errors were small because of large sample 

sizes, but the standard deviations were often large within the surface classes, reflecting 

significant variation within the data.   
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sponsible for differential ash retention. Despite 

. 

eruption, were drier and did not support forest vegetation 

     Cooper et al. (1991) associate shifts in climax plant associations to distinctive soi

topographic microclimate features. Habitat type shifts and differing soil ash depth are evident 

across the broad habitat type associations observed in our study area (Figure 1.6). These 

strong relationships may be attributed to many combinations of topographic, climatic, or 

edaphic factors. However, two possible explanations are: 1) location of vegetation series 

within a precipitation-elevation continuum, and/or 2) topographic influence on volcanic ash 

redistribution. Zones on the moist end of the series spectrum should have thicker vegetative 

cover. Greater density of vegetative cover would entrap windborne ash and inhibit erosional 

redistribution. Scenario two suggests that erosional forces, influenced by topographic 

features, favored the accumulation of volcanic ash in certain landforms. Under these varying 

influences, it is probable that following the post-Mazama, mid-Holocene drought, volcanic 

ash enabled moister plant associations to inhabit landscape positions previously dominated 

by drier plant associations. Steele et al. (1981) noted that the influence of volcanic as

contributed to distinct shifts in Idaho plant communities. However, it is still an open qu

as to whether the presence of volcanic ash is responsible for shifts in plant associations, or 

that variations in plant community were re

this uncertainty, AT is highly correlated with plant associations.  

     PSME and PIPO vegetation series show the least AT within our data. Shifts to moister 

habitat types within these vegetation series show no significant dependence on volcanic ash

It has been suggested by regional soil scientists that these vegetation series now reside on 

landscapes that, post-Mazama 

cover (Barker, 1981). Lack of overstory cover and dry climatic conditions prevented these 

landscapes from retaining volcanic ash mantles subsequent to the eruption. 
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t community towards moister habitat types. Thus, drier habitat types 

   

servations were collected within this habitat type, providing a poor 

ond explanation may be that LIBO acts as a 

le to 

imax 

 

d 

primarily inhabits moist, moderate temperature sites. TSHE, as a species in this region, are 

     AT in ABGR communities is highly variable. Unlike successively moister plant 

associations, an ABGR vegetation series does not always indicate the presence of signifi

volcanic ash-influence. This variability is partly attributable to the transition zone that A

inhabits between xeric and udic SMRs. ABGR plant associations in a xeric SMR would be 

associated with minimal to no ash-influence; whereas, an udic SMR would be associated 

with thicker ash mantles. This suggests that an increase in plant available soil moistu

shift the understory plan

(PHMA/SYAL) often exhibit less ash influence in the soil than the CLUN and ASCA types.  

     An exception to this pattern is the ABGR-LIBO association. LIBO is considered to 

inhabit moister environments than PHMA, suggesting that volcanic ash might be present on 

this habitat type. The absence of volcanic ash on LIBO habitat types may be attributable to 

the fact that only five ob

representation of the range in AT. A sec

colonizer following site disturbance. Past management or biological activity may have 

displaced the volcanic ash from these locations creating a disturbed environment favorab

the establishment of a LIBO habitat type. 

     All remaining plant associations moister than ABGR show significant ash-influence in the 

soil. The presence of a thick ash mantle is often identified by the presence of these cl

species. Increasing AT in the soil is evident in the habitat type gradients within the THPL

series, however habitat type differences are minimal compared to those observed in ABGR 

and TSHE vegetation series.   

     The TSHE vegetation series occupies a narrow ecological range in north Idaho forests an
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     The strength of the relationships betw  plant communities, and volcanic ash 

ror 

und in 

s 

intolerant to drought, excess moisture, and frost (Cooper et al., 1991). The narrow ecologic

range suggests that other edaphic and climatic factors migh

distribution than volcanic ash-influence in the soil. Such factors may also explain why 

TSHE-CLUN plant associations have thinner ash mantles than THPL-CLUN. TSHE-ASCA

plant associations do show a significant increase in AT. This result suggests that vo

is associated with a shift to moister understory plant communities within the TSHE 

vegetation series. 

     TSME and ABLA plant communities occupy high elevation sites with up to 1500 mm o

annual precipitation within our study area. Vegetation series within these zones are probably 

not dependent on the presence of volcanic ash for their establishment. The high precipita

and dense vegetative cover of these plant communities retained volcanic ash subsequent t

original ash deposition. 

Volcanic Ash Distribution Modeling 

een elevation,

produces a strong predictive ability for our ash distribution model. An R2 value of 0.6 is 

considered an excellent improvement over the limited regional volcanic ash modeling 

attempts. Predictions from this model allow quantitative ash assessments with a known er

within the study area. Natural resource managers can use this model to integrate the 

predictions into a GIS. One motivation behind developing a quantitative ash distribution 

model was to overcome the variation inherent within mapping units generated through a soil 

survey. Volcanic ash thicknesses in Hugus and Bouldercreek soil series commonly fo

our study area, have mapped variations >20 cm (Soil Survey Division, 2006). The model’
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ch 
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SUMMARY 

     This study’s findings suggest that volcanic ash distribution is intricately linked with 

elevation and plant community associations. Elevation increases precipitation, which in turn 

supports different climax plant communities. Increasing plant density at each successive 

climax community may have served to retain ash deposits subsequent to volcanic eruptions 

and entrap wind-transported volcanic ash from drier, lower elevation sites. Topographic 

variables show little impact on ash thickness patterns. Several of the terrain attributes showed 

clustering by geographic location within our study area. Gentler slopes, which were 

predominately found at drier, lower elevations, supported thinner ash mantles. The slope 

curvature variable was also linked to geographic location. Observations with nonlinear slopes 

RMSE of 10.7 cm significantly improves on this level of variation, thus providing a finer

resolution support tool for local forest soil management.   

     Further research should be conducted to determine local affects 

ash distribution despite the significant improvement this model provides in predicting ash 

depth and distribution. Global statistical procedures such as MLR may mask local 

topographic influence. Adjusting a statistical model to perform a more local analysis may 

yield improved results. A more costly, but perhaps informative method, would be a detailed 

survey of a finite landscape. Research at local levels may reveal topographic and volcanic 

ash relationships otherwise masked by large conventional soil surveys. Regardless of whi

approach is used, modeling ash distribution seems to be inherently a local exercise. The 

extrapolation of model results outside our study area is not recommended. The concepts 

behind the model presented in this paper may be applicable elsewhere, but the relation

as reflected in the model parameter estimates are unique.       



                                                                                                                                                  30
       
were most often found in the mou y area. The strong effect of 
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ics indicate a significant development 

 

series. However, it 

nced 
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ntainous region of the stud

elevation and plant associations reduced the ability to distinguish mean ash thickness 

differences between convex and concave surfaces. 

     Statistical modeling accounted for 60 percent of the observed variation in ash thicknes

and produced an RMSE of 10.7 cm. These model statist

in the capability of estimating volcanic ash thickness. Model error was significantly lower

than the variation of >20 cm often observed in local ash-influenced soil 

became evident during our analyses that ash distribution and thickness is heavily influe

by local ecological and topographic attributes that cannot be assumed to affect ash depth

uniformly across a study area. Future ash modeling efforts must focus on assessing local 

environmental influences and account for nonstationarity in the independent variables. Su

an analysis may clarify the ecological and topographic effects on ash distributio

thickness that are otherwise generalized in a global regression analysis. 
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CHAPTER 2: Volcanic Ash Distri s in a Forested North Central 
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bution and Thicknes

Idaho Landscape 

ABSTRACT 

     Many forest soils of north central Idaho contain thick mantles of volcanic ash. Ho

there is little information that quantitatively defines the influence of terrain attributes on 

volcanic ash distribution and thickness. We assessed the influence of terrain attrib

volcanic ash distribution with multiple linear regression (MLR) and geographically weigh

regression (GWR). MLR showed that elevation (ELE) and slope (SLP) were significan

related to soil ash thickness (AT) (p = 0.05). Compound terrain attributes associated with 

erosion and deposition landscape positions were insignificantly correlated with AT (p >0.1). 

Although ELE and SLP were statistically significant, they accounted for only 28 percent o

the overall variation in AT. A GWR analysis found that ELE, SLP, plan curvature (PLCU) 

and wetness index (WIN) were significantly related to volcanic ash distribution (p = 0.05). 

GWR showed that ELE, PLCU, and WIN were nonstationary, which in

independent variable value influences AT differently depending on geographic location. 

Results suggest that the effects of PLCU and WIN on AT are dependent upon elevation 

mean annual precipitation. GWR model fit and precision improved by 36 and 30 percent, 

respectively, over the MLR model. An ash distribution and thickness map was created, using

the GWR results, to provide information for natural resource managers.  
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ols in the World Reference Base (FAO/ISRIC/ISSS, 1998). 

antle 

ects were significant from a study completed by Zobel and Antos 

lens 

INTRODUCTION 

     Forest soils of the Inland Northwest, USA are commonly influenced by eolian deposition.

Over the last several millennia volcanic eruptions from the Cascade Mountain Range 

periodically blanketed this region with volcanic ash depositions (Mullineaux, 1986; 

Richmond et al., 1965; Ruhe and Olson, 1980; Shipley and Sarna-Wojcicki, 1983). The most 

recent significant eruptive event was that of Mt. Mazama (now Crater Lake, OR) 

approximately 7600 yr BP (Zdanowicz et al., 1999). Estimates suggest that >116 km3 of 

volcanic tephra was ejected during this one event (Bacon, 1983). Regional forest soils

display a range of ash influence from mixed to a relatively pure ash mantle (Busacca et al., 

2001; Brown and Loewenstein, 1978; Geist and Strickler, 1978). Soils that exhibit mixing o

relatively shallow ash mantles (i.e., <36 cm) are often characterized as andic or vitrandic 

intergrades of other orders (Gardner, 2005; McDaniel et al., 2005). Ash mantles >36 cm and

relatively pure, are often classified as Andisols in Soil Taxonomy (Soil Survey Staff, 1999) 

and Andos

     A recent study of volcanic ash distribution and depth across the Columbia Plateau of 

eastern Washington State found that Mt. Mazama ash had a fairly uniform thickness of 

approximately 15-20 cm upon initial deposition, with thinning in areas more distal to the 

eruption (Busacca et al., 2001). This suggests that a thinning, but fairly uniform ash m

also occurred across the forested landscape of North Idaho. However, it is uncertain what 

role vegetation density played in volcanic ash retention at the time of the eruption. We can 

theorize vegetation eff

(1991), in which they found that volcanic ash retention after the eruption of Mt. St. He

was greater under forest canopies than in forest openings. Forest canopies tended to 
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., 2001).   

 of its 

rface 

sion. 

uently, silty volcanic ash is more likely to be 

n 

le 

surface ash 

1941) to be a function of climate, parent 

material, topography, biotic influences, and time. Climatic variables exert controls at too 

temporarily trap volcanic ash, which over time was transported to the surface through 

precipitation or wind action. Further, forest canopies may have reduced the erosional losses 

of unincorporated volcanic ash due to overland water movement (Busacca et al

     The resistance of volcanic ash mantles to water erosion is relatively high because

permeability (Warkentin and Maeda, 1980). Warkentin and Maeda (1980) argue that su

erosion due to slope gradient is not always the issue, but slope instability. Volcanic ash 

deposits, which are commonly found on steep forested slopes, are often susceptible to mass 

movements such as landslides, slumps, or soil creep. Additionally, the drier layers of 

volcanic ash are more susceptible to these mass transport mechanisms due to low cohe

Oppositely, Nammah et al. (1986) studied rill erosion rates of unincorporated volcanic ash 

following the 1980 eruption of Mt. St. Helens in southwest Washington, Their results showed 

that ash mantles dominated by silt-sized particles formed a slight crust that reduced surface 

erosion at shallow slopes, but as expected, erosion rates increased proportionally with slope 

gradient.  

     Low cohesiveness and disturbance enhance the susceptibility of volcanic ash to wind and 

water displacement (Warren, 1979). Conseq

displaced when disturbed during droughty periods (Buol et al., 2003; Cullen et al., 1991; 

Warkentin and Maeda, 1980). This suggests that volcanic ash deposited in the regio

immediately preceding a mid-Holocene drought (7600 – 5000 yr BP), would be susceptib

to considerable reworking by wind following periods of wetting and drying of the 

layer (Hunter, 1988). 

     Soil formation was understood by Jenny (
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nd landscape features are 

coarse of scale to be incorporated into this study; conversely, biotic influences exert a scal

too fine to be practically defined. Consequently, in our study we focus on topography and t

influence it exerts on the current distribution of volcanic ash parent material.   

     Extensive efforts have been undertaken within the past 20 years to spatially and 

quantitatively link soil attributes with topographic features to develop quantitative 

relationships that may then be used for spatial prediction (Gessler et al., 1995; Flor

al., 2002; McKenzie and Ryan, 1999; McSweeney et al., 1994; Moore et al., 1993a,b; R

et al., 2000). Topographic features have commonly been subdivided into primary and 

secondary attributes. Primary terrain attributes are often used to characterize catenary 

features such as hillslope form and position, and catchment area. Specifically, these attribu

include elevation, slope, aspect, curvature, and profile contributing area. Secondary attributes 

are derived from two or more primary attributes. These attributes are used to describe the role 

of topography in redistributing water over and within a landscape. Consequently, secondary 

attributes can characterize the susceptibility of soil surfaces to erosion and deposition. Th

most common of these secondary attributes used in quantification are the wetness and stream

power indices (Wilson and Gallant, 2000). 

     Digital terrain models (DTMs) have been widely used over the past several decades to 

model soil process and pattern associations across landscapes. DTMs model these 

associations by correlating digital representations of primary and secondary topograph

attributes with soil features. Correlations between soil a

subsequently built into a statistical model that could be used to predict soil features at 

unknown locations (Florinsky et al., 2002). 
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of stationarity) across the stu For example, MLR will 

 slope curvature of “X” will have the same affect on “Y” (ash thickness, AT) at 

is 

her 
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     Numerous studies have shown that these relationships are useful in predictive models. 

McBratney et al. (2003) provide an excellent review of these efforts. Moore et al. (1993b) 

found the wetness index to be highly correlated with horizon depth, silt percentage, organic 

matter content, and phosphorus. Gessler et al. (1995) showed plan curvature and the wetnes

index to be highly correlated with A horizon depth and solum depth. These results suggest 

that developing volcanic ash relationships with terrain attributes may be possible. 

     Multiple linear regression (MLR) is a common statistical method for predicting soil 

features across the landscape (McBratney et al., 2003). MLR assumes that each indepen

variable brought into a model affects the dependent variable uniformly (i.e., the assumption 

dy area (Fotheringham et al., 2002). 

assume that a

point “A” as at point “B”. Hypothetically, MLR may not account for the fact that point “B” 

located within a region that receives higher mean annual precipitation than point “A”. Hig

MAP may increase the potential for thicker ash mantles in concave landscape positio

Shifts in MAP may change the sign or slope of the slope curvature coefficient. This shift o

sign change may not be shared by point “A”, hypothetically found in a lower MAP region

Consequently, what is actually two separate curvature effects on AT is modelled within M

as a single curvature effect. The result is a curvature coefficient with a large standard error 

and potentially imprecise estimates of AT. MLR is incapable of capturing the spatial 

complexity of landscape interactions at the local level. 

     A form of multiple linear regression that avoids this assumption while providing a 

measure of local variation in the independent variables is geographically weighted regression 

(GWR). GWR as developed by Fotheringham et al., (2002), relies on a form of kernel 



                                                                                                                                                  39
       

pment of local relationships 

oratory analysis of the stationarity assumption of a global MLR model. The 

d 

    

ID-612 soil survey of north central 

0 

nic 

 

 habitat types are found predominately in the southern portion of the study 

regression within a MLR framework to develop local, as opposed to global, relationships 

between the dependent and independent variables. The develo

facilitates an expl

subsequent derivation of spatial maps representing parameter estimate nonstationarity an

spatial estimates of AT using the GWR method has to our knowledge never been attempted.   

     Therefore, the objectives of this study were to: i) assess the differences between GWR and 

MLR model AT estimates in a north central Idaho forest, ii) test nonstationarity in the 

independent variables, iii) determine if a GWR analysis enhances our understanding of 

terrain attribute influence on AT, and iv) derive a spatial display of GWR AT estimates.      

MATERIALS AND METHODS 

Study Area 

     The study area of ~ 205,000 ha is located within the 

Idaho, which stretches along the west slopes of the Clearwater Mountains and east of the 

Columbia Basin. Distal separation from Mt. Mazama ranges from ~ 600 to 670 km. 

Landscapes are generally classified as mountainous, with elevations ranging from 300 to 

1800 m. Dry, low-elevation canyons and benchland dominate the southern portion of the 

area, with MAP approaching 300 mm (Idaho State Climate Services, 2000). Progressing 

northward, topography rapidly changes to high mountain ridges and valleys (MAP ~ 150

mm). Soil parent material varies widely from metasedimentary schists and quartzites to 

igneous granites and basalts. Eolian deposits of loess from the Columbia Basin and volca

ash from the eruption of Mt. Mazama are often found as intermixed mantles. Vegetation

patterns reflect the dramatic shift in topography and climatic regimes. Ponderosa pine (Pinus 

ponderosa Dougl.)
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rea, while western redcedar (Thuja plicata Donn) and western hemlock (Tsuga heterophylla 

af.] Sarg.) can be found to the north (Cooper et al., 1991).  

ata Collection 

   Six hundred and seventy-one soil-site descriptions and their spatial coordinates from 

within the ID-612 soil survey were obtained from the Orofino, ID NRCS field office (Figure 

2.1). Soil-site description locations were selected by NRCS field soil scientists to support the 

ID-612 soil survey. Records were collected by ~ five lead soil scientists over ~ 15 years. 

Location coordinates for the majority of the data were transcribed from aerial photos to a 

GIS. A small portion of the records was established using a geographic positioning system 

(GPS) device toward the end of the soil survey. For those locations obtained from aerial 

photos, we assumed the accuracy to be within the cell size of a United States Geological 

Survey (USGS) 30-m digital elevation model (DEM).  

     Soil-site description locations were established to capture the range in terrain and soil 

property characteristics established for a soil series. Each soil series was created based on 

landscape features that showed similar soil development. Soil measurements were collected 

from 1-m soil pits established at each soil series characterization location. Soil horizons were 

described and recorded. Site d clinometer (slope), 2) compass 

(aspect), 3) visual classification (slope curvature), and 4) topographic map (elevation).  

Often, terrain attributes in this data set were inconsistently observed, which reduced the 

number of observations available for analysis. Therefore, primary and secondary terrain 

attributes were computed from a USGS 30-m DEM (Table 2.1). Plan and profile slope 

curvature (PLCU, PRCU), wetness index (WIN), stream power index (SPI), stream transport 

index (STI), and  

a

[R

D

  

escriptors were collected by: 1) 



                                                                                                                                                  41
       
 

 

 

 

 

Figure 2.1. Distribution of 671 
NRCS soil-site observations in 
a north central Idaho landscape.  
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Table 2.1. Summary of collected site and terrain attributes for 671 observations in a  

   

 

 

 

 

 

 

 

forested north central Idaho landscape (†Wilson and Gallant, 2000). 

Site Variables Code Min. Mean Max. Significance 
Soil Morphological 
     Ash Thickness (cm) 

 
AT 

 
0 

 
10.3 

 
29 

 
Drought stress buffer 
plant community 

for 

Terrain Attributes†

     Slope (%) 

 

SLP 

 

0 

 

29 

 

82 

 
cover  

Surface water velocity 

†

     Stream Power Index 

PLCU 

SPI 

-8.35 

-180057 
633 
39 

0.02 

1440 
158 

4279 

4.37 

441909 
21289 
5839 

n rate 
Converging/diverging flow 

a 
Net erosion/deposition 
Slope length influence 
Slope/aspect interaction 

 
     Elevation (m) 

     Aspect (°) 
      

ELE 

ASP 

295 

 

957 1677 Climate, vegetation 

Solar irradiation, wind 
erosion/deposition 

Compound Terrain Attributes  
     Profile Curvature  
     Plan Curvature 
     Wetness Index 

     Sediment Transport Index 
     Solar Insolation 

 
PRCU 

WIN 

STI 
SOLAR 

 
-6.47 

0 

-12
7

 
0.02 

9.10 

 
7.69 

23.02 

 
Erosion/depositio

Contributing upslope are
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es were 

nalysis tool in ArcGIS ArcMAP 

. 

 

 model the relationship between terrain 

ates 

 

redictive equation was developed from the selected independent 

   [Eq. 

solar insolation (SOLAR) were derived from a DEM larger than the study area to account for

terrain influences beyond the study area boundaries. Grid based computations of terrain 

attributes were performed using the ArcGIS® INFO GRID command line. Grid valu

extracted to the soil profile XY coordinates using a spatial a

®. Field observed terrain attributes were subsequently used for validation of DEM-derived 

terrain attributes. 

Statistical Analyses 

     Model variable measurements listed in Table 2.1 were assumed measured without error

This assumption was taken with caution, because of the reliance on: 1) soil data collected 

over a period of time by different field soil scientists, and 2) DEM-derived data with an

accuracy of 30-m. Measurement error can lead to an inflated model error term, thus 

underestimating the F-statistic. This may lead to the elimination of variables that may have 

been significant if measured without error. Consequently, it cannot be assumed that 

insignificant independent variables have no effect on AT, because of potential observation 

and/or imputed error during data collection.  

     Two statistical analyses were performed to

attributes and AT. The first statistical model was developed using a stepwise MLR analysis. 

Significance of terrain attributes was based on estimated t-values for the parameter estim

and their associated standard errors. We used a significance level of 0.1 to retain independent

variables in the model. A p

variables of the following general form: 

                                    AT(i) = β0 + β1X1(i) + β2X2(i) + . . . + βkXn(i) + εi                      

2.1] 
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ithin the independent variables often negates the value of such global models to 

 

where AT(i) = predicted ash thickness at observed point i, βk = kth global parameter estimate; 

Xk(n) = kth independent variable value at the nth location; and εi = model error at point i. 

Overall model fit and performance was assessed through the adjusted coefficient of 

determination (R2
A) and root mean square error (RMSE).   

     The second statistical model was developed using GWR. Version 3.0 of GWR ® softw

was used (GWR, 2005). GWR is a relatively new statistical technique and has predom

been used in the social sciences. However, the general premise of GWR that parameter 

estimate stationarity is not always a valid assumption may also apply to landscape spatial 

analysis. Brundson et al. (1996) outline various cases where a global regression mod

not adequately explain relationships between variables. They proceed to illustrate how 

structure w

explain or predict a dependent variable. Consequently, Fotheringham et al. (2002) developed 

GWR, which is loosely based on kernel regression, to explore nonstationarity within 

parameter estimates. GWR utilizes the multiple regression formulaic approach, but it allows 

parameter estimates to vary by geographic location. The general equation formula for GWR, 

as applied in this study, is stated as follows: 

                            AT(i) = β0(i) + β1(i) X1(i) + β2(i) X2(i) + . . . + βk(n) Xk(n) + εi                    [Eq. 

2.2] 

where AT(i) = predicted ash thickness at observed location i; βk(n) = kth local parameter 

estimate at the nth location; Xk(n) = kth independent variable value at the nth location; and εi = 

model error at location i. 

     The loose similarity to kernel regression arises from the development of a search 

neighborhood approach (i.e., bandwidth) used to develop local parameter estimates. 
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mates. 

ths can be determined through several methods: 1) cross-validation (CV), 2) 

ths 

 a fixed or adaptive approach to deriving bandwidths. Fixed bandwidths 

nd are 

n 

a. The 

g 

a 

 

Bandwidths can be considered as smoothing functions of the local parameter esti

Caution must be exercised when deriving bandwidths. Large bandwidths can oversmooth the 

parameters, reducing the ability to capture local variability in the independent variables. 

Oppositely, small bandwidths produce parameter estimates with large local variation, 

reducing the ability to assess trends within the data (Fotheringham et al., 2002). 

     Bandwid

Akaike’s Information Criteria (AIC), and 3) user-defined. The CV and AIC methods 

calculates the optimum bandwidth that minimizes either score. User-defined bandwid

allow analysts familiar with the data to change the bandwidth to build localized regression 

analyses. The bandwidth is then applied in an iterative manner across a study area. 

Observations that fall within this bandwidth are then used to create a localized regression 

analysis. 

     GWR provides for

are developed using previous knowledge of spatial autocorrelation within the data a

implemented using the scalar units of the study area. Adaptive bandwidths similarly rely o

user knowledge of the study area, but allow the bandwidth to vary across the study are

adaptive technique relies on either an absolute or relative number of observations to be 

included within the localized regression. Consequently, the bandwidth will vary dependin

on the concentration of observations around the regression point. In geographic areas with 

high concentration of data points, bandwidths will decrease. Oppositely, in areas with a low 

density of observations, bandwidths are allowed to expand to meet the defined percentage or

number of observations. 
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     Each observation within a selected bandwidth is then weighted by distance from the 

regression point and its influence on the local parameter estimate calc

the regression point are weighted heavier than those points located farther away 

(Fotheringham et al., 2002). This differs from weighted least-squares analysis (WLS), w

attempts to address local variance by adjusting the parameter estimates by a matrix of error 

variances (Myers, 1990). We used a fixed, user-defined bandwidth based upon: 1

uniform distribution of data points, and 2) a predefined spatial autocorrelation analysis of our 

study area

     Regression models built using either bandwidth approach can then be compared against

the global MLR model using various test statistics. The two primary statistical tests 

employed in GWR for model comparisons are the F-statistic and reduction of the AIC score. 

The F-statistic is the residual sum of squares for the global regression model divided by

of the GWR model. This “F-ratio” is then tested with the two models’ respe

freedom (df). The upper 0.1 percentile of the F-distribution was chosen as the significance 

level for our study.   

     The AIC score reduction test measures the information distance between model 

ribution f. A comparison of this qu

models g1, . . , gn, can be used to assess which model more closely represents the true 

distribution. Relative improvements of the AIC criteria >3 are associated with genuine 

differences between the global and local models. Score reductions <3 in the local model 

could be attributable to sampling error and are therefore not considered to be a significant 

improvement over the global model (Fotheringham et al., 2002). Minimization of AIC by >3,

and a significant F-statistic suggest that there is structure to selected parameter estimates of 
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 . + β*
k(i) X k(i)                     [Eq. 

. 

nt 

d 

nificantly correlated with AT. 

 matrix of partial correlation coefficients of significant variables and their scatterplots are 

the independent variables. For our study, both the F-statistic and AIC score minimization

were used to decide the significance of the “localized” regression model. Overall model fit 

and performance was assessed through the R2
A statistic and RMSE.   

     GWR utilizes several statistical tests to determine if the variation in the parameter 

estimates is significant. For our study, a Monte Carlo significance test was used (Hope, 

1968). The Monte Carlo test calculates the observed variance of local parameter estima

which is then compared against 99 simulated sets of variances obtained through 

randomizations of the observed data. p-values are then computed for each variable parameter 

estimate. 

     Once a localized regression model was fitted that met the overall model and paramete

significance requirements, parameter surfaces were interpolated using a deterministic inv

distance weighted function (IDW) to display the nonstationary effects of parameter estimate

on the dependent variable – AT. A map of volcanic ash distribution and thickness was 

subsequently generated using a modified form of Equation 2.2 as follows:  

                            AT*
(i) = β*

0(i) + β*
1(i) X1(i) + β*

2(i) X2(i) + . .

2.3] 

where AT*
(i) = predicted ash thickness at unknown location i, β*

k(i) = interpolated kth 

parameter estimate at location i, and X k(i) = ith observation of the kth independent variable

RESULTS AND DISCUSSION 

     A correlation analysis showed no significant relationship between AT and the independe

variables ASP, PRCU, PLCU, SPI, STI, and SOLAR and these were subsequently droppe

from further correlation analysis. ELE, SLP, and WIN were sig

A
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shown in Figure 2.2. Smoothed curves were fitted to the scatterplots to indicate trends in the 

ata. Correlation coefficients below the diagonal indicate that ELE is strongly correlated with 

T (r  = 0.5***). The smoothed curve for ELE indicates that AT increases linearly with 

creasing elevation. A comparison of a classed digital elevation and interpolated AT values 

istinctly shows thicker ash mantles at higher elevations (Figure 2.3a,b). This positive 

relationship between ELE and AT can potentially be associated with: 1) wind redistribution 

during dry climatic periods, 2) dense vegetation cover at higher elevations, and/or 3) soil 

redistribution following initial deposit on steeper, complex slopes. The silty texture of 

volcanic ash allows it to be easily re-entrained and transported downwind from drier regions 

to the west of our study area. Wind patterns typically flow in a northeasterly direction in this 

region, thus the higher reaches of the study area would trap the re-entrained volcanic ash. 

Additionally, the orographic effect increases vegetation cover at higher elevations, thus 

serving to protect volcanic ash deposits from further wind or water erosion. However, it 

should be noted that extensive reworking of the initial volcanic ash deposit at these higher 

elevations might have occurred during the period between initial deposition and understory 

establishment. Colluvial and/or alluvial forces from high precipitation and topographic relief 

y be

 SLP ation with AT (r = 0.12**). The smoothed curve 

r SLP suggests that slope gradients <45 percent do not negatively affect the distribution of 

olcanic ash. However, the curve indicates that AT decreases on slopes >45 percent. The 

verall positive relationship supports findings by Warkentin and Maeda (1980) who noted 

table ash mantles on slopes up to 70 degrees in high precipitation regions. These findings 

d

A

in

d

m  partially responsible for these thicker ash mantles.  a

     shows a weak, but significant correl

fo

v

o

s
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ggest that soil surface erosion through wind or overland water flow is not a significant 

ctor in volcanic ash redistribution on slopes <45 percent.      

 

 

 

su
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    Figure 2.2. Partial correlation coefficient scatterplot matrix for selected 
        primary and secondary terrain attributes versus volcanic ash thickness in a 
      a forested north Idaho landscape. 
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    Figure 2.3. a) Elevation classes from a digital elevation model for the  

   study area in north central Idaho, b) Interpolated ash thickness from 671
   observations in a forested north central Idaho landscape. 
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   WIN, which measures the upslope contributing area, shows a weak, but significant 

lationship with AT (r = -0.13**). WIN values <10 show relatively little influence on AT, 

ut values >10 show a steady decline. This change in the relationship seems reasonable, 

ecause WIN values >10 are usually associated with dendritic drainage patterns within the 

udy area. Consequently, surface mantles of volcanic ash would be exposed to greater 

rosive forces and potential redistribution or mixing in these areas.      

Multiple Line

     Given the p developed an AT predictive model 

using MLR. Param tes and model tistics determ hrough a stepwise 

lection process a  provided in Tables

gnificantly predict AT (p = 0.1), and these variables explained only 28 percent of the 

ariation in AT. Consequently, the model RMSE value is 14.7 cm, which is 62 percent of the 

mean A lling. Volcanic ash 

classification t itrandic suborders are 

classed at 0-18 ic suborders at 18-36 cm, ndiso >36 c 14.7 cm RMSE 

ndicates that th neo  classi lcanic oils.  

     Field observations suggested that AT was greater in aggradation areas across the 

landscape. Therefore, we expected that secondary terrain attributes would have been 

significant in the regression model. Preliminary exploratory data analysis showed that our 

data adequately represented the terrain attribute variation within our study area. 

Consequently, we felt that: 1) the overwhelming effect of ELE on AT may be masking 

underlying relationships between AT and other terrain attributes, and 2) potential spatial 

autocorrelation of AT values were leading to an underestimation of model variance. 

  

re

b

b

st

e

ar Regression Modelling 

air-wise relationships described above, we 

eter estima  fit sta were ined t

se nd are  2.2 and 2.3. Only ELE and SLP were shown to 

si

v

T. An R deMSE of this magnitude will provide poor predictive mo

ypically divides ash thicknesses by 18-cm in s. Vcrement

cm, and and A ls at m. A 

i is model could erro usly fy vo  ash s     
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   from terrain attributes using multiple linear regression in a  

MLR Coefficients Estimate t-value p-value 

 

 

 

 

 

 

   Table 2.2. Predictive statistics of volcanic ash thickness 

   forested north central Idaho landscape.  

     Intercept -4.89 -2.49 0.05 
     ELE 0.005 15.49 <0.01 
     SLP 0.05 3.01 0.05 

 
 
 
 
 

            Table 2.3. Volcanic ash thickness model fit statistics for  
multiple linear regression and geographically weighted  
regression in a forested north central Idaho landscape.  

Adjusted 
Regression Model RMSE R2

 R2
 AIC 

MLR  14.7 0.28 0.28 4262 
GWR  10.4 0.75 0.64 4141 
GWR Improvement 4.3 0.47 0.36 121 
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estimation of model variance inflates parameter t-tests (e.g., ELE and SLP at the 

xpense of other terrain attributes) and reduces their confidence intervals. We undertook a 

calized regression analysis using GWR as developed by Fotheringham et al. (2002) to 

ssess this possibility. This approach spatially decomposes the landscape in order to account 

r locational instability in model parameters. 

eographically Weighted Regression Modelling 

   A spatial autocorrelation analysis of observed AT values indicated that observations 

djacent to each other shared similar AT values (Moran’s I = 0.76) (Moran, 1950; Ord and 

ettis, 1995). Subsequent modeling of this spatial autocorrelation indicated that a lag 

 not 

shown). Therefore, we used this value as the user-defined, fixed bandwidth kernel for the 

localiz R regr anal

     A two-step process was used to determi ifica able  a stepwise selection 

process, similar to MLR, was implemented to determine which terrain attributes showed 

significant correlation with AT. If a variable was found to be globally insignificant (p >0.1), 

a Monte Carlo analysis was then performed to determine if the insignificance could be 

attributed to nonstationarity of the parameter estimate. Attributes that showed global 

insignificance, but exhibited significant spatial nonstationarity, were retained for subsequent 

model development. Terrain attributes that met these criteria are shown with their associated 

ranges of parameter estimates and Monte Carlo nonstationarity p-values in Table 2.4. 

     GWR analysis showed ELE and SLP were globally significant (p = 0.05). PLCU, which is 

related to convergent and divergent water flow, was found to be mildly insignificant (p = 

0.15). WIN, a measure of moisture accumulation as a function of upslope contributing area,            

Under

e

lo

a

fo

G

  

a

G

distance of approximately 2500 m captured the spatial structure in the dataset (data

ed GW ession ysis. 

ne sign nt vari s. First,
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          Table 2.4. Summary of geographically weighted regression parameter estimates  

           central Idaho landscape. 

Parameter  Min. Quartile Median Quartile Max. p-value 

         

 

 

 

 

 

 

 

 

           and associated stationarity statistic for terrain attributes in a forested north  

Lower Upper Monte Carlo 

ELE -0.010  0.000  0.002 0.004 0.070   <0.01*** 
SLP -0.265 -0.055 -0.007 0.045 0.297 0.49† 
PLCU -9.071 -1.035 -0.071 0.561 5.034 0.05* 
WIN -4.355 -0.393 -0.019 0.501 4.705 0.05* 

           † Globally significant (p = 0.05**). 
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owed no global significance (p = 0.25). Although, PLCU and WIN were shown to be 

globally insignificant, a Monte Carlo simulation of parameter estimate variances found that 

these parameter estimates were significantly non-stationary (p ≤ 0.05) (Table 2.4). ELE 

showed strong evidence of nonstationary (p = 0.001), while SLP was highly stationary (p > 

0.05). Thus, the variance in the parameter estimates for ELE, PLCU, and WIN are 

attributable to structure within these variables and not due to randomness. Conversely, the 

local variation of SLP parameter estimates is due to randomness and not to any inherent 

spatial structure.     

     ASP, PRCU, SPI, STI, and SOLAR were shown to be insignificant at both the global and 

local level (p > 0.1). Overall, the GWR model explained 64 percent of the variation in AT. 

An F-test yielded a value of 4.3, which was significant at the 0.1 percent distribution level. 

Additionally, the local GWR model significantly reduced the global MLR AIC score by 121 

points. Comparison of the model RMSE values shows that the GWR model reduced the 

RMSE over the MLR model by ~ 30 percent (Table 2.3).   

     We conclude that GWR significantly improves the explanation of variation in AT. GWR 

also indicates that aggradation landscape positions tend to trap or retain greater thicknesses 

of volcanic ash as compared to degradation landscape positions. Nonstationarity tests 

indicate that there are underlying soil-climate-landscape spatial processes occurring that 

cannot be addressed through a global model, but can be broadly accounted for using this 

local re

     Para  

tterns and 

ndscape features (Figure 2.4). ELE displays several “hotspots” across the landscape (Figure  

sh

gression approach.   

meter estimate surfaces were draped over a 30-m shaded relief USGS digital

elevation model to assess potential linkages between estimated nonstationarity pa

la
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   Figure 2.4. Interpolated geographically weighted regression parameter  
   estimate surfaces from 671 observations for the independent variables a)  
   ELE, b) SLP, c) PLCU, and d) WIN located in a forested north central  

     Idaho landscape. Surfaces are draped over a 30-m USGS shaded relief  
               digital elevation model. 
 
  



                                                                                                                                                  57
       

 

 

e the effect of 

tion 

 

e 

end to be 

2.4a). In the southeast sector, ELE shows a significant increase in AT. We hypothesize that 

this dramatic difference is due to a topoclimatic sequence that initiates adjacent to the study

region. Dry, low-elevation canyons that historically would have been susceptible to 

considerable wind erosion and ash redistribution lie to the southwest of this “hotspot”.  

Re-entrained volcanic ash would subsequently be transported with the northeasterly 

prevailing winds and deposited within the “hotspot” region of our study area.      

Across the ELE parameter surface, there are pockets of positive (dark) and negative (light) 

influence on AT. Interestingly, the negative pockets in the northwest occur at high-elevations 

where our global assessment indicates we should find the thickest ash mantles. Oppositely,

the positive “hotspot” in the southeast is located at low elevations, which are typically 

associated with thinner ash mantles in the MLR model. The positive areas to the west and 

northeast are more indicative of the global results. It is evident from these observations that 

GWR is accounting for localized topographic attributes that enhance or reduc

ELE on AT.   

     A SLP parameter surface was included to illustrate its affect on AT, although the varia

in the estimated parameter estimates was not significant (Figure 2.4b). In the northeast 

portion of the study area, SLP shows a negative correlation with AT. We attribute this to high

precipitation in high topographic relief regions. This sector has been estimated to receiv

~1500 mm of precipitation annually (Idaho State Climate Services, 2000). The combination 

of steep slopes (>45 percent) and high rainfall explain the negative influence of SLP. Several 

other zones of negative SLP parameter estimates are evident in the west and southeast 

portions of our study area. These sectors are dominated by steep southerly aspects and are 

located within or near high relief drainage basins. Consequently, these areas would t



                                                                                                                                                  58
       

 when WIN 

 have 

 

 

of 

quently, we expect to see thicker ash 

 

dicate surface concavities. Thus, a 

nce 

 

 

nce established in this drier region, would not be exposed to extreme climatic and 

drier and more susceptible to wind and/or water erosion. The south sector shows a wide area 

of positive parameter estimates. Positive estimates would seem incongruous at first in this 

particular area, because of its high relief and dry climatic conditions. But,

parameters are compared (Figure 2.4d), the trend does seem logical. WIN shows positive, or 

at least neutral, estimates for the same area. This result suggests that water erosion may

redistributed the volcanic ash further downslope. Thus, landscapes with steep slopes, but a

larger upslope contributing area, would show thicker ash mantles in this region. An opposite

trend is found in the northeast sector of the study area. Negative WIN parameter estimates in 

this region suggest that locations influenced by large upslope contributing areas would be 

less likely to have thicker deposits of volcanic ash. We interpret this finding as a function 

SLP and precipitation. Steep slopes, in combination with ~1500 mm of annual precipitation, 

enhanced the erosion of volcanic ash downslope. Conse

mantles upslope with continuous thinning to the dendritic drainage basins.   

     The PLCU parameter surface reflects similar spatial patterns to both SLP and WIN 

(Figures 2.4b,c,d). The northeast and west sectors show significantly negative parameter 

estimates; however, the interpretation of these negative coefficients is different for PLCU

than for SLP and WIN. PLCU can have either a positive or a negative value. Positive values 

reflect convex surfaces; whereas, negative values in

negative parameter estimate for PLCU indicates that concavities would positively influe

volcanic ash retention as opposed to convex surfaces. The positive parameter estimates found

in the southeast portion of our study area indicate that volcanic ash is stable on convex

surfaces. This could partially be attributable to shallow slopes and lower MAP. Volcanic ash, 

o



                                                                                                                                                  59
       

pographic redistribution forces as found in the northern portion of our study area. Negative 

arameter estimates found in the northeast and west sectors would indicate that hydrologic 

rces increased volcanic ash erosion from convex landscape positions. 

   How these selected terrain attributes combine to influence volcanic ash distribution across 

e study area is illustrated in Figure 2.5. Using Equation 2.3, parameter surfaces were 

ultiplied by their respective grids and summed. An output map was produced and a sub-

region of the study area was selected for graphic enhancement in order to portray the effect 

of terrain attributes on AT. An east-west transect across the selected illustration area displays 

a generally increasing elevation gradient that closely follows the distribution of volcanic ash. 

Higher elevations typically show thicker ash mantles. The central area of the sub-region  

shows that wind may have re-entrained the volcanic ash in the flat, low-elevation plateau and 

deposited it downwind over high, forested elevations.  

     Slope effects can clearly be seen in the northeast sector. Slope values typically exceed 60 

percent from the mountain crest to the river bottom, whereas slope does not exceed 45 

percent on the southerly aspects. This result further supports our hypothesis that volcanic ash 

is relatively stable on slopes <45 percent. The accumulation of eroded volcanic ash into 

   A problem that arose during the modeling process can be observed in the northwest 

ector. Catchment basins often show ash depths >36 cm. Model validation indicates that the 

WR approach can over or under-estimate AT in accumulation zones. This may be a 

onsequence of highly variable AT observations within similar landscape positions. The local  

 

to

p

fo

  

th

m

concave landscape positions is evident in the northwest sector. AT is greater in the concave 

ositions and shows erosion from convex ridges.   p

  

s

G

c



                                                                                                                                                  60
       

 

 

 

 

 

 

 

Figure 2.5. Predicted volcanic ash distribution and thickness in a forested north central I
landscape using geographically weighted regression. 
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 of 

 

and 

 

e 

ce on the distribution of volcanic ash 

0 

 

 Higher elevations historically 

had more vegetation, allowing higher elevation sites to trap and retain greater amounts of 

volcanic ash. Lower elevations, which were historically drier and supported less vegetation, 

were initially susceptible to wind erosion. Unfortunately, these relationships explained only 

28 percent of the variation in ash thickness and produced a relatively high model prediction 

error of 14.7 cm.  

least squares analysis approach yields the best fit to the data, but the error within the 

estimated values would be determined by the degree of variability in the observations. 

SUMMARY 

     Volcanic ash distribution in forested landscapes of north Idaho is extensive. Knowledge

ash distribution patterns is important to limit any negative impact of management activities

on the presence of volcanic ash. Soil surveys can provide a gross estimate of these 

distribution patterns; however, these estimates are often generalized across the landscape 

consequently cannot provide quantitative estimates at the site-specific management scale.

Therefore, it is crucial to develop an ash distribution model that can provide natural resourc

managers with an estimate of the volcanic ash found in their management area. 

     This research was conducted to meet this need. Two statistical models were sequentially 

developed to assess terrain attributes and their influen

across the landscape. Multiple linear regression analysis found that elevation and slope were 

significantly correlated with ash thickness (p = 0.05); however, elevation accounted for >9

percent of the variance reduction. Elevation was positively correlated with ash presence, 

which can be ascribed primarily to wind redistribution during the droughty period following

the eruption of Mt. Mazama. The silty texture of volcanic ash makes it susceptible to re-

entrainment by wind and subsequent deposition downwind.
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     Geographically weighted regre e if global relationships were 

e 

 stationary across the landscape as 

e 

tly 

olcanic ash at the local level (p = 0.05). Elevation was also found to be 

 

-

dscape positions were significantly correlated with thicker ash mantles at 

 

ng low mean annual precipitation.  

ic 

ssion analysis. 

odel error by 4.3 

 potentially 

ssion was used to determin

masking landscape interactions at the local level. This statistical technique does not assum

that parameter estimates for the independent variables are

does ordinary multiple regression analysis. Using geographically weighted regression, w

found that plan curvature and wetness index, both related to deposition, were significan

correlated with v

significantly nonstationary (p = 0.05).  The effect of slope gradient, slope curvature, and

wetness index on ash thickness often varied by elevation and moisture regime. Moisture

accumulating lan

elevations receiving high mean annual precipitation. Conversely, convex and gentle slope 

landscape positions were more likely to exhibit thicker ash mantles than concave surfaces at

elevations receivi

     In conclusion, results using geographically weighted regression revealed terrain-volcan

ash thickness relationships that were masked in the ordinary multiple regre

These newly quantified relationships were subsequently incorporated into an ash thickness 

map based on GWR model predictions. Local linear regression reduced m

cm over global linear regression. Natural resource managers can use this map to

improve their land management decision support systems. 
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CHAPTER 3: A Geographically Weig on Analysis of Douglas-fir  

ing 

 

ed 

le 

 

s influence the dependent variables’ differently. A site index model developed 

ith independent variables common to the volcanic ash model will not capture the 

dependent influence of volcanic ash on site index. Thus, volcanic ash is included as an 

dependent variable. 

   All chapters within this dissertation were written in journal format. Each chapter was 

ritten to the format required by the journal of choice. Format requirements for the first two 

hapters included expressing all units in metric. The journal format requirements for Chapter 

 included expressing units in English units. Consequently, all model statistics are expressed 

in inches (in), feet (ft), miles (mi), and acres (ac).  

hted Regressi

(Pseudotsuga menziesii [Mirb.] Franco var. glauca) Site Index in North Central Idaho 

  

PREFACE 

     The following chapter shifts the emphasis of the dissertation from volcanic ash modell

to Douglas-fir site index modelling. The reader will note that within the site index models 

proposed in Chapter 3, volcanic ash becomes an independent variable as compared to being

the dependent variable in the preceding chapters. Further, several independent variables us

to model volcanic ash distribution are also included as independent variables within the site 

index models. 

     A question may arise as to variable redundancy by including both the dependent variab

and several independent variables from the ash model into the site index models. Variable 

redundancy is not an issue because the independent variables common to the ash and site

index model

w

in

in

  

w

c

3
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ABSTRACT 

     An analysis of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco var. glauca) site index 

(SI) was conducted in north central Idaho using two forms of linear regression: 1) standard 

multiple linear regression (MLR), and 2) geographically weighted regression (GWR). The

hypothesis was that the GWR model would provide better estimates of SI using edaphi

topographic, and climatic predictor variables than ordinary MLR. Elevation, volcanic ash 

depth, slope, and aspect were significantly correlated with Douglas-fir SI (R2 = 0

accounted for an additional 28 percent of the variation in SI and reduced the error sum 

squares by 54 percent. The geographically weighted parameter estimates of elevation were

nonstationary, which indicates that a specific elevation can exert either a positive or 

influence on SI depending on geographic location. Residual analysis from a MLR model 

showed SI overestimation in the south and west of our study area. This overestimation was 

significantly reduced using the GWR model. GWR shows promise for future biolog

modelling.  
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(Green 

the subsequent use of SI calculations in yield models has led to the 

s 

ing SI using soil-site factors have been studied in North 

America (Brown and Loewenstein, 1978; Burger and Kelting, 1999; Monserud et al., 1990; 

INTRODUCTION 

     Site index (SI) is commonly accepted as an estimate of site productivity in forestlands of 

the Inland Northwest and beyond (Brown and Loewenstein, 1978; Corona et al., 1998; Curt 

et al., 2001; Green et al., 1989; Monserud, 1984; Vander Ploeg and Moore, 1989). SI, as 

defined by the index age and height of a specified subset of dominant trees of a given 

species, has been closely associated with a site’s ability to support wood production 

et al., 1989; Spurr and Barnes, 1980). The relative ease of collecting height/age 

measurements and 

development of SI curves for many of the tree species found within the Inland Northwest 

(Barrett, 1978; Cochran, 1979a; Cochran, 1979b; Monserud, 1984). However, field 

estimation of SI is often complicated by adverse effects on height growth from fire or insect

and disease (Kayahara et al., 1998; McLeod and Running, 1988; Monserud, 1984). Sites may 

also be stocked with species other than the one of interest, or unstocked from past 

management activities (Kayahara et al., 1998). In these situations, estimating SI as a measure 

of local productivity from environmental variables would be beneficial.  

     However, the use of SI must be kept in context of time and definition. Different 

definitions on tree selection criteria are often used to estimate SI. This can lead to 

inconsistent and potentially biased SI estimates. Further, measurement of SI is a point 

estimate in time. SI estimates will change for a location once a new set of site trees are 

selected. Despite these shortcomings, measurement of SI does allow natural resource 

managers to predict one value of site productivity across the landscape.  

     Numerous efforts for assess
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 Curt et al., 2001; Green et al., 1989; 
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Schoenholtz et al., 2000; Uzoh, 2001) and elsewhere (Corona et al., 1998; Curt et al., 2001; 

Kayahara et al., 1998; McKenney and Pedlar, 2003; Rodriguez et al., 2002; Stendahl et al.

2002; Wang and Klinka, 1996). The range in rationale and modelling methods employed in 

these studies is extensive, but commonalities in results do exist. Elevation, precipitation, and

various measures of soil water holding capacity and soil nutrient status were commonl

correlated with SI. However, many of these studies noted that interactions between 

environmental variables produce a spatial complexity that is difficult to capture within a 

statistical model.  

     The most common statistical method employed to estimate SI has been multiple linear 

regression (MLR) (Brown and Loewenstein, 1978;

Monserud et al., 1990). MLR assumes that each independent variable brought into a model 

affects the dependent variable uniformly (i.e., the assumption of stationarity) across the st

area (Fotheringham et al., 2002). For example, MLR assumes that an elevation of “X” will 

have the same effect on “Y” (SI) at point “A” as at point “B”. Hypothetically, MLR may

account for the fact that point “B” is located within a mountainous region that produces

climatic conditions dissimilar to point “A”. Shifts in climatic conditions may change the s

or slope of the elevation coefficient. This shift or sign change is not shared by point “A”, 

hypothetically found in drier, less mountainous regions. Consequently, what are actually two 

separate elevation effects on SI are modeled within MLR as a single elevation effect. T

result is an elevation coefficient with a large standard error and potentially imprecise 

estimates of SI. MLR is incapable of capturing the spatial complexity of landscape 

interactions at the local level. 
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n SI is difficult, however genetic effects on SI have been shown to contribute 

r. 

onse, 

use 

ecify a relationship between SI and environmental 

 al. 

glas-fir SI 

ing with collinear variables as in Monserud et al. (1990) is the 

potential for inflating both pa ence interval bands around 

980; Wang et al., 2005). However, there are drawbacks to 

     Phenotypic response to genetic variation induced by local environmental conditions

additional source of variation that is rarely captured in SI studies. Obtaining a measure of 

genetic effects o

a significant source of variation in Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco va

glauca) and lodgepole pine (Pinus contorta [Engelm. in Wats.] var. latifolia) species 

(Monserud and Rehfeldt, 1990). MLR analysis of SI will be unable to account for the 

interactive effects of local genetic and environmental influences without this measure of 

genetic variation. Thus, assuming that: 1) genetic variation is uniform, and 2) a suite of 

independent variables interact in precisely the same manner to affect SI and genetic resp

regardless of geographic location, is troublesome. 

     Wang et al. (2005) suggested the use of nonparametric models to avoid the assumptions 

inherent to least-squares regression. Tree-based regression (TREE), generalized additive 

models (GAM), and neural network models (NNT) were advanced as alternatives beca

nonparametric methods do not pre-sp

variables. In addition, the algorithm approach to nonparametric modelling reduces the 

potential negative effect of collinearity within the independent variables. Monserud et

(1990) suggested that many of the key variables used in his MLR analysis of Dou

were not independent and were probably different measures of the same growth factors. The 

consequence of modell

rameter estimate variance and confid

prediction values (Belsley et al., 1

nonparametric modelling. Nonparametric methods can derive relationships between the 

independent and dependent variables that are often difficult to interpret (Breiman, 2001). 
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nding of environmental influences on Douglas-fir SI, and iv) derive a spatial display 

0 ac of diverse 

Therefore, if the primary objective is to derive biological relationships that are readily 

interpreted, then the data modelling approach of MLR or nonlinear regression (NLR) are the 

best methods.  

     A parametric modelling method that may: 1) provide readily interpretable biological 

relationships, 2) measure sources of local variation, and 3) reduce variable collinearity is a

geographically weighted regression analysis (GWR). GWR as developed by Fotheringham et

al., (2002), relies on a form of kernel regression within a MLR framework to develop local, 

as opposed to global, relationships between the dependent and independent variables. The 

development of local relationships facilitates an exploratory analysis of the stationarity

assumption of a global MLR model. Relaxing the stationarity assumption may eliminate th

need to rely on nonparametric modelling to reveal potentially complex variable interacti

across geographic space. The subsequent derivation of spatial maps representing parameter 

estimate nonstationarity and spatial estimates of SI using the GWR method has to our 

knowledge never been attempted.    

     Therefore, the objectives of this study were to: i) assess the differences between 

MLR model SI estimates in a north central Idaho forest, ii) test nonstationarity of the 

independent variables, iii) determine if a parametric GWR analysis enhances our 

understa

of GWR SI estimates. 

MATERIALS AND METHODS 

Environmental Characteristics 

     Our study area is located in north central Idaho along the west slopes of the Clearwater 

Range and east of the Columbia Basin. This study area encompasses ~ 510,00
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oisture regimes, habitat types, and terrain attributes. Landscapes of this region are generally 

haracterized as mountainous in the north and east, while the south and west is characterized 

s basalt plateaus/benchland incised with deep canyons. Soil parent material varies widely 

om metasedimentary schists and quartzites to igneous granites and basalts. Eolian deposits 

f loess from the Columbia Basin and volcanic ash from the eruption of Mt. Mazama are 

ften found as intermixed mantles. Thick volcanic ash mantles are common in the north and 

east regions of the study area, often reaching depths >20 in. Elevation ranges from 900 ft in 

the southwest to >5500 ft in the north and east. Mean annual precipitation (MAP) roughly 

follows the elevational gradient, with <25 in MAP in the southwest and >60 in to the 

northeast (Idaho State Climate Services, 2000). Ponderosa pine (Pinus ponderosa Dougl.) 

and Douglas-fir habitat types dominate the southern regions of the study area. Western 

redcedar (Thuja plicata Donn) and Western hemlock (Tsuga heterophylla [Raf.] Sarg.) are 

found in the warmer, moist upland regions; with Subalpine fir (Abies lasiocarpa [Hook.] 

Nutt.) and Mountain hemlock (Tsuga mertensiana [Bong.] Carr.) predominant in the colder, 

higher elevations (Cooper et al., 1991). Douglas-fir as a conifer species has a wide 

geographic distribution and can be found intermixed with other Inland Northwest tree species 

throughout the study area and is a good “litmus test” species for site productivity in the 

region. 

Data Collection and Sources

I measurements were obtained from two sources: 1) 245 observations from the Natural 

Resource Conservation Service (NRCS) ID-612 ecological site inventory database, and 2) 45 

observations from field measurements collected by the authors (Figure 3.1). SI values were 

based on the average age and height of three to five dominant site trees, and  

m

c

a
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o
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  Figure 3.1. Distribution of 290  
  Douglas-fir site index observations 
  in a north central Idaho landscape.  
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d 

n 

istics inherent to a soil profile description. For the 45 field plots, soil 

the average depth of three randomly distributed soil cores in the 

 a 

-

 form of 

(ELE), 

calculated from equations developed by Monserud (1985). Trees that showed defect or 

growth ring suppression were not sampled. 

     Volcanic ash thickness (AT) and total soil depths (A+B horizons, SDEP) were obtaine

either from soil profile description forms accompanying the 245 ecological site inventory 

records or through soil auguring on the additional 45 field plots. Field plot size was based o

NRCS soil survey sampling protocol, which allows plot size to vary depending on the 

landscape character

depths were based on 

sampling area. Geologic bedrock parent material to the formation level was obtained for all 

290 sites by plotting X,Y coordinates over digital 7.5 min United States Geological Survey 

(USGS) geology quadrangles. Geochemistry values for each formation were obtained from

database compiled from Idaho Geological Survey (IGS) and USGS rock samples (Garrison

Johnston et al., 2003). The weathering potential index (WPI) for each formation’s 

geochemistry composition was subsequently calculated using the following modified

Reiche’s WPI equation (Garrison-Johnston et al., 2003; Reiche, 1943): 

 

 

WPI values are indicative of the potential plant available nutrient pools and the rapidity to 

which rocks will weather to form soil. Rocks with high WPI values suggest a greater supply 

of plant essential cations; conversely, rocks with low WPI values suggest lower weathering 

potential and less plant available nutrients. 

     Estimates of MAP were obtained from a 1:250,000-scale isohyetal precipitation map of 

Idaho (Idaho State Climate Services, 2000). The primary terrain attributes, elevation 

100 x moles(Na2O + K2O + MgO + CaO)  
moles(Na2O + K2O + MgO + CaO + SiO2 + Al2O3 + Fe2O3) 

WPI = [Eq. 3.1] 
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del 

n attributes that measured plan and profile slope curvature (PLCU, 

CU), wetness index (WIN) and slope-aspect interactions (SLPCASP, SLPSASP) were 

omputed from the USGS 30-m DEM using grid algebra in a geographic information system 

IS) (Table 3.1).  

tatistical Analyses 

   GWR was used to estimate Douglas-fir SI as a function of environmental variables (Table 

the global significance of independent variables and initial global MLR m

reduction of model error through local MLR, and 3) nonstationarity within the parameter 

e lysis was conducted using t ordi  lea

( ersion 9.1 of SAS (SAS Institu ). Variable 

significance was based on estimated t-values for the param

e ed a significance level of  retain depe nt v bl

M d measured without error. However, this assumption was taken 

w e of the reliance on: 1) data collected over a period of time by different 

field foresters, and 2) DEM-derived n ac 0- easurement error can 

lead to an inflated model error term, thus underestimating the F-sta tic. This may lead to the 

y have been significant if measured without error. 

Consequently, it cannot be assumed that insignificant independent variables have no effect 

on SI, because of potential observation and/or imputed error during data collection.  

     An MLR equation was developed from the selected independent variables of the 

following general form:  

slope (SLP), and aspect (ASP) were derived from a USGS 30-m digital elevation mo

(DEM). Compound terrai

PR

c

(G

S

  

3.1). This modelling approach involved several separate statistical analyses to determine: 1) 

odel, 2) the 

stimates. The first ana he nary st squares regression model 

REG) STEPWISE procedure in v te, 1990

eters and their associated standard 

rrors. We us  0.1 to  in nde aria es in the model. 

odel variables were assume

ith caution, becaus

 data with a accur y of 3 m. M

tis

elimination of variables that ma
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ated 
in a north central Idaho landscape. 

Site Variables Code Min. Mean Max. (code) 

  

 

 

 

 

Table 3.1.  Summary of collected site and stand characteristics for 290 observations loc

  Transformations 

Site Index (ft, Base Age 50) SI 43 84 119  
Soil Morphological 
     Ash Thickness (in) 
     A+B Soil Depth (in)  

 
AT 

SDEP 

 
0 
6 

   
12 
50 

26 
100 

log (LAT) 

      

     Elevation (ft) 

     Aspect (°)      

ELE 

ASP 

1293 

 

 

3303 5364 square (ELE2) 

Attributes 

     TSLP*cos(ASP) 

 
 

SLPCASP 

 
 

-1.01 

 
 

-0.07 

 
 

1.01 

 

     Mean Annual Precipitation (in) MAP 25 38 60 

Parent Material 
     Weathering Potential Index† 

 
WPI 

 
4.17 

 
22.94 

 
Terrain 

     Slope (%) 

 
 

SLP 

 
 

0 

 

37 

 
 

68 

 
 

log (LSLP), tan (TSLP) 

 
Compound Terrain 
     Plan Curvature 
     Profile Curvature 

     TSLP*sin(ASP) 
     Wetness Index 

PLCU 
PRCU 

SLPSASP 
WIN 

-4.85 
-6.17 

-1.01 
6.69 

0.02 
-0.01 

0.02 
8.96 

6.96 
4.37 

1.01 
14.82 

 
Climate 

 
 

 
 

 
 

 
 

 

† Modified Reiche (1943) equation.
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te; 

 and performance were assessed through the adjusted coefficient of 

 MLR 

ate at 

 

n be 

 local parameter estimates. Caution must be 

rs, 

ty 

                                    SI(i) = β0 + β1X1(i) + β2X2(i) + . . . + βkXk(n) + εi                          [Eq. 

3.2] 

where SI(i) = estimated site index at observed point i; βk = kth global parameter estima

Xk(n) = kth independent variable value at the nth location; and εi = model error at point i. 

Overall model fit

determination (R2
A) and root mean square error (RMSE).         

     The second analysis was performed to determine if a GWR model derived from the 

locally computed parameter estimates outperformed the global MLR model. Version 3.0 of 

GWR software was used (GWR, 2005). GWR utilized a form of kernel regression and

to build a model that can be generally stated as follows: 

                            SI(i) = β0(i) + β1(i) X1(i) + β2(i) X2(i) + . . . + βk(n) Xk(n) + εi                     [Eq. 

3.3] 

where SI(i) = estimated site index at observed location i; βk(n) = kth local parameter estim

the nth location; Xk(n) = kth independent variable value at the nth location; and εi = model error

at location i.  

     The loose similarity to kernel regression arises from the development of a search 

neighborhood (i.e., bandwidth) used to derive local parameter estimates. Bandwidths ca

considered as smoothing functions of the

exercised when deriving bandwidths. Large bandwidths can oversmooth the paramete

reducing the ability to capture local variability in the independent variables. Oppositely, 

small bandwidths produce parameter estimates with large local variation, reducing the abili

to assess trends within the data (Fotheringham et al., 2002). 
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     The choice of an optimal bandwidth can be determined using several methods: 1) c

validation (CV), 2) Akaike’s Information Criteria (AIC), and 3) user-defined. CV and AIC 

bandwidth selection is primarily used with datasets where there is no pr

bandwidth or knowledge of the dataset is minimal. The objective of these methods is to f

a bandwidth that minimizes the CV or AIC score. In situations where an analyst is familia

with a dataset or has previous knowledge of an acceptable bandwidth, a user-defined 

bandwidth is optimal. User-defined bandwidths can be derived through either an adaptive or 

fixed approach.  

     Adaptive bandwidths are best suited for datasets with irregular sampling interval

adaptive technique relies on either an absolute or relative number of observations to be 

included within the localized regression. Consequently, the bandwidth will vary dependin

on the concentration of observations. In areas with high concentration of data points, 

bandwidths will decrease. Oppositely, in areas with a low density of observations, 

bandwidths are allowed to expand to meet the defined percentage or number of observa

     A fixed bandwidth is based on a defined diameter of a circular search neighborhood. The 

diameter scalar units are the same as the location variables. Selection of this bandwidth 

diameter can be specified in one of two ways: 1) theoretically defined, or 2) minimization

the model’s AIC score (Fotheringham et al., 2002). Theoretically defined bandwidths can be

associated with a previously assessed spatial function within the dependent variable. 

Bandwidth selection by AIC score minimization provides an alternative if a dependent 

variable’s spatial function is unknown.  

     The geographic weighting occurs once a regression model (Gaussian, Logistic, or 

Poisson), bandwidth, and kernel type have been selected. Local parameter estimates are 



                                                                                                                                                  81
       

om 

r 

g 

e data. The fixed bandwidth kernel was determined by iteratively applying a 

um 

ffset by the additionally explained 

residual sum of squares. The upper 0.1 p e F-distribution was chosen as the 

 addition to an F-test, an AIC score comparison was 

3 

 

statistic 

derived from the regression of data points within a kernel’s bandwidth. The influence of a 

data point on the local parameter estimate is weighted based on the geographic distance fr

the regression point. Locations nearer the regression point of interest are weighted heavie

than those points located farther away (Fotheringham et al., 2002). This differs from 

weighted least-squares analysis (WLS), which attempts to address local variance by adjustin

the parameter estimates by a matrix of error variances (Myers, 1990).  

     For our analysis, a Gaussian model with a user-defined, fixed bandwidth kernel was 

applied to th

stepped distance to the observed data until the optimum distance was achieved. The optim

distance was defined as the point at which: 1) the AIC score and RMSE were minimized, and 

2) the R2
A value was maximized. 

     Once a local model was built, GWR computed an F-statistic to determine if the 

consumption of additional df in the local model was o

ercentile of th

significance level for our study. In

performed between the local and global models. The AIC statistic measures the information 

distance between model distribution g and the true distribution f. A comparison of this 

quantity between differing models g1, . . , gn, can be used to assess which model more 

closely represents the true distribution. Relative improvements of the AIC criteria >3 are 

associated with genuine differences between the global and local models. AIC differences <

in the local model could be attributable to sampling error and are therefore not considered to

be a significant improvement (Fotheringham et al., 2002). For our study, both the F-
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nd AIC minimization were used to assess the significance of the localized GWR model. 

verall model fit and prediction was assessed through the R2
A and RMSE statistics.  

   The parameter estimates obtained in the initial global MLR model are assumed to be 

ationary across a study area. GWR computed a Monte Carlo significance test on the locally 

erived parameter estimates to assess if this assumption was valid (Hope, 1968). The Monte 

arlo test calculated the observed variance of local parameter estimates, which was then 

ompared against 99 simulated sets of variances obtained through randomizations of the 

observed data. Probability values were then computed for each variable’s parameter 

estimates. We used a significance level of 0.05 to determine if the parameter estimates met 

the stationarity assumption. Nonstationary parameter estimates were spatially interpolated 

using a deterministic inverse distance weighted function (IDW) to assess patterns across our 

study area.  

      Once a localized regression model was fit that met the overall model and parameter 

significance requirements, parameter estimate surfaces for the selected independent variables 

were interpolated using the IDW function. Interpolated parameter estimates and their 

local  

stimated S

RESULTS 

tics 

gnificantly related to SI (p <0.0001). The logarithm of ash thickness 

ilinear increase in SI with increasing AT (Figure 3.2). The inflection 

approximately three inches of ash depth. As ash thickness 

ases, its influence on SI increases toward an asymptote that was not defined within the 

a

O

  

st

d

C

c

respective raster grids were combined using Equation 3.3. A spatial display of ly

e I was subsequently generated using GIS.  

Environmental Characteris

     Volcanic ash was si

(LAT) showed a curv

point of the curve occurs at 

incre
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ies ranging in 

range of our data. SDEP showed no significant effect on SI (p >0.1) and was subsequently 

dropped from the analysis. Bedrock geology was classed into 12 WPI categor

value from 4.2 to 22.9. Only three WPI categories showed significant effect on SI: 

anorthosite (20.7), calc-silicate quartzite (18.3), and gneiss (9.1). Unfortunately,  

 

 

 

 

 

 

 

 
 Figure 3.2. Partial regression analysis of the logarithmic effect of  
 volcanic ash on Douglas-fir site inde
 was derived holding all othe

x in north central Idaho. Response  
r model variables at their means. 
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these geologic formations had limited distribution across our study area and were confounded 

with areas of high MAP. Consequently, WPI was dropped from the analysis. 

     The topographic feature showing the strongest relation to SI was the square of elevation 

(ELE2) (p <0.0001). ELE2 showed a significant curvilinear reduction in SI with increasing 

elevation (Figure 3.3). SLP and ASP effects on SI were assessed using Stage’s (1976) 

transformation. The combined effect of SLP and ASP was determined by multiplying the 

ely). 

SLPCASP was marginally insignificant (p = 0.1034); however, SLPSASP showed significant 

influence on SI (p <0.05). To maintain the integrity of Stage’s (1976) transformation 

equation, SLPCASP was retained in subsequent models. Independently, the logarithm of SLP 

(LSLP) showed significant, positive influence on SI (p <0.05). Figure 3.4 suggests that an 

increasing slope gradient on southwest facing slopes is optimal for Douglas-fir height 

growth. Topographic soil moisture indices, PRCU, PLCU, and WIN, showed no significant 

effect on SI (p <0.1) and were subsequently dropped from further consideration. 

      MAP showed marginal significance in the presence of other independent variables (p 

<0.1). Interestingly, MAP alone failed to account for any significant variation in SI. We 

attribute this result to the scale at which MAP was derived. At 1:250,000, the estimates were 

ost promise 

 

cosine and sine of ASP by the tangent of SLP (SLPCASP and SLPSASP, respectiv

too crude to capture variation in SI across our geographic study area. Indeed, a binary 

variable dividing MAP into two categories, MAP >30 or ≤30 in, showed the m
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 further analysis to avoid introducing a source of 

 

 

 

for SI prediction. We removed MAP from

error due to variable scale differences. 

 

 

 

 
 

 on Douglas-fir site index in north central Idaho. Global response was  
          Figure 3.3. Partial regression analysis of the square effect of elevation  

    derived holding all other model variables at their means. 
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    Figure 3.4. Partial regression analysis of the slope-aspect interaction effect  
 on Douglas-fir site index in north central Idaho. The phase shift was  
 calculated using the Stage (1976) equation.
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Multiple Linear Regression Modelling 

     A MLR analysis was performed to determine the ability of a global regression model to 

estimate SI. Given the relationships described above, a MLR model was developed using 

predictor variables LAT, ELE2, LSLP, SLPCASP, and SLPSASP as follows: 

SI(i) = 75.6 + 13.0 (LAT) – 0.0000011 (ELE2) + 4.8 (LSLP) – 2.04 (SLPCASP) +    

          2.49 (SLPSASP)                               [Eq. 3.4] 

where SI(i) is estimated site index (total height (ft) at base age 50 years at breast height) at 

location i, LAT is the log of volcanic ash thickness (in), ELE2 is the square of elevation (ft), 

LSLP is the log of SLP (%), SLPCASP is the tangent of SLP multiplied by the cosine of ASP 

(°), and SLPSASP is the tangent of SLP multiplied by the sine of ASP. The model accounted 

for 22 percent of the variation and had a RMSE of 11.5 ft (Table 3.2). The AIC score for this 

model was 2247. 

     Equation 3.4 was implemented in a GIS using raster grids of the model variables. Figure 

3.5a shows a spatial display of classed SI values across the study area. Based on equation 3.4, 

SI was low in the south, southwest, and north. High SI was predicted for a relatively narrow 

band progressing from the west to the northeast. Average SI was predicted primarily in the 

east and northwest portions of the study area. However, an interpolated residuals map shows 

a high degree of model error throughout the study area (Figure 3.5b). The MLR model 

overestimates SI across a large portion of the south and west. Underestimates of SI were 

confined to smaller geographic areas. 
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    Table 3.2. Fit and precision statistics for multiple linear regression (MLR) 
s-fir site index 

prediction models for a north central Idaho landscape. 

Regression Model  RMSE R  R  AIC 

                 

 

 

 

 

 

 

 

 

 

and geographically weighted regression (GWR) Dougla

2
Adjusted 

2

MLR 11.5 0.23 0.22 2247 
GWR 9.2 0.64 0.50 2240 
GWR Improvement 2.3 0.41 0.28 7 
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 Figure 3.5. a) Spatial analysis of derived Douglas-fir site index estimates 
 from a multiple linear regression model for a north central Idaho landscape;  

      b) Residual analysis for the multiple regression site index model; c) Spatial    
      analysis of derived Douglas-fir site index estimates from a geographically 
      weighted regression model for a north central Idaho landscape; d) Residual 
      analysis for the geographically weighted regression site index model. 
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Geographically Weighted Regression Modelling 

     An incremental approach was used to determine a bandwidth that minimized the AIC 

ore while maintaining a low RMSE and high R2
A. A bandwidth of ~ 3.5 mi was computed 

using the North American Datum (NAD) 1927, Universal Transverse Mercator (UTM) 

oordinates of the observation points. This bandwidth resulted in an AIC score of 2240, a net 

duction of seven points over the global MLR model. The F-statistic, which compares the 

duction of residual sum of squares between the MLR and GWR models, was found to be 

gnificant (p <0.05) (Table 3.3). Model fit and precision estimates indicate that the GWR 

model explains an additional 28 percent of vari tion in SI and reduces the MLR model error 

by 2.3 ft (Table 3.2). These statistics suggest that the localized approach of GWR modelling 

significantly improves SI estimates compared to a global model. 

     Spatial nonstationarity of the parameter estimates was calculated for each of the 

independent variables. A Monte Carlo simulation showed that only ELE2 parameter 

estimates were significantly nonstationary across the study area (Table 3.4). The local ELE2 

parameter estimates were classed by quantile into five categories to visually assess the spatial           

nonstationarity (Figure 3.6). ELE2 shows positive parameter estimates primarily in the south 

and west, and negative estimates grading to the north. 

   Given the model improvem  was generated using the 

cally derived parameter esti SP, and SLPSASP.  

SI(i) = β0i (Intercept) + β1i (LAT) + β2i (ELE2) + β3i (LSLP)  + β4i (SLPCASP) +   

          β5i (SLPSASP)                                   [Eq. 3.5]       

 
 

sc
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  ent by GWR, a spatial map of SI

lo mates of LAT, ELE2, LSLP, SLPCA

The specific model is: 
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 geographically weighted regression (GWR) Douglas-fir site index models  

Source SS DF MS F 

            

 

 

 

 

 

             Table 3.3. Analysis of variance for multiple linear regression (MLR) and 

 for a north central Idaho landscape. 

MLR Residuals 37501 6   
GWR Improvement 19908 74.19 268.35  
GWR Residuals 17593 209.81 83.85 3.2** 

 
 
 
 
         Table 3.4. Summary of geographically weighted regression parameter estimates  
         and their significance test for parameter nonstationarity for a north central Idaho 
         dataset. 

Parameter  Min. 
Lower 

Quartile Median 
Upper 

Quartile Max. 
Monte Carlo 

p-value 
LAT -11.90 2.98 9.08 17.09 34.97 0.10 
ELE2 -0.000002 -0.000001 -0.000001 0.000001 0.000003     <0.0
LSLP -32.75 -3.77 1.76 7.94 19.66 0.10

1*** 
 

SLPCASP -29.19 -5.36 2.46 5.63 0.12 
SLPSASP -14.71 1.07 4.93 24.51 0.06 

-1.15 
2.73 
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 Figure 3.6.  Spatial analysis of  
 locally derived, nonstationary  
 parameter estimates for the square  
 of elevation in a north central Idaho 
 landscape. 
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s on SI. Broadly, GWR SI values are low in the south, southwest, 

in 

r in our study area 

 

where SI(i) is estimated site index (total height (ft) at base age 50 years at breast height) at 

location i, β(1-5)i are the interpolated parameter estimates for the independent variab

location i, LAT is the log of volcanic ash thickness (in), ELE2 is the square of elevation (

LSLP is the log of SLP (percent), SLPCASP is the tangent of SLP multiplied by the cosin

ASP (°), and SLPSASP is the tangent of SLP multiplied by the sine of ASP. 

     Equation 3.5 was implemented in a GIS using raster grids of the model variables and 

parameter estimates. Figure 3.5c shows a spatial display of classed SI values across the study 

area. GWR derived SI shows much finer detail than the MLR model (Figure 3.5c). The lo

model captures similar spatial trends as the MLR model, but GWR accentuates the loca

environmental influence

and north. High GWR SI values are found in the east and northeast. Importantly, GWR 

estimates of SI in the west and southwest are much lower than those estimated by MLR. 

Interpolated residuals for GWR show a large reduction in overestimated SI values with

these two regions compared to the MLR residual map (Figure 3.5b,d). On the whole, GWR 

estimates produced a large reduction in model error across the entire study area.  

DISCUSSION 

Environmental Characteristics 

     The influence of volcanic ash on Douglas-fir SI was found to be greate

than shown in previous regional analyses (Brown and Loewenstein, 1978; Monserud et al., 

1990). Monserud et al. (1990) noted that volcanic ash, as measured by chroma of the B 

horizon, slightly improved model standard error. In the presence of elevation and habitat 

series however, volcanic ash was insignificant in their analysis. Their results are surprising

because it has been shown that elevation and habitat series are highly correlated with the 
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 same 
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e larger (32 vs. 

 

ght stress in 

and Loewenstein, 1978; Curt et al., 2001; Monserud et al., 1990). Globally, 

nship with SI (Figure 3.3). The square effect of 

 

responds differently to an elevation depending on its geographic location. For example, an 

presence of volcanic ash in north Idaho (Kimsey et al., 2006; Steele et al., 1981). Brown and 

Loewenstein (1978) found a positive linear relationship between AT and SI; however, thei

model showed only a 2.5 ft increase in SI at 50 yrs, given a mean AT of 16.5 in. At the

AT, our data show a 15.8 ft increase in SI (Figure 3.2). In addition, our data suggest that a

thicknesses eventually reach an asymptote as opposed to the linear effect shown in Brown 

and Loewenstein (1978). This significant difference in ash influence on SI is probably 

attributable to dataset size and scope. Our dataset was an order of a magnitud

290 observations) and we selected a much smaller geographic area to study.  

     The strong correlation of volcanic ash with SI is primarily attributable to its high water 

holding capacity. A common misperception of volcanic ash soils is that they are relatively 

high in plant essential nutrients. However, soil nutrients are minimal as volcanic ash is 

primarily composed of silicon and aluminum (Dahlgren et al., 1993). It is the physical 

characteristics of volcanic ash that allow soils to retain a greater amount of plant available

water. Soil moisture retention is critical to buffer plant communities against drou

the dry summer months of the Inland Northwest (McDaniel et al., 2005). 

      Elevation is strongly related to air temperature, precipitation, and length of growing 

season (Brown 

elevation showed a strong negative relatio

elevation indicates that SI is increasingly reduced at higher elevations. The negative 

relationship observed in our data is probably due to colder temperatures at high elevations, 

thus reducing the length of growing season for Douglas-fir. 

      Locally, elevation showed significant non-stationarity (Figure 3.6). This indicates that SI
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fluence. We attribute this non-

y 

 our original hypothesis that northeast-

ougl.) and 

976). 

, a longer 

lternative explanation to the observed phase shift is that the data could be masking 

dients. 

elevation in the southern portion of our study area exerts a positive influence on SI, where

in the north, that same elevation exerts a negative in

stationarity to the topography of the region. Low elevation basalt plateaus and mountain 

ranges dominate the southern portions of our study area. The Clearwater mountain range 

dominates the topography to the north and east, which consists of high mountain ridges and 

deep, incised valleys. These highland valleys often have the same elevation as the basalt 

plateaus to the south, but the climatic conditions within these valleys are often influenced b

the surrounding mountain ranges. Consequently, the harsher winters and cooler summer 

temperatures of the mountain valleys shorten the growing season compared to similar 

elevations in the south. 

     The effect of aspect on SI was counterintuitive to

facing slopes would be more productive (Figure 3.4). We assumed that northeast aspects 

would show higher SI because of reduced soil moisture evaporation and lower needle 

evapotranspiration. Indeed, SI analyses of western white pine (Pinus monticola D

red oak (Quercus rubra L.) show higher SI on northeast aspects (Graney, 1977; Stage, 1

However, our data show that a phase shift of 231° is optimal for Douglas-fir SI. This optimal 

shift suggests that the benefit of increased exposure to solar radiation is greater (i.e.

growing season) than the potential reduction in available soil moisture.   

     An a

potential elevation interactions. Phase shifts may not be constant across elevational gra

Roise and Betters (1981) suggest that at higher, colder elevations, phase shifts may indicate 

optimal growth on aspects that would be suboptimal at lower, drier elevations. Our aspect 

data may be skewed towards more observations at the higher elevations, thereby masking 
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inage. 

 

rough the soil profile during the wet spring months (McDaniel et al., 

r 

t al., 

lower elevation interactions. This observation may be supported by the local non-stationarity

analysis performed on the slope-aspect interaction terms (Table 3.4). The sine function of 

aspect shows a p-value of 0.06, which is only marginally insignificant. Indeed, during 

bandwidth selection, this variable often shifted to being significantly nonstationary. S

instability in the parameter estimates indicates that there are interactions occurring that are 

not being addressed by traditional statistical analyses. Additional research is necessary to 

address the potential of elevational influences on slope-aspect model terms. 

     The positive influence of slope on SI is probably attributable to soil aeration and dra

Steeper slopes will drain more rapidly and provide a better pore ratio of air and water. Slope

differences may also proxy for soil differences across our region. Many of the soils found on 

slopes <10 percent in the south and west have loessal soil deposits over basalt residuum. 

These soils have been shown to form fragipans that reduce soil aeration by severely impeding 

the flow of water th

2001; Rockefeller et al., 2004). Coarser-textured soils derived from granite and 

metasedimentary rocks are most commonly found in the mountainous region of our study 

area. The combination of steeper slopes and coarser soil textures reduce the potential of poo

soil drainage.  

Multiple Linear Regression Modelling 

     A MLR model R2
A of 0.22 and a RMSE of 11.5 ft was unexpected given the large dataset 

and relatively small geographic setting of our study area. Other studies using MLR to predict 

SI from environmental variables showed R2
A values ranging from 0.4 to >0.7, and model 

errors rarely exceeding 7 ft (Brown and Loewenstein, 1978; Corona et al., 1998; Curt e
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slate to improved 

global regression models.  

 to 

beyond the scope of this 

ved in 

2001). Monserud et al. (1990) achieved an R2
A 0.42 and a model error of 10.9 ft with less 

than half the observations available in our dataset.  

      The low precision and fit of our MLR model may result from variable selection. B

constraints focused our attention on variables that were: 1) inexpensive to obtain without 

requiring intensive field and laboratory sampling, and 2) easily modelled across geographic 

space. These constraints prevented an in-depth analysis of important soil characteristics

as mineralizable nitrogen and cation exchange capacity that have been shown to influence 

Douglas-fir SI (Brown and Loewenstein, 1978; Kabzems and Klinka, 1987). These findings 

suggest that large datasets in small geographic areas do not necessarily tran

Geographically Weighted Regression Modelling 

     It became evident from the MLR analysis that the global approach to SI modelling was 

deficient. Monserud et al. (1990) states that in many soil-site relationship studies there are 

too many factors interacting and varying across the landscape to find significant 

relationships. Broadfoot (1969) noted that soil-site relations to SI are often found to be 

significant within small geographic areas, but these relationships could not be generalized

larger geographic areas. Such observations require a reassessment of the statistical 

approaches used to model natural systems, a reassessment that is 

paper.  

     The application of a GWR model to our data showed a significant improvement in 

capturing this local variation by reducing the MLR sum of square errors by 54 percent (Table 

3.3). GWR accounted for an additional 28 percent of variation and reduced model error by 

2.3 ft (Table 3.2). These results place this model within the range of precision obser
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udies utilized soil chemical and physical analyses to predict SI. Such 

 portion 

 

re 

n 

 area.  

     GWR was found to combine the ease of modelling and interpretability of results found in 

global MLR analyses, with an ability to assess highly localized variable interactions that are 

typically only analyzed using nonparametric statistics. Our findings suggest that GWR is a 

good compromise between global parametric models and nonparametric analyses such as 

TREE, GAM, or NNT. Nonparametric statistics may yield more accurate predictions; 

however, natural resource managers need interpretations on why patterns exist, which can be 

difficult to obtain in nonparametric analyses.  

     GWR is also useful because it produces a seamless interaction with GIS platforms. GWR 

results, such as local parameter estimates, predictions, residuals, and parameter/model 

significance tests, can be quickly displayed spatially. Spatial displays of these statistics 

other SI studies (Curt, 1999; Kayahara et al., 1998; McKenney and Pedlar, 2003; Monseru

et al., 1990). However, our results are based entirely from field observed or DEM-derived 

attributes and are not reliant on expensive and time-consuming soil analyses. Many of

cited soil-site st

variables may improve estimates of SI, but they are difficult to obtain and model spatially. 

     The spatial pattern of SI in the GWR model shows very high values in the eastern

the study area (Figure 3.4c). This area coincides with deep ash caps and mid-elevation

landscapes, suggesting that elevation zones near 3,000 ft with significant ash caps a

optimal for Douglas-fir growth. GWR also captures more effectively negative topographic 

effects in the north and southwest. These regions are characterized by colder, higher 

elevations and drier, lower elevation landscapes, respectively. Growth reduction is driven by 

shorter growing seasons in the north, and low plant available moisture in the southern portio

of the study
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 utility of GWR promises to add to the statistical modelling discussion as described by 

ddle the 

cs and 

uch-

tivity relationships regardless of spatial extent.   

tion, 

h, slope, and aspect. Elevation was shown to be negatively associated with 

en the length of growing season. But, 

e 

ffect in the north. We attribute this shift to the topographic and 

 

esence of volcanic ash increases a residual soil’s ability 

 the 

lso 

lar radiation by providing topographic relief. Douglas-fir requires warm 

otspots” in the data that w

in a global analysis. These “hotspots” can then be selected for further in-depth analysis to

determine the mechanistic relationships producing the patterns uncovered by GWR. 

     The

Breiman (2001). GWR, although firmly in the camp of data modelling, seems to stra

divide between the data (MLR, NLIN) and algorithm (TREE, GAM, NNT) modelling 

cultures. For purists in either statistical camp this may result in questionable statisti

assumptions, but in our assessment, GWR promises to be a useful tool for developing m

needed site–forest produc

SUMMARY 

     This study’s findings indicate that Douglas-fir site index is strongly related to eleva

volcanic ash dept

sit index. However, parameter estimates for elevation were nonstationary. This means that 

overall, colder temperatures at higher elevations short

our data also indicate that this elevation effect is tempered by geographic location. The sam

elevation in the southern portion of our study area that exerts a positive influence on tree 

growth has the opposite e

climatic differences between the two portions of our study area.  

     Volcanic ash thickness and slope are positively correlated with site index and were

stationary in their parameters. The pr

to retain moisture. Soil moisture retention buffers Douglas-fir from drought stress during

dry summer months. Slope is primarily associated with enhanced soil drainage, but may a

increase so
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, there is some evidence from our data that this relationship may be 

ariation and 54 percent of the sum of square errors are 

of 

pared to ordinary linear regression residuals. Spatial displays of 

 

 

ghted regression shows promise in future biological 

temperatures for optimum growth, which can only be provided through exposure to 

radiation. Aspect and its interaction with slope show that the warm, southwest quadrant

optimal; however

nonstationary. 

     Geographically weighted regression significantly increases model fit and precision. An 

additional 28 percent of the v

explained when compared to a multiple linear regression model. Residual analysis 

geographically weighted regression site index estimates show a large reduction in 

overestimated values com

geographically weighted site index estimates show greater detail than a typical regression

analysis and can be used to propose future research to determine the mechanistic rationale for

landscape patterns. Geographically wei

modelling. 
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