## North Idaho Nutrition Guidelines By Rock Type Version 1.1\*

Release Date: July 30, 2001

Nutrition guidelines for use in conjunction with current digital geology for most of north Idaho and portions of northeastern Washington

\* This version includes corrected Category labels for intrusive and extrusive dikes and sills in Appendix C. Both paper tables in this document and electronic tables which accompany this report have been updated. Also, contact information for obtaining paper and digital geology maps have been revised.

> Developed by the Intermountain Forest Tree Nutrition Cooperative Forest Resources Department University of Idaho

> > Authors: Mariann T. Garrison-Johnston James A. Moore

# North Idaho Nutrition Guidelines By Rock Type

## **Table of Contents**

| Торіс                             |                              | Page |
|-----------------------------------|------------------------------|------|
| Introduction                      |                              | 1    |
| Nutrient Management Gu            | idelines                     | 3    |
| Category 1: Extrusi               | ve/ Basaltic Rocks           | 3    |
| Category 2: Intrusiv              | ve/ Granitic Rocks           | 4    |
| Category 3: Metam                 | orphic Rocks                 | 6    |
| Category 4: Mixed                 | Rocks                        | 8    |
| Appendices                        |                              | 13   |
| Appendix A: Instru                | ctions                       | 15   |
| Appendix R: Man Information       |                              | 19   |
| Annendix C: Classification Tables |                              | 23   |
| Coeur d'Alene                     | (C-2)                        | 25   |
| Hamilton                          | (C-3)                        | 26   |
| Headquarters                      | (C-4)                        | 27   |
| Kooskia                           | (C-6)                        | 29   |
| Missoula West                     | (C-8)                        | 31   |
| Sandpoint                         | (C-9)                        | 32   |
| St. Maries                        | (C-13)                       | 36   |
| Thompson Falls                    | (C-15)                       | 38   |
| Wallace                           | (C-16)                       | 39   |
| Appendix D: Map I                 | <b>Descriptions of Rocks</b> | 41   |

## North Idaho Nutrition Guidelines by Rock type

### **Introduction**

This document was prepared as a guideline for foresters to use in determining appropriate nutrient management strategies for forest stands on various rock types in north Idaho and portions of northeastern Washington. The guidelines proposed in this document are based on both observational and experimental evidence compiled by the Intermountain Forest Tree Nutrition Cooperative (IFTNC) since its inception in 1980.

Nine digital geologic maps covering most of north Idaho and portions of northeastern Washington were compiled for this report. A location map showing the maps used in this compilation is shown in Appendix A. *Four of these maps, the Headquarters, Missoula West, Kookia and Hamilton 1:100000 quadrangles, are in preliminary form. Expect the map units to change over time. Stands in these areas MUST be field checked for rock type before proceeding with nutrient management decisions.* A listing of all rock units from each of the nine maps was extracted, for a total of approximately 435 rock units. Each of these rock units was assigned to one of 59 lithology groups, labeled as 'LITH\_GRP' A complete listing of rock units by map is shown in Appendix D, along with a brief description and the corresponding lithology grouping. Each rock unit was also assigned to one of four broad categories, labeled 'CATEGORY.' These four categories include extrusive/ basaltic rocks, intrusive/ granitic rocks, metamorphic rocks, and mixed rocks.

The following section of the report discusses nutrient management strategies for each rock category. Within each category, the guidelines are further subdivided based on the lithology groupings. These guidelines are based on the current state of knowledge regarding rocks and forest growth. We fully expect these guidelines to be further refined with additional experience and experimentation.

Caveats: Geology maps are a useful tool in forest management. However, the user must be aware that geology maps were not developed for use at the forest stand level. We have found the updated north Idaho geology maps to be very good for giving a general idea of the rocks likely to be found in a particular area, and often the maps are precise to the stand level. Nonetheless, foresters must always verify the rock type in the field before considering fertilization options. The information included in this report is intended only to provide general guidelines to be considered in the formulation of silvicultural prescriptions.

### Nutrient Management

"Nutrient management" refers to silvicultural activities and their effect on the nutrient capital of a forest stand. We know that most of the nutrients in a mature stand are contained in the foliage and branches. Thus a good, conservative nutrient management strategy would be to leave the tops and limbs on-site during harvesting operations. We know that some species are more nutrient-demanding than others, so planting a nutritionally-challenged site with less-demanding species would be a good nutrient management strategy. We know that fire suppression has increased the presence of shade-tolerant, nutrient-demanding species and has also altered the cycle by which nutrients were naturally returned to the system through fire. We also know that a cool fire can effectively return much of the on-site nutrient capital to the soil. Therefore, using cool burns for slash control, site preparation or intermediate treatments can be a good nutrient management strategy.

#### **Fertilization**

Fertilization is an additional nutrient management strategy which may be used to improve the health or productivity of forest sites. Regardless of rock type, we recommend that good nutrient management always be practiced during silvicultural operations. Vegetation series is the first criteria to review when considering a fertilizer application. Western red cedar vegetation series, which usually indicate the presence of an ash cap, are the highest priority for fertilization, followed in descending order by grand fir then Douglas-fir series. Do not fertilize true ponderosa pine series.

If the vegetation series is appropriate for fertilization, rock type should then be considered. Use the guidelines in this report to determine whether a rock type is appropriate for fertilization, and which elements are recommended for application. The decision of how much of each element to apply will be dictated by financial and other operational constraints. The IFTNC can provide guidance on application rates based on these constraints as well as the current state of knowledge regarding rates and responses.

Recent experience suggests that young stands, particularly plantations established after high levels of biomass removal and mechanical site preparation, are often deficient in sulfur and boron. This seems to be true for all rock types, but the nutrient status is relatively worse on "bad" rock types. Thus, stand management history should be considered when assigning fertilization priorities for any site.

#### **Nutrient Assessment by Nutrient Management Group**

The following section of the report discusses nutrient management strategies for each of the four broad rock categories, labeled CATEGORY. Within each CATEGORY, the lithology groupings (LITH\_GRP) are used to assign nutrient management guidelines. Appendix A discusses how to use this report in collaboration with geology maps for north Idaho and northeastern Washington. Source data for each of the nine maps used in this report is given in Appendix B. In Appendix C, classification tables for each of the nine maps are shown, which include the CATEGORY and LITH\_GRP assignments for each rock unit on each map. A compiled table showing all rock units and their original map descriptions is provided in Appendix D.

## **Nutrient Management Guidelines**

### **CATEGORY 1: Extrusive/ Basaltic Rocks**

Extrusive igneous rocks were formed when magma moved to the earth's surface either as a flow or eruption and then cooled rapidly, producing a fine grain size. Basalts are the most common extrusive rocks, but rhyolites, dacites and andesites are other types of extrusive rocks. Basalts in our area most often occur as widespread floods of basaltic lava. Some extrusives occur in dikes and sills. Also included in this category are volcanic rocks, which include anything from ash flows to pumice to ejecta such as glass and rock fragments, which occur during the violent explosions associated with volcanic eruptions. Some additional metamorphism of extrusive rocks may have occurred in some cases, leading to the occurrence of metavolcanic rocks.

#### LITH\_GRP: Basalt and Basalt, P

Basalts are the most common extrusive rocks, and are typically composed of plagioclase feldspar and clinopyroxene. Plagioclase feldspars contain Si, Al and some combination of Ca and/or Na. The term 'clinopyroxene' refers to a group of minerals which contain Si, Ca, and some combination of Mg and/or Fe. Basalts do not contain quartz. Some basalts are referred to as 'porphyry,' which means that they are full of air pockets and pores. This does not affect their chemical composition but may contribute to increased weathering rates due to increased surface area. Some basalts have a high content of glass, which may break down relatively quickly due to its unstable nature, but could also inhibit overall rock weathering due to decreased rock porosity.

Some basalts show particularly high phosphorus levels, and these basalts were labeled as 'basalt, P.' One high-P basalt unit known as Wanapum basalt has shown poor response to N-only fertilization in IFTNC trials. Whether the high P levels or some other feature affects the response is uncertain, however to be conservative we have separated out the high P basalts wherever possible.

#### Fertilization recommendation for basalt and basalt, P

Due to their fine-grained nature, basalts tend to form clay-rich soils. One of the greatest values of basalt-derived soils is the moisture-holding capacity. Basaltic soils should be fairly rich in several important nutrients, including Mg and Ca. While K content of basalt rocks is fairly low, the K-retention of basaltic soils should be quite good. High cation exchange capacity (CEC) and base saturation are important qualities provided by basalt parent materials. Basalts are generally considered 'good' rocks and good candidates for fertilization. Research on IFTNC study sites in central Washington and northeast Oregon indicates that some differences in fertilization response may be expected between the 'generic' basalts and the high P basalts. Generally, good response may be expected on most basalts when N-only is applied. Experience with some high P basalts has shown that S may be necessary in order to elicit a growth response to fertilization.

Expected Soil Development: Moderate to deep, fine loamy soils Expected Nutrient Status: Good Expected Fertilization Response: Good Recommended Formulation: N only on most basalts.

### N+S on high-P basalts. Good multi-nutrient blend candidates, consider screening trials.

### LITH\_GRP: Extrusive Dikes and Sills, Volcanic Rocks, and Metavolcanic Rocks

<u>Extrusive dikes and sills</u> have been mapped in a number of north Idaho locations. Some of these dikes and sills are composed of rhyolite or dacite, both of which are light-colored extrusive rocks. We do not currently recommend fertilization on these rock types. Units mapped as <u>volcanic rocks</u> can be composed of a wide array of materials, from solidified ash to rock shards to glass. One IFTNC research site occurred on a site mapped as volcanic rock, and this site was very difficult to characterize for rock type due to the wide variation of materials, including everything from siliceous fragments to pumice. However, basalts may also be included in map units labeled as 'volcanic rocks.' Sites labeled in this manner should be field-checked, and if the rock is in fact basalt, the site may be treated as a basalt. Otherwise, we do not currently recommend fertilization on volcanic rocks. The <u>metavolcanic</u> group includes rocks such as amphibolite, which usually refers to a metamorphosed basalt, and otherwise metamorphosed volcanic rocks.

*Fertilization recommendation for extrusive dikes and sills, volcanic and metavolcanic rocks* We do not currently recommend fertilization on any of these rock types. Conservative nutrient management practices should be followed.

Expected Soil Development: Variable Expected Nutrient Status: Variable Expected Fertilization Response: Unknown Recommended Formulation:

### Fertilization not recommended.

## **CATEGORY 2: Intrusive/ Granitic Rocks**

Intrusive rocks are igneous rocks formed from magma which cooled inside the earth's crust. Because of this slow cooling process, intrusive rocks formed large grains which are usually visible in hand sample. Granites are the most common example of intrusive rocks.

### LITH\_GRP: Light, Dark and Undivided Granites (including Priest River Complex)

For purposes of this document, the granites were designated light, dark or undivided. 'Light' granites are those such as quartz monzonite, syenite, other granites which contain predominantly quartz and potassium feldspar, with some plagioclase feldspar, and very few dark minerals. These granites will probably be pink, orange or white in appearance. 'Dark' granites are the quartz diorites and tonalites, which tend to contain primarily quartz and plagioclase feldspar, with some potassium feldspar and an abundance of dark minerals. These granites will probably be gray or have salt-and-pepper appearance. The main difference between these two classes of granites is that one of the black minerals often contained in dark granites is biotite, a potassium-bearing black mica. Biotite expands when it weathers, which contributes to a faster breakdown of the granite, and furthermore is a good potassium source. The other dark mineral commonly found in dark granites is hornblende. The difference between biotite and hornblende is that biotite appears very shiny and breaks easily into sheets. Hornblende is more blocky, not as sparkly in the sun, and does not break into sheets. Hornblende does not have the same weathering properties as biotite, and is not a potassium source.

Granitic rocks belonging to the Priest River Complex were designated separately from the other granites, because these granites are described as being intermingled with metamorphic rocks. Most of the metamorphic rocks are from the Belt Series metasedimentary group, and other metamorphic and carbonate rocks are mixed in as well. Therefore, some caution must be exercised in determining nutrient management strategies for these rocks. The best strategy would be to visit the stand and make an on-site rock assessment. The site should then be treated based on the predominant rock type.

#### Fertilization recommendation for granites

Granitic rocks are expected to weather to coarse, well-drained soils with low waterholding and low nutrient-holding capacity. Soil particles will be largely composed of quartz and feldspars, with plagioclase feldspars dominating the dark granite types and K-feldspars becoming more evident on the light granite types. In all granitic soils, cation-exchange capacity is expected to be low due to low clay content. Generally, moderate to poor results have been obtained through fertilization with N-only on these rock types. The addition of K to the blend is expected to give a better response than N alone, especially on the light granites and the hornblende-dominated dark granites. Multinutrients might be an option here, however fertilization screening trials would be recommended as a means of evaluating the costeffectiveness of such an operation. With Priest River Complex granites, evaluate the site for rock type and treat the stand accordingly.

Expected Soil Development: Moderate to deep coarse soils Expected Nutrient Status: Moderate

Expected Fertilization Response: Moderate

Recommended Formulation:

Light granites: Do not fertilize with N-only. Dark granites: Maybe fertilize with N-only, but only if rock shows high biotite (K) content. All granites: N+K recommended.

Possible multi-nutrient blend candidate -- recommend screening trials.

### LITH\_GRP: Intrusive Dikes and Sills

Also in the intrusive/granites category are 'intrusive dikes and sills.' Dikes and sills tend to be harder rocks, often occurring in outcrops because they don't weather as easily as surrounding rocks, and don't tend to support good tree growth. Until we have more information, fertilization on sills and dikes is not recommended.

#### Fertilization recommendation for intrusive dikes and sills

We do not currently recommend fertilization on dikes and sills. Conservative nutrient management practices should be followed.

Expected Soil Development: Poor Expected Nutrient Status: Moderate Expected Fertilization Response: Unknown Recommended Formulation: Fertilization not recommended.

## **CATEGORY 3: Metamorphic Rocks**

A large proportion of land in north Idaho falls into the metamorphic category. The vast majority of these are metasedimentary rocks, most of which pertain to the Belt Supergroup of metasedimentary rocks, also known as the Belt series or Belt rocks. The formal nomenclature of these rocks is based on a hierarchy composed of groups, formations, and members. In north Idaho, the Belt rocks are commonly known by their formation names. The most common formations in north Idaho include Prichard, Burke, Revett, St. Regis, Wallace, Striped Peak, and Libby. Several formations are further subdivided into members. Both the Prichard and Wallace formations are subdivided into upper and lower members, and the Wallace also includes a middle member. The Striped Peak formation is subdivided into members 1, 2, 3 and 4. Sometimes, the formations are grouped together. The Burke, Revett and St. Regis formations are often jointly referred to as the Ravalli Group. In northeast Washington, the Deer Trail Group is another set of metasedimentary rocks which occur over a fairly wide area. These are not part of the Belt Supergroup. In addition to or instead of the formal names described above, metamorphic rocks may have lithology descriptors. The most common lithologies are argillite, siltite, quartzite, schist and gneiss. Sometimes we see carbonate rocks, phyllites, or general metamorphic or metasedimentary rocks in this category as well.

The IFTNC has generally considered rocks in this category to be poor nutrient sources. Most of them are metasedimentary rocks, and the 'parent' sediments would have consisted of stable, transported minerals such as quartz, feldspars, and muscovite. Because these minerals were so stable to begin with, and were then recrystallized and cemented together, these rocks are expected to be a poor nutrient source. We have few fertilization trials on these rock types, mostly because it is so difficult to find successful stands of trees on these rocks in which to install the trials. Where we do have trials on these rock types, mostly on schists, we consider those rocks to be 'the best of the worst.' More recent observations of soil development and stand behavior have led us to believe that different metasedimentary rocks may weather at different rates. Softer rocks may yield deeper soils, which may in turn provide a better nutrient source for forest stands. It may be that as we continue to work with metamorphic, and especially metasedimentary rocks, more of the rocks currently thought unsuitable for fertilization may be reconsidered for fertilization. At the moment, we do not have strong fertilization reck types.

### LITH\_GRP: Schists, Gneisses, lower and middle Wallace formation

A <u>schist</u> is a highly metamorphosed foliated rock of either granitic or sedimentary derivation, often mica-bearing. Most of the schists in north Idaho and northeastern Washington belong to the Belt Supergroup. The Wallace, Prichard, St. Regis and Revett formations and the

Ravalli group all contain schist members. Since we do have some information on Wallace and Prichard schists, we have labeled schists as 'medium' rocks from a nutrition perspective. Stands on schists responded better to N+K than to N-alone. Sulfur is an element which should be monitored closely on schist types, as foliar S deficiencies have been detected for both Douglasfir and grand fir on mica schist parent materials on at least one IFTNC study site.

A <u>gneiss</u> is a highly metamorphosed rock of either granitic or sedimentary derivation. These rocks also show alignment, however rather than forming thin sheets like schists, these tend to have more of a banded appearance. The black bands often contain biotite, which may be a good potassium source as described in the section on granitic rocks. Gneisses often behave rather like granitic rocks in terms of decomposition and soil properties. However, we don't have a large number sites on gneiss. Some gneisses may be harder than granites, making them less likely to form the deep, sandy soils which are characteristic of granites.

The <u>lower and middle Wallace formation</u> rocks are composed primarily of siltite and argillite. While some of the other Belt rocks also have siltite and argillite members, the Wallace unit seems to be a softer, more weatherable rock than the others. While the nutrient properties of the Wallace siltite and argillite are probably not much different than other Belt rocks, the fact that these rocks weather to deep soils probably allows for a reasonably large pool of nutrients to be available to tree growth. We do recommend that foresters field check stands on lower and middle Wallace formation and verify the presence of deep soils, particularly if considering fertilization.

While we are tentatively rating schist, gneiss and lower and middle Wallace as potential fertilization candidates, sites mapped for these units should be examined for soil depth and stand condition. If a site shows shallow soils or is difficult to regenerate, the site should probably not be considered for fertilization at this time.

#### Fertilization recommendation for schist, gneiss and middle and lower Wallace

These rocks are expected to weather to loamy to sandy soils, well-drained with low to moderate water-holding and nutrient-holding capacity. Soil particles will be largely composed of quartz, muscovite and feldspars. Cation-exchange capacity is expected to be low due to low clay content.

Expected Soil Development: Moderate to deep sandy to loamy soils Expected Nutrient Status: Moderate Expected Fertilization Response: Moderate Recommended Formulation: Do not fertilize with N-only. N+K recommended minimum formulation. For schists, consider N+K+S. Possible multi-nutrient blend candidate -- recommend screening trials.

### LITH\_GRP: Metamorphic rocks, quartzites, argillites, phyllites Deer Trail Group, other Belt rocks

All of the remaining rocks in the <u>metamorphic</u> category are currently considered unsuitable for fertilization, primarily due to lack of information. <u>Quartzites</u> in particular are very low in nutrients, and contain mostly quartz sand. <u>Argillites</u> often have a very high potassium content, but little else in the way of nutrients, and are likely to weather to a slaty, layered rock which forms very shallow soils. <u>Phyllites</u> are another type of highly metamorphosed rock, similar to schists and gneisses. We have no fertilization trial sites on this rock type. The <u>Deer</u> <u>Trail Group</u> are metasedimentary rocks found mostly in northeastern Washington. We have one seedling trial on a Deer Trail argillite, and it is considered a bad rock site, with very thin soils and poor tree growth. The other Deer Trail rocks include carbonate rocks, quartzite and metasedimentary rocks. We don't have much information on Deer Trail rocks, and pending additional research we do not currently recommend fertilization. Similarly, all <u>Belt rocks</u> besides the middle and lower Wallace formation are currently considered unsuitable for fertilization, pending further information.

#### Fertilization recommendation for other metamorphic rocks

We do not currently recommend fertilization on any of these rock types. Conservative nutrient management practices should be followed.

Expected Soil Development: Poor Expected Nutrient Status: Variable Expected Fertilization Response: Unknown Recommended Formulation:

Fertilization not currently recommended. Screening trials may be an option to sort out possible responders in this category.

## **CATEGORY 4: Mixed Rocks**

"Mixed rock deposits" refer to deposits of rocks which were transported from another site to their present site, either by wind, water, glacial activity, tectonic activity, other geomorphic processes, or some combination thereof. As such, they may include a wide variety of rocks, leading to a wide array of possible geochemistry and mineralogy. This not only makes these rocks difficult to assign to a single rock-type category, but they are also difficult to categorize for nutrient management purposes. These transported materials are likely to contain large percentages of minerals which are resistant to weathering, as any easily-weathered materials would have either weathered out prior to transport, or were lost during transport. Probably the poorest nutrient environment will be provided by the deposits of fine materials, such as loess and tertiary sediments. The most common weathering-resistant minerals likely to be found in these finer sediments are quartz, potassium feldspar and muscovite. Because of their stable nature, these minerals are not likely to provide a readily available source of nutrition to the vegetation on the site. If larger pieces of rock were transported to the site, such as in glacial deposits, a somewhat better nutrient environment may be provided as these larger rocks decompose. In any case, the site should be examined and evaluated for both rock type and stand health prior to considering fertilization treatments.

#### LITH\_GRP: Tertiary sediments

<u>Tertiary sediments</u> are typically associated with basalt flats, and are thought to be the result of materials eroding off of surrounding high points onto the basalt flats which formed when drainages were filled with lava during periodic basalt flows. By viewing the landforms in an area, it is often possible to detect the source of the sediments, simply by looking at the composition of the high points upstream from the flat or bench. For example, many of the high points in the St. Marie's area are Belt series metasedimentary rocks, thus many of the tertiary sediments in this area are formed from metasedimentary materials. Additionally, due to mineral weathering patterns, each transport event will result in an 'upgrade' of stable minerals in the parent material. That means an increase in the percentage of the stable minerals which are considered poor nutrient sources. So a rock which was 'medium' up on the hill might become 'poor' by the time it gets eroded and transported as sediment.

#### Fertilization recommendation for tertiary sediments:

The primary value of tertiary sediment materials is its water-holding capacity. Furthermore, the presence of clays in much of this material should allow for reasonably good cation-holding capacity following fertilization. However fertilization should be carried out with caution, as 'square death' has occurred on IFTNC sites on similar sediments in northeast Oregon following application of nitrogen (N) at a rate of 400 lb/ac. Based on recent experience with operational N fertilization. However we have also found that stands on some basalts show good response to N only fertilization. However we have also found that stands on some basalts need S in addition to N in order to achieve positive growth response. Therefore, N+S should be considered as a possible fertilization option on basaltic materials. Materials derived from granites or meta-sediments, as well as streamside and other mixed deposits, should not be fertilized with N only. That blend should at least include K in addition to N.

Expected Soil Development: Moderately deep to deep, clay-rich soils Expected Nutrient Status: Variable Expected Fertilization Response: Variable Recommended Formulation: Basaltic source: N alone probably OK, S may be needed. Granitic or metasedimentary source: N+K. Unknown source: N+K, possibly N+K+S. Possible multi-nutrient blend candidate -- recommend screening trials.

#### LITH\_GRP: Loess, sedimentary rocks, and carbonate rocks

<u>Loess</u> refers to deep, windblown deposits of mostly silt. In north Idaho, the loess is thought to have blown in from the south-central Washington area. Where we find forest stands growing on loess, an ash cap is also often present. <u>Sedimentary rocks</u> in the north Idaho area include a variety of sandstones, siltstones, claystones, and carbonate rocks, often intermixed with each other. <u>Carbonate rocks</u> include limestones, dolomites and marble, and are often found intermixed with other sedimentary rocks.

Generally speaking, these rock types are probably not going to provide a good source of nutrition to a forest stand. Loess types are probably more likely to support forest stands when found in conjunction with ash cap. We do not currently have enough information on loess,

sedimentary or carbonate types to make fertilization recommendations. We do recommend the use of good nutrient management practices.

#### Fertilization recommendation for loess, sedimentary rocks and carbonate rocks

We do not currently recommend fertilization on loess, sedimentary rocks or carbonate rocks. Good nutrient management practices should be followed.

Expected Soil Development: Variable Expected Nutrient Status: Unknown Expected Fertilization Response: Unknown Recommended Formulation:

Fertilization not currently recommended. Screening trials may be an option to sort out possible responders in this category.

### LITH\_GRP: Landslide Deposits

<u>Landslide deposits</u> refer to materials from a nearby source which were deposited in a landslide event. These could be modern or older landslide occurrences. Whereas modern scree-type deposits will obviously not provide much in the way of soil development for tree growth, older deposits may have well-developed soils and support forest stands. With landslide deposits, the recommended approach is to treat the site based on the lithology of the deposited material. The rock type should be verified on site. This information will often be available in the literature which accompanies the area geology map, as well.

### Fertilization recommendation for landslide deposits:

Determine the source rock for the landslide deposit. This information might be found in the map literature, but will probably require field verification. Treat the site based on the dominant lithology of the deposit.

### LITH\_GRP: Glacial Deposits and Alluvial Deposits

<u>Glacial deposits</u> are commonly found in northern Idaho, western Montana and northeastern Washington. Glacial deposits may contain a wide array of rocks varying in both lithology and size. Many of the glacial deposits in our area were deposited by continental glaciers that carried rocks in from distant areas. We also have occasional smaller mountain glaciers, which were more likely to bring rocks in from small, local areas. The variety of rocks of different mineralogies and at different stages of decomposition provided by glacial deposits provide a fair to good nutrient environment for tree growth. Sites on the glacial flats in the Rathdrum Prairie area of northern Idaho which were subjected to agricultural activities such as plowing and discing prior to stand establishment may require special attention. These activities displaced and/or removed organic materials and topsoil to the extent that the nutrient environment was considerably altered. Stands on these glacial flats often show signs of nutrient stress at or shortly after crown closure.

<u>Alluvial deposits</u> generally refer to modern (quaternary era) streamside deposits, and are usually much younger than the tertiary sediments. Due to their relatively recent occurrence, these deposits will probably provide less well-developed soils than tertiary sediments. Alluvial

flats may occur near rivers as part of a floodplain, while in other instances, alluvial deposits may occupy wide expanses across drainages and show moderate to steep slopes. In all cases, the source material may or may not be local, and soil development and nutrition properties will be variable. As with the tertiary sediments, an upgrade in stable minerals will occur with each transport event. However, modern alluvial deposits will probably also retain a larger proportion of intact gravels and cobbles, providing a possible source of minerals for future weathering.

### Fertilization recommendation for glacial deposits and alluvial deposits:

Good response to nitrogen fertilization has been obtained on glacial deposits. We don't currently have response data for alluvial deposits. Due to the wide array of possible parent rocks in both glacial and alluvial deposits, we would recommend the addition of K with N in order to assure proper nutrient balance. Sulfur is also an element which might be recommended for these mixed deposits. In the case of the Rathdrum Prairie glacial flats, preliminary data indicate that P and B may also be necessary. Glacial and alluvial deposits would be good candidates for multinutrient screening trials.

Expected Soil Development: Moderately deep to deep, loamy soils Expected Nutrient Status: Moderate to Good Expected Fertilization Response: Glacial till good, Alluvium unknown Recommended Formulation:

Glacial deposits: N-only probably OK, but N+K, and maybe S, recommended. Possible multi-nutrient blend candidate -- recommend screening trials. Alluvial sites should probably have screening trials installed before initiating operational fertilization trials.

## **APPENDICES**

| Appendix   | Description                  |                | Page |
|------------|------------------------------|----------------|------|
| Appendix A | Instructions for Using       | this Document  | 15   |
| Appendix B | Map Source Informati         | on             | 19   |
| Appendix C | <b>Classification Tables</b> |                | 23   |
|            | Coeur d'Alene                | (C-2)          | 25   |
|            | Hamilton                     | (C-3)          | 26   |
|            | Headquarters                 | (C-4)          | 27   |
|            | Kooskia                      | (C-6)          | 29   |
|            | Missoula West                | (C-8)          | 31   |
|            | Sandpoint                    | (C-9)          | 32   |
|            | St. Maries                   | (C-13)         | 36   |
|            | Thompson Falls               | (C-15)         | 38   |
|            | Wallace                      | (C-16)         | 39   |
| Appendix D | Map Descriptions for         | All Rock Units | 41   |

## Appendix A

## **Instructions for using this document**

Get Maps

Obtain maps pertaining to the area of interest as shown in Figure A. Refer to Appendix B for source information.



### If Using Paper Maps

If using paper maps, simply locate the rock unit for the stand of interest and look that unit up in the corresponding classification table in Appendix C.

### If Using Digital Maps

If using digital maps, the same procedures described above may be followed, by looking up the rock unit label for the stand of interest and referring to Appendix C. Additionally, a set of electronic dBASE (\*.dbf) files may be obtained to accompany this report. The set consists of nine files, one for each of the nine maps used to compile this report. Each file contains one table identical to the corresponding classification table provided in Appendix C. Each table may be brought directly into ArcView and joined to the corresponding map attribute table. The LABEL field in the dBASE table should be joined to the corresponding field in the digital map attribute tables as listed below. The one exception is the digital geology for the Wallace quadrangle, for which labels were not given with the digital map, but rather a numerical unit code was assigned. For the Wallace quadrangle, join the UNIT field in the dBASE table with the UNIT field in the digital map attribute table. This will bring in labels along with the additional IFTNC groupings. The following table shows which fields to use when joining the IFTNC tables with the digital map attribute tables.

| MAP:            | dBASE table field | Joined To | Digital Map Attribute table field |
|-----------------|-------------------|-----------|-----------------------------------|
| Coeur d'Alene:  | Label             |           | Label                             |
| Hamilton:       | Label             |           | Value                             |
| Headquarters:   | Label             |           | Value                             |
| Kooskia         | Label             |           | Value                             |
| Missoula West:  | Label             |           | Value                             |
| St. Maries:     | Label             |           | Value                             |
| Sandpoint:      | Label             |           | Label                             |
| Thompson Falls: | Label             |           | Label                             |
| Wallace:        | Unit              |           | Unit                              |

### **Classification Tables**

The tables shown in Appendix C and the electronic tables which accompany this report contain four columns.

The first column is labeled 'LABEL,' and includes a list of all the rock unit labels for the corresponding map. This is the same label found on paper or digital maps, and is an abbreviated text label for the rock mapped in that area. The LABEL field may be used to join the electronic table to the map attribute table for all maps except the Wallace 1:100000. For Wallace only, an additional column labeled 'UNIT' is included in the DBASE table for use with the digital map. The UNIT is a numerical code corresponding to the map labels, which are not included in the digital version of the Wallace quadrangle. The IFTNC table includes both the UNIT codes and corresponding labels.

The next column is the lithology grouping, labeled '**LITH\_GRP**,' and gives just a few words describing what type of rock the LABEL refers to. The LITH\_GRP groups the rocks on the basis of lithology, and in the case of metasedimentary rocks may also include the formation name. For more detailed rock descriptions, refer to the original map documentation.

The third column gives the broad grouping labeled 'CATEGORY.' The category refers to which of the four general rock groups that unit pertains to. This grouping is also based on lithology, and includes intrusive/granite, extrusive/basalt, metamorphic rocks, and mixed rocks. Water and man-made units are assigned to a category called 'Other' and are not discussed in this report. Once the LITH\_GRP and CATEGORY are known, the user may refer to the appropriate portion of the preceding report which describes general nutrition guidelines for that rock.

| Category 1: | Extrusive/ Basaltic Rocks | Page 3 |
|-------------|---------------------------|--------|
| Category 2: | Intrusive/ Granitic Rocks | Page 4 |
| Category 3: | Metamorphic Rocks         | Page 6 |
| Category 4: | Mixed Rocks               | Page 8 |

The last column in the accompanying tables gives a quick evaluation of the rock's potential for supporting productive forest growth, and is labeled 'QUICKEVAL'. This evaluation includes six categories, which are good, medium, bad, unknown, variable and other. Many of the rocks are labeled as 'unknown', mostly because we don't have fertilization trials or hard data on forest growth for these types. A number of units are also labeled as 'variable,' because these encompass a broad range of potential rock types. The 'other' category includes water and man-made units.

### Edge-Matching

Users of these maps will find that some of the maps do not appear well edge-matched with surrounding maps. Some discrepancies exist between the Sandpoint 1:250K and Coeur d'Alene 1:100K quadrangles, which are primarily due to different language used by the map authors to describe the same or similar rocks. Most of the other discrepancies involve the edges of the four preliminary maps with each other and with surrounding maps, which should be resolved over time as these maps are updated. In all cases, the LITH\_GRP assignments are based strictly on the written description of the rock unit accompanying the current digital geology maps used in this report. For this reason, the LITH\_GRP and other IFTNC categories may also change when crossing map boundaries in what otherwise appears to be the same rock unit. Foresters should be particularly diligent about field checking rocks in these cases. Assistance may also be provided by geologists with the Idaho Geological Survey, who are currently working in most of these areas and are knowledgeable about the local rock types.

## **Appendix B**

### **Map Source Information**

### Coeur d'Alene 1:100,000

Munts, S.R. and Idaho Geological Survey, 2000, Digital geologic map of the Coeur d'Alene 1:100,000 quadrangle, Idaho and Montana: U.S. Geological Survey, Open-File Report OF-00-135, scale 1:100000.

Source: United States Geological Survey (USGS) and Idaho Geological Survey (IGS)

Digital Map: http://ngmdb.usgs.gov/Prodesc/proddesc\_34289.htm

Paper Map: Idaho Geological Survey website: http://www.idahogeology.org email: stanford@uidaho.edu phone: (208)-885-7991 contact: Loudon Stanford

### Hamilton 1:100,000

Idaho Geological Survey, 1996. Digital geologic map compilation of north central Idaho by 30 x 60 minute quadrangles. Digital geology of Nez Perce and Clearwater Forests. Scale 1:100000.

Source: Idaho Geological Survey (IGS)

Digital and Paper Maps:

Idaho Geological Survey website: http://www.idahogeology.org email: stanford@uidaho.edu phone: (208)-885-7991 contact: Loudon Stanford

### Headquarters 1:100,000

Idaho Geological Survey, 1996. Digital geologic map compilation of north central Idaho by 30 x 60 minute quadrangles. Digital geology of Nez Perce and Clearwater Forests. Scale 1:100000.

Source: Idaho Geological Survey (IGS)

Digital and Paper Maps:

Idaho Geological Survey website: http://www.idahogeology.org email: stanford@uidaho.edu phone: (208)-885-7991 contact: Loudon Stanford

### Kooskia 1:100,000

Idaho Geological Survey, 1996. Digital geologic map compilation of north central Idaho by 30 x 60 minute quadrangles. Digital geology of Nez Perce and Clearwater Forests. Scale 1:100000.

Source: Idaho Geological Survey (IGS)

Digital and Paper Maps:

Idaho Geological Survey website: http://www.idahogeology.org email: stanford@uidaho.edu phone: (208)-885-7991 contact: Loudon Stanford

### Missoula West 1:100,000

Idaho Geological Survey, 1996. Digital geologic map compilation of north central Idaho by 30 x 60 minute quadrangles. Digital geology of Nez Perce and Clearwater Forests, scale 1:100000.

Source: Idaho Geological Survey (IGS)

Digital and Paper Maps:

Idaho Geological Survey website: http://www.idahogeology.org email: stanford@uidaho.edu phone: (208)-885-7991 contact: Loudon Stanford

### St. Maries 1:100,000

Burmester, R.F., Frost T.P., Kauffman, J.D., and Lewis, R. S, 2000. Geologic Map of the St. Maries 30 x 60 Minute Quadrangle, Idaho, Idaho Geological Survey, Geologic Map GM-28, scale 1:100000.

Source: Idaho Geological Survey (IGS)

Paper Map:

http://www.idahogeology.org/Products/reverselook.asp?switch=title&value=Geologic\_Map\_of\_t he\_St.\_Maries\_30\_x\_60\_Minute\_Quadrangle,\_Idaho

| Digital and Paper Maps: | Idaho Geological Survey              |
|-------------------------|--------------------------------------|
|                         | website: http://www.idahogeology.org |
|                         | email: stanford@uidaho.edu           |
|                         | phone: (208)-885-7991                |
|                         | contact: Loudon Stanford             |

### Sandpoint 1:250,000

Miller, F.K., Burmester, R.F., Powell, R.E., Miller, D.M., and Derkey, P.D., 1999, Digital geologic map of the Sandpoint 1 degree X 2 degree quadrangle, Washington, Idaho, and Montana: U.S. Geological Survey, Open-File Report OF-99-144, scale 1:250000.

Source: United States Geological Survey (USGS) and Idaho Geological Survey (IGS)

Digital Map: http://ngmdb.usgs.gov/Prodesc/proddesc\_22659.htm

Paper Map:

http://www.idahogeology.org/Products/reverselook.asp?switch=title&value=Geologic\_Map\_of\_t he\_Sandpoint\_Quadrangle,\_Idaho\_and\_Washington

### Thompson Falls 1:100,000

Lewis, R.S. and Derkey, Pamela, 1999, Digital geologic map of part of the Thompson Falls 1:100,000 quadrangle, Idaho: U.S. Geological Survey, Open-File Report OF-99-438, scale 1:100000.

Source: United States Geological Survey (USGS) and Idaho Geological Survey (IGS)

Digital and Paper Maps: http://ngmdb.usgs.gov/Prodesc/proddesc\_22795.htm

### Wallace 1:100,000

Lewis, R.S., Burmester, R.F., McFaddan, M.D., Derkey, P.D., and Oblad, J.R., 1999, Digital geologic map of the Wallace1:100,000 quadrangle, Idaho: U.S. Geological Survey, Open-File Report OF-99-390, scale 1:100000.

Source: Source: United States Geological Survey (USGS) and Idaho Geological Survey (IGS)

Digital and Paper Maps: http://ngmdb.usgs.gov/Prodesc/proddesc\_22505.htm

## Appendix C

## **Classification Tables**

| Map            | Page |
|----------------|------|
|                | -    |
| Coeur d'Alene  | C-2  |
| Hamilton       | C-3  |
| Headquarters   | C-4  |
| Kooskia        | C-6  |
| Missoula West  | C-8  |
| Sandpoint      | C-9  |
| St. Maries     | C-13 |
| Thompson Falls | C-15 |
| Wallace        | C-16 |

## Coeur d'Alene 1:100000 Quadrangle

| LABEL | LITH GRP                            | CATEGORY                  | QUICKEVAL |
|-------|-------------------------------------|---------------------------|-----------|
| CI    | carbonate rocks                     | mixed rocks               | unknown   |
| Crg   | quartzite                           | metamorphic rocks         | unknown   |
| pCbgh | metamorphic rocks                   | metamorphic rocks         | variable  |
| pCmu  | metamorphic rocks                   | metamorphic rocks         | variable  |
| pCmuq | quartzite                           | metamorphic rocks         | unknown   |
| Qal   | alluvium                            | mixed rocks               | variable  |
| Qgo   | glacial deposits                    | mixed rocks               | medium    |
| Qgy   | glacial deposits                    | mixed rocks               | medium    |
| Qls   | landslide deposits                  | mixed rocks               | variable  |
| Qp    | loess                               | mixed rocks               | unknown   |
| QTg   | tertiary sediments                  | mixed rocks               | variable  |
| Tcr   | basalt                              | extrusive/ basaltic rocks | good      |
| TKg   | granite, undivided                  | intrusive/ granitic rocks | medium    |
| Yb    | Burke Formation                     | metamorphic rocks         | variable  |
| YI    | Libby Formation                     | metamorphic rocks         | variable  |
| Yp    | Prichard Formation                  | metamorphic rocks         | variable  |
| Ypl   | Prichard Formation, lower           | metamorphic rocks         | unknown   |
| Ypu   | Prichard Formation, upper           | metamorphic rocks         | unknown   |
| Yqd   | granite, dark                       | intrusive/ granitic rocks | medium    |
| Yr    | Revett Formation                    | metamorphic rocks         | variable  |
| Yrb   | Ravalli Group                       | metamorphic rocks         | variable  |
| Ysp   | Striped Peak Formation              | metamorphic rocks         | variable  |
| Ysr   | St. Regis Formation                 | metamorphic rocks         | variable  |
| Ywl   | Wallace Formation, middle and lower | metamorphic rocks         | medium    |
| Ywu   | Wallace Formation, upper            | metamorphic rocks         | unknown   |
|       | water                               | other                     | other     |

## Hamilton 1:100000 Quadrangle

| LABEL | LITH_GRP                     | CATEGORY                  | QUICKEVAL |
|-------|------------------------------|---------------------------|-----------|
| Kdi   | granite, dark                | intrusive/ granitic rocks | medium    |
| Kg    | granite, dark                | intrusive/ granitic rocks | medium    |
| Kgd   | granite, dark                | intrusive/ granitic rocks | medium    |
| Kmgd  | granite, dark                | intrusive/ granitic rocks | medium    |
| Kmig  | metamorphic rocks            | metamorphic rocks         | variable  |
| Kt    | granite, dark                | intrusive/ granitic rocks | medium    |
| Qal   | alluvium                     | mixed rocks               | variable  |
| Qg    | glacial deposits             | mixed rocks               | medium    |
| Tg    | granite, undivided           | intrusive/ granitic rocks | medium    |
| Tgd   | granite, dark                | intrusive/ granitic rocks | medium    |
| Ycs   | Wallace Formation, gneiss    | metamorphic rocks         | medium    |
| Yq    | Wallace Formation, quartzite | metamorphic rocks         | unknown   |
| Yqi   | Wallace Formation, quartzite | metamorphic rocks         | unknown   |
| Yw    | Wallace Formation            | metamorphic rocks         | variable  |
|       |                              |                           |           |

#### Headquarters 1:100000 Quadrangle

| LABEL | LITH_GRP                      |
|-------|-------------------------------|
| Kbgd  | granite, dark                 |
| Kfg   | granite, undivided            |
| Kfgd  | granite, dark                 |
| Kg    | granite, dark                 |
| Kgb   | intrusive dikes and sills     |
| Kgd   | granite, dark                 |
| Kmig  | metamorphic rocks             |
| Кр    | intrusive dikes and sills     |
| Kpgd  | granite, dark                 |
| Kqd   | granite, dark                 |
| Ks    | metavolcanic rocks            |
| Kt    | granite, dark                 |
| pCan  | metamorphic rocks             |
| pCbq  | Burke Formation, quartzite    |
| pCbsg | Burke Formation, quartzite    |
| рСрІ  | Prichard Formation            |
| рСрq  | Prichard Formation, quartzite |
| рСqр  | Prichard Formation, quartzite |
| pCqrv | Ravalli Group, quartzite      |
| pCrq  | Revett Formation, quartzite   |
| pCrs  | Revett Formation, schist      |
| pCsp  | Prichard Formation            |
| pCsrs | St. Regis Formation, schist   |
| pCwss | schist                        |
| Qal   | alluvium                      |
| Qg    | glacial deposits              |
| Qls   | landslide deposits            |
| Та    | intrusive dikes and sills     |
| Tcb   | basalt                        |
| Tfc   | basalt                        |
| Tg    | granite, undivided            |
| Tgb   | intrusive dikes and sills     |
| Tgd   | granite, dark                 |
| Tgn1  | basalt                        |
| Tgr1  | basalt                        |
| Tla   | basalt                        |
| Tqs   | granite, light                |
| Trp   | extrusive dikes and sills     |
| Ts    | tertiary sediments            |
| Tw    | basalt                        |
| Twe   | basalt                        |

#### CATEGORY

intrusive/ granitic rocks metamorphic rocks intrusive/ granitic rocks intrusive/ granitic rocks intrusive/ granitic rocks extrusive/ basaltic rocks intrusive/ granitic rocks metamorphic rocks mixed rocks mixed rocks mixed rocks intrusive/ granitic rocks extrusive/ basaltic rocks extrusive/ basaltic rocks intrusive/ granitic rocks intrusive/ granitic rocks intrusive/ granitic rocks extrusive/ basaltic rocks extrusive/ basaltic rocks extrusive/ basaltic rocks intrusive/ granitic rocks extrusive/ basaltic rocks mixed rocks extrusive/ basaltic rocks extrusive/ basaltic rocks QUICKEVAL medium medium medium medium unknown medium variable unknown medium medium variable medium variable unknown unknown variable unknown unknown unknown unknown medium variable medium medium variable medium variable unknown good good medium unknown medium good good good medium unknown variable good good

## Headquarters 1:100000 Quadrangle Continued

| LABEL<br>um<br>water<br>Yam<br>Ycs<br>Ymg<br>Yqi<br>Ysg<br>Yw<br>Yw<br>Ywg<br>Ywl | LITH_GRP<br>extrusive dikes and sills<br>water<br>metavolcanic rocks<br>Wallace Formation, gneiss<br>Wallace Formation, upper<br>Wallace Formation, quartzite<br>Wallace Formation, schist<br>Wallace Formation<br>Wallace Formation, gneiss<br>Wallace Formation, middle and lower | CATEGORY<br>extrusive/ basaltic rocks<br>other<br>extrusive/ basaltic rocks<br>metamorphic rocks<br>metamorphic rocks<br>metamorphic rocks<br>metamorphic rocks<br>metamorphic rocks<br>metamorphic rocks<br>metamorphic rocks | QUICKEVAL<br>unknown<br>other<br>variable<br>medium<br>unknown<br>unknown<br>medium<br>variable<br>medium<br>medium |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Ywl                                                                               | Wallace Formation, middle and lower                                                                                                                                                                                                                                                 | metamorphic rocks                                                                                                                                                                                                              | medium                                                                                                              |
| Ywm                                                                               | Wallace Formation, middle and lower                                                                                                                                                                                                                                                 | metamorphic rocks                                                                                                                                                                                                              | medium                                                                                                              |
| Ywq                                                                               | Wallace Formation, quartzite                                                                                                                                                                                                                                                        | metamorphic rocks                                                                                                                                                                                                              | unknown                                                                                                             |
| Yws                                                                               | Wallace Formation, schist                                                                                                                                                                                                                                                           | metamorphic rocks                                                                                                                                                                                                              | medium                                                                                                              |

#### Kooskia 1:100000 Quadrangle

| LABEL | LITH_GRP                    |
|-------|-----------------------------|
| Kbgt  | granite, undivided          |
| Kdi   | granite, dark               |
| Kfgd  | granite, dark               |
| Kg    | granite, dark               |
| Kgd   | granite, dark               |
| Kht   | granite, dark               |
| KJi   | granite, dark               |
| Kmgd  | granite, dark               |
| Kmig  | metamorphic rocks           |
| Kpgd  | granite, dark               |
| Kqd   | granite, dark               |
| Kt    | granite, dark               |
| Ktc   | granite, dark               |
| Mzhg  | metamorphic rocks           |
| Mzm   | carbonate rocks             |
| Mzrg  | schist                      |
| pCbg  | gneiss                      |
| pCbs  | schist                      |
| pCcsm | metamorphic rocks           |
| pCgcs | gneiss                      |
| pCps  | Prichard Formation, schist  |
| pCqcs | quartzite                   |
| pCqi  | metamorphic rocks           |
| pCqs  | quartzite                   |
| pCrq  | Revett Formation, quartzite |
| pCsq  | schist                      |
| pCsrs | St. Regis Formation, schist |
| Qal   | alluvium                    |
| Qg    | glacial deposits            |
| Qls   | landslide deposits          |
| T_Psd | volcanic rocks              |
| Tcb   | basalt                      |
| Td    | extrusive dikes and sills   |
| Tdi   | granite, dark               |
| Tg    | granite, undivided          |
| Tgd   | granite, dark               |
| Tgn1  | basalt                      |
| Tgr1  | basalt                      |
| Tgr2  | basalt                      |
| Tgv   | basalt                      |
| TKg   | granite, dark               |

#### CATEGORY

intrusive/ granitic rocks metamorphic rocks intrusive/ granitic rocks intrusive/ granitic rocks intrusive/ granitic rocks intrusive/ granitic rocks metamorphic rocks mixed rocks metamorphic rocks mixed rocks mixed rocks mixed rocks extrusive/ basaltic rocks extrusive/ basaltic rocks extrusive/ basaltic rocks intrusive/ granitic rocks intrusive/ granitic rocks intrusive/ granitic rocks extrusive/ basaltic rocks extrusive/ basaltic rocks extrusive/ basaltic rocks extrusive/ basaltic rocks intrusive/ granitic rocks

QUICKEVAL

medium medium medium medium medium medium medium medium variable medium medium medium medium variable unknown medium medium medium variable medium medium unknown variable unknown unknown medium medium variable medium variable variable good unknown medium medium medium good good good good medium

## Kooskia 1:100000 Quadrangle Continued

| LABEL | LITH_GRP                     | CATEGORY                  | QUICKEVAL |
|-------|------------------------------|---------------------------|-----------|
| Tpr   | basalt, P                    | extrusive/ basaltic rocks | medium    |
| Tr    | extrusive dikes and sills    | extrusive/ basaltic rocks | unknown   |
| Trp   | extrusive dikes and sills    | extrusive/ basaltic rocks | unknown   |
| Ts    | tertiary sediments           | mixed rocks               | variable  |
| Tsa   | basalt                       | extrusive/ basaltic rocks | good      |
| Twe   | basalt                       | extrusive/ basaltic rocks | good      |
| um    | metavolcanic rocks           | extrusive/ basaltic rocks | variable  |
| Yam   | metavolcanic rocks           | extrusive/ basaltic rocks | variable  |
| Ycs   | Wallace Formation, gneiss    | metamorphic rocks         | medium    |
| Yq    | quartzite                    | metamorphic rocks         | unknown   |
| Yqi   | Wallace Formation, quartzite | metamorphic rocks         | unknown   |
| Ysg   | Wallace Formation, schist    | metamorphic rocks         | medium    |
| Ywg   | Wallace Formation, gneiss    | metamorphic rocks         | medium    |
| Yws   | Wallace Formation, schist    | metamorphic rocks         | medium    |
|       |                              |                           |           |

#### Missoula West 1:100000 Quadrangle

| LABEL | LITH GRP                            | CA   |
|-------|-------------------------------------|------|
| Kbgd  | granite, dark                       | intr |
| Kdi   | granite, dark                       | intr |
| Kg    | granite, dark                       | intr |
| Kgd   | granite, dark                       | intr |
| Kmgd  | granite, dark                       | intr |
| Kmig  | metamorphic rocks                   | me   |
| Kt    | granite, dark                       | intr |
| pCqg  | Ravalli Group, quartzite            | me   |
| pCqrv | Ravalli Group, quartzite            | me   |
| pCsp  | Prichard Formation, schist          | me   |
| Pzm   | carbonate rocks                     | mix  |
| Qal   | alluvium                            | mix  |
| Qg    | glacial deposits                    | mix  |
| Qls   | landslide deposits                  | mix  |
| Tcv   | volcanic rocks                      | exti |
| Tg    | granite, undivided                  | intr |
| Tqs   | granite, light                      | intr |
| Trb   | volcanic rocks                      | exti |
| Trp   | extrusive dikes and sills           | exti |
| Ts    | tertiary sediments                  | mix  |
| um    | intrusive dikes and sills           | intr |
| Yam   | metavolcanic rocks                  | exti |
| Ymg   | Wallace Formation, upper, argillite | me   |
| Yms2  | Striped Peak formation, quartzite   | me   |
| Yqi   | Wallace Formation, quartzite        | me   |
| Yw    | Wallace Formation                   | me   |
| Ywam  | metavolcanic rocks                  | exti |
| Ywl   | Wallace Formation, middle and lower | me   |
| Ywm   | Wallace Formation, middle and lower | me   |

### CATEGORY

usive/ granitic rocks tamorphic rocks usive/ granitic rocks tamorphic rocks tamorphic rocks tamorphic rocks ed rocks ed rocks ed rocks ed rocks rusive/ basaltic rocks usive/ granitic rocks usive/ granitic rocks rusive/ basaltic rocks rusive/ basaltic rocks ed rocks usive/ granitic rocks rusive/ basaltic rocks tamorphic rocks tamorphic rocks tamorphic rocks tamorphic rocks rusive/ basaltic rocks tamorphic rocks tamorphic rocks

QUICKEVAL medium medium medium medium medium variable medium unknown unknown medium unknown variable medium variable variable medium medium variable unknown variable unknown variable unknown bad unknown variable variable

medium

medium

#### Sandpoint 1:100000 Quadrangle

| LABEL | LITH_GRP              |
|-------|-----------------------|
| Cgc   | quartzite             |
| Clr   | carbonate rocks       |
| Cmc   | carbonate rocks       |
| Cmp   | phyllite              |
| Csu   | sedimentary rocks     |
| CZq   | quartzite             |
| Ddl   | carbonate rocks       |
| Ds    | metasedimentary rocks |
| Dv    | metavolcanic rocks    |
| Jcm   | granite, dark         |
| Jlm   | granite, dark         |
| Jrg   | metavolcanic rocks    |
| Jrs   | metavolcanic rocks    |
| JTRpl | granite, light        |
| JTRw  | granite, light        |
| Kag   | granite, undivided    |
| Kb    | granite, light        |
| Kbc   | granite, undivided    |
| Kbf   | granite, dark         |
| Kbgm  | granite, light        |
| Kbm   | granite, light        |
| Kbr   | granite, light        |
| Kbu   | granite, dark         |
| Kc    | granite, dark         |
| Kcl   | granite, dark         |
| Kco   | granite, dark         |
| Kcu   | granite, undivided    |
| Kdc   | granite, dark         |
| Kfl   | granite, dark         |
| Kg    | granite, light        |
| Kgm   | granite, undivided    |
| Kgp   | granite, dark         |
| Kgpl  | granite, dark         |
| Kgs   | granite, undivided    |
| Kh    | granite, undivided    |
| Khm   | granite, dark         |
| Kjl   | granite, dark         |
| Kk    | granite, dark         |
| Kkp   | granite, dark         |
| Klc   | granite, dark         |
| Klcc  | granite, dark         |
|       |                       |

### CATEGORY metamorphic rocks mixed rocks mixed rocks metamorphic rocks mixed rocks metamorphic rocks mixed rocks metamorphic rocks extrusive/ basaltic rocks intrusive/ granitic rocks intrusive/ granitic rocks extrusive/ basaltic rocks extrusive/ basaltic rocks intrusive/ granitic rocks

QUICKEVAL

C-9

unknown unknown unknown unknown variable unknown unknown variable variable medium medium variable variable medium medium

medium

#### Sandpoint 1:100000 Quadrangle Continued

| LABEL | LITH_GRP                                 | CATEGORY                  |
|-------|------------------------------------------|---------------------------|
| Klgs  | granite, light                           | intrusive/ granitic rocks |
| Kli   | extrusive dikes and sills                | extrusive/ basaltic rocks |
| Klm   | granite, undivided                       | intrusive/ granitic rocks |
| Klr   | granite, dark                            | intrusive/ granitic rocks |
| Km    | granite, undivided                       | intrusive/ granitic rocks |
| Kmc   | granite, dark                            | intrusive/ granitic rocks |
| Kmg   | granite, undivided                       | intrusive/ granitic rocks |
| Kmm   | granite, dark                            | intrusive/ granitic rocks |
| Kmo   | granite, dark                            | intrusive/ granitic rocks |
| Knb   | granite, dark                            | intrusive/ granitic rocks |
| Knc   | granite, undivided                       | intrusive/ granitic rocks |
| Koc   | granite, undivided                       | intrusive/ granitic rocks |
| Kpbc  | Priest River Complex, granite, undivided | intrusive/ granitic rocks |
| Kpbi  | Priest River Complex, granite, undivided | intrusive/ granitic rocks |
| Kpcb  | Priest River Complex, granite, dark      | intrusive/ granitic rocks |
| Крсс  | Priest River Complex, granite, dark      | intrusive/ granitic rocks |
| Крср  | Priest River Complex, granite, undivided | intrusive/ granitic rocks |
| Kpdc  | Priest River Complex, granite, undivided | intrusive/ granitic rocks |
| Kpfc  | Priest River Complex, granite, dark      | intrusive/ granitic rocks |
| Kpgb  | Priest River Complex, granite, dark      | intrusive/ granitic rocks |
| Kph   | Priest River Complex, granite, undivided | intrusive/ granitic rocks |
| Kphc  | granite, dark                            | intrusive/ granitic rocks |
| Kpkm  | Priest River Complex, granite, undivided | intrusive/ granitic rocks |
| Kpl   | Priest River Complex, granite, dark      | intrusive/ granitic rocks |
| Kplc  | Priest River Complex, granite, dark      | intrusive/ granitic rocks |
| Kpll  | Priest River Complex, granite, undivided | intrusive/ granitic rocks |
| Kplm  | Priest River Complex, granite, undivided | intrusive/ granitic rocks |
| Kpm   | granite, dark                            | intrusive/ granitic rocks |
| Kpml  | Priest River Complex, granite, dark      | intrusive/ granitic rocks |
| Kpms  | Priest River Complex, granite, undivided | intrusive/ granitic rocks |
| Kpsh  | Priest River Complex, granite, undivided | intrusive/ granitic rocks |
| Kpsl  | Priest River Complex, granite, dark      | intrusive/ granitic rocks |
| Kpsp  | Priest River Complex, granite, dark      | intrusive/ granitic rocks |
| Kptc  | Priest River Complex, granite, dark      | intrusive/ granitic rocks |
| Krc   | granite, dark                            | intrusive/ granitic rocks |
| Krl   | granite, dark                            | intrusive/ granitic rocks |
| Kru   | granite, dark                            | intrusive/ granitic rocks |
| Ksc   | granite, undivided                       | intrusive/ granitic rocks |
| Kse   | granite, dark                            | intrusive/ granitic rocks |
| Ksg   | granite, dark                            | intrusive/ granitic rocks |
| Ksh   | granite, dark                            | intrusive/ granitic rocks |

QUICKEVAL medium unknown medium medium

medium

medium

#### Sandpoint 1:100000 Quadrangle Continued

LABEL LITH GRP granite, undivided Ksha Kslc granite, dark Ksm sedimentary rocks Ksv granite, dark Ktc granite, undivided Ktmc granite, undivided Kv granite, dark Kw granite, dark Kwm granite, undivided Kyl granite, dark MCu carbonate rocks MDs carbonate rocks MI carbonate rocks MZPZf metasedimentary rocks OCqc metasedimentary rocks OCm carbonate rocks OI carbonate rocks Ps metasedimentary rocks Qag glacial deposits QI glacial deposits Qls landslide deposits QTs sedimentary rocks Sc sedimentary rocks metamorphic rocks sgg Sms metasedimentary rocks Tam granite, dark Tcb metamorphic rocks Tcc metamorphic rocks Tcg sedimentary rocks Tcr basalt Tcs granite, light Thd intrusive dikes and sills ΤII granite, light То sedimentary rocks Tot volcanic rocks TRft granite, dark TRs metasedimentary rocks Ts volcanic rocks Tsp granite, light Ttp granite, light Tw granite, dark

CATEGORY intrusive/ granitic rocks intrusive/ granitic rocks mixed rocks intrusive/ granitic rocks mixed rocks mixed rocks mixed rocks metamorphic rocks metamorphic rocks mixed rocks mixed rocks metamorphic rocks mixed rocks mixed rocks mixed rocks mixed rocks mixed rocks metamorphic rocks metamorphic rocks intrusive/ granitic rocks metamorphic rocks metamorphic rocks mixed rocks extrusive/ basaltic rocks intrusive/ granitic rocks intrusive/ granitic rocks intrusive/ granitic rocks mixed rocks extrusive/ basaltic rocks intrusive/ granitic rocks metamorphic rocks extrusive/ basaltic rocks intrusive/ granitic rocks intrusive/ granitic rocks intrusive/ granitic rocks medium

QUICKEVAL medium medium variable medium medium medium medium medium medium medium unknown unknown unknown variable variable unknown unknown variable medium medium variable variable variable variable variable medium variable variable variable good medium unknown medium variable variable medium variable variable medium medium

## Sandpoint 1:100000 Quadrangle Continued

| LABEL | LITH_GRP                                | CATEGORY                  | QUICKEVAL |
|-------|-----------------------------------------|---------------------------|-----------|
| Yb    | Deer Trail Group, quartzite             | metamorphic rocks         | bad       |
| Ybk   | Burke Formation                         | metamorphic rocks         | variable  |
| Ybmh  | Striped Peak Formation, argillite       | metamorphic rocks         | unknown   |
| Ybo   | Striped Peak Formation, quartzite       | metamorphic rocks         | bad       |
| Yc    | Deer Trail Group, metasedimentary rocks | metamorphic rocks         | variable  |
| Ydtu  | Deer Trail Group, metasedimentary rocks | metamorphic rocks         | variable  |
| Ye    | St. Regis Formation                     | metamorphic rocks         | variable  |
| Yhm   | metasedimentary rocks                   | metamorphic rocks         | variable  |
| YI    | Libby Formation                         | metamorphic rocks         | variable  |
| Ylg   | gneiss                                  | metamorphic rocks         | medium    |
| Ym    | Deer Trail Group, argillite             | metamorphic rocks         | bad       |
| Ymi   | intrusive dikes and sills               | intrusive/ granitic rocks | unknown   |
| Yms   | Striped Peak Formation                  | metamorphic rocks         | variable  |
| Ynl   | gneiss                                  | metamorphic rocks         | medium    |
| Yp    | Prichard Formation                      | metamorphic rocks         | variable  |
| Ypm   | Prichard Formation                      | metamorphic rocks         | variable  |
| Yr    | Revett Formation                        | metamorphic rocks         | variable  |
| Yru   | Ravalli Group                           | metamorphic rocks         | variable  |
| Ys    | Deer Trail Group, carbonate rocks       | metamorphic rocks         | unknown   |
| Ysh   | Wallace Formation, upper                | metamorphic rocks         | unknown   |
| Yshs  | Wallace Formation, upper                | metamorphic rocks         | unknown   |
| Ysr   | St. Regis Formation                     | metamorphic rocks         | variable  |
| Yss   | Wallace Formation, upper                | metamorphic rocks         | unknown   |
| Yssw  | Wallace Formation, upper                | metamorphic rocks         | unknown   |
| Yt    | Deer Trail Group, argillite             | metamorphic rocks         | bad       |
| Yw    | Wallace Formation                       | metamorphic rocks         | variable  |
| Ywcu  | Deer Trail Group, metasedimentary rocks | metamorphic rocks         | variable  |
| Ywd   | Deer Trail Group, carbonate rocks       | metamorphic rocks         | unknown   |
| Ywr   | Wallace Formation and Ravalli Group     | metamorphic rocks         | variable  |
| Zhc   | metamorphic rocks                       | metamorphic rocks         | variable  |
| Zhg   | metavolcanic rocks                      | extrusive/ basaltic rocks | variable  |
| ZI    | metavolcanic rocks                      | extrusive/ basaltic rocks | variable  |
| Zm    | metasedimentary rocks                   | metamorphic rocks         | variable  |
| Zsc   | metasedimentary rocks                   | metamorphic rocks         | variable  |
| Zsg   | metavolcanic rocks                      | extrusive/ basaltic rocks | variable  |
| Zsl   | carbonate rocks                         | mixed rocks               | unknown   |
| Zsp   | phyllite                                | metamorphic rocks         | unknown   |
| Zt    | metamorphic rocks                       | metamorphic rocks         | variable  |
| ZYmi  | intrusive dikes and sills               | intrusive/ granitic rocks | unknown   |
|       | water                                   | other                     | other     |

#### St. Maries 1:100000 Quadrangle

| LABEL | LITH_GRP                            |
|-------|-------------------------------------|
| Kog   | gneiss                              |
| KYam  | metavolcanic rocks                  |
| m     | man-made                            |
| Qal   | alluvium                            |
| Qg    | glacial deposits                    |
| Qls   | landslide deposits                  |
| Td    | extrusive dikes and sills           |
| Ted   | basalt                              |
| Tgd   | granite, dark                       |
| Tgn2  | basalt                              |
| Tgr2  | basalt                              |
| TKdd  | intrusive dikes and sills           |
| TKgb  | intrusive dikes and sills           |
| TKla  | extrusive dikes and sills           |
| Ton   | basalt, P                           |
| Tpr   | basalt, P                           |
| Tr    | extrusive dikes and sills           |
| Ts    | tertiary sediments                  |
| water | water                               |
| Yb    | Burke Formation                     |
| YI    | Libby Formation                     |
| Yp    | Prichard Formation                  |
| Ypl   | Prichard Formation, lower           |
| Ypu   | Prichard Formation, upper           |
| Yq    | quartzite                           |
| Yqp   | Prichard Formation, quartzite       |
| Yqrv  | Ravalli Group, quartzite            |
| Yqw   | Wallace Formation, quartzite        |
| Yr    | Revett Formation                    |
| Yrb   | Ravalli Group                       |
| Ys    | schist                              |
| Ysp   | Striped Peak Formation              |
| Ysp1a | Striped Peak Formation, argillite   |
| Ysp1q | Striped Peak Formation, quartzite   |
| Ysp4  | Striped Peak Formation, quartzite   |
| Ysr   | St. Regis Formation                 |
| Ysrv  | Ravalli Group, schist               |
| Ysw   | Wallace Formation, schist           |
| Ywl   | Wallace Formation, middle and lower |
| Ywm   | Wallace Formation, middle and lower |
| Ywml  | Wallace Formation, middle and lower |

CATEGORY metamorphic rocks extrusive/ basaltic rocks other mixed rocks mixed rocks mixed rocks extrusive/ basaltic rocks extrusive/ basaltic rocks intrusive/ granitic rocks extrusive/ basaltic rocks extrusive/ basaltic rocks intrusive/ granitic rocks intrusive/ granitic rocks extrusive/ basaltic rocks extrusive/ basaltic rocks extrusive/ basaltic rocks extrusive/ basaltic rocks mixed rocks other metamorphic rocks metamorphic rocks

metamorphic rocks

metamorphic rocks

metamorphic rocks

metamorphic rocks

medium variable other variable medium variable unknown good medium good good unknown unknown unknown medium medium unknown variable other variable variable variable unknown unknown unknown unknown unknown unknown variable variable medium variable unknown bad bad variable medium medium medium

medium

medium

QUICKEVAL

## St. Maries 1:100000 Quadrangle Continued

| LABEL | LITH_GRP                 |
|-------|--------------------------|
| Ywu   | Wallace Formation, upper |
| Ywu1  | Wallace Formation, upper |
| Ywu2  | Wallace Formation, upper |
| Ywu3  | Wallace Formation, upper |
| YXq   | quartzite                |
| YXs   | schist                   |

### CATEGORY

metamorphic rocks metamorphic rocks metamorphic rocks metamorphic rocks metamorphic rocks

#### QUICKEVAL

unknown unknown unknown unknown medium

## Thompson Falls 1:100000 Quadrangle

| LABEL | LITH_GRP                            | CATEGORY                  | QUICKEVAL |
|-------|-------------------------------------|---------------------------|-----------|
| Kms   | granite, light                      | intrusive/ granitic rocks | medium    |
| Qa    | alluvium                            | mixed rocks               | variable  |
| Qg    | glacial deposits                    | mixed rocks               | medium    |
| Tsm   | tertiary sediments                  | mixed rocks               | variable  |
| Ybk   | Burke Formation                     | metamorphic rocks         | variable  |
| Ypl   | Prichard Formation, lower           | metamorphic rocks         | unknown   |
| Ypu   | Prichard Formation, upper           | metamorphic rocks         | unknown   |
| Yr    | Revett Formation                    | metamorphic rocks         | variable  |
| Ysp   | Striped Peak Formation              | metamorphic rocks         | variable  |
| Ysr   | St. Regis Formation                 | metamorphic rocks         | variable  |
| Ywml  | Wallace Formation, middle and lower | metamorphic rocks         | medium    |
| Ywu   | Wallace Formation, upper            | metamorphic rocks         | unknown   |

## Wallace 1:100000 Quadrangle

| LABEL | LITH_GRP                                       | CATEGORY                  | QUICKEVAL |
|-------|------------------------------------------------|---------------------------|-----------|
| Kgd   | granite, dark                                  | intrusive/ granitic rocks | medium    |
| Kog   | gneiss                                         | metamorphic rocks         | medium    |
| Qa    | alluvium                                       | mixed rocks               | variable  |
| Qg    | glacial deposits                               | mixed rocks               | medium    |
| Qog   | tertiary sediments                             | mixed rocks               | variable  |
| Tcr   | basalt                                         | extrusive/ basaltic rocks | good      |
| Tdp   | extrusive dikes and sills                      | extrusive/ basaltic rocks | unknown   |
| Tgd   | granite, dark                                  | intrusive/ granitic rocks | medium    |
| TKgb  | intrusive dikes and sills                      | intrusive/ granitic rocks | unknown   |
| Ts    | tertiary sediments                             | mixed rocks               | variable  |
| Tsm   | tertiary sediments                             | mixed rocks               | variable  |
| Yam   | metavolcanic rocks                             | extrusive/ basaltic rocks | variable  |
| Yan   | metamorphic rocks                              | metamorphic rocks         | variable  |
| Ybk   | Burke Formation                                | metamorphic rocks         | variable  |
| Yc    | metamorphic rocks                              | metamorphic rocks         | variable  |
| Ypu   | Prichard Formation, upper                      | metamorphic rocks         | unknown   |
| Yq    | quartzite                                      | metamorphic rocks         | unknown   |
| Yqrv  | Ravalli Group, quartzite                       | metamorphic rocks         | unknown   |
| Yqw   | Wallace Formation, middle and lower, quartzite | metamorphic rocks         | unknown   |
| Yr    | Revett Formation                               | metamorphic rocks         | variable  |
| Ys    | schist                                         | metamorphic rocks         | medium    |
| Ysp   | Striped Peak Formation                         | metamorphic rocks         | variable  |
| Ysp1  | Striped Peak Formation, quartzite              | metamorphic rocks         | unknown   |
| Ysp2  | Striped Peak Formation, carbonate              | metamorphic rocks         | unknown   |
| Ysp3  | Striped Peak Formation, argillite              | metamorphic rocks         | unknown   |
| Ysr   | St. Regis Formation                            | metamorphic rocks         | variable  |
| Ysrv  | Ravalli Group, schist                          | metamorphic rocks         | medium    |
| Ysw   | Wallace Formation, schist                      | metamorphic rocks         | medium    |
| Ywl   | Wallace Formation, middle and lower            | metamorphic rocks         | medium    |
| Ywm   | Wallace Formation, middle and lower            | metamorphic rocks         | medium    |
| Ywml  | Wallace Formation, middle and lower            | metamorphic rocks         | medium    |
| Ywu1  | Wallace Formation, upper                       | metamorphic rocks         | unknown   |
| Ywu2  | Wallace Formation, upper                       | metamorphic rocks         | unknown   |
| Ywu3  | Wallace Formation, upper                       | metamorphic rocks         | unknown   |
|       |                                                |                           |           |

## Appendix D. Map Descriptions for All Rock Units

| MAP                  | LABEL | LITH_GRP                            | DESCRIPTION                                             |
|----------------------|-------|-------------------------------------|---------------------------------------------------------|
| Coeur d'Alene 1:100K | CI    | carbonate rocks                     | Lakeview Limestone                                      |
| Coeur d'Alene 1:100K | Crg   | quartzite                           | Rennie Shale and Gold Creek Quartzite                   |
| Coeur d'Alene 1:100K | pCbgh | metamorphic rocks                   | Hauser Lake Gneiss                                      |
| Coeur d'Alene 1:100K | pCmu  | metamorphic rocks                   | metamorphic rocks, undivided                            |
| Coeur d'Alene 1:100K | pCmuq | quartzite                           | quartzite                                               |
| Coeur d'Alene 1:100K | Qal   | alluvium                            | alluvium                                                |
| Coeur d'Alene 1:100K | Qgo   | glacial deposits                    | older glacial deposits                                  |
| Coeur d'Alene 1:100K | Qgy   | glacial deposits                    | younger glacial deposits                                |
| Coeur d'Alene 1:100K | Qls   | landslide deposits                  | landslide deposits                                      |
| Coeur d'Alene 1:100K | Qp    | loess                               | Palouse Formation                                       |
| Coeur d'Alene 1:100K | QTg   | tertiary sediments                  | older gravel deposits                                   |
| Coeur d'Alene 1:100K | Tcr   | basalt                              | Columbia River Group and Latah Formation                |
| Coeur d'Alene 1:100K | TKg   | granite, undivided                  | granitic rocks                                          |
| Coeur d'Alene 1:100K | Yb    | Burke Formation                     | Burke Formation, Belt Supergroup                        |
| Coeur d'Alene 1:100K | YI    | Libby Formation                     | Libby Formation, Belt Supergroup                        |
| Coeur d'Alene 1:100K | Yp    | Prichard Formation                  | Prichard Formation, undivided, Belt Supergroup          |
| Coeur d'Alene 1:100K | Ypl   | Prichard Formation, lower           | lower part of Prichard Formation, Belt Supergroup       |
| Coeur d'Alene 1:100K | Ypu   | Prichard Formation, upper           | upper part of Prichard Formation, Belt Supergroup       |
| Coeur d'Alene 1:100K | Yqd   | granite, dark                       | quartz diorite                                          |
| Coeur d'Alene 1:100K | Yr    | Revett Formation                    | Revett Formation, Belt Supergroup                       |
| Coeur d'Alene 1:100K | Yrb   | Ravalli Group                       | Revett and Burke Formations, undivided; Belt Supergroup |
| Coeur d'Alene 1:100K | Ysp   | Striped Peak Formation              | Striped Peak Formation, Belt Supergroup                 |
| Coeur d'Alene 1:100K | Ysr   | St. Regis Formation                 | St. Regis Formation, Belt Supergroup                    |
| Coeur d'Alene 1:100K | Ywl   | Wallace Formation, middle and lower | lower part of Wallace Formation, Belt Supergroup        |
| Coeur d'Alene 1:100K | Ywu   | Wallace Formation, upper            | upper part of Wallace Formation, Belt Supergroup        |
| Coeur d'Alene 1:100K |       | water                               | water body                                              |
| Hamilton 1:100K      | Kdi   | granite, dark                       | Hornblende diorite                                      |
| Hamilton 1:100K      | Kg    | granite, dark                       | Muscovite-biotite granite                               |
| Hamilton 1:100K      | Kgd   | granite, dark                       | Biotite granodiorite                                    |
| Hamilton 1:100K      | Kmgd  | granite, dark                       | Megacrystic granodiorite                                |
| Hamilton 1:100K      | Kmig  | metamorphic rocks                   | Migmatite                                               |

| Hamilton 1:100K     | Kt    |
|---------------------|-------|
| Hamilton 1:100K     | Qal   |
| Hamilton 1:100K     | Qg    |
| Hamilton 1:100K     | Тg    |
| Hamilton 1:100K     | Tgd   |
| Hamilton 1:100K     | Ycs   |
| Hamilton 1:100K     | Yq    |
| Hamilton 1:100K     | Yqi   |
| Hamilton 1:100K     | Yw    |
| Headquarters 1:100K | Kbgd  |
| Headquarters 1:100K | Kfg   |
| Headquarters 1:100K | Kfgd  |
| Headquarters 1:100K | Kg    |
| Headquarters 1:100K | Kgb   |
| Headquarters 1:100K | Kgd   |
| Headquarters 1:100K | Kmig  |
| Headquarters 1:100K | Кр    |
| Headquarters 1:100K | Kpgd  |
| Headquarters 1:100K | Kqd   |
| Headquarters 1:100K | Ks    |
| Headquarters 1:100K | Kt    |
| Headquarters 1:100K | pCan  |
| Headquarters 1:100K | pCbq  |
| Headquarters 1:100K | pCbsg |
| Headquarters 1:100K | pCpl  |
| Headquarters 1:100K | pCpq  |
| Headquarters 1:100K | pCqp  |
| Headquarters 1:100K | pCqrv |
| Headquarters 1:100K | pCrq  |
| Headquarters 1:100K | pCrs  |
| Headquarters 1:100K | pCsp  |
| Headquarters 1:100K | pCsrs |
| Headquarters 1:100K | pCwss |
| Headquarters 1:100K | Qal   |

granite, dark alluvium glacial deposits granite, undivided granite, dark Wallace Formation, gneiss Wallace Formation, quartzite Wallace Formation, quartzite Wallace Formation granite, dark granite, undivided granite, dark granite, dark intrusive dikes and sills granite, dark metamorphic rocks intrusive dikes and sills granite, dark granite, dark metavolcanic rocks granite, dark metamorphic rocks Burke Formation, quartzite Burke Formation, guartzite **Prichard Formation** Prichard Formation, quartzite Prichard Formation, guartzite Ravalli Group, quartzite Revett Formation, quartzite Revett Formation, schist **Prichard Formation** St. Regis Formation, schist schist alluvium

Tonalite Alluvium Glacial deposits Granite Hornblende-biotite granodiorite Calc-silicate gneiss of Wallace Formation Quartzite of Wallace(?) Formation Impure quartzite of Wallace(?) Formation Wallace Formation, undivided **Biotite-rich Granodiorite** Foliated granite Foliated Granodiorite Muscovite-Biotite Granite Gabbro **Biotite Granodiorite** Migmatite Pegmatite and Aplite Porphyritic Biotite Granodiorite Quartz diorite Serpentine Tonalite Anorthosite Quartzite of the Burke(?) Formation Biotite schist and gneiss of Burke(?) Formation Calc-silicate of the Prichard(?) Formation Micaceous quartzite of Prichard(?) Formation Quartzite of the Prichard(?) Formation Quarztite of Ravalli(?) Group Quartzite of Revett(?) Formation Schist of Revett(?) Formation Schist of the Prichard(?) Formation Mica schist. St. Regis(?) Formation Schist of Wallace(?) and St. Regis(?) Formations Alluvium

| Headquarters 1:100K | Qg    |
|---------------------|-------|
| Headquarters 1:100K | Qls   |
| Headquarters 1:100K | Та    |
| Headquarters 1:100K | Tcb   |
| Headquarters 1:100K | Tfc   |
| Headquarters 1:100K | Тg    |
| Headquarters 1:100K | Tgb   |
| Headquarters 1:100K | Tgd   |
| Headquarters 1:100K | Tgn1  |
| Headquarters 1:100K | Tgr1  |
| Headquarters 1:100K | Tla   |
| Headquarters 1:100K | Tqs   |
| Headquarters 1:100K | Trp   |
| Headquarters 1:100K | Ts    |
| Headquarters 1:100K | Tw    |
| Headquarters 1:100K | Twe   |
| Headquarters 1:100K | um    |
| Headquarters 1:100K | water |
| Headquarters 1:100K | Yam   |
| Headquarters 1:100K | Ycs   |
| Headquarters 1:100K | Ymg   |
| Headquarters 1:100K | Yqi   |
| Headquarters 1:100K | Ysg   |
| Headquarters 1:100K | Yw    |
| Headquarters 1:100K | Ywg   |
| Headquarters 1:100K | Ywl   |
| Headquarters 1:100K | Ywm   |
| Headquarters 1:100K | Ywq   |
| Headquarters 1:100K | Yws   |
| Kooskia 1:100K      | Kbgt  |
| Kooskia 1:100K      | Kdi   |
| Kooskia 1:100K      | Kfgd  |
| Kooskia 1:100K      | Kg    |
| Kooskia 1:100K      | Kgd   |

| glacial deposits                    |
|-------------------------------------|
| landslide deposits                  |
| intrusive dikes and sills           |
| basalt                              |
| basalt                              |
| granite, undivided                  |
| intrusive dikes and sills           |
| granite, dark                       |
| basalt                              |
| basalt                              |
| basalt                              |
| granite, light                      |
| extrusive dikes and sills           |
| tertiary sediments                  |
| basalt                              |
| basalt                              |
| extrusive dikes and sills           |
| water                               |
| metavolcanic rocks                  |
| Wallace Formation, gneiss           |
| Wallace Formation, upper            |
| Wallace Formation, quartzite        |
| Wallace Formation, schist           |
| Wallace Formation                   |
| Wallace Formation, gneiss           |
| Wallace Formation, middle and lower |
| Wallace Formation, middle and lower |
| Wallace Formation, quartzite        |
| Wallace Formation, schist           |
| granite, undivided                  |
| granite, dark                       |
| granite, dark                       |
| granite, dark                       |
| granite, dark                       |

Glacial deposits Landslide deposits Andesite dikes Columbia River Basalt Group Undivided **Basalt of Feary Creek** Granite Ultramafic pyroxene gabbro and lamprophyric dikes Hornblende-biotite granodiorite Grande Ronde Lower normal flow Grande Ronde Lower reversed flow Basalt of Lapwai Quartz Syenite Rhyolite Porphyry plugs and dikes Lacustrine and fluvial sediments, sand and gravel Wilbur Creek Member, Saddle Mtn Basalt Basalt of Weippe Ultramafic rock

#### Amphibolite

Calc-silicate gneiss of Wallace Formation Missoula Group, undivided Impure quartzite of Wallace (?) Formation Schist and gneiss of Wallace (?) Formation Wallace Formation, undivided Wallace Gneiss Wallace Gneiss Wallace Formation, Lower Member Wallace Formation, middle Member Wallace Quartzite Wallace Schist

Hornblende diorite Foliated Granodiorite Muscovite-Biotite Granite Biotite Granodiorite

| Kooskia 1:100K | Kht   | granite, dark               | Hornblende tonalite with metamorphic lenses                         |
|----------------|-------|-----------------------------|---------------------------------------------------------------------|
| Kooskia 1:100K | KJi   | granite, dark               | Intrusive rocks of the accreted terraine, primarily guartz dirorite |
| Kooskia 1:100K | Kmad  | granite, dark               | Megacrystic Granodiorite                                            |
| Kooskia 1:100K | Kmia  | metamorphic rocks           | Migmatite                                                           |
| Kooskia 1:100K | Kpgd  | granite, dark               | Porphyritic Biotite Granodiorite                                    |
| Kooskia 1:100K | Kqd   | granite, dark               | Quartz diorite                                                      |
| Kooskia 1:100K | Kt    | granite, dark               | Tonalite                                                            |
| Kooskia 1:100K | Ktc   | granite, dark               | Tonalite of Coolwater Ridge                                         |
| Kooskia 1:100K | Mzhg  | metamorphic rocks           | Hornblende Gneiss, (Riggins Group)                                  |
| Kooskia 1:100K | Mzm   | carbonate rocks             | Marble                                                              |
| Kooskia 1:100K | Mzrg  | schist                      | Schist, Riggins Group                                               |
| Kooskia 1:100K | pCbg  | gneiss                      | Biotite gneiss and schist of Elk City metamorphic sequence          |
| Kooskia 1:100K | pCbs  | schist                      | Biotite schist and gneiss of Elk City metamorphic sequence          |
| Kooskia 1:100K | pCcsm | metamorphic rocks           | Calc-silicate rocks of Meadow Creek metamorphic sequence            |
| Kooskia 1:100K | pCgcs | gneiss                      | Calc-silicate gneiss                                                |
| Kooskia 1:100K | pCps  | Prichard Formation, schist  | Garnet-mica schist, Prichard Formation?                             |
| Kooskia 1:100K | pCqcs | quartzite                   | Quartzite and calc-silicate rocks of Syringa metamorphic sequence   |
| Kooskia 1:100K | pCqi  | metamorphic rocks           |                                                                     |
| Kooskia 1:100K | pCqs  | quartzite                   | Quartzite and schist of Syringa metamorphic sequence                |
| Kooskia 1:100K | pCrq  | Revett Formation, quartzite | Quartzite, Revett Formation?                                        |
| Kooskia 1:100K | pCsq  | schist                      | Schist and quartzite of Syringa metamorphic sequence                |
| Kooskia 1:100K | pCsrs | St. Regis Formation, schist | Mica schist, St. Regis Formation?                                   |
| Kooskia 1:100K | Qal   | alluvium                    | Alluvium                                                            |
| Kooskia 1:100K | Qg    | glacial deposits            | Glacial Deposits                                                    |
| Kooskia 1:100K | Qls   | landslide deposits          | Landslide deposits                                                  |
| Kooskia 1:100K | T_Psd | volcanic rocks              | Seven Devils Volcanics                                              |
| Kooskia 1:100K | Tcb   | basalt                      | Columbia River Basalt Group Undivided                               |
| Kooskia 1:100K | Td    | extrusive dikes and sills   | Dacite and rhyodacite dikes                                         |
| Kooskia 1:100K | Tdi   | granite, dark               | Diorite                                                             |
| Kooskia 1:100K | Тg    | granite, undivided          | Granite                                                             |
| Kooskia 1:100K | Tgd   | granite, dark               | Hornblende-biotite granodiorite                                     |
| Kooskia 1:100K | Tgn1  | basalt                      | Grande Ronde Lower normal flow                                      |
| Kooskia 1:100K | Tgr1  | basalt                      | Grande Ronde Lower reversed flow                                    |
| Kooskia 1:100K | Tgr2  | basalt                      | Grande Ronde Upper reversed flow                                    |

| Kooskia 1:100K       | Tgv   | basa   |
|----------------------|-------|--------|
| Kooskia 1:100K       | TKg   | gran   |
| Kooskia 1:100K       | Tpr   | basa   |
| Kooskia 1:100K       | Tr    | extru  |
| Kooskia 1:100K       | Trp   | extru  |
| Kooskia 1:100K       | Ts    | tertia |
| Kooskia 1:100K       | Tsa   | basa   |
| Kooskia 1:100K       | Twe   | basa   |
| Kooskia 1:100K       | um    | meta   |
| Kooskia 1:100K       | Yam   | meta   |
| Kooskia 1:100K       | Ycs   | Wall   |
| Kooskia 1:100K       | Yq    | quar   |
| Kooskia 1:100K       | Yqi   | Wall   |
| Kooskia 1:100K       | Ysg   | Wall   |
| Kooskia 1:100K       | Ywg   | Wall   |
| Kooskia 1:100K       | Yws   | Wall   |
| Missoula West 1:100K | Kbgd  | gran   |
| Missoula West 1:100K | Kdi   | gran   |
| Missoula West 1:100K | Kg    | gran   |
| Missoula West 1:100K | Kgd   | gran   |
| Missoula West 1:100K | Kmgd  | gran   |
| Missoula West 1:100K | Kmig  | meta   |
| Missoula West 1:100K | Kt    | gran   |
| Missoula West 1:100K | pCqg  | Rava   |
| Missoula West 1:100K | pCqrv | Rava   |
| Missoula West 1:100K | pCsp  | Pricl  |
| Missoula West 1:100K | Pzm   | carb   |
| Missoula West 1:100K | Qal   | alluv  |
| Missoula West 1:100K | Qg    | glaci  |
| Missoula West 1:100K | Qls   | land   |
| Missoula West 1:100K | Tcv   | volca  |
| Missoula West 1:100K | Тg    | gran   |
| Missoula West 1:100K | Tqs   | gran   |
| Missoula West 1:100K | Trb   | volca  |

alt ite, dark alt. P usive dikes and sills usive dikes and sills ary sediments alt alt avolcanic rocks avolcanic rocks lace Formation, gneiss rtzite ace Formation, quartzite lace Formation, schist lace Formation, gneiss lace Formation, schist ite, dark ite, dark ite, dark ite, dark nite, dark amorphic rocks ite, dark alli Group, quartzite alli Group, quartzite hard Formation, schist onate rocks /ium ial deposits Islide deposits anic rocks nite, undivided nite, light anic rocks

Basalt of Grangeville Porphyritic Biotite Granite Priest Rapids Member Rhyolite dikes Rhyolite Porphyry plugs and dikes Lacustrine and fluvial sediments Asotin Member **Basalt of Weippe** Ultramafic Rock Amphibolite Calc-silicate gneiss, Wallace Formation Quartzite Impure quartzite, Wallace Formation? Schist and gneiss, Wallace Formation? **Gneiss**, Wallace Formation Schist, Wallace Formation **Biotite-rich Granodiorite** Hornblende Diorite Muscovite-Biotite Granite **Biotite Granodiorite** Megacrystic Granodiorite Migmatite Tonalite Quartzite and Cals-silicate gneiss of the Ravalli(?) Group and Wallace Quartite of Ravalli Schist of the Prichard Marble Alluvium Glacial deposits Landslide deposits Volcanic Rocks, Challis(?) Volcanic Group Granite Quartz Syenite **Rhyolite Breccia** 

| Missoula West 1:100K | Trp   | extrusive dikes and sills           | Rhyolite Porphyry plugs and dikes                                          |
|----------------------|-------|-------------------------------------|----------------------------------------------------------------------------|
| Missoula West 1:100K | Ts    | tertiary sediments                  | Lacustrine and fluvial sediments                                           |
| Missoula West 1:100K | um    | intrusive dikes and sills           | Ultramafic Rock                                                            |
| Missoula West 1:100K | Yam   | metavolcanic rocks                  | Amphibolite                                                                |
| Missoula West 1:100K | Ymg   | Wallace Formation, upper, argillite | Missoula Group, Undivided: Siltite and Argillite, some Quartzitic portions |
| Missoula West 1:100K | Yms2  | Striped Peak formation, quartzite   | Mount Shields Formation, Quartzite                                         |
| Missoula West 1:100K | Yqi   | Wallace Formation, quartzite        | Impure quartzite of Wallace(?) Formation                                   |
| Missoula West 1:100K | Yw    | Wallace Formation                   | Wallace Formation, undivided                                               |
| Missoula West 1:100K | Ywam  | metavolcanic rocks                  | Amphibolite, Wallace Formaion                                              |
| Missoula West 1:100K | Ywl   | Wallace Formation, middle and lower | Wallace Formation, Lower Member                                            |
| Missoula West 1:100K | Ywm   | Wallace Formation, middle and lower | Wallace Formation, middle Member                                           |
| Sandpoint 1:250K     | Cgc   | quartzite                           | Gold Creek Quartzite                                                       |
| Sandpoint 1:250K     | Clr   | carbonate rocks                     | Rennie Shale and Lakeview Limestone, undivided                             |
| Sandpoint 1:250K     | Cmc   | carbonate rocks                     | Carbonate rocks of the Maitlen Phyllite                                    |
| Sandpoint 1:250K     | Cmp   | phyllite                            | Phyllite of the Maitlen Phyllite                                           |
| Sandpoint 1:250K     | Csu   | sedimentary rocks                   | Sedimentary rocks, undivided                                               |
| Sandpoint 1:250K     | CZq   | quartzite                           | Quartzite                                                                  |
| Sandpoint 1:250K     | Ddl   | carbonate rocks                     | dolomite and limestone                                                     |
| Sandpoint 1:250K     | Ds    | metasedimentary rocks               | Metasedimentary rocks                                                      |
| Sandpoint 1:250K     | Dv    | metavolcanic rocks                  | Metavolcanic rocks                                                         |
| Sandpoint 1:250K     | Jcm   | granite, dark                       | Tonalite and trondhjemite of Continental Mountain                          |
| Sandpoint 1:250K     | Jlm   | granite, dark                       | Quartz monzodiorite of Lane Mountain                                       |
| Sandpoint 1:250K     | Jrg   | metavolcanic rocks                  | Greenstone, Rossland Group                                                 |
| Sandpoint 1:250K     | Jrs   | metavolcanic rocks                  | Metasedimentary and metavolcanic rocks, Rossland Group                     |
| Sandpoint 1:250K     | JTRpl | granite, light                      | Monzonite of Long Canyon                                                   |
| Sandpoint 1:250K     | JTRw  | granite, light                      | Syenite of Wall Mountain                                                   |
| Sandpoint 1:250K     | Kag   | granite, undivided                  | Granitic rocks of Algoma Lake                                              |
| Sandpoint 1:250K     | Kb    | granite, light                      | Blickensderfer Quartz Monzonite                                            |
| Sandpoint 1:250K     | Kbc   | granite, undivided                  | Monzogranite porphyry of Bodie Canyon                                      |
| Sandpoint 1:250K     | Kbf   | granite, dark                       | Granodiorite of Bonners Ferry                                              |
| Sandpoint 1:250K     | Kbgm  | granite, light                      | Muscovite monzogranite of Blue Grouse Mountain                             |
| Sandpoint 1:250K     | Kbm   | granite, light                      | Monzogranite of Big Meadows                                                |
| Sandpoint 1:250K     | Kbr   | granite, light                      | Monzogranite of Blanchard Road                                             |
| Sandpoint 1:250K     | Kbu   | granite, dark                       | Granodiorite of Bunchgrass Meadows                                         |

| Sandpoint 1:250K | Kc   | granite, dark                            | Biotite monzogranite of Camden                                   |
|------------------|------|------------------------------------------|------------------------------------------------------------------|
| Sandpoint 1:250K | Kcl  | granite, dark                            | Tonalite of Clagstone                                            |
| Sandpoint 1:250K | Kco  | granite, dark                            | Granodiorite of Copeland                                         |
| Sandpoint 1:250K | Kcu  | granite, undivided                       | Granitic rocks of Cabinet Mountains, undivided                   |
| Sandpoint 1:250K | Kdc  | granite, dark                            | Granodiorite of Dubius Creek                                     |
| Sandpoint 1:250K | Kfl  | granite, dark                            | Fan Lake Granodiorite                                            |
| Sandpoint 1:250K | Kg   | granite, light                           | Monzogranite of Granite Pass                                     |
| Sandpoint 1:250K | Kgm  | granite, undivided                       | Monzogranite of Gleason Mountain                                 |
| Sandpoint 1:250K | Kgp  | granite, dark                            | Galena Point Granodiorite                                        |
| Sandpoint 1:250K | Kgpl | granite, dark                            | Granodiorite of Priest Lake                                      |
| Sandpoint 1:250K | Kgs  | granite, undivided                       | Granitic rocks of Spirit pluton                                  |
| Sandpoint 1:250K | Kh   | granite, undivided                       | Monzogranite of Hungry Mountain                                  |
| Sandpoint 1:250K | Khm  | granite, dark                            | Granodiorite of Hall Mountain                                    |
| Sandpoint 1:250K | Kjl  | granite, dark                            | Granitic rocks of Jewel Lake                                     |
| Sandpoint 1:250K | Kk   | granite, dark                            | Granodiorite of Kelso Lake                                       |
| Sandpoint 1:250K | Kkp  | granite, dark                            | Granodiorite of Kelly Pass                                       |
| Sandpoint 1:250K | Klc  | granite, dark                            | Granodiorite of Lightning Creek                                  |
| Sandpoint 1:250K | Klcc | granite, dark                            | Granodiorite of Le Clerc Creek                                   |
| Sandpoint 1:250K | Klgs | granite, light                           | Leucocratic granitic rocks of Scotia                             |
| Sandpoint 1:250K | Kli  | extrusive dikes and sills                | Leucocratic intrusive rocks                                      |
| Sandpoint 1:250K | Klm  | granite, undivided                       | Monzogranite of Long Mountain                                    |
| Sandpoint 1:250K | Klr  | granite, dark                            | Monzogranite of Little Roundtop                                  |
| Sandpoint 1:250K | Km   | granite, undivided                       | Monzogranite of Middle Creek                                     |
| Sandpoint 1:250K | Kmc  | granite, dark                            | Granodiorite of Mill Creek                                       |
| Sandpoint 1:250K | Kmg  | granite, undivided                       | Muscovite-biotite monzogranite                                   |
| Sandpoint 1:250K | Kmm  | granite, dark                            | Monzogranite of Midnight Mine                                    |
| Sandpoint 1:250K | Kmo  | granite, dark                            | Granodiorite of Molybdenite Mountain                             |
| Sandpoint 1:250K | Knb  | granite, dark                            | Two-mica monzogranite of North Basin                             |
| Sandpoint 1:250K | Knc  | granite, undivided                       | Monzogranite of Narcisse Creek                                   |
| Sandpoint 1:250K | Koc  | granite, undivided                       | Monzogranite of Otter Creek                                      |
| Sandpoint 1:250K | Kpbc | Priest River Complex, granite, undivided | mixed two-mica rocks of Ball Creek, Priest River Complex         |
| Sandpoint 1:250K | Kpbi | Priest River Complex, granite, undivided | Granitic rocks of Big Creek, Priest River Complex                |
| Sandpoint 1:250K | Kpcb | Priest River Complex, granite, dark      | Biotite-rich granodiorite of Cavanaugh Bay, Priest River Complex |
| Sandpoint 1:250K | Kpcc | Priest River Complex, granite, dark      | Granodiorite of Caribou Creek, Priest River Complex              |

| Sandpoint 1:250K | Крср | Priest River Complex, granite, undivided | mixed granitic rocks of Camels Prairie, Priest River Complex                      |
|------------------|------|------------------------------------------|-----------------------------------------------------------------------------------|
| Sandpoint 1:250K | Kpdc | Priest River Complex, granite, undivided | Mixed granitic and metamorphic rocks of Deep Creek, Priest River Complex          |
| Sandpoint 1:250K | Kpfc | Priest River Complex, granite, dark      | Granodiorite of Falls Creek, Priest River Complex                                 |
| Sandpoint 1:250K | Kpgb | Priest River Complex, granite, dark      | Garnet-bearing granodiorite, Priest River Complex                                 |
| Sandpoint 1:250K | Kph  | Priest River Complex, granite, undivided | Two-mica granitic rocks of Horton Creek, Priest River Complex                     |
| Sandpoint 1:250K | Kphc | granite, dark                            | Monzogranite of Hunt Creek                                                        |
| Sandpoint 1:250K | Kpkm | Priest River Complex, granite, undivided | Monzogranite of Klootch Mountain, Priest River Complex                            |
| Sandpoint 1:250K | Kpl  | Priest River Complex, granite, dark      | Phillips Lake Granodiorite, Priest River Complex                                  |
| Sandpoint 1:250K | Kplc | Priest River Complex, granite, dark      | Biotite-rich granodiorite of Lucky Creek, Priest River Complex                    |
| Sandpoint 1:250K | Kpll | Priest River Complex, granite, light     | Mixed leucocratic granitic rocks of Lost Creek, Priest River Complex              |
| Sandpoint 1:250K | Kplm | Priest River Complex, granite, undivided | mixed granitic and metamorphic rocks of Lookout Mountain, Priest River Complex    |
| Sandpoint 1:250K | Kpm  | granite, dark                            | Granodiorite porphyry of Packsaddle Mountain                                      |
| Sandpoint 1:250K | Kpml | Priest River Complex, granite, dark      | Biotite-rich granodiorite of Marsh Lake, Priest River Complex                     |
| Sandpoint 1:250K | Kpms | Priest River Complex, granite, undivided | mixed granitic and metamorphic rocks of Soldier Creek, Priest River Complex       |
| Sandpoint 1:250K | Kpsh | Priest River Complex, granite, undivided | Monzogranite of Shorty Peak, Priest River Complex                                 |
| Sandpoint 1:250K | Kpsl | Priest River Complex, granite, dark      | Granodiorite of Search Lake, Priest River Complex                                 |
| Sandpoint 1:250K | Kpsp | Priest River Complex, granite, dark      | Tonalite of Snow Peak, Priest River Complex                                       |
| Sandpoint 1:250K | Kptc | Priest River Complex, granite, dark      | Granodiorite of Trapper Creek, Priest River Complex                               |
| Sandpoint 1:250K | Krc  | granite, dark                            | Granodiorite of Reeder Creek                                                      |
| Sandpoint 1:250K | Krl  | granite, dark                            | Granodiorite of Rapid Lightning Creek                                             |
| Sandpoint 1:250K | Kru  | granite, dark                            | Granodiorite of Ruby Creek                                                        |
| Sandpoint 1:250K | Ksc  | granite, undivided                       | Monzogranite of Sand Creek                                                        |
| Sandpoint 1:250K | Kse  | granite, dark                            | Granodiorite of Sema Meadows                                                      |
| Sandpoint 1:250K | Ksg  | granite, dark                            | Granodiorite of Sawyer                                                            |
| Sandpoint 1:250K | Ksh  | granite, dark                            | Hornblende-biotite monzogranite and granodiorite of the Starvation Flat Quartz Mo |
| Sandpoint 1:250K | Ksha | granite, undivided                       | Arden pluton of the Starvation Flat Quartz Monzonite                              |
| Sandpoint 1:250K | Kslc | granite, dark                            | Granodiorite of Salee Creek                                                       |
| Sandpoint 1:250K | Ksm  | sedimentary rocks                        | Sophie Mountain Formation                                                         |
| Sandpoint 1:250K | Ksv  | granite, dark                            | Granodiorite of Spring Valley                                                     |
| Sandpoint 1:250K | Ktc  | granite, undivided                       | Monzogranite of Tango Creek                                                       |
| Sandpoint 1:250K | Ktmc | granite, undivided                       | Two-mica monzogranite of Twentymile Creek                                         |
| Sandpoint 1:250K | Kv   | granite, dark                            | Granodiorite of Road V-78                                                         |
| Sandpoint 1:250K | Kw   | granite, dark                            | Granodiorite of Whiskey Creek                                                     |
| Sandpoint 1:250K | Kwm  | granite, undivided                       | White Mud Lake porphyritic body                                                   |
|                  |      |                                          |                                                                                   |

| Sandpoint 1:250K | Kyl   | granite, dark               | Granodiorite of Yocum Lake                                                |
|------------------|-------|-----------------------------|---------------------------------------------------------------------------|
| Sandpoint 1:250K | MCu   | carbonate rocks             | Sedimentary rocks, undivided                                              |
| Sandpoint 1:250K | MDs   | carbonate rocks             | Dolomite and slate                                                        |
| Sandpoint 1:250K | MI    | carbonate rocks             | limestone                                                                 |
| Sandpoint 1:250K | MZPZf | metasedimentary rocks       | fault-zone rocks on Eagle Mountain                                        |
| Sandpoint 1:250K | OCgc  | metasedimentary rocks       | phyllite and quartzite of Gardiner Creek                                  |
| Sandpoint 1:250K | OCm   | carbonate rocks             | Metaline Formation                                                        |
| Sandpoint 1:250K | OI    | carbonate rocks             | Ledbetter Formation                                                       |
| Sandpoint 1:250K | Ps    | metasedimentary rocks       | Metasedimentary rocks                                                     |
| Sandpoint 1:250K | Qag   | glacial deposits            | glacial and alluvial deposits                                             |
| Sandpoint 1:250K | QI    | glacial deposits            | glacial-lacustrine deposits                                               |
| Sandpoint 1:250K | Qls   | landslide deposits          | landslide deposits                                                        |
| Sandpoint 1:250K | QTs   | sedimentary rocks           | consolidated alluvial and (or) glacial deposits                           |
| Sandpoint 1:250K | Sc    | sedimentary rocks           | Quartz-granule conglomerate                                               |
| Sandpoint 1:250K | sgg   | metamorphic rocks           | schist, gneiss, and leucocratic granitic rocks                            |
| Sandpoint 1:250K | Sms   | metasedimentary rocks       | Metasedimentary rocks                                                     |
| Sandpoint 1:250K | Tam   | granite, dark               | Quartz monzodiorite of Ahern Meadows                                      |
| Sandpoint 1:250K | Tcb   | metamorphic rocks           | chlorite breccia and cataclastic rocks associated with Newport Fault Zone |
| Sandpoint 1:250K | Tcc   | metamorphic rocks           | Tectonic breccia of Cusick Creek                                          |
| Sandpoint 1:250K | Tcg   | sedimentary rocks           | conglomerate                                                              |
| Sandpoint 1:250K | Tcr   | basalt                      | Columbia River Basalt Group                                               |
| Sandpoint 1:250K | Tcs   | granite, light              | Coryell plutonic rocks and Sheppard Granite, undivided                    |
| Sandpoint 1:250K | Thd   | intrusive dikes and sills   | hypabyssal dikes                                                          |
| Sandpoint 1:250K | TII   | granite, light              | Quartz monzonite of Loon Lake                                             |
| Sandpoint 1:250K | То    | sedimentary rocks           | O'Brien Creek Formation                                                   |
| Sandpoint 1:250K | Tot   | volcanic rocks              | Olivine trachybasalt flows                                                |
| Sandpoint 1:250K | TRft  | granite, dark               | Flowery Trail Granodiorite                                                |
| Sandpoint 1:250K | TRs   | metasedimentary rocks       | Metasedimentary rocks                                                     |
| Sandpoint 1:250K | Ts    | volcanic rocks              | Sanpoil Volcanics                                                         |
| Sandpoint 1:250K | Tsp   | granite, light              | Silver Point Quartz Monzonite                                             |
| Sandpoint 1:250K | Ttp   | granite, light              | Quartz monzonite of Trapper Peak                                          |
| Sandpoint 1:250K | Tw    | granite, dark               | Granodiorite of Wrenco                                                    |
| Sandpoint 1:250K | Yb    | Deer Trail Group, quartzite | Buffalo Hump Formation, Deer Trail Group                                  |
| Sandpoint 1:250K | Ybk   | Burke Formation             | Burke Formation, Ravalli Group                                            |

| Sandpoint 1:250K Ybo Striped Peak Formation, quartzite Bonner Formation, Belt Supergroup                                 |           |
|--------------------------------------------------------------------------------------------------------------------------|-----------|
|                                                                                                                          |           |
| Sandpoint 1:250K Yc rocks Chamokane Creek Formation, Deer Trail Group                                                    |           |
| Sandpoint 1:250K Ydtu rocks undivided part, Deer Trail Group                                                             |           |
| Sandpoint 1:250K Ye St. Regis Formation Empire Formation, Belt Supergroup                                                |           |
| Sandpoint 1:250K Yhm metasedimentary rocks Argillite of Half Moon Lake, Belt Supergroup                                  |           |
| Sandpoint 1:250K YI Libby Formation Libby Formation, Belt Supergroup                                                     |           |
| Sandpoint 1:250K YIg gneiss Gneiss of Laclede                                                                            |           |
| Sandpoint 1:250K Ym Deer Trail Group, argillite McHale Slate, Deer Trail Group                                           |           |
| Sandpoint 1:250K Ymi intrusive dikes and sills mafic intrusive rocks, Ravalli Group                                      |           |
| Sandpoint 1:250K Yms Striped Peak Formation Mount Shields Formation, Belt Supergroup                                     |           |
| Sandpoint 1:250K Ynl gneiss Newman Lake Gneiss                                                                           |           |
| Sandpoint 1:250K Yp Prichard Formation Pritchard Formation, Ravalli Group                                                |           |
| Sandpoint 1:250K Ypm Prichard Formation Pritchard Formation, metamorphosed, Ravalli Group                                |           |
| Sandpoint 1:250K Yr Revett Formation Revett Formation, Ravalli Group                                                     |           |
| Sandpoint 1:250K Yru Ravalli Group Undivided part, Ravalli Group                                                         |           |
| Sandpoint 1:250K Ys Deer Trail Group, carbonate rocks Stensgar Dolomite, Deer Trail Group                                |           |
| Sandpoint 1:250K Ysh Wallace Formation, upper Shepard Formation, Belt Supergroup                                         |           |
| Sandpoint 1:250K Yshs Wallace Formation, upper Shepard Formation and Snowslip Formation, undivided, Belt Supergroup      |           |
| Sandpoint 1:250K Ysr St. Regis Formation St. Regis Formation, Ravalli Group                                              |           |
| Sandpoint 1:250K Yss Wallace Formation, upper Snowslip Formation, Belt Supergroup                                        |           |
| Sandpoint 1:250K Yssw Wallace Formation, upper Shepard Formation, Snowslip Formation, and Wallace Formation, undivide    | d, Belt S |
| Sandpoint 1:250K Yt Deer Trail Group, argillite Togo Formation, Deer Trail Group                                         |           |
| Sandpoint 1:250K Yw Wallace Formation Wallace Formation, Belt Supergroup                                                 |           |
| Sandpoint 1:250K Ywcu rocks Wabash Detroit Formation and Chamokane Creek Formation undivided C                           | )eer Tra  |
| Sandpoint 1:250K Ywd Deer Trail Group, carbonate rocks Wabash Detroit Formation, Deer Trail Group                        |           |
| Sandpoint 1:250K Ywr Wallace Formation and Ravalli Group Wallace Formation and Ravalli Group, undivided, Belt Supergroup |           |
| Sandpoint 1:250K Zhc metamorphic rocks Conglomerate member. Huckleberry Formation of the Windermere Group                |           |
| Sandpoint 1:250K Zhg metavolcanic rocks Greenstone member, Huckleberry Formation of the Windermere Group                 |           |
| Sandpoint 1:250K ZI metavolcanic rocks Leola Volcanics. Windermere Group                                                 |           |
| Sandpoint 1:250K Zm metasedimentary rocks Monk Formation. Windermere Group                                               |           |

| Sandpoint 1:250K |
|------------------|
| Sandpoint 1:250K |
| St.Maries 1:100K |

| Zsc   | metasedimentary rocks         |
|-------|-------------------------------|
| Zsg   | metavolcanic rocks            |
| Zsl   | carbonate rocks               |
| Zsp   | phyllite                      |
| Zt    | metamorphic rocks             |
| ZYmi  | intrusive dikes and sills     |
|       | water                         |
| Kog   | gneiss                        |
| KYam  | metavolcanic rocks            |
| m     | man-made                      |
| Qal   | alluvium                      |
| Qg    | glacial deposits              |
| Qls   | landslide deposits            |
| Td    | extrusive dikes and sills     |
| Ted   | basalt                        |
| Tgd   | granite, dark                 |
| Tgn2  | basalt                        |
| Tgr2  | basalt                        |
| TKdd  | intrusive dikes and sills     |
| TKgb  | intrusive dikes and sills     |
| TKla  | extrusive dikes and sills     |
| Ton   | basalt, P                     |
| Tpr   | basalt                        |
| Tr    | extrusive dikes and sills     |
| Ts    | tertiary sediments            |
| water | water                         |
| Yb    | Burke Formation               |
| YI    | Libby Formation               |
| Yp    | Prichard Formation            |
| Ypl   | Prichard Formation, lower     |
| Ypu   | Prichard Formation, upper     |
| Yq    | quartzite                     |
| Yqp   | Prichard Formation, quartzite |
| Yqrv  | Ravalli Group, quartzite      |

Conglomerate member, Shedroof Conglomerate of the Windermere Group Greenstone member, Shedroof Conglomerate of the Windermere Group Sandy limestone member, Shedroof Conglomerate of the Windermere Group Phyllite member, Shedroof Conglomerate of the Windermere Group Three Sisters Formation, Windermere Group mafic intrusive rocks in upper part of Belt Supergroup water body Orthogneiss Amphibolite man-made Alluvial deposits Glacial deposits Landslide deposits Dacite dikes Basalt of Dodge Biotite- and hornblende-biotite granodiorite Grande Ronde N2 magnetostratigraphic unit Grande Ronde R2 magnetostratigraphic unit Diabase and diorite dikes Gabbro Lamprophyre dikes **Onaway Member** Priest Rapids Member Rhyolite dikes Sediment water **Burke Formation** Libby Formation Prichard Formation, undivided Prichard Formation, lower part Prichard Formation, upper part Quartzite Quartzite of the Prichard Formation Quartzite of the Ravalli Group, undivided

| St.Maries 1:100K      | Yqw   | Wallace Formation, quartzite        | Quartzite of the Wallace Formation                          |
|-----------------------|-------|-------------------------------------|-------------------------------------------------------------|
| St.Maries 1:100K      | Yr    | Revett Formation                    | Revett Formation                                            |
| St.Maries 1:100K      | Yrb   | Ravalli Group                       | Revett and Burke Formations, undivided                      |
| St.Maries 1:100K      | Ys    | schist                              | Schist                                                      |
| St.Maries 1:100K      | Ysp   | Striped Peak Formation              | Striped Peak Formation, undivided                           |
| St.Maries 1:100K      | Ysp1a | Striped Peak Formation, argillite   | Striped Peak Formation, argillite part of member one        |
| St.Maries 1:100K      | Ysp1q | Striped Peak Formation, quartzite   | Striped Peak Formation, quartzite part of member one        |
| St.Maries 1:100K      | Ysp4  | Striped Peak Formation, quartzite   | Striped Peak Formation, member four                         |
| St.Maries 1:100K      | Ysr   | St. Regis Formation                 | St. Regis Formation                                         |
| St.Maries 1:100K      | Ysrv  | Ravalli Group, schist               | Schist of the Ravalli Group                                 |
| St.Maries 1:100K      | Ysw   | Wallace Formation, schist           | Schist and phyllite of the Wallace Formation                |
| St.Maries 1:100K      | Ywl   | Wallace Formation, middle and lower | Wallace Formation, lower member                             |
| St.Maries 1:100K      | Ywm   | Wallace Formation, middle and lower | Wallace Formation, middle member                            |
| St.Maries 1:100K      | Ywml  | Wallace Formation, middle and lower | Wallace Formation, middle and lower members, undivided      |
| St.Maries 1:100K      | Ywu   | Wallace Formation, upper            | Wallace Formation, upper member, undivided                  |
| St.Maries 1:100K      | Ywu1  | Wallace Formation, upper            | Wallace Formation, upper member one                         |
| St.Maries 1:100K      | Ywu2  | Wallace Formation, upper            | Wallace Formation, upper member two                         |
| St.Maries 1:100K      | Ywu3  | Wallace Formation, upper            | Wallace Formation, upper member three                       |
| St.Maries 1:100K      | YXq   | quartzite                           | Quartzite of the Priest River metamorphic complex           |
| St.Maries 1:100K      | YXs   | schist                              | Schist of the Priest River metamorphic complex              |
| Thompson Falls 1:100K | Kms   | granite, light                      | monzonite and syenite                                       |
| Thompson Falls 1:100K | Qa    | alluvium                            | alluvial deposits                                           |
| Thompson Falls 1:100K | Qg    | glacial deposits                    | glacial deposits                                            |
| Thompson Falls 1:100K | Tsm   | tertiary sediments                  | sediment                                                    |
| Thompson Falls 1:100K | Ybk   | Burke Formation                     | Burke Formation, Belt Supergroup                            |
| Thompson Falls 1:100K | Ypl   | Prichard Formation, lower           | lower member of the Pritchard Formation                     |
| Thompson Falls 1:100K | Ypu   | Prichard Formation, upper           | upper member of the Pritchard Formation                     |
| Thompson Falls 1:100K | Yr    | Revett Formation                    | Revett Formation, Belt Supergroup                           |
| Thompson Falls 1:100K | Ysp   | Striped Peak Formation              | Striped Peak Formation                                      |
| Thompson Falls 1:100K | Ysr   | St. Regis Formation                 | St. Regis Formation, Belt Supergroup                        |
| Thompson Falls 1:100K | Ywml  | Wallace Formation, middle and lower | undivided middle and lower members of the Wallace Formation |
| Thompson Falls 1:100K | Ywu   | Wallace Formation, upper            | upper member of the Wallace Formation                       |
| Wallace 1:100K        | Kgd   | granite, dark                       | biotite granodiorite                                        |
| Wallace 1:100K        | Kog   | gneiss                              | orthogneiss                                                 |

| Wallace 1:100K | Qa   | alluvium                             | alluvial deposits                                                           |
|----------------|------|--------------------------------------|-----------------------------------------------------------------------------|
| Wallace 1:100K | Qg   | glacial deposits                     | glacial deposits                                                            |
| Wallace 1:100K | Qog  | tertiary sediments                   | older gravels                                                               |
| Wallace 1:100K | Tcr  | basalt                               | Columbia River Basalt Group                                                 |
| Wallace 1:100K | Tdp  | extrusive dikes and sills            | porphyritic dacite dikes                                                    |
| Wallace 1:100K | Tgd  | granite, dark                        | hornblende-biotite granodiorite, includes Roundtop pluton and Herrick stock |
| Wallace 1:100K | TKgb | intrusive dikes and sills            | gabbroic and dioritic dikes and sills                                       |
| Wallace 1:100K | Ts   | tertiary sediments                   |                                                                             |
| Wallace 1:100K | Tsm  | tertiary sediments                   | sediment                                                                    |
| Wallace 1:100K | Yam  | metavolcanic rocks                   | amphibolite                                                                 |
| Wallace 1:100K | Yan  | metamorphic rocks                    | anorthosite                                                                 |
| Wallace 1:100K | Ybk  | Burke Formation                      | Burke Formation, Ravalli Group                                              |
| Wallace 1:100K | Yc   | metamorphic rocks                    | calc-silicate rocks                                                         |
| Wallace 1:100K | Ypu  | Prichard Formation, upper            | upper member of the Pritchard Formation                                     |
| Wallace 1:100K | Yq   | quartzite                            | quartzite                                                                   |
| Wallace 1:100K | Yqrv | Ravalli Group, quartzite             | quartzite of the Ravalli(?) Group                                           |
|                |      | Wallace Formation, middle and lower, |                                                                             |
| Wallace 1:100K | Yqw  | quartzite                            | quartzite of the middle Wallace Formation                                   |
| Wallace 1:100K | Yr   | Revett formation                     | Revett Formation, Ravalli Group                                             |
| Wallace 1:100K | Ys   | schist                               | schist                                                                      |
| Wallace 1:100K | Ysp  | Striped Peak Formation               | Striped Peak Formation                                                      |
| Wallace 1:100K | Ysp1 | Striped Peak Formation, quartzite    | Striped Peak Formation, member one                                          |
| Wallace 1:100K | Ysp2 | Striped Peak Formation, carbonate    | Striped Peak Formation, member two                                          |
| Wallace 1:100K | Ysp3 | Striped Peak Formation, argillite    | Striped Peak Formation, member three                                        |
| Wallace 1:100K | Ysr  | St. Regis Formation                  | St. Regis Formation, Belt Supergroup                                        |
| Wallace 1:100K | Ysrv | Ravalli Group, schist                | schist of the Ravalli(?) Group                                              |
| Wallace 1:100K | Ysw  | Wallace Formation, schist            | schist and phyllite of the upper Wallace Formation                          |
| Wallace 1:100K | Ywl  | Wallace Formation, middle and lower  | lower member of the Wallace Formation                                       |
| Wallace 1:100K | Ywm  | Wallace Formation, middle and lower  | middle member of the Wallace Formation                                      |
| Wallace 1:100K | Ywml | Wallace Formation, middle and lower  | undivided middle and lower members of the Wallace Formation                 |
| Wallace 1:100K | Ywu1 | Wallace Formation, upper             | upper member 1 of the Wallace Formation                                     |
| Wallace 1:100K | Ywu2 | Wallace Formation, upper             | upper member 2 of the Wallace Formation                                     |
| Wallace 1:100K | Ywu3 | Wallace Formation, upper             | upper member 3 of the Wallace Formation                                     |