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ABSTRACT. A disaggregation function, rehtive size-growth (RSG), was proposed and developed for 
interior Douglas-fir (Pseudotsuga menziesii var. glauca [Beissn] Franco) to distribute 
stand volume growth to a list of individual trees. The RSG function was formulated as a 
quadratic equation relating relative tree growth to relative tree size in a stand. The shape 
of the RSG function was linear, convex, or concave depending on initial stand conditions 
and structure. A recursive system of equations was developed to predict the three 
coefficients of the RSG function using initial stand density, mean tree size, and coefficient 
of variation of tree size distribution as predictor variables. This disaggregation function 
determines within-stand growth of individual trees and simulates stand development and 
dynamics. The RSG function provides a biologically based link between whole-stand and 
individual tree resolution models. FOR. SCl. 39(2):295-309. 
ADDITIONAL KEY WORDS. Relative tree size, rehtive tree growth, stand structure and 
dynamics, interior Douglas-fir. 

OREST GROWTH AND YIELD MODELS of varying degrees of complexity and 
detail, ranging from whole-stand to individual tree resolutions, have been 
developed to fulfill the different information requirements for decision mak- 

ing. Some researchers have attempted to unify modeling approaches or link 
whole-stand models and size-class or individual tree models. Two general ap- 
proaches have been developed: (1) aggregating diameter distribution or individual 
tree characters to stand yield estimates (e.g., Daniels and Burkhart 1988, Strub 
and Burkhart 1975), and (2) disaggregating overall stand attributes into more 
detailed models (e.g., Burk and Newberry 1984, Dahms 1983, Harrison and 
Daniels 1987). The disaggregation approach has the advantage that volumes at all 
levels are conditioned on whole-stand volume, which is mathematically more 
tractable than size-class or individual tree volumes (Burkhart 1987). However, 
most disaggregation approaches are based on the assumption that the distribution 
of tree size in a stand can be adequately characterized by a probability density 
function (pdf). Some pdfs, such as Weibull, have been applied only because they 
are flexible enough to fit a relatively broad spectrum of distribution shapes and are 
easily integrated, not because they are based on any biological principles. In 
addition, after the parameters of a pdf have been estimated, it is difficult to 
incorporate the influences and changes in stand density and/or structure due to 
silvicultural treatments. 

Therefore, the objective of this study is to develop a new approach to disag- 
gregate stand volume growth to a list of individual trees. This disaggregation 
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function is based on general concepts of competition among individual trees and 
dynamics of stand structure, without assuming that the distribution of tree size 
follows any particular probability density function. 

BACKGROUND 

The frequency distribution of plant weight is the link between the individual and 
the population biomass (Hozumi et al. 1968). Skewness is commonly found in plant 
size distributions of even-aged monocultures (Bliss and Reinker 1964, Ford 1975, 
Ford and Newbould 1970, Gates 1982, West and Borough 1983). Mohler et al. 
(1978) found that maximum positive skewness occurred at the time self-thinning 
began. 

Hara (1984a, 1984b) proposed a stochastic model to investigate the dynamics 
of stand structure. His model described the changes in plant size distribution with 
time as a function of mean growth rate, variance of growth rate, and mortality. 
Further, the mean growth rate and variance of growth rate were expressed as 
quadratic functions of plant size. Westoby (1982, 1984) introduced the concept of 
distribution modifying function (DMF). He proposed a polynomial equation to 
describe DMF in which plant size increment was a dependent variable and plant 
size was an independent variable. The shapes of DMF determined changes in the 
shape of the frequency distribution of plant size. Westoby (1984) also pointed out 
that most DMFs were of the quadratic form, which produced skewed frequency 
distributions of plant size. The concepts and ideas introduced by Hara (1984a, 
1984b) and Westoby (1982, 1984) were used as the basis of formulating the 
disaggregation function. 

DATA AND METHODS 

Data used in this study represent single species, second-growth, managed, even- 
aged Douglas-fir (Pseudotsuga menziesii var. glauca [Beissn] Franco) stands in the 
inland Northwest. The study area covers six geographic regions: northern and 
central Idaho, western Montana, northeast Oregon, central and northeast Wash- 
ington. The research sites were primarily established for thinning and fertilization 
experiments. A total of 218 control (unfertilized) plots with a 6-yr growth period 
were used for data analysis and model development. Plot size ranged from 0.1 to 
0.2 ac. All trees were measured for both height (to the nearest 1 ft) and diameter 
(to the nearest 0.01 in.). Tree volume was calculated using an individual tree cubic 
volume equation. A majority of the stands had been thinned 5-12 yr prior to the 
growth period used in this study. Selected stand attributes are summarized in 
Table 1. 

Ordinary least-squares regression was used to estimate the parameters for 
linear models. Multicollinearity diagnostics and residual analysis were conducted 
to examine the adequacy of the models and to test for violations of statistical 
assumptions. For nonlinear models, nonlinear least-squares regression was uti- 
lized for parameter estimation. Residual analysis was conducted to detect model 
underspecification, departure from statistical assumptions, and existence of sus- 
pect data points. 
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TABLE 1. 

Averages and ranges of stand attributes at the beginning of a 6-yr growth 
period for Douglas-fir plots. 

Attribute Mean Min Max 

Site index (ft @ 50 yr) 70 39 105 
Stand total age (yr) 61 11 100 
Number of trees (/ac) 318 90 1640 
Top height (ft) 73 12 118 
Basal area (ft2/ac) 140 3 370 
Quadratic mean diameter (in.) 9.8 1.2 16.9 
Total volume (fta/ac) 3669 33 9416 
Mean tree volume (ft a) 15 0.1 59 
Relative density index* 0.20 <0.01 0.84 
Coefficient of variation (%) of tree volume distribution 66 25 224 

* Drew and Flewelling's (1979) relative density index. 

MODEL DEVELOPMENT 

DEFINITION OF THE RELATIVE SIZE-GROWTH FUNCTION 

We assume that the dynamics of stand structure are affected by competitive 
interactions among individuals. The growth of an individual tree is size-dependent. 
The contribution of an individual tree's growth to stand total growth is propor- 
tional to that tree's relative size in the stand. Relative tree growth (RTG) is 
defined as the ratio of individual tree volume growth to stand total volume growth 
(i.e., the sum of the individual trees) on a unit area. Relative tree size (RTS) is 
defined as the ratio of individual tree volume to stand total volume on a unit area. 

Relative tree growth is expressed as a function of relative tree size. The following 
quadratic function was used to describe the relative size-growth (RSG) relation- 
ship: 

RTG -= •3 o + •3• * RTS + •32 * RTS 2 (1) 

where [3 o, [31, and [32 are coefficients to be estimated for each plot. 

CHARACTERISTICS OF THE RELATIVE SIZE-GROWTH FUNCTION 

The RSG function [Equation (1)] was fit to the 6-yr growth data from each of 218 
Douglas-fir plots using ordinary least-squares regression. The analyses showed a 
strong relationship between initial relative tree size and subsequent relative tree 
growth. Most plot regressions (93%) produced R 2 larger than 0.60. Sixty-three 
percent of the 218 regressions had R 2 larger than 0.80. There exist special 
patterns between the three coefficients of the RSG function as follows: when [3• 
equals 1, both [3 o and [32 are nearly equal to 0 resulting in a straight line through 
the origin. When [31 is less than 1, both [3 o and [32 are positive producing a convex 
curve with a positive intercept. In contrast, when [3• is larger than 1, both [3 o and 
[32 are negative, presenting a concave curve with a negative intercept. The above 
relationships define three basic shapes for the RSG function as linear, convex, and 
concave (Zhang 1990), determining the frequency distributions of tree size to be 
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normal, positively and negatively skewed, respectively, similar to Westoby's 
(1982, 1984) proposition. 

PREDICTION MODELS FOR THE COEFFICIENTS OF THE RELATIVE 
SEE-GROWTH FUNCTION 

The Pearson's correlation coefficients between pairs of the three coefficients 
were -0.90 (130 versus 131), 0.63 (13o versus 132), and -0.88 (131 versus 132). The 
relationships imply that the linear coefficient 13• plays the most important role 
among the three coefficients. When 13• is determined, the curvature and level of 
the RSG function are then defined. Therefore, a recursire system of equations 
was developed for predicting the three coefficients of the RSG function as func- 
tions of initial stand variables. Since within-stand distribution of tree growth can 
be influenced by the stage of stand development, stand density and structure 
(Pienaar and Harrison 1984, Stage 1969), prediction models for 13o, 13•, and 132 of 
the RSG function can be developed accordingly as follows: (1) Stand density 
affects the rate and variability of tree growth, and consequently the dynamics of 
stand structure. (2) Mean tree size is an expression of the growth stages of 
even-aged stand development. The interaction between mean tree size and sur- 
viving number of trees in a stand can be expressed as a measure of relative stand 
density, which influences the relationship between tree volume growth and tree 
volume. (3) Ecological studies showed that coefficient of variation is a useful 
measure of inequality of plant population or "size hierarchy," which provides a 
robust indicator of density effects on growth and traces the effects of size- 
selective mortality (Bendel et al. 1989, Knox and Peet 1989). 

Several stand variables and the first four moments of the tree volume distri- 

bution were evaluated as predictors. Number of trees per acre (N), quadratic 
mean tree diameter (D), and the coefficient of variation of tree volume distribution 
(CID were found to be the most statistically significant and biologically meaningful 
predictor variables. The recursire system was formulated as follows: 

13• = f(N, D, CID 

132 = f(13•, N, D, CID 

13o = f(13•, 132, N, D, CID 

Borders (1989) outlined systems of related equations and suggested that ordi- 
nary least-squares (eLS) can be used to obtain parameter estimates if there is no 
cross-equation correlation between error components of the system equations. 
The situation he described is a recursire system, a special case of simultaneous 
equation systems. If the coefficient matrix of the endogenous variables in the 
system is triangular and the variance-covariance matrix of the equations in the 
system is diagonal, the simultaneous equation system is called a diagonally re- 
cursire system (Kmenta 1971). In this case, eLS provides an optimal estimating 
technique (Johnston 1972, Pindyck and Rubinfeld 1981, Theil 1971), and the 
application of eLS to each of the structural equations leads to unbiased, consis- 
tent, and asymptotically efficient estimates (Kmenta 1971). To confirm that we 
had a diagonally recursire system, we applied the Lagrange multiplier test (judge 
et al. 1988) to determine that the error components for the three equations in the 
system are pairwise uncorrelated. The variance-covariance matrix of the equa- 
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tions in the system was estimated using the 6-yr Douglas-fir growth data. The 
Lagrange multiplier statistic was calculated based on the estimated variance- 
covariance matrix and equaled 5.16, which was less than the 5% critical value 
(7.81) from the x2-distribution with 3 degrees of freedom. Thus, the variance- 
covariance matrix of the equations in the recursire system is diagonal. Further, 
the residuals of the three equations in the above regression analyses were pair- 
wise plotted, and no detectable trends were found, confirming the results of the 
Lagrange multiplier test. Therefore, each equation in this diagonally recursire 
system can be appropriately estimated by the OLS procedures. 

1. Prediction Model for the Coefficient 11.. After evaluating various equation forms 
in terms of model fitting, residual analysis, and biological interpretation, the linear 
coefficient 1•1 was related to three stand variables (N, D, and CV) using nonlinear 
least-squares regression, resulting in: 

-0.0246 * D 

[•=N*(1-e cv ) (2) 

The asymptotic standard error of the estimated parameter was 0.0007967. A slight 
trend in the plot of residuals versus the predicted 1•1 existed. Adding an intercept to 
Equation (2) eliminated the trend in the residual plot. However, the estimated inter- 
cept was nearly equal to one, resulting in a predicted 1•1 always larger than one and 
consequent poor model behavior. Hence, we selected Equation (2) as the prediction 
model for 1•1- 

2. Prediction Model for the Coefficient I12 . The prediction model for the quadratic 
coeffident 1•2 was developed using the linear coeffident [•1 and two stand variables, D 
and CV, as predictor variables. Number of trees (N) was tested and found statistically 
nonsignificant in the model. The model was: 

1•2 = 5.9978 - 10.4822. I• + 2.1194. log(D)- 61.9929. (•--V) (3) 
All independent variables were statistically significant (a = 0.05). The R z of the model 
was 0.75, and the root mean squared error was 2.61. The collinearity diagnostics 
indicated that no multicollinearity problems among the three independent variables 
were found (VIFs for the three variables were less than 1.2). The residual analysis 
showed no significant violations of ordinary least-squares assumptions. 

3. Prediction Model for the Coefficient 11o. The coeffident I•o was related to both 
linear coefficient [•1 and quadratic coefficient I•e of the RSG function, as well as to the 
three stand variables. The resulting model was: 

[•0 = 0.02765 - 0.03782 * [•1 - 0.001559 * [•2 + 0.002393 * (10-•) 2 
+ 0.004277 * log(D) + 0.1176 * (•--V) (4) 

All independent variables were statistically significant (a = 0.05). The R 2 of the model 
was 0.91 and the root mean squared error was 0.0032. No multicollinearity problems 
among the five independent variables were diagnosed [VIFs for 1•1 and 1•2 were 4.1 and 
4.0, respectively; VIFs were 1.5 for N 2, 1.5 for log(D), and 1.3 for (1/CV)]. The 
residual analysis did not show a detectable pattern. 

MODEL EVALUATION AND VERIFICATION 

Often model evaluation and verification are performed on data not used in the 
model fitting process (i.e., independent data). Although using independent data 
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has several positive aspects, we chose to test the RSG function differently for 
three reasons. First, we felt that the amount of data used in the model fitting 
process was somewhat limited. Therefore, we wanted to use all the data for 
model development. Second, independent data evaluations are most helpful when 
selecting among various model forms. In this situation, an independent data eval- 
uation might give us some idea of "real" error levels when the model is used for 
prediction. However, with the limited data, the resulting error estimates would be 
questionable. Last, what we really wanted to show with the evaluation and ver- 
ification is how the model responds to various stand and tree size composition 
structures. This, we believe, is more important than testing against independent 
data for the model. 

EVALUATION OF THE RELATIVE SIZE-GROWTH FUNCTION 

Six plots were selected from the Douglas-fir growth data to illustrate three stand 
development phases given two different stand structures for each density class. 
The number of trees, quadratic mean diameter, coefficient of variation of tree 
volume distribution, and relative density index (Drew and Fiewelling 1979), for 
each example plot are provided in Table 2. 

The three stand variables were used to predict the coefficient 13• of the RSG 
function using Equation (2). Then the predicted 13• and observed stand variables 
were input into Equation (3) to predict the coefficient 132 . Finally the coefficient 13o 
was obtained by Equation (4) using the predicted 13•, 132 and observed three stand 
variables. The behavior of the predicted RSG function was compared with that of 
the regression models, as well as a plot of observed data for each plot. 

Two low density stands are illustrated in Figure 1. Plot 50-3 is a uniform stand 
with little variation in tree size and represents plantation conditions (Figure la). 
Before crown closure [<0.15 relative density according to Drew and Fiewelling 
(1979)] the trees are growing as a collection of individuals without intertree 
competition. The observed and predicted RSG function reflects this condition as 
a line with little slope, i.e., all trees contribute about the same relative growth. 
Plot 257-6 (Figure lb) is also a low density stand prior to crown closure. How- 
ever, this plot shows more variation in tree size primarily due to the presence of 

TABLE 2. 

Stand variables and example stand conditions for six plots used in evaluation of 
the relative size-growth function. 

Stand variables 

Plot 

Number Quadratic Coefficient Relative 
of trees mean diameter of variation density 

(/ac) (in.) (%) index 

50-3 470 1.16 54 0.01 

257-6 93 14.63 73 0.09 
250-5 350 8.23 61 O. 17 

224-4 100 16.94 94 O. 19 
14-2 1020 6.18 110 O. 51 

288-1 300 12.73 81 0.51 
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(a) Plot 50-3 
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(b) Plot 257-6 
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FIGURE 1. Behavior of the relative size-growth function for two low-density stands: (a) with no, and 
(b) with a few relatively large individual trees. 
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one much larger individual, likely part of an older residual age class. The observed 
RSG relationship is linear and each tree's relative growth is approximately pro- 
portional to its initial relative size. The predicted RSG function is nonlinear, 
indicating that the very large individual would attain growth more than propor- 
tional to its relative size. Most of the uncommon disagreements between ob- 
served and predicted RSG functions occurred in this type of situation with a few 
much larger residual trees in a stand. There was no particular bias apparent for 
these larger trees (i.e., on the average the predictions agreed with the observed), 
but the variation was high. Actual large trees grew more or less efficiently, as 
expressed by the RTG/RTS ratio, than smaller trees, with the shape and curva- 
ture of the actual RSG function depending on plot specific conditions such as age, 
species, and condition of the large residual trees. This type of variation in stand 
dynamics is not completely accounted for given the level of detail in our current 
modeling approach. However, we believe this indicates that this approach, with 
modifications, has promise for modeling multistoried or uneven-aged conditions. 

Relative size-growth relationships for two stands with relative densities just 
past crown closure are shown in Figure 2. Plot 250-5 (Figure 2a) is a uniform 
stand. Both the observed and predicted relationships are linear, with steeper 
slopes than for open-grown stands (Plot 50-3 in Figure la). Each tree's relative 
growth is nearly proportional to its relative size (the slope is about 1) suggesting 
that intertree competition and crown differentiation has begun. Plot 224-4 is about 
the same density as 250-5 but has more variation in tree size (Figure 2b), again 
primarily due to one much larger individual (17% of the initial total volume in this 
one tree). The result for this plot is similar to that illustrated in Figure lb. The 
predicted RSG function is more nonlinear than the observed. 

Two high density plots near the assumed lower limit of the self-thinning zone 
are shown in Figure 3. The RSG relationships remain nearly linear for both 
stands, and the observed and predicted relationships are almost identical. The 
relative variation (CV) in tree sizes for these plots was larger than average; 
typically, high density stands had higher CVs. 

Overall, the predicted RSG functions match the observed patterns of within- 
stand growth well. In addition, the RSG function behavior conforms to findings 
and observations about density effects on stand growth dynamics by Hara (1984a, 
1984b), Westoby (1982, 1984), and Drew and Fiewelling (1979). Our results also 
suggest that stand structure affects growth distribution within a stand in addition 
to density effects. This was particularly true in low density stands where unusu- 
ally large trees often attained proportionally even more growth than their initial 
relative size would indicate. 

In summary, increasing stand density and mean tree size results in the RSG 
function changing from convex to straight, then to concave. Larger CV reduces 
the value of the predicted 1• (steepness of the curve), but increases the value of 
the predicted [•2 (degree of curvature). Different stand structure, density, and 
tree size impact the shape of the RSG function, consequently, influence relative 
tree growth within the stand. If the RSG function is linear, the relative growth of 
individual trees is proportional to their relative sizes. If the RSG function is a 
convex curve, larger trees in the stand have larger relative growth than smaller 
trees. In contrast, if the RSG function is concave, smaller trees are more efficient 
than larger trees. 
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(a) Plot 250-5 
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(b) Plot 224-4 
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FIGURE 2. Behavior of the relative size-growth function for two stands just after approximate crown 
closure: (a) with no, and (b) with a few relatively large individual trees. 
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(a) Plot 14-2 
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FIGURE 3. Behavior of the relative size-growth function for two high-density stands: (a) with no, and 
(b) with a few relatively large individual trees. 
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VERIFICATION OF THE RELATIVE SIZE-GROWTH FUNCTION 

Four plots with a 6-yr growth period from year 2 to year 8 were selected from the 
Douglas-fir growth data to verify the behavior of the RSG function. These four 
plots comprised partially independent data because the growth period (from year 
2 to year 8) was not directly used in the model fitting process, thus providing a set 
of initial conditions somewhat different than those used in model development. 
Stand variables at year 2 of the four plots are shown in Table 3. Two of the plots 
(plots 13-8 and 30-4) had been thinned, the rest (plots 13-6 and 30-6) were 
unthinned. 

The stand variables at year 2 were input into Equations (2), (3), and (4) to 
predict the three parameters of the RSG function for each plot. Relative tree 
growth (RTG) was calculated for each alive tree during the 6-yr growth period 
according to its relative tree size (RTS), applying the plot-specific RSG function. 
Predicted tree volume growth was obtained by multiplying the actually observed 
6-yr stand volume growth of each plot by each tree's RTG. Predicted 6-yr tree 
volume growth was compared with the corresponding observed 6-yr tree volume 
growth. 

Prediction errors for the 6-yr volume growth were calculated for each tree and 
then averaged for each plot. The results indicated that, across all four plots, the 
RSG function overpredicted tree volume growth by 0.035 ft 3, which was about 
1.4% of the observed mean tree volume growth (2.5 ft 3) in 6 yr. The prediction 
error ranged from 0% to 8.3% of the observed mean tree volume growth. There 
was good agreement between observed and predicted volume growth across tree 
size classes within a stand, as shown in Figure 4. For each of the four plots, the 
predicted and observed 6-yr volume growth of individual trees were categorized 
into 2-in. diameter classes for initial tree dbh. A cumulative frequency distribution 
of the predicted tree volume growth was plotted and compared with that for the 
observed tree volume growth. For most plots the distributions of the predicted 
volume growth are very close to the distributions of the observed tree volume 
growth in both levels and shapes which varies from near linear to sigmoid. For plot 
13-6 (Figure 4a), the RSG function overpredicts tree volume growth for small 
diameter classes, but underpredicts tree volume growth for diameter classes 
larger than 6 in. even though the overall curve shapes are similar. The reason may 
be that this plot has a number of small trees and large variation in tree size (CV 

TABLE 3. 

Stand variables at year 2 for the four plots used in verification of the relative 
size-growth function. 

Plot Thinned 

Quadratic 
Number mean Coefficient Total 
of trees diameter of variation volume 

(/2C) (hi.) (%) (ft3/2C) 

13-6 No 

13-8 Yes 

30-4 Yes 

30-6 No 

1340 4.44 190 3093 
260 6.90 71 1447 

300 10.69 58 5230 

620 8.53 102 6825 
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(a) Plot 13-6 (b) Plot 13-8 

Cumulative Volume Cumulative Volume 
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8oo • -- ...'"' 
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(c) Plot 30-4 (d) Plot 30-6 

Cumulative Volume Cumulative Volume 

Growth (eu.ft/acre) Growth (cu.ft/acre) 

800 800 

600 600 

400 400 

200 200 

0 0 

Breast-Height Diameter (inch) Breast-Heighk Diameter (inch) 

F1GURE 4. Cumulative frequency distribution of the predicted and observed 6-yr tree volume growth 
by diameter class at year 2 for (a) plot 13-6, (b) plot 13-8, (c) plot 30-4, and (d) plot 30-6. 

is 190), due to a few larger individuals. This stand is approaching a storied 
condition, a situation that is relatively uncommon in the development data. The 
similarities in shapes between the observed and predicted volume growth distri- 
butions indicated that the RSG function reasonably represents the different pat- 
terns of within-stand volume growth across diameter classes. 

CONCLUSIONS 

The RSG function developed in this study provides a biologically meaningful way 
to represent stand dynamics and development. The characteristic shape of the 
RSG function is determined by initial stand density, mean tree size, and stand 
structure and describes the distribution of tree growth within a stand. Therefore, 
the RSG function can be used as a link between whole-stand and individual tree 

models. Stand volume growth predicted from a whole-stand model can be dis- 
tributed to a list of individual trees if the tree list is available as input (Zhang 1990). 
Thus, consistent growth and yield estimates can be obtained at whole-stand or 
individual tree levels as desired to fulfill different decision-making requirements. 
Further, this disaggregation approach should also apply to other stand attributes 
(such as stand basal area growth), other tree species and/or geographic areas, and 
with appropriate modifications may apply to more complex stand structures. 
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Silvicultural interventions such as thinning directly alter the variables used for 
predicting the coefficients of the RSG function. Further, the RSG function per- 
formed equally well for thinned and unthinned stands. Therefore, we feel that the 
disaggregation function should reasonably represent the effects of density man- 
agement manipulations on stand dynamics. 
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