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ABSTRACT 

This report documents statistical procedures for using species 

abundance distributions for monitoring pollution impacts in aquatic 

biological communities. The species abundance distributions are also 

appropriate for use in other areas of applied ecology as well. Pre­

vious use of these tools by ecologists has relied on largely ad hoc 

data analysis procedures having little basis in statistical theory . 

This report is a synthesis of the statistical theory that applies to 

species abundance distributions. The report discusses appropriate 

statistical interpretation of the distributions, sampling distribu­

tions, types of abundance models such as the lognormal and the gamma, 

the canonical hypothesis of species abundance, and methods of testing 

hypotheses. It also identifies a number of important questions needing 

further research . 
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Species Abundance Distributions. The typical ecological data set con-

sists of a list of S species and their abundances, A1, A2, . 
0 0 ' 

As· Abundance is usually measured in number of individuals, or more 

infrequently, biomass. The relative abundances are given by ~/T, 

fx2./T, ... , \IT, where T is the total community abundance found 

by summing all the A; values. Ecological diversity indices are used 

to detect changes in the pattern of relative abundance. Diversity 

indices normally contain two kinds of information about relative abun­

dance patterns: (1) Species richness, or the number of species, posi­

tively affects most diversity indices. (2) Evenness, or the degree to 

which the relative abundances approach uniformity, is a factor measured 

by most diversity indices. Patil and Taillie (1982) have recently 

given a comprehensive account of the statistical theory behind these 

indices . 

Aquatic communities sampled in pollution monitoring studies typi­

cally contain large numbers of species, particularly in invertebrate 

communities. Diatoms and other phytoplankton, zooplankton, and benthic 

invertebrates are frequently used in such studies; samples usually have 

large numbers of species. Ties are common among species abundances: 

many species will be represented by only one individual, many others by 

two, etc. Such data are traditionally tabulated in frequency form. 

Thus N1 = number of species· with one representative in the sample, 

N2 = number of species with two representatives, and so on. This 

report is concerned with these species abundance data, rather than the 

relative abundance data . 

1 



The use of species abundance distributions is an alternative to 

using diversity indices. This distribution method involves fitting a 

traditional probability distribution to the data tabulated in species 

abundance form. The data are thereby summarized in compact form, and 

the parameter values of the distribution may be used to compare data 

from different environments. The parameters, in fact, often are relat­

ed to species richness, evenness, and diversity, as will be seen. Fit­

ting species abundance distributions works best in communities with 

larger numbers of species (over 20 or so) such as are encountered in 

phytoplankton, zooplankton, or benthic invertebrate studies. 

Many assemblages of species display similar patterns of abundances 

(Fisher et al. 1943; Preston 1948; Williams 1964; Patrick 1968; 

Whittaker 1972; Kempton and Taylor 1974; May 1975; Pielou 1975). Sim­

ple probability distributions successfully describe species abundance 

data from wide varieties of communities. Two distributions in particu­

lar, the gamma and the lognormal, have recieved wide attention. Both 

distributions have similar shapes (unimodal and skewed on the right), 

the lognormal having a somewhat 11 heavier 11 right tail. The widespread 

empirical success of these distributions has spawned a number of 

hypotheses about their ecological causes (Whittaker 1972; May 1975; 

Dennis and Patil 1979; Sugihara 1980). 

Ecologists have known for nearly 30 years that species abundance 

patterns respond to environmental changes (Patrick et al. 1954). In 

the lognormal and gamma models, certain parameters characterize the 

evenness and species richness of the communities (Taillie 1979), which 

are the components of ecological diversity. Typically, the numbers of 

rare species in disturbed communities decline, causing shifts in the 
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diversity or parameter values, and corresponding shifts in the shapes 

of the species abundance distributions. The shapes become long-tailed, 

reflecting the greater proportion of total community abundance residing 

in common species. These trends, though often documented, are not fre­

quently utilized in biomonitoring studies . 

One reason for this is a widespread misunderstanding, particularly 

among North American ecologists, of the statistical methods associated 

with using species abundance distributions. Two approaches to analyz­

ing data are through Preston's (1948) lognormal model or through 

Fisher's (Fisher et al. 1943) gamma model. Not only do the distribu­

tions differ between Preston's and Fisher's approaches, but the statis­

tical role of the probability distributions differs. North American 

ecologists generally follow Preston's interpretation of the distribu­

tions, which unfortunately has little basis in statistical theory. In 

Preston's approach, a species abundance distribution has no probabilis­

tic content. Rather, the distribution is simply a. function or curve to 

be fit (via ad hoc methods) to data. Contemporary writings continue to 

perpetuate this approach (May 1975; Preston 1980). In the approach of 

Fisher, by contrast, the role of a species abundance distribution is a 

probabilistic one. Random variables are explicitly defined, sampling 

variation is modeled, and parameter estimation methods have a sound 

statistical basis. This approach has been largely confined to the sta­

tistics literature in papers written by European statistical ecologists 

(Kempton 1975; Bulmer 1974; Engen 1978). With extensions to this sta­

tistical approach to b~ documented here~ formal hypothesis testing can 

be conducted. Since such extensions and applications are important to 

a biomonitoring program, the statistical approach to species abundance 

distributions should be the preferred approach . 

3 



The statistical approach to species abundance distributions. Con-

sider a given species with an average abundance of :X. in a sample. It 

is reas6nable to assume that the number of individuals of this species 

in a sample, X, has a Poisson distribution: 
-A. X 

Pr [X = x I :X. ] = e · X I x! , x = 0, 1, 2, ... (1) 

A species abundance distribution takes the abundances, A1, A2, ... As, 

of all the species in the community to be independent, identically dis­

tributed random variables with some probability density function, f(:X.). 

The total number of species, S, is itself a random variable. Let 

E[S] = s. 

Then the expected total abundance in the community is 
00 

E [ T] = E [A 1 + A2 + . . . + As] = E [ S] E [ A] = s I >. f( ;J .d :X., 
0 

where T is the total abundance in the community (a random variable 

also). 

(2) 

Observe that the expected number of species with abundances great-

er than :X. is 
00 

sPr[A > :X.] = s I f(u)du, (3) 
:X. 

and that the expected abundance of a single species, given that its 

abundance is greater than :X. , is 
00 00 

J uf(u)du/ I f(u)du . (4) 
:X. :X. 

The expected total abundance of all the species with abundances greater 

than :X. therefore has the form 
00 00 00 00 

[s I f(u)du][ I uf(u)du/ I f(u)du] = s I uf(u)du . (5) 
:X. :X. :X. :X. 

Because of (3) and (5), sf( :X.) is called the species curve and st..f( :X.) is 

called the individuals curve. 
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In Preston's approach, sf( A) is a function to be fit through spec­

ies abundance data, with the probabilistic content of f(A) not expli­

citly defined. Fisher's approach, outlined here, explicitly treats 

f(A) as a probability density function. Note that the fact that Fisher 

used a gamma distribution for f(A) whereas Preston used a lognormal 

distribution is incidental. Either probability distribution could 

serve in either approach . 

The advantage to Fisher's approach is the opportunity to model 

sampling variation through traditional statistical methods. If the 

abundance of a given species has the probability density function f(A},­

then the number of individuals of this species in a sample has a 

"mixed" Poisson distribution (which follows from (1)): 

oo -~ X 
Pr[X = x] = J [e A /x!]f(A)d , x = 0, 1, 2, ... (6) 

0 
Let Nx = the number of species with x representatives in the sample. 

The expected value of Nx, denoted mx, is given by 
00 

E[Nx] = mx = E[S]Pr[X=x] = s I [e-AAX/x!]f(A)dA. (7) 
0 

Usually S is assumed to have a Poisson distribution, and the Nx, x = 

0, 1, 2, ... , are assumed to be independent Poisson random variables 

with expected values mx. 

The garrrna model. Ffsher suggested using the gamma distribution as 

a form for f(A)(Fisher et al. 1943): 

f (A) = 11 kA k -1 e-llA /I' ( k) , O<A < oo • 

Here 11 and k are positive-valued parameters, and r(·) is the ·garrma 

function (Abramowitz and Stegun 1965). 

(8) 

The sampling distribution for the number of individuals of a spec­

ies in a sample is a negative binomial distribution. This results from 

substituting (8) into (6): 

5 



00 

[e -\{ /x! ][ ~k Ak- 1 e -~A/ f(k) ]d A Pr[X = x] = I 
0 

= 
00 

{ J< I [ x ! r( k ) ] } I Ak + x - 1 e- ( 1 + ~) Ad A 
0 

r (k + x) 1 X k 
= ( ) ( ~ 

x! r (k) 1 + ~ 1 +lJ 

... ' (9) 

where p =~ /(1 +~) = 1 - q. Values of mx are therefore given by 

(k+x-1) x k 0 1 2 mx = s x q p , x = , , , . . . . (10) 

The parameter k is intuitively seen as a measure of the evenness 

with which the species' abundances are apportioned in the community. 

Observe that the coefficient of variation for X (= .,I Var(X)/E[X]) in 

(9) is given by 1/.,ilKq. This quantity decreases ask increases. Thus, 

the species' abundances are more likely to be close to the mean abun-

dance of a single species when k is large, resulting in greater even-

ness. 

Fisher noted that values of k tended to be quite small when (10) 

was fitted to Lepidoptera data. In other words, the distribution of 

relative abundance was very uneven, though large numbers of species 

were present. In effect, k was a nuisance parameter for those data, 

continually taking values close to zero. The model (10) contains three 

parameters: s, k, and p. For small k values, s is inextricably bound 

up with k, prompting Fisher to combine s and k into a single parameter 

~- The concept is easiest to see by noting that the generating func­

tion (z - transform) for the terms mx in (10) is 

6 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 



• 

• 

• 

• 

• 

• 

•• 

· -
• 

• 

• 

00 

l: x=o ( 11) 

The term m0 is not represented in the sample data, being the expected 

number of species not_ present. The generating function for the terms 

00 

x~1 mxzx = s[p/{1 - qz)]k -spk 

= s exp {k log[p/(1 - qz)]}- s exp [k log p] 

= s{ 1 + k log[p/(1 - qz)] + o(k)} 

- s[1 + kp + o(k)], (12) 

where o(k) denotes terms of order k2 or higher. Therefore, for small 

k, 
00 

x~1 mxzx ~ - sk log (1 - qz). (13) 

The parameters k and s are thus confounded into a single parameter,a , 

defined by 

a= sk (14) 

This parameter is a diversity index, combining properties of species 

richness and evenness into a single number. The generating function 

(13) is that of the logarithmic series: 

(15) 

Extensions to the gamma model. The small values of k found in the 

Lepidoptera data resulted from communities with vary low evenness. 

Species abundance distributions from uneven communities have long right 

tails, representing concentration of abundance in a few species. The 

7 



long tail of the logarithmic series (15) is partly responsible for the 

astonishing success of this model in describing Lepidoptera data 

(Kempton and Taylor 1974). For some data though, even the log series 

tail is not heavy enough. 

This fact led Kempton (1975) to propose an extension to the log 

series. The extension results from considering the underlying gamma 

abundance model (8). Kempton assumed that heterogeneity was present 

in the data, and he modeled this by assigning a probability distribu­

tion to the parameter a . The distribution used was a gamma distribu-

The abundance distribution (8) then becomes 
00 

h(A) = Jf(A)g(l.l)dll 
0 

S 1 Ak-1 Jlll+k-1e -( :\+Sh1dll 
r( k) r( 1) o 

= 

= r (k+l) 
r ( k) r( 1) 

sl >-k-1 

,(>-+~)l+k 
o<A <oo 

(16) 

(17) 

This is a beta II distribution (of which the F distribution is a 

special case). The resulting sampling distribution (7) is an integral 

with no closed form: 
QO 

mx = J s [e->->.x/x!]h( >.)d>.;._ 
0 

= ~ r(k+ 1) j l+k-le -A dA 

x ! r( k) r( 1 ) o ( s + >. ) 1 +k 

Setting sk = a and taking the limit as s~ oo, k + o provides the 

generalized log series model: 

8 
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loo x-1 -A m = aS J A e d A 
X --

X! 0 ( S+A) 1 
(19) 

This, too, is an integral with no closed form. Fitting this model to 

data requires repeated numerical integration. Nonetheless, it worked 

quite successfully for the Lepidoptera data examples tested by 

Kempton. 

Engen (1978) proposed a different approach to the tail-length pro-

blem. He pointed out that the m values in (10) can be computed for 
X 

all values of k such that -1.S. k, provided x> 1: 

X k m x = r ( k+x) q p , x= 1, 2, 
a r (k+l)x! 

(20) 

This is called the extended negative binomial. The underlying species 

abundance distribution though, is no longer a gamma distribution, as 

(8) is only valid for positive k values. 

The lognormal model. Preston (1948) introduced the lognormal dis­

tribution as a model of species abundance: 

o<).<oo (21) 

Here ~ and .qz are parameters; log A has a normal distribution with 

mean ~ and variance a2 • Preston observed that the species abundances 

of bird census data resembled a normal curve when plotted on a loga­

rithmic scale. Preston's estimation method was to fit the normal 

curve directly to the logged abundance data, rather than develop a sam­

pling distribution. It is preferable to incorporate (21) into the sam­

pling framework developed for the gamma model. From (7), the expected 

species frequencies are: 

9 



s JAx- 1 exp {-A -(log A -1.1 )2/(2 cr
2 

)}d A 
x! cr/21r o 

X = 0, 1, 2, . . . . ( 22) 

These frequencies form the Poisson-lognormal distribution. The inte­

gral has no closed form, requiring numerical integration in data ana-

lysis. 

The parameter a 2 is a measure of the unevenness of the species 

abundances. The coefficient of variation for the Poisson-lognormal 

distribution is [exp(-1.1- cr
2
/2)+ exp ( cr2) - 1]112 , an increasing 

function of a2. Thus, 1/ a is a measure of evenness. This suggests 

the possibility of finding a limiting sequence of mx values analogous 

to the ·16g series. The log series had sk= a, suggesting for the 

Poisson lognormal the limit s/ a-+ . y • The resulting sequence is pro-

portional to a harmonic series: 

1 im oo x-1 - ;._ 
S o+oo 

a o+oo 

s/ a -r y 

mx - J A e d A -~ 0 

= Af (X) = 
x 12n 

y ) 0-). 
12-iT X (23) 

In the above, m is given by (22). The limit does not exist for the 
X 

value x=o. 

Canonical hypothesis. Preston (1962}, in fitting a number of log-

normal curves to ecological data sets, noticed a curious pattern. When 

the abundances were plotted on a logarithmic scale, the most common 

species often had an abundance near the mode of the individuals curve 

(see (5)). Preston hypothesized an empirical relationship between the 

parameters of the lognormal which fixes the dominant species to the 
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mode of the individuals curve. This hypothesis produces a "canonical" 

lognormal distribution with only two parameters instead of three. The 

canonical hypothesis has attracted considerable attention in theoreti-

cal ecology (May 1975, Sugihara 1980, Preston 1962). Conjectured 

causes of the canonical lognormal to date have failed to account for 

the fact that the canonical hypothesis implies an inverse relationship 

between species richness and evenness. The inverse relationship was 

pointed out by Patil and Taillie (1980), using a statistical definition 

of the canonical hypothesis for the lognormal and ·gamma models. The 

statistical definition permits actual statistical testing of the 

hypothesis on data sets. The definition will be generalized here to 

allow use of any species abundance distribution. 

The species curve is given by sf(A), and the individuals curve by 

sAf( A). Let r = log A . On a logarithmic scale these curves become 

serf(er) and se2rf(er), respe~tively. The mode of the log-individuals 

curve, r, is found by setting the derivative of the curve equal to 

zero: 
N 

f'(er) + 2e-rf(er) = 0. 

For the gamma (8) and lognormal (21) distributions, we find that 
,.... 
r = 1 o g [ ( k + 1 ) I 11J ( g anm a ) , 

r=)l+a2 ( 1 ognorma 1 ) • 

The cumulative distribution function of A is defined by 
A. 

F(A) = ff(u)du. 
0 

Let A be the abundance of the largest of s species. By a max 

well-known result from statistical theory (Patel ·et al. 1976), 

E[F(Amax)] = s/(s+1) . 

11 
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(26) 



This suggests using the probability transform of s/(s+1) as a 

definition for A max 

A -1 s ) max = F (~; 

r = 1 og A max max. 

(27) 

(28) 

The quantity r is some measure of central tendency for the random max 

variable log Amax' the logged abundance of the largest species. 

The canonical hypothesis asserts that r ~ r, or, max 
-

( s ) _ r 
s+T - e . {29) 

The relationship constrains the species number, s, and the parameters 

in f(A) to a contour. For the lognormal and gamma models, this contour 

is the inverse relationship between species richness and evenness. 

The canonical hypothesis (29) for the lognormal model reduces to 

{30) 

where <I>(·) is the cumulative distribution function for the standard 

normal distribution. For large s the following asymptotic formula 

gives a good approximation to (30) (Patil and Taillie 1980): 

2 
a = 2 log s - log log s - log 4 n. 

As s (species ~ichness) increases, 0 2 (unevenness) must increase. 

With the gamma model, (29) becomes 

= s 
s+T 

(31) 

(32) 

Here rk( ·) is the cumulative distribution function of a standard gamma 

d i s t r i but i on w i t h i n de x k • A 1 tern at i v e 1 y, 1 e t t i n g fk ( v) = 1 - r k ( v ) be 

the right tail of the standard gamma, one sees that 
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1 
1\(k + 1) = -­

s + 1 
(33) 

Patil and Taillie (1980) note that (33) is approximately a linear rela-

tionship between s and k for large s and small k. Specifically, sk 

~a, where a is a constant. This is just Fisher's limit given earlier 

(14). The value of a is fixed here, however, by the canonical 

relationship {33). Dividing {33) by k and letting s -roo, k -+o , sk -+a 

one sees that 

J 
t-1e-t dt = 1 
r(l) a 

(34) 
00 

which works out to a ~ 4.56. Thus, the canonical hypothesis for the 

log series distribution (15) fixes a value of the parameter a. The 

hypothesis (33) for the gamma model constrains s (species richness) to 

be an inverse function of k (evenness). 

Methodology for data analysis. The statistical approach to spec­

ies abundance distributions discussed here provides meaningful ways of 

data analysis. The ad hoc approach of Preston (1948), by contrast, 

offers · little opportunity for drawing statistical inferences. Statis-

tical inferences made possible by Fisher's approach include point esti-

mation, interval estimation, and hypothesis testing. 

... ' be a set of data or realized values of the random 

variables N1, N2, .... The distribution of N , the number of species 
X 

with x representatives in the sample, is Poisson, with mean mx given by 

(7). Let ~ be the (vector of) unknown parameters in mx. For the 

gamma model, e·· = [s, k, ll]._ For the lognormal model, ~ = [s, a ,11]. 

The likelihood function, l(Q), is the product of the probabilities 

Pr[N1 = n1] Pr[N 2 = n2] ... : 

13 



n 
Pr[N = n ] = [mx(§)] xexp[-mx(~)]/nx!, (35) 

X X 

so that 

00 00 n 
1 ( f2 ) = exp[-x~1mx(f2) x~1 [mx ( ~)] ~nx! {36) 

Note that 

s = x:O mx(~). {37) 

A 1 so 0 for any x, then note that if n = 
X 

n 
[mx(fl)] x/nx! = 1, X iA, {38) 

where A is the set of x values .where > 0. From (37) and ( 38), the n 
X 

likelihood function {36) becomes 

n 
l(e) = exp[m (e) - s] ITA {[m (e)] x 

~ 0 ~ XE X ~ 
In ! } 

X 
{39) 

The maximum likelihood (ML) estimates of the unknown parameters ~ are 

the values maximizing l(f2), or, equivalently, the values maximizing 

the log of 1(~) given by 

log 1 (§) = m0 - s + x~ [nxlog mx- log (nx!)] {40) 

One way of findng these estimates is by differentiating log 1(~) with 

respect to each of the parameters and equating the results to zero: 

( 41.) 

j = 1, 2, ... , 

The system of q equations (one equation for each unknown parameter) 

must then be solved for the roots, § say. The first equation for s 
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can be seen by noting that mx = spx, where Px (=Pr[X=x]) are the 

probabilities given in (6): 

n 
alogl= p0 -1+I .2. =0, 
as x~A s 

yielding the ML estimate . 

s = 

(42) 

(43) 

Here ~ is p with the other ML parameter estimates substituted. The 

equations for the other parameter estimates are can be rephrased by 

solving (41) for s and equating to (43): 

(44) 

j = 1, ... , q. 

For statistical inferences and computing, it is valuable to obtain the 

q x q information matrix of the parameters, I(§) say, in which the i, 

jth element is 

a2 (s-mo ) 
ae. ae. 

1 J 

am am 2 m J 
+xi: A [.J- (E) (E) - a~ . ae. • 

£ X 1 J 1 J 

(45) 

Several approaches to computing the ML estimates are possible. 

The first is to solve the likelihood equations (41) directly using a 

numerical technique such as the Newton-Raphson, or its statistical 

counterpart, the scoring method. For the scoring method, an initial 

guess at the parameter values, e , say, is required. One then eval­
Nl 

uates the likelihood equations (41) at ~1 , putting the results in 

15 



a 1 x q row vector, b ( ~ 1 ) say. Then, the parameter estimates are 

iteratively improved by computing 

\ + 1 = ~ k + ~( ~k)Cl( .@k) (46) 

for k = 1, 2, ... , ·until ~ ( ~k) is as close to zero as desired. The 

resulting roots are the ML estimates, § . ML theory states that fl has 

a multivariate normal distribution (asymptotically) with mean § and 

variance-covariance matrix r-1( ~). The variance-covariance matrix may 

be estimated by computing r-1( §). 
An alternative computing procedure does not require evaluating the 

derivatives (45) at every iteration. The Nelder-Mead method instead 

computes a simplex on the likelihood surface (41) directly (see Olsson 

and Nelson 1975). Through a straightforward set of computational 

rules, the simplex "migrates" to the top of the likelihood surface, al­

tering its shape each iteration to conform to the curvature of the sur-

face. Experience has shown that the method is reliable but slow to 

converge. 

The principal computing challenge with species abundance distri-

butions is that many models require repeated numerical integrations to 

evaluate the mx values (7) in the likelihood equations (41). Inte­

gration routines should be tested for their speed and efficiency. The 

gamma model provides a convenient vehicle for such testing, since its 

integral exists in closed form (10). 

Once ML estimates are obtained, hypothesis testing ·is possible. 

Three types of possible tests are : 1) Goodness-of-fit, for evaluating 

the model's description of the data, 2) Multivariate two-sample, for 
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comparing two communities, 3) Likelihood ratio, for testing simple vs . 

complex models. 

Goodness-of-fit tests are best performed on data pooled into abun-

dance intervals. The reason is that investigators have found unpooled 

data to be rather variable, while the data quantiles remain rather 

stable (Kempton 1975). Logarithmic intervals to base 2 have become 

traditional, with abundance classes of x=1, 2-3, 4-7, 8-15, etc indivi-

duals. The observed nx values, pooled into these classes, are com-
"' pared with the expected mx values. The usual chi-square statistic is 

computed, the degrees of freedom being the number of classes minus the 

number of parameters minus one. The fit of the model is rejected when 

the chi-square value exceeds some critical value. 

Two communities can be compared by comparing the parameter esti-

mates in the corresponding species abundance distributions. The two 

communities, A and B say, give rise to two sets .of ML parameter esti-

mates, ~A and ~ 
8

• Since these estimates have multivariate normal 

distributions, a test of the hypothesis H
0

: §A= § 8 vs. the hypo­

thesis H1: § A 1 § 8 can be conducted. Let 

Under H , Q will have a chi-square distribution with degrees of freedom 
0 

equal to the number of parameters in ~ . 

Often an investigator will want to determine the level of complex­

ity a model must have to adequately describe the data. For example, is 

the two parameter log series model (15) sufficient for a data set, or 

must the full, three-parameter negative binomial (10) be used? Also, 
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the canonical hypothesis would be an example. When a simple model is 

a special case of a more general model, likelihood ratio techniques can 

be used to test one against the other. One first computes the likeli­

hood (36) under the simple model, 1 say, evaluated using the ML 
' 0 

parameter estimates. Next, one computes 11, the likelihood under the 

more complex model, ·here using the parameters estimated for the complex 

model. The parameter space under the simple model is assumed to be 

contained in (or a subset of) the parameter space of the complex model. 

As an example, the canonical hypothesis under the log series model 

would have the parameter a fixed at 4.56, while a is a free parameter 

under full log series. One finally computes the ratio of likelihoods 

from the two contending hypotheses: 

(48) 

Under H , ML theory states that -2 loq R has a chi-square distribution 
0 

(asymptotically). The degrees of freedom are the number of free para-

meters in the full model minus the number of free parameters in the 

reduced model. 

Conclusions. On the basis of this synthesis of material on spec-

ies abundance distributions, I have identified a number of important 

ecological questions that may be addressed with the statistical method-

ology documented in this report: 

1) Species abundance ·distributions have shown good potential for 

evaluating water quality impacts on aquatic communities. However, 

their use for this purpose has been hampered by improper statistical 

methods. There have previously been no appropriate methods of hypothe­

sis testing for evaluating the quality of the models or comparing 
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the abundance patterns between communities. Comparison is usually cri­

tical for biomontoring: studies are concerned with sampling before and 

after pollution, upstream and downstream of pollution, etc. Thus, pre­

vious studies using species abundance distributions for pollution 

impacts should be reanalyzed. 

2) Aquatic ecologists have used the lognormal distribution almost 

exclusively. An assortment of other models are available and should be 

tried. These other models have met with considerable success in des­

cribing terrestrial communities. 

3) The canonical hypothesis has provoked a considerable amount of 

excitement and speculation among ecologists. Large amounts of data are 

seemingly consistent with the hypothesis. Due to the ad hoc estimation 

methods used by these ecologists, however, the actual empirical status 

of the canonical hypothesis is uncertain. Existing data need to be 

reanalyzed using the statistical methods contained in this report. 

Furthermore, this report identified explicit techniques for conducting 

formal statistical tests of such hypotheses . 
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