Research Technical Completion Report

Project A-073-IDA
 GRAPHIC RETRIEVAL, ANALYSIS AND SPATIAL PORTRAYAL An Information System for loaho's Freshwater Lakes

January 1982

Contents of this publication do not necessarily reflect the views and policies of the Office of Water Research and Technology, U. S. Department of the Interior, nor does mention of trade names or commercial products constitute their endorsement or recommendation for use by the U. S. Government.

TABLE OF CONTENTS

Page
List of Figures iii
Acknowledgements iv
Abstract v
Project 1
Problem 1
Research Contribution to Problem Solution 1
Research Objectives 2
Potential Users 3
Introduction and Problem Statement 5
Specific Aims 7
Meet the Needs of the User 7
Provide An Interactive Framework 8
Enhance Analyses and Presentation 9
Procedures 26
County Codes 27
Basin Codes 28
Ownership Codes 28
National Forest Codes 28
Unique Lake Identifier Code 30
Some Details on Listings 31
Data Manipulation Through the SAS System 31
Product 33
SAS Files, Data, and Programs(Brief Description) 33
Priority Lakes 35
Lakes Master 35
APPENDIX (Annotated Listings) Page
CREATE ADDPROGS 40
CREATE PGMPDS 42
ADD DATAPGM 43
KODE HEADER 45
JCL SAS 48
MASTER HEADER 49
MASTER TRAILER. 50
NAMELIST HEADER 51
BASINALP SETUP 53
SASPLOT PLIOPT 54
MACRO SAS 56
PLOT SETUP 58
SELECT EXAMPLE 59
CHARTS MASTER 61
PURPLE LOOK 62
SASGRAPH CHARTS 66
Sample Alphabet ic Listing by Lake (from Master File) 68
Sample Listing Sorted by County 70
Sample Selected Plots
1 - Priority Lakes, Elmore County 71
2 - Priority Lakes, Idaho County 72
3 - Priority Lakes, Kootenai County 73
4 - Master File, Bonner County,
Elev LE 2400 Acreage GT 50 74
5 - Priority Lakes, Idaho, Mile High Lakes GT 50 Acres 75
STAMPEDE Instructions 76
Sample Contour Map Plot. 82

LIST OF FIGURES

Page
Frequency Bar Charts
All Idaho Lakes by Elevation (3 examples). 12
All Idaho Lakes by Bas in (3 examples). 15
All Idaho Lakes by Acreage (2 examples). 18
All Idaho Lakes by National Forest (3 examples) 20
Pie Charts
All Idaho Lakes by Bas in 23
All Idaho Lakes by National Forest 24
Scatterplot
Priority Lakes, Trophic Status vs Elevation 25

ACKNOWLEDGEMENTS

There are some thanks due. An integral part of the GRASP team is David Hall, an undergraduate student, who was working on irregular help monies. With patience and perseverance he tackled the error detection and corrections with in the LAKES MASTER file. For many hours he sat blurry-eyed in front of a screen staring at those green letters and numbers. Data correction and entry is probably one of the most trying, tedious, and yet important facets of any research. Often corrections are made which are later re-made after an evaluation by someone up the line of command. David also helped immensely with his programming knowledge. He has been the instrumental force in completing the GRASP concept because of his added knowledge of PL/1 and STAMPEDE. I especially appreciate the work David completed, because I was the other part of the twoperson team. If nothing else had come from this project, the sheer task of getting the LAKES MASTER file into good condition would be commendable. The other thanks is to the people on the side of the CLEAN LAKES PROJECT who were providing data for us to encode and checking our updates. Larry Kirkland and his assistant, Annette Jamshednejad, deserve many thanks for their relentlessness in providing something for us to enter into the system. Their concern for detail and consistency made our job easier; moreover, without their rechecking against the LAKES MASTER file printouts, we would not have been assured of an accurate data set. We appreciate the support of the Idaho State Department of Water Resources who funded this project. Thanks to Jim Milligan who served as liaison during the proposal stage. Thanks to the local Water Resources Institute for their help, especially Linda Fulton for many things, and Leroy Heitz for advice. Most recently, thanks to Gloria Hall for putting the manuscript in final form.

ABSTRACT

This report and accompanying computer tape document the data processing support provided by this Idaho Water Resources funded project to the larger EPA funded "Clean Lakes" study. This project is known by the acronym GRASP which derives from Graphic Retrieval and Spatial Portrayal. The name reflects the purpose which is to develop a computer-based storage and retrieval system with analysis capabilities and which will facilitate graphic and/or spatial portrayal of the raw data or the derived information as requested by the researchers.

An exhaustive search was made by "Clean Lakes" researchers to identify all the lakes of Idaho. Because of nomenclature problems the list is slightly expanded and in its final form contains lakes, reservoirs, and ponds. Basic information for each water body is provided such that it is uniquely identified as to name, location, elevation, and size. Additionally 123 lakes are identified as being of "high priority" (as determined by the Clean Lakes researchers) and these are tagged in the system and given a "trophic status index", indicating the water quality.

As currently implemented the GRASP system can be accessed via the interactive CMS capability on the University of Idaho campus. The information can be displayed, corrected, or expanded using the "editing" functions of the CMS (Conversational Monitoring System). Sorting, logical operations, and analyses are possible using the interactive SAS (Statistical Analysis System) routines. Simple maps and other graphics are optional products available at the request of the researcher. The Idaho State outline map and all 44 county outlines are accessible to the researcher permitting the lakes of interest to be spatially portrayed at the appropriate level.

The GRASP project team provided storage and retrieval support for the CLEAN LAKES project while those researchers developed the listing of lakes and finalized the data. Listings, by various sorting requirements, were provided for their use and correction. While this data collection phase was in progress, other components of the GRASP system were developed and/or linked into the package as described in this document. Presently (December, 1981) the GRASP system is on-l ine and available for use by anyone with a valid user-number for the UI computer. Future availability and/or development has not been determined at this time. With the completion of this report the files will be transferred to magnetic tape and archive files because of lack of continuing computer support funds.

Problem
The work was initiated to supplement an EPA-funded project already underway through the Idaho Department of Health and Welfare, which was to characterize and classify the trophic condition of Idaho's freshwater lakes and to prioritize these lakes in terms of problem needs. The current project was to design and develop an information storage and retrieval system to protect and record the data obtained from the researchers of the other project.

Research Contribution to Problem Solution
The effort of the EPA-funded CLEAN LAKES PROJECT involved several conceptual components under the responsibility of different investigators. While each researcher was to obtain data specific to his own needs regarding each lake, there also was a battery of variables common to the needs of all researchers. The GRASP project sought as a goal to organize the storage, retrieval, analysis, and presentation of the data such that data collection of certain variables not be duplicated by individual researchers nor left undocumented at the completion of the project. A computerized procedure for data storage, data manipulation and analysis, and for some graphic portrayal of results would expand the usefulness of the data and of the existing CLEAN LAKES PROJECT to fill the needs of lake management in Idaho.

A total of 1547 entries were eventually made into the system. Th is is an exaggerated total of lakes in Idaho because of several cross entries by name and because of the inclusion of every noticeable body of water, even if it had no recorded name. For each entry, data were entered on location, drainage, size, and ownership. This system is interactive from terminals across campus and has searching, sorting, printing, and statistical capabilities. In addition, it has been enhanced by a simplified plotting display procedure.

Research Objectives

1. To meet the needs of the user. The data files were to be standardized to permit easy use of data by anyone.
2. To provide an interactive framework. GRASP is operative on the CMS time-sharing system with a provision for multiple listings of the requested searches. Backup of the master data file and programs developed exist on magnetic tape, which will be submitted with this report.
3. To enhance analyses and presentation. Numerous listings of lakes, sorted by basin, latitude and longitude, and alphabetically by lake and county were provided to the researchers of the CLEAN LAKES PROJECT. Additionally, we worked with research assistants to provide an understanding of a contour display package (STAMPEDE) already existing at the University so they could incorporate the visual output within their own research. STAMPEDE was not linked to the master data file because sufficient data are not available; however, documentation, sample setup, and output are displayed in the Appendix.

Potential Users

Users include anyone interested in research involving basic data for all of the lakes of Idaho. Because the files are established on the CMS interactive computer system, the power of the editing system currently on the IBM equipment is available. This provides for ease in updating the file, adding missing data (of which there are little now), or correcting entries. The file has been proofed and extensive corrections have been made.

The exciting research awaiting the use of the file depends on researchers' questions. GRASP is capable of searching and sorting by any variable which is contained within it and more variables can be added whenever collected. For example, measurements relating to trophic conditions can be placed on the file as they are determined by the CLEAN LAKES PROJECT researchers.

One subfile exists which was to include more detailed information provided by the CLEAN LAKES researchers. This file, called PRIORITY LAKES, contains 123 entries and the only additional variable (12/1/81) is a letter representing the trophic conditions of the lake assessed before summer on-the-scene measurements.

The GRASP PROJECT has developed a graphic display capability for the researcher issuing questions to the data file. A program was developed which converted latitude and longitude measurements for each lake in the system to $x-y$ coordinates compatible with the existing county outlines and stored them in the lakes file. The researcher can request specific sorts from the file, and the selected lakes will be plotted with in the state (or county) outline. For example, a question might be, "what lakes exist within Bonner County which are situated at an elevation of 2400^{\prime} or
under and have an acreage greater than or equal to 50 acres?" The search is set up within the retrieval system and the resultant lakes are annotated with in a plot of the Bonner County outline.

With any of the plots, there may be an overlap problem because of adjacent lakes; however, the accompanying printer listing will indicate the specific names and locations. If the search and plot jobs are separated, a person can adjust the close or overlapping lakes before plotting. (Such an example occurs in the Appendix).

In 1980, the University of Idaho received a grant from the Environmental Protection Agency through the Idaho Department of Health and Welfare to characterize and classify the trophic condition of Idaho's freshwater lakes and to prioritize these lakes in terms of problem needs. This is in response to the EPA's nationwide program to classify, protect and restore publicly-owned freshwater lakes. Idaho has within its borders many hundreds of freshwater lakes which, as the population grows and use intensity builds, will require a well-conceived strategy of protection and management. The EPA-funded project, hereafter called the CLEAN LAKES PROJECT, screened over 1500 freshwater bodies with in the state. From its initiation, it was realized that a thoroughly documented system would serve the needs of the study and provide the data base for continued phases of the CLEAN LAKES PROJECT. More importantly, the organization, storage, retrieval, analyses, and presentation of the data collected for the lakes ought not to be duplicated by individual researchers nor left undocumented at the cessation of the CLEAN LAKES PROJECT since the follow-up studies of Idaho's lakes will necessarily draw on these same data. The current project, hereafter called GRASP, came about to answer a need for a computerized procedure for data storage, data manipulation and analysis, and for graphic portrayal of results which would expand the usefulness of the data and of the results of the CLEAN LAKES PROJECT to fill needs of lake management in Idaho.

This final report will address the tasks done with in the framework originally presented in the proposal. First, the specific aims of the project will be presented and an explanation of the system's handling of
each aim will be discussed in detail. Second, the procedure will be documented. Finally, the product resulting will be outlined in detail, complete with Job Control Language (JCL) necessary to accomplish the tasks. The Appendix provides listings of data files, program files, and GRASP setups to aid the user in utilizing the system. The Appendix is designed to serve as a manual for using GRASP on the University of Idaho terminalbased computing system.

SPECIFIC AIMS

(1) To Meet the Needs of the User

For the CLEAN LAKES PROJECT there was a need for a coordination of data efforts such that consistency and compatibility of data items resulted. Standardized data files permit easy use of data by any of the potential users who may be concerned with lake management in Idaho, and the potential for cross-use of the hydrologic, biologic, economic, or demographic data will be enhanced. These data were stored and properly documented for future reference.

The vehicle utilized for the storage and retrieval of data is an existing package at the University of Idaho: the Statistical Analys is System (SAS). SAS is leased from the SAS Institute, Inc., Cary, N.C., and supported for the University community on the IBM system. It is available both in batch and in interactive modes. It was chosen because of the simplicity of data input and its report-generating capabilities. Additionally, this system appears to have widespread usage in the United States. Not only are data handling capabilities included but very importantly, most statistical methods one might need to analyze the data are available, as well as sorting and formatting capabilities for use of SAS as an intermediary program to prepare data as input to other existing programs. For example, one can use SAS to initiate the data files for each lake, to merge existing files into a master file, and to sort by location for ease in checking by researchers. SAS can also be used to calculate codes to be attached to each lake as an identifier, because it has all arithmetic and logical functions available. SAS has output report-generating capability to produce forms which are automatic to the
user. The user does not have to worry about what fits on a page; that is accomplished by the program as well as the carryover to succeeding pages. Reports are numbered by observation, labeled, and paged. Finally, SAS can be used to build new data sets and write them in a standardized format, or pass them to other programs which will display the data.

(2) Provide an Interactive Framework

The University of Idaho recently implemented a new computer system, which utilizes two IBM 4341's to handle batch and interactive (terminal) computer processing with in the University. The terminals provide easier access to shared data files and sophisticated analys is packages. The information system created by GRASP is implemented on the interactive system with a backup on the batch processor, as well as protection of the data files and programs on peripheral storage (disk while operational, and magnetic tape at the close of the project). The only reason for not leaving the system up and operational at all times is the cost of disk space required to maintain the interactive capabilities. (Minimum required is $\$ 9.00 /$ month, plus $1 \$ /$ track/day for batch disk space used (about $\$ 5.00 /$ month) ; temporary disk storage for operation of programs from the terminal is charged for, as is the run itself).

The new computer system allows for multiple use of the data files by different users from varying sites on campus. Only two individuals were involved in the data input of the lakes data on Idaho because of the need for consistency and minimization of errors during input. We could, however, work at our convenience. From the terminal corrections are added to the file by using the editor facility provided by the interactive computing system, XEDIT. A cursor is easily moved around the screen and
corrections are made simply by typing over the existing symbol. Complete lines of data can be added or deleted by the typing of one character. Viewing the data file is easily accomplished. Changes throughout can be made very easily. For example, if reservoir has been misspelled several times, a global spelling change can be made to correct all entries in the data file; or, all occurrences of "reservoir" could be changed to "reser" for consistency in the file. If a change is needed in an observation, and its location with in the data set is unknown, a search can be made for any set of adjacent or continuous letters or numbers to find the item. Messages can be sent back and forth between users while on the system, or they can be left for future announcements when the other researcher "logs on". From the interactive mode, one can enter a "job" to back up corrections made and list the new data file, either sorting alphabetically or just getting a straight listing of the data file. Data files can be used to store data as well as FORTRAN, SAS, or PL/1 programs to manipulate the lake data files.

The data handling facility of the interactive full screen terminal is invaluable to a researcher trying to initialize a large data file such as one with variables on all the lakes of Idaho. Trying to do this with a punched card format would take much longer and open up all other sorts of errors. Harder yet would be opening up the data set to more than the one person who had access to the cards. The data set is always current, regardless of which researcher accesses it. A 'read only' mode insures that no one can tamper with the basic data set.

(3) Enhance Analyses and Presentation

The third primary aim of the GRASP PROJECT was to provide the capability of accurately portraying the accumulated information about Idaho's
freshwater lakes in a graphics mode. There is a statistical graphics capability available through the SAS package. Vertical and horizontal bar graphs are easily requested from the system for any variables within the file. For example, it is possible to obtain the graphical representation of a frequency bar chart of lakes by elevation. This is accomplished by adding one statement to the SAS requests: PROC CHART; VBAR ELEV; (for a vertical bar graph) or PROC CHART; HBAR ELEV; (for a horizontal bar graph). If there is a desire for scatter diagrams or REGRESSION analyses between or among variables, similar statements concisely written will obtain the information. There is no need to detail all possible graphic capabilities because there is a thick manual on the SAS system and it is designed to be user-friendly. Another useful graphic available on SAS is the pie chart.

At the start of the project it was thought that data would be forthcoming from the battery of researchers which would lend itself to display through county maps (shaded -- choropleth), or even three dimensional perspectives of some data. Data display programs are available in SAS for the former (SAS-GRAPH) and through external sources in the Geography Program Library for the latter (SYMAP, SYMVU). No data are currently available on lakes for inclusion in this report. There is a SAS-GRAPH system manual in the University Bookstore and one for the complete SAS system. Inquiries can be made to the Geography Department for information regarding available computerized mapping systems.

Frequency bar charts, pie charts, and other graphics of the SAS system can be obtained as printer output or plotter output. Examples of some of the available graphics are displayed in Figures on the next few pages.

All figures on pages 12 through 25 were produced using SAS statements.

The frequency bar chart on page 12 is produced on the plotter by SAS-GRAPH, and the coresponding printer vertical and horizontal frequency bar charts appear on pages 13-14. The HEIG in each case was a classification variable constructed from elevation values to sort lakes into a height category from less than 1000 feet above sea level to over 9,000 feet above sea level. (Complete definition is on page 30.)

The frequency bar charts on pages 15-16 are produced in the same way and display the frequency of lakes in Idaho stratified by eleven basin codes (detailed on page 28). For example, the largest number of lakes are in basin 6, the Salmon.

Pages 18 and 19 display the classification category described in detail on page 30. The printer charts indicate the greatest number of lakes in the file are of SIZE 1 (less than 50 acres). There are only 20 lakes with over 5000 acres.

Pages 20 and 22 demonstrate the distribution of lakes by national forest code. Payette and Boise national forests contain a few more than 150 each.

Page 23 shows a pie chart produced by SAS-GRAPH of lake entries distributed by basin. For example, basin 6 (Salmon) has 446 lake entries. Page 24 shows a similar pie chrt of frequency by national forest.

A scatterplot produced on SAS-GRAPH for the Priority Lake file makes a comparison between the two variables, trophic status and elevation on page 25.

All plots or diagrams can be done through GRASP very easily. The program listing that produced the printer charts in on page 61 ; the one for the SAS-GRAPH plots is on page 66.
IDAHO LAKE DISTRIBUTION


```
S I A T I S T I C A L A A A L Y SIISS S Y S T E M FREQUENCY EAR CHART
```


M

$1=$

$$
m
$$

$$
\begin{aligned}
& \text { A L A A Y Y S } \\
& \text { FREQUENCY EAR CHART }
\end{aligned}
$$

SIZE
－

```
STATIISTIICAL ANALYSISSSYSTEN
FREGUENCY EAR CHART
```


CUM.
CUM:
PERCENT
PERCENT
83.39

E3. 39
12.41
55.80

1527
2.91
98.71

1547
1.29

IDAHO LAKE DISTRIBUTION

	FREQ	CUM ${ }_{\text {F }}$	PERCENT	CUM. PERCENT
*	14	14	1.23	1. 23
	160	174	14.02	15.25
$* * * * * * * * * * *$ $* * * * * * * *$	21	195		
		195	1.84	7.09
	14	209	1.23	18.32
	139	348	12.18	30.50
	142	490	12.45	42.94
**	93	583	8.15	51.10
	4	587	0.35	51.45
	129	716	11.31	62.75
	166	882	14.55	77.30
	106	988	9.29	86.59
***	73	1061	6.40	¢2. 59
	30	1091	2.63	95.62
	48	1139	4.21	99.82
	2	1141	0.18	100.00
FREQUENCY				

IDAHO LAKE DISTRIBUTION
 FREQUENCY DF BASIN

PRIORITY LAKE SCATTERPLOT

TROPHIC STATUS VS. ELEVATION

PROCEDURES

In order to accomplish the project's aims, a number of steps were taken. The first goal was to accumulate, store, and make available for analys is all of the common information on lakes of Idaho in a systematic nature for use by the research team. Since there was no existing inventory of the natural and man-made lakes in Idaho a list had to be made. This was done by the research team on the CLEAN LAKES PROJECT. Several researchers were involved in the effort and the result was three different, but overlapping, data files. Data was obtained from Metzger County maps for Idaho and from U.S. Geological Survey topographic maps for Idaho, mostly consisting of the seven and one-half minute quadrangle series. Variables collected included the following:
name of lake, reservoir, or pond
county code (1 to 44) - alphabetically by county name section, township, and range
latitude, longitude
basin code (1 to 11)
elevation
acreage
name of quad sheet
ownership code (1 to 7)
national forest code (acronym)
first, second and third order drainages with in basin
The codes are represented on the following two pages:

NAME (COUNTY)

1	
2	ADA
3	ADM-ADAMS
4	BANNCK
5	BEAR LAKE
6	BENEWAH
7	BINGHAM
8	BLAINE
9	BOISE
10	BNR-BONNER
11	BNL-BONNEVILLE
12	BOUNDARY
13	BUTTE
14	CAMAS
15	CANYON
16	CARIBOU
17	CASSIA
18	CLARK
19	CLEARWATER
20	CUSTER
21	ELMORE
22	FRANKLIN
23	FREMONT
24	GEM
25	GOODING
26	IDAHO
27	JEFFERSON
28	JEROME
29	KOOTENAI
30	LATAH
31	LEMHI
32	LEWIS
33	LINCOLN
34	MADISON
35	MINIDOKA
36	NEZ PERCE
37	ONEIDA
38	OWYHEE
39	PAYETTE
40	POWER
41	SHOSONE
42	TETNN
43	TWIN FALLS
44	VALLEY
	WASHINGTON

BASIN CODE BASIN
1

KOOTENAI
2

PEND OREILLE3
SPOKANE
PALOUSE
CLEARWATER
SALMON
BORDER SNAKE
LOWER SNAKE
MIDDLE SNAKE
UPPER SNAKE
BEAR RIVER

OWNERSHIP CODE
 OWNERS

1
2
3
4
5
6
7
NATIONAL FOREST
BUREAU OF LAND MGT
STATE
INDIAN RESERVATION
RESERVES, ENCOURAGE USE
RESERVES, DISCOURAGE USE
PRIVATE

BIT BOI
CAR
CHA
CLE
CDN KAN KOO NEZ PAY SAL SAW STJ TAR YNP

BITTERROOT
BOISE
CARIBOU
CHALLIS
CLEARWATER
COEUR D'ALENE
KANIKSU
KOOTENAI
NEZ PERCE
PAYETTE
SALMON
SAWTOOTH
ST JOE
TARGHEE
YELLOWSTONE

At the initiation of the CLEAN LAKES PROJECT, the CMS interactive system was barely beginning on campus. Terminals were not everywhere available and cluster sites across the campus did not exist. For that reason, the data coming to us from the three sources had been punched into cards. Those were read into the batch system, stored, and transferred to the interactive terminal system for display as soon as the equipment became available. There were several persons gathering data from maps and others coding it for at least two different keypunchers. Inconsistencies and errors were easily introduced. The first chore was to correct the many obvious spelling and keypunching errors. Concurrently additions were being made to each file by the different researchers and entered by the GRASP team.

Eventually, a merge of the three files was attempted using the SAS system. This proved to be more difficult than expected. The reason for the difficulty was spacing and spelling in the lake names. Spring Valley Reservoir would not match with Spring Valley R, or Grey's Lake would not match with Gray's Lake, or Grays Lake. After much ado, a merged data file was obtained and named LAKES MASTER. This file went through much massaging and numerous corrections. During this process, many listings were presented to the researchers sorted by basin, county, lat-long, and alphabetically. Additionally, sorted versions of the list of lakes were taken or sent to various federal, state, and local agency offices to check completeness of the list and to provide additional data.

A need was identified by the CLEAN LAKES PROJECT which required a subset of LAKES MASTER. It was titled PRIORITY LAKES. This file was obtained by adding a ' P ' to each of 123 selected lakes within the LAKES MASTER file. The sort is accomplished by SAS statements.

The PRIORITY LAKES file was intended to be the file where more detailed data on lakes studied this past summer could be added. These variables need to be added when the CLEAN LAKES researchers get them recorded.

Unique Lake Identifier Code
Another request of the CLEAN LAKES research team was for a unique identifier for the lakes which was related to the lake itself, its location, size, and elevation. This was accomplished for all lakes by using the SAS system again. The code was an 11-digit concatenation of alphanumeric characters having the following meaning:

Character	Description
1-2	bas in code
3-6	4 letters of lake name
7	SIZE:'1' = acreage less than 50
	'2' = acreage greater than 50 , to 500
	${ }^{\prime} 3^{\prime}=$ acreage greater than 500 , to 5000
	'4' = acreage greater than 5000
8-10	3 letter code for county name
11	HEIG: ${ }^{\prime} \mathbf{'}^{\prime}=$ less than $1000 '$ elevation
	'1'= GE 1000 and LT 2000' elevation
	'2' = GE 2000 and LT 3000' elevation
	${ }^{\prime} 3^{\prime}=$ GE 3000 and LT 4000' elevation
	'4' $=$ GE 4000 and LT 5000' elevation
	'5' = GE 5000 and LT 6000' elevation
	'6' $=$ GE 6000 and LT 7000' elevation
	${ }^{\prime} 7{ }^{\prime}=$ GE 7000 and LT 8000' elevation
	'8' $=$ GE 8000 and LT 9000' elevation
	'9' $=$ GE 9000' elevation

The statement in SAS which provided the unique codes was as follows:

KODE=SUBSTR(BASIN, 1,2$)||\operatorname{SUBSTR}(\operatorname{LAKE}, 1,4)|| \operatorname{SUBSTR}(\operatorname{SIZE}, 1,1)|\mid$
SUBSTR(COUNTY, 1,3)|| SUBSTR(HEIG,1,1);
Except for defining two of the variables and setting their limits (HEIG, SIZE), that was all that was needed. The listing of the program setup in SAS is in the APPENDIX as 'KODE HEADER'.

Some Details on Listings
To obtain a listing of all lakes in the file, the only needed statement for an alphabetical sorting is:

PROC SORT; BY LAKE;
To obtain a listing by lake and within like names by township range, the statement would be as follows:

PROC SORT; BY LAKE TOWNSHIP RANGE;
Each of these statements must be followed by a print and variable statement such as:

PROC PRINT; VAR LAKE SEC TOWNSHIP RANGE CTY LAT LONG BASIN ELEV;
Also possible is a listing first sorted by basin, with each basin starting on a new page, and then the lakes are sorted by county and alphabetically listed. The statements for that are as follows:

PROC SORT; BY BASIN COUNTY LAKE TOWNSHIP RANGE;
PROC PRINT PAGE; BY BASIN;
VAR LAKE SEC TOWNSHIP RANGE CTY ELEV ACREAGE;
These statements are placed in 'MASTER TRAILER' (see APPENDIX).

Data Manipulation Through the SAS System
In the same manner as provided above in the examples on varied listings, a researcher can "question the data file". Any kind of logical
search that can be written regarding the values embodied within the data file can be used for manipulation and creation of new variables about the lakes of Idaho. For example, the SIZE variable used above in the KODES program was derived as follows:

IF ACREAGE LT 50 THEN SIZE = '1';
IF ACREAGE GE 50 AND ACREAGE LT 500 THEN SIZE = '2';
IF ACREAGE GE 500 AND ACREAGE LT 5000 THEN SIZE = '3';
IF ACREAGE GE 5000 THEN SIZE $=$ '4';
Therefore, SIZE is created as a function of the values of acreage.

Essentially the product of GRASP is an amalgam of files created by the SAS system as it was used to create the standardized data files holding information on all of Idaho's lakes, along with a system which utilizes a search and spatial display program written in FORTRAN for the Calcomp Plotter. It is foremost the data base of Idaho lake information which heretofore was non-existent. The format is such that anyone can expand on its usefulness by adding more data variables as they become available.

Files of SAS Statements, Data, and Programs (1isted in Appendix)
CREATE ADDPROGS A setup showing how to load programs onto a partitioned data set in object form. This is the plot program.

CREATE PGMPDS A setup showing how to initiate the disk space for the above creations.

ADD DATAPGM

KODE HEADER

JCL SAS

A setup showing how to add study area outlines to the data file. All 44 counties and the Idaho State Boundary have been stored.

A SAS setup used early in the data file construction to establish letter versions of county codes, make several manipulations, and create a shorthand code for identifying each lake. The JCL to precede a batch run on SAS, yielding multiple copies. The account code will need to be changed to one that is current. Note prices.

SASPLOT PLIOPT The source listing of a PL/1 program to convert latitude-longitude coordinates into $X-Y$ coordinates which will be compatible with the county outlines for Idaho.
PRIORITY LAKES A file containing 123 lakes earmarked from the LAKES MASTER because of interest in gathering more variables for a detailed study. At the moment the only additional variable added is a two-letter designation or code representing the supposed trophic condition based on known history prior to the on-the-scene summer measurements made by the researchers of the CLEAN LAKES project. This file awaits more data.
A file containing 1547 entries, presently with 3 cards (records) for each lake. The JCL in MASTER HEADER describes where with in the record each variable resides, along with the name assigned.

Variables include:
LAKE The name of any body of water, including those without names assigned on maps. Unnamed waters are included as ZLAKE, ZLAKES, ZRES, N/N. Sometimes a number follows in parentheses indicating the count of several close by, or (E) for ephemeral.

Consistency was sought in spelling out LAKE or abbreviating RES. If a lake is normally called Lake Something, instead of Something Lake, it was entered in the file as LOWELL, LAKE with the comma; otherwise no comma is present.

Cross-entries are put in whenever both names are known, e.g. Lapwai L (Winchester). This expands the file somewhat, but it certainly helps in the identification when the local name is different from that on the published map.

KODE $\quad 11$-digit code, as derived and discussed previously

SEC The section (American System of Land Survey) expressed as two digits

TOWNSHIP The township expressed as TO9N
RANGE The range expressed as R42E
LONGITUDE The longitude expressed as $111 \quad 2915$ (degrees, minutes, seconds)

LATITUDE The latitude expressed as 450500 (degrees, minutes, seconds)

BASIN A two-digit code ranging from 1 to 11 (codes presented earlier in this report)

CTY A two-digit code, numbers 1 to 44 applied to the counties in alphabetical order

ELEV The elevation of the lake expressed without decimal, as 5154

ACREAGE The size of the lake expressed to the nearest tenth of an acre, as 5.7 (if that detail is known). Most of the acreages are specified as 58., instead of 58.0. When a printout is requested, however, the zero is printed

BASIN1 The primary drainage (usually the same as the number code used above in BASIN). For example, using SPRING VALLEY RESERVOIR, the BASIN code would be 5 (Clearwater)

The variable BASIN1 would be an alphameric one, CLEARWATER R

BASIN2 The secondary drainage; in the case above, we have POTLATCH R

BASIN 3 The tertiary drainage; in the case above, we have BIG BEAR CK

A variable added to the LAKES MASTER to designate if the lake was a priority one or not. P means it is; nothing means it's not.

QUADSHEE The name of the quadrangle from which the information was taken and on which the lake can be found. The name is expressed alphamerically as, MOSCOW MTN, ID

If the name is preceded by an asterisk (*), then the lake appears on multiple quad sheets.

OWNERS The codes for this variable are listed earlier in the report. The ownership of the lake and land immediately adjacent to it is indicated as private, BLM, national forest, etc.

NOTE: The final lakes file enters these separately as OWNER1, OWNER2 ... etc.

NAFOREST The codes for this variable are listed earlier in the report. Assuming the ownership is Forest Service, this variable is an acronym describing which forest, for example, BIT is the Bitterroot National Forest.

LATIN, The $X-Y$ coordinate derived using LONGIN SASPLOT PLIOPT to convert latitudes and longitudes to a coordinate system compatible with the plotter coordinates of county outlines.

TROPHIC A two-character code expressing for PRIORITY LAKES only, the expected trophic condition of the lake (prior to summer measurements).
$0=01$ igotroph ic
$O M=$ oligo-mesotrophic
$M=$ mesotrophic
$E=$ eutrophic
HE = hypereutrophic
$U=$ unknown

The program which allows a search of either file depending on variables of interest. Look on listing for more detail (search of Priority File costs \$1.36)

PLOT SETUP

SELECT EXAMPLE

CHARTS MASTER

PURPLE LOOK

SASGRAPH A SAS GRAPH setup for producing bar charts, pie charts, CHARTS A program to create a plot within an outline of the spatial distribution created by choice from 'MACRO SAS'. Plot of search from above costs approximately \$.43. A combination of the two programs above. For a search involving complete master file, cost will vary from $\$ 5.36$ to $\$ 11.00$. A selection example which chooses lakes in Bonner County under 2400^{\prime} elevation and larger than 50 acres is displayed.

A SAS setup showing to to request printer output of frequency bar charts.

Two listings produced by MACRO SAS search routine. and scatter plots on the plotter.

In the Appendix are listings of setups, data files, and program explanations. The SAS setups will suggest further inquiries to future researchers using this data file. The Appendix should assist researchers in formulating decisions about certain aspects of variables wtthin the LAKES MASTER file by describing the SAS statements to produce selected examples. Finally the GRASP procedures to obtain a plot of the spatial distribution of chosen lakes with in the state or specific bounty outline is included.

The Appendix follows. It is a mixture of annotated program setups, source program files, output and instructions.

APPENDIX

```
THIS IS THE WAY TO ADD SOURCE PROGRAMS TU THE PROGRAM PDS (PARTITICNED DATA SET), WHICH HOLDS LOAD MODULES (OBJECT PREGRAMS)
ALSO, THE PROGRAM LISTED HERE IS THE ONE USED TO READ THE CUUNTY CCCRDINATES, cumbine them with the lake cocrdinates, and produce a plot of the selection occurring in the 'macrg sas' part.
```

```
    //JADDPGM JUB ( \(x x x x x x x, x x x-x x-x x x x, 13\) ),'LASTNAME'
    //* PASSWQRD \(=x x x x x\)
    // EXEC FGRTGCL,LIBI='SYSI.PLCTLIE'
    //FORT.SYSIN DD *
        DIMENSION \(\mathrm{X}(900), Y(900), \times 2(900), Y 2(900)\), TITLE 20\()\),
        *IBCU(2),KOUNTY(2)
            DATA BLANK/' '/
        C ===> OUTPUT IS TO PLCT TAPE CNLY
        \(\mathcal{C}===>\) INPUT FILE 05 IS COUNTY CCORDINATES. HEADER = SCALE FACTOR,
        C------------HEADER --2 CARDS
        C------ 1 ST: NAME OF CCUNTY ( 8 CHARS), NUMBER OF COCRDS (13)
        C-- 2ND: SCALE FACTCR, OFFSET \(X\), OFFSET Y (3F10.2)
        \(C==\Rightarrow\) INPUT FILE 07 IS LAKES CLCRDINATES AND ACRONYMS \((8\) LETTERS MAX)
        C \(==\Rightarrow\) INPUT FILE 08 IS TITLE TC BE PRINTED ON TGP CF MAP
            REAL (8,100) Title
        C OPTIUNAL TITLE READ IN UN UNIT 8
        100 FCRMAT (2044)
            READ \((5,30)\) KLUNTY,N
        30 FORMAT (2A4,13)
            READ (5,1) FAC,CFSX,OFSY
    C COUNTY CCGRDS COMING IN CFF PDS
            FLRMAT ( 3F10.2 )
            \(A=1.0\)
            \(B=9.5\)
            \(H T=.07\)
            ISYM=1
            \(Z=0\).
            \(\mathrm{NZ}=0\)
            DC \(20 \quad 1=1, N\)
            \(20 \operatorname{REAC}(5,2) \times,(1), Y(I)\)
            2 FCRMAT (10X,2F10.0)
            CALL PLCTS (0,0,13)
            CALL PLET \((0.0\), C.0., 3\()\)
            \(X(N+1)=0\).
            \(x(N+2)=1\).
            \(Y(N+1)=0\).
            \(Y(N+2)=1\).
    CALL LINE \((X, Y, N, 1, N Z, N Z)\)
C MUST ALLCW FOR K TC COME IN FRCM THE FIRST CARD ON LAKES FILE
```

```
FILE: CREATE AUDPROGS AI
UN I VERSITY
```

```
    READ (7,31) K
```

 READ (7,31) K
 31 FCRMAT (13)
31 FCRMAT (13)
DO 40 I= 1,K
DO 40 I= 1,K
READ(7,3) (IBCD(J),J=1,2), X2(I),Y2(I)
READ(7,3) (IBCD(J),J=1,2), X2(I),Y2(I)
FORMAT (2A4,2F5.0)
FORMAT (2A4,2F5.0)
X2(I)=(X2(I)-OFSX) % FAC
X2(I)=(X2(I)-OFSX) % FAC
Y2(I)=(Y2(I)-0FSY) \#FAC
Y2(I)=(Y2(I)-0FSY) \#FAC
X2(1)= X2(1)+.17
X2(1)= X2(1)+.17
NC = 8
NC = 8
CALL SYMBOL(X2(I),Y2(I),HT,IBCD,Z,NC)
CALL SYMBOL(X2(I),Y2(I),HT,IBCD,Z,NC)
X2(I)=X2(I)-..17
X2(I)=X2(I)-..17
40 CJNTINUE
40 CJNTINUE
X2(k+1)=0.
X2(k+1)=0.
x 2(k+2)=1.
x 2(k+2)=1.
Y2(K+1)=0.
Y2(K+1)=0.
Y2(K+2)=1.
Y2(K+2)=1.
CALL LINE(X2,Y2,K,1,-1,ISYM)
CALL LINE(X2,Y2,K,1,-1,ISYM)
CALL PLCT(Z,Z,3)
CALL PLCT(Z,Z,3)
CALL SYMBOL(A,B,.21,TITLE,Z,80)
CALL SYMBOL(A,B,.21,TITLE,Z,80)
223 CALL PLCT (Z,Z,999)
223 CALL PLCT (Z,Z,999)
STCP
STCP
END
END
/*
/*
//LKED.SYSLMOD DD DSN=PURPLE.PRCGRANS,UNIT=DISK,DISP=ULD
//LKED.SYSLMOD DD DSN=PURPLE.PRCGRANS,UNIT=DISK,DISP=ULD
NAME CNPLCTS(R)

```
    NAME CNPLCTS(R)
```

0 F
I D A
H O

FILE: CREATE PGMPOS A

THIS IS THE WAY TC ORIGINATE THE PLACE TO LUAD pROGRAMS ('CBJECT DECKS CF SLULRCE PRCGRANS)

//JPGMPDS JCB ($x x x x x x, x x x-x x-x x x x, 13$), 'LASTNAME' //* PASSNOKD $=x x x x x$
// EXEC PGM=IEFBR 14
//DC1 LD DSN=PURPLE. PREGRAMS, SPACE=(CYL, (1,1,10)),
// UISP = (NEh, CATLU, DFLETE), UNIT=DISK

THIS PRCGRAM SETUP WAS USED TO INITIATE OUTLINES TO BE ADCED TC THE COUNTY FILES RESIDING CN THE PARTICNEC DATA SET, PURPLE.COUNTY.

THE SECCND CARD IN EACH CQUNTY CONTAINS THE FACTUR, UFFSET X, AND CFFSET Y TC APPLY TC EACH COORDINATE SET OF THE COUNTY WHEN PLCTTING INDIVIDUALLY, SO THE PLGT WILL BE REACABLE. LAKE COCRDINATES ARE THE SAME FACTURS WITHIN THE PLCT PRCGRAM, CNPLCTS FORTRAN.

ALL 44 CCUNTIES OF IDAHC AND THE STATE OUTLINE WERE ADDED IN THIS FASHION. MCST HAVE BEEN ELIMINATED here to save space in tris report.

Nute: Since the data file has nuw been createo, ic make adoitions, one needs tc remcye the CARDS RELGW WHICH OPEN THE FILE...CARDS 3-6


```
//* PASSWCRD = XXXXXXXX
// EXEC PGM=IEFBR14
//DD1 DD DSN=PURPLE.CCUNTY,SPACE=(CYL,(1,1,10)),
// DISP=(NEW,CATLG,DELETE),UNIT=CISK,
// DCB=(LRECL=80,KECFN=FB,BLKSIZE=6400)
// EXEC PGM=IERUPUTE,PARM=MDD
//SYSPRINT LC SYSOUT=A
//SYSUT1 DD DSN=PURPLE.CCUNTY,DISP=SHR
//SYSUT2 DD DSN=PURPLE.CCUNTY,DISP=SHR
//SYSIN DD*
-/ ADD NAME=ADA
ADA 8
    8.74 2.52 1.68
    0.0 9.00
    2.53 9.00
    5.33 6.03
5.33 0.0
2.88 0.0
0.96 2.18
0.0 2.45
0.0 9.00
./ ADD NAME=ACAMS
ADAMS 15
        7.20
                            2.10
                                    3.68
    1
    2
    3
    4
            4.00
            .40}9.0
            F.11 7.42
            .05 7.42
```


0

(1) CREATE COUNTY Names tc ge with code NUMBERS ICORRECTING ORIGINAL KEYPUNCHING ERRORS INCLUDING THOSE RESULTING FRGM INPRCPEF ALPHABETIZING OF COUNTIES WHEN COUES ASSIGNED AT START.
(2) CREATE UNIQUE FIRST THREE CHARACTERS IN NAME TC BE USED IN ABBREVIATED AND UNIQUE KCDE FOR I. AKES.
(3) CREATF 'HEIGHT' CCDE TO CLASSIFY LAKES FUR USE IN KCOE
(4) CREATE 'SIZE' CODE TO CLASSIFY LAKES FGR USE IN KODE
(5) TO CREATE AN 11-DIGIT KODE WHICH IS A SHORTHAND DESCRIPTION CF LAKE'S NAME, LCOATICN, AND SIZE

DATA MASTER;
LENGTH KODE \$11;
LENGTH HEIG \$1 SIZE \$1:
LENGTH CCUNTY $\ddagger 10$;
INPUT S1 2. LAKE \$21. SEC \$2. P \$2. TOWNSHIP \$5. RANGE \$5. LCNGITJD \$10.
LATITUDE \$10. FILL 3. BASIN \$2. FIL2 3. CTY \$2. ELFV 5. ACREAGE 8.1
\#2 S2 2. LAKE \$21. SEC \$2. P \$2. RASIN1 \$15. BASIN2 \$15. BASIN3 \$15.
\#3 53 2. LAKE \$21. SEC \$2. D \$2. QLADSHEE \$25. OWNERS \$5. NAFUREST \$10.;
IF CTY $={ }^{\prime} 11^{\prime}$ THEN CTY $=1^{\prime} 1^{\prime}$;
IF CTY $=2^{\prime}$. THEN CTY $=12^{\prime}$;
IF CTY $=13$. THEN CTY $=13^{\prime \prime}:$
IF CTY $={ }^{\circ} 4^{\prime}$. THEN CTY $=14^{\prime}$;
IF CTY $=5^{\prime}$, THEN CTY $=5^{\prime}$;
IF CTY $=$ ' $^{\prime \prime}$. THEN CTY $=$ ' 6':
IF CTY $=17$, THEN CTY $=17^{\prime}$;
IF CTY $=18$. THEN CTY $=$ ' $^{\circ}$ '
IF CTY $=19$ ' THEN CTY $=$ ' 9';
IF BASIN='1 THEN BASIN=' 1';
IF BASIN='2 THEN BASIN=' 2°;
IF BASIN $={ }^{\prime} 3$ • THEN BASIN=' 3^{\prime};
IF BASIN=14 THEN BASIN=' 4';
IF BASIN $=15$ ' THEN BASIN = ' 5';
IF BASIN $={ }^{\prime} 6$ ' THEN BASIN=' 6^{\prime};
IF BASIN=! 7 ' THEN BASIN=' 7^{\prime};
IF BASIN=18 THEN BASIN=1 8':
IF BASIN='9 ' THEN BASIN=' 9';
IF CTY $={ }^{\prime} 9^{\prime}$ THEN CTY $=15^{\prime \prime}$;
IF CTY $={ }^{\prime} 10^{\prime}$ THEN CTY $={ }^{\prime}$ ' $^{\prime}$ ':
IF CTY $={ }^{\prime} 4^{\prime}$ ' THEN CTY $={ }^{\prime} 10^{\circ}$;


```
IF ELEV GE 8000 AND ELEV LT 9000 THEN HEIG=' &';
IF ELEV GE 9000 THEN HEIG='9';
IF ACREAGE LT }50\mathrm{ THEN SILE = '1';
IF ACREAGE GE 50 AND ACREAGE LT 500 THEN SILE ='2';
IF ACREAGE GE 500 AND ACREAUE LT 5000 THEN SILE = '3';
IF ACREAGE GE 5000 THEN SIZE = '4';
KODE=SUBSTR(BASIN,1,2)||SUBSTR(LAKE,1,4)||SUBSTRISIZE,1,1)||
    SUBSTR(CCUUNTY,1,3)||SUBSTR(HEIG,1,1);
CAROS:
```

FILE: JCL SAS AI UNIVEPSITY EFIDAHE

```
THIS IS THE PRECEDING JCB COivTRCL LANGUAGE TU RUN
A BATCH JCB LISTING WHICH WILL PRCDLCE MULTIPLE
COPIES GF A SEARCH, SUCh AS EY BASIN
    ACTUAL CCSTS FOR. SURTS CF LAKES NASTER FILE:
BY DASIN = $10.37 (FCR PRIME TIME,CHEAPEF LATE)
BY CLUNTY= 7.76
ALPHABET ICALLY=12.11 (RUN ALSO INCLLDED CHARTS
                                    USED AS FIGURES 1 TC 4)
SORTS BY SAS ARE RELATIVELY EXPENSIVE
```

//JLAKES JCB (ACCTCODE, $x \times x-x x-x x x x, 10), ' L A S T A A M E '$
1/* PASSWCRD $=x x x x x$
// EXEC SAS
$/ / S A S . F T 12 F O O 1$ DD $S Y S C L T=A, D C B=(R E C . F M=V B A, L R E C L=137, B L K S I Z E=141)$,
// CCPIES=8

```
FILE: MASTER HEADER AI
UN I V ERS I T Y
C F
I D A H C
```

THIS IS THE INITIALIZATION OF VARIAELES WITHIN THE LAKES MASTER FILE

IT MUST PRECEDE THE LAKES MASTER FILE, OR THE PRIORITY LAKES FILE.

```
DATA MASTER;
INPUT S $1. KODE $11. LAKE $25. SEC $2. TOWNSHIP $4. RANGE $4.
    LONGITUD $10. LATITUDE $10. BASIN 3. CTY 3. ELEV 5.
    SILE $l. HEIG $l.
#2 T $1. ACREAGE 7.1 BASIN1 $15. BASIN2 $15. BASIN3 $15. COUNTY $10.
    NAFOREST $3. CWNER1 $1. CWNER2 $1. ChNER3 $1. OWNER4 $1.
    CWNER5 $1.
#3 U $1. QUADSHEE $25. P $2. TR.OPHIC $2. LATIN 71-75 2 LCNGIN 76-80 2;
CARDS;
```

```
THE FCLLOWINC CARDS ARE REPRESENTATIVE
OF ThUSE TO TRAIL THE vata file in sas
SETUP.
THESE SPECIFY A SOKT bY LAKE, TCinNSHIP, RANGE. OR,
FIRST THE SIRT IS BY LAKE AIVU THEN TUWNSHIP RANGE
within lakes having the same náme.
THE PROC PRINT; VAR
SPECIFIES THE DESIRFD ORDER OF DATA VARIABLES
ON THE PRINTOUT. ALL LAKES IN THE FILE WILL BE
LISTED IN THE SORTED VERSIGN.
```

PROC SOKT; BY LAKE TCWNSHIP RANGE;
PKOC PKINT;
VAR KODE LAKE SEC TUNNSHIP PANGE CTY LATITUDE LONGITUI BASIN ELEV ACREAGE GUAESHEE CVINERS NAFGREST;
PRUC PRINT;
VAR KODE LAKE SEC TOWNSHIP RANGE BASIN EASINI BASIN2 BASIN3 CCUNTY ELEV ACREAGE;

```
THIS SAS SETUP IS USED AS THE FIRST PART OF ANY
LIST TO PRCVIDE A KEY TC THE CCDES USED IN THE
LAKES FILE.
NOTE: WHEN SEARCHES ARE NADE BY COUNTY (REFERRING TO
THE ALPHABETIC NAMEJ, THE FOLLOWING 3 CCUNTIES MUST BE
NAMEU THUSLY, OR SEARCH FAILS FOR LACK OF A MATCH):
```

```
ADM-ADAMS
```

ADM-ADAMS
BNR-BCNNER
BNR-BCNNER
BNL-BONNEVILLE

```
BNL-BONNEVILLE
```



```
CCUNTY= 19 CTYINAME = 'CLSTER '
CCUNTY= 2O CTYNANE = 'ELMORE *
CUUNTY= 21 CTYNAME = 'FRANKLIN *
CCUNTY= 22 CTYNANE = 'FRENONT *
COUNTY= 23 CTYNAME = 'GEM '
COUNTY= 24 CTYNANE = 'GOOLING '
COUIVTY= 25 CTYINAVE = '1DAHO '
CCUNTY= 2t CTYNANE = 'JEFFERSCN .'
COUNTY=27 CTYINANE = 'JERIMME '
COUNTY= 28 CTYNAME = 'KOCTENAI ,
COLNTY= 29 CTYNAME = 'LATAH '
CCUNTY= 30 CTYNANE = 'LEMHI '
CCUNTY= 31 CTYNANE = 'LEWIS '
COUNTY= 32 CTYNANE = 'LINCCLN '
COUNTY= 33 CIYNANE = 'NADISON *
COUNTY= 34 CTYNANE = 'NINIDOKA *
CCUNTY= 35 CTYNAME = 'NEZ PERCE *
CCUNTY= 36 CTYNAME = 'INEIDA *
CCUNTY= 37 CTYNANE = 'CWIYHEE '
CCUNTY= 38 CTYNAME = 'PAYETTE '
COUNTY= 3C CTYNAML = 'DOWER ,
CUUNTY = 40 CTYINAME = 'SHCSSHCNE '
CCUNTY= 41 CTYNAME = 'TETCN '
CCUNTY=42 CTYINAME = 'TWIN FALLS ,
COUNTY=43 CTYINANE = 'VALLEY *
CCUNTY=44 CTYNANE = 'NASHINGTON "
PRUC PRINT; VAR CTY CCUNTY FACRCN FCREST RASNUN BASI CWNCOUE DRNERS;
```

THIS IS A SETUP OF A SAS RUN TO OETAIN MLLTIPLE LISTINGS SORTED AND PRINTED BY BASIN, WITH EACH BASIA BEGINNING CN A NEW PAGE AND SORTED WITHIN BY COUNTY ANC THEN BY LAKE.

```
//JBASALF JCE (ACCTKOC, XXX-XX-XXXX,10), 'LASTNANE',CLASS=A,TIME=5
//* PASSWURD = XXXXX
// EXEC SAS
//SAS.FT12FOO1 DD SYSCUT=A,DCE=(RECFM=VBA,LKECL=137,BLKSIZE=141),
// CCPIES=8
PUT IN NAMELIST HEADER HERE
```

DATA MASTER;
INPUT S \$1. KCDE \$11. LAKE \$25. SEC \$2. TCWNSHIP \$4. RANGE \$4.
LONGITUD \$10. LATITUDE \$10. BASIN 3. CTY 3. ELEV 5.
SIZE \$1. HEIG \$1.
\#2 T \$1. ACREAGE 7.1 BASIN1 \$15. BASIN2 \$15. BASIN3 \$15. CCUNTY \$10.
NAFQREST \$3. CWNERI \$1. CWNER2 \$1. CWNER3 \$1. CWNER4 \$1.
CWNER5 \$1.
\#3 U \$1. UUADSHEE \$25. P \$2 LATIN 71-75 2 LCNGIN 76-80 2;
CARCS;
PUT IN THE DATA FILE HERE
$\ldots(L A K E S$ MASTER OR PRIORITY LAKES) ..

PROC SOPT; BY BASIN CCUNTY LAKE TCWNSHIP RANGE; PROC PRINT PAGE; BY BASIN: VAR KCDE LAKE SEC TOWNSHIP RANGE CCUNIY LCNGITUC LATITUDE BASIN ELEV ACREAGE UUADSHEE CWNERS NAFCREST;
PROC PRINT PAGE; BY BASIN; VAR KGDE LAKE SEC TCWNSHIP RANGE BASINI BASINZ EASIN3 CTY ELEV ACREAGE;

THE PL-1 PROGRAM USED TC CCNVERT LAT-LCNGITUDE COORDINATES OF LAKES TO AN X - Y COCRDINATE SYSTEM COMPATIBLE WITH EXISTING COUNTY OUTLINES IN IUAHO AVAILABLE FOR PLCTTER USAGE.

```
SASPLOT: PROC OPTIONS (MAIN):
    DCL SAS FILE RECORD INPUT ENV(FB,RECSIZE(80)),
        MOD FILE RECORD OUTPUT ENV(FB,RECSIZE(80));
    OPEN FILE (SAS) INPUT;
    OPEN FILE (MOD) OUTPUT;
    ON ENDFILE (SAS) GOTO EOFI;
    DCL 1 SASIN,
        2 LINE CHAR(80);
    DCL 1 SASOUT,
            2 LINEO CHAR(70),
            2 LONGCHAR PIC'99V.99',
            2 LATCHAR PIC'99V.99';
    DCL NAME CHAR(25);
    DCL (LATDEG,LATMIN,LONGDEG,LCNGMIN,LAT,LCNG) FIXED(9,2),
            (LATSEC,LONGSEC) FIXED(9,2),
            SIXTY FIXED(9.2) INIT(60.),
            THREE_SIXTY FIXED(9,2) INIT(360.),
            MAXLAT FIXED(9,2) INIT(4S.38),
            MAXLONG FIXED(9,2) INIT(118.71),
            LATFACT FIXED(9,2) INIT(1.6),
            LONGFACT FIXED(9,2) INIT(1-2);
    DCL (LATDECIMAL,LONGDECIMAL,TLAT) FIXED(9,2);
    DCL MAXY FIXED(9,2) INIT{11.31);
            DC WHILE('1'B);
            READ FILE (SAS) INTO (SASIN);
            NAME=SUBSTR(LINE,13,25);
            LATDEG=SUBSTR(LINE,58,2);
            LATMIN=SUBSTR(LINE,61,2);
            LATSEC=SUBSTRILINE,64,21;
            LONGDEG=SUBSTR(LINE,48,3);
            LONGMIN=SUBSTR(LINE,52,2);
            LONGSEC=SUBSTR(LINE,55,2);
            LAT=LATDEG+(LATMIN/SIXTY)+(LATSEC/THREE_SIXTY);
            LONG=LONGDEG+(LONGMIN/SIXJY)+(LONGSEC/THREE_SIXTY);
            LATDECIMAL=(MAXLAT- LAT)*LATFACT;
            LONGDEC IMAL=(MAXLONG-LONG)*LONGFACT;
PUT SKIP LIST ('SYMAP Y, X =',NAME,LATDECINAL,LONGDECIMAL);
/* NOW IN SYMAP Y & X IDAHO STATE COCRDINATES */
/* MOVE ORIGIN AND FLIP AXIS */
            LATDECIMAL=MAXY-LATDECIMAL;
            LATCHAR=LATDECIMAL;
```

```
    LONGCHAR=LONGDECINAL;
    WRITE FILE (MOD) FROM (SASIN);
    READ FILE (SAS) INTC (SASIN);
    WRITE FILE (MOD) FROM (SASIN);
    READ FILE (SAS) INTO (SASIN);
    LINEO=SUBSTR(LINE,1,62);
    WRITE FILE (MOD) FRCN (SASCUT):
    END;
EOF1: CLOSE FILE (SAS),
    FILE (MOD):
END;
```

ThIS SETLP is a sample cf searching the file FLR CGMBINATIONS CF CNE CR MURE VARIABLES.
the selecticn takes place between tre caru (IITH DChN IN THE LISTINC) MACRC SELECT ANC THE * SYNBCL *

NU SYMBOLS, PERILDS, CR SENICCLCNS SHCULD APPEAR in ite statements. sample statenents fellum:

```
CTY EQ 25 AND ACREAGE GT 50
BASIN EG 7 AND ELEV GT 3CCO
COUNTY EG 'ENR-BCNNER' AND SIZE GT '2' AND ELEV LT 4500
```

THE FOLLOWING EXAMPLE SIMPLY SEARCFES FOR BCNNER COUNTY BLI NOTICE THE REQUEST IS SPECIFICALLY FOR 'BNR-ECNNER'

```
//JEONNER JCE ( }x\timesx\timesxxx,xxx-xx-xxxx,13),'LASTNAME'
//* PASSUCRC=xXXXXX
//JUBLIB DD DSN=PURPLE.PRUGRAMS,CISP=SHR
// EXEC IEFBR14
//ERASE CD CSN=PURPLE.PLUTCC,LISP=(CLD,DELETE)
// EXEC SAS
//FT12FOO1 DC SYSOUT=A,
// DCH=(RECFM=V8A,LRECL=137,RLKSIZE=141)
//PURPLE DL DSN=PURPLE.PLGTJÜ,LNIT=DISK,SPACE=(TRK,(5U,10),RLSE),
// DCB=(RECFM=FB,LRECL=80,BLKSILE=6400),DISP=(NEW,CATLG,DELETE)
NACRC SELECT
COUNTY EQ 'BNR-BLNNER'
q
DATA NASIER;
INFILE CARDS END=ECF;
INPUT S $1 KGUE $11. LAKE $25. SEC $2. TOWNSFIP $4. KANGE $4.
                LONGITUD $IC. LATITUDE $1C. BASIN 3. CTY 3. ELEV 5.
                SILE $l. HEIG $l.
#2 T $1 ACREAGE 7.1 BASIN1 115. BASIN2 $15. RASIN3 $15. COUNTY $1J.
                NAFCREST $3. CWNEK1 51. CW'NER2 $1. CWNER3 $1. CWNER4 $1.
                CWNER5 $1.
#3 U $1 QUADSHEE $25. LATIN 71-75 2 LCNGIN 7G-80 2;
IF SELECT THEN DC;
N+1; OUTPUT; END;
IF EOF THEN DC;
        LAKE=' "; LATIN=N; LCNGIN=.;
        CUTPLT;ENC;
```

CARES:

```
PRUC SORT; BY LAKE;
CATA _NULL_; SET;
FILE .PURPLE;
            IF LAKE = ' ' THEN FUT LATIN 3.;
            ELSE PUT LAKE $8. LATIN 5.2 LCNGIN 5.2;
// EXEC IEEGENER
//SYSUT1 DO USN=PURPLE.PLCTUC,DISP=SHR
//SYSUT2 DD SYSOUT=A
```

```
THIS IS A SETUP UF \(A\) TCTAL PLOT RUN CN LATAH CCUNTY, AFTER 'MACRC SAS' HAS BEEN RUN TC SELECT CERTAIN LAKES AND CREATEC A FILE (PLRPLE.SELECT) with the necessary infoknatiun inclleed tc be used AS INPUT TO 'LATAH PLCT'
```

NCTE: A VALID ACCCUNT CCDE MUST EE SUBSTITUTED FGK 'PURPLE' in all instances beloh

CURRENTLY, THE PRCCECURE IS CPERATING "IN-Strean", but EVERYTHING IN THE PRCCELURE LISTING BETmEEN THE CARDS
//IDPLCT PREC CCLNTY=
AND
// PEND
CAN BE STOREL CN THE NAIN SYSTEM SC THAT THOSE CARCS COULD BE ELIMINATEC hITH EACF RUN AND THE CNLY CARD NECESSAPY hCULD BE:

// EXEC IDPLCT,CUUNTY=LATAH

the file 'latah plot' follews and prcdlces a plet UF THE COUNTY REQLESTEC $A N C$ A PLCT CF THE LAKES SELECTED BY THE 'MACRC SAS' PRCGRAM PREVIDUSLY RUN.
the enly changes necessary are tc make THE LAST CARC ANU 2NC CARC FKCN LAST CARD match the search requestec in 'macrc sas'

THE LAST CARU CCNTAIAS TITLE IAFCRNATICA TC
BE PRINTED AT THE TOP GF THE PLCT. THE 2ND
TC. LASI CARE MUST CCNTAIA THE CCLNTY NAME.

```
//JLATAH JUB (PURPLE, xxx-xx-xxxx),'LASTNAME'
//* PASShCRC=xxxxxxx
//JOBLIB DU ESN=PURPLE.PRGGRAMS,CISP=SHR
//IDPLCT PRCC COUNTY=
// EXEC PGN=CNPLCTS
//FT05F0O1 DU USN=PURPLE.CCUNTY(ECCUNTY),LABEL=(,,,IN),DISP=Srih
//FTOGF001 UC SYSCUT=A
//FIO7FOO1 DD DSN=PURPLE.SELECT,CISP=SHR
//FT13F001 CC USN=LAKES, UNIT=TAPE, LCB=(RECFN=U,DE,V=2,BLKSIZE=512),
// LABEL=(,NL),DISP=(NEn,KEEP)
//FTO8FUOL DC DUMMY
// PENC
// EXEC IUPLCT,CCUNTY=LATAH
//FT08FOOL DD *
THIS INFCRNATICN APREAES TCP CF PLCT---FILL IN APPRCPRIATELY
```

THIS IS A SANPLE SELECTICN FROM THE PRIORITY LAKES FILE FOR BCNNER COUNTY FCK LAKES LESS THAN CR EQUAL TC 2400 FEET ELEVATION ANO GREATER THAN CR EQUAL TO 50 ACRES ALSC, THIS EXAMPLE IS CF BOTH SEARCH AND PLOT AS CNE
PROGRAM OUTPUT IS CN NEXT PAGE ANL CLIST $\$ 5.36$, PLUS PLUT TIME

```
//JSELECT JOB (GEOGMAP,HUL-TG-UIST,13), HULTQUIST
    //JOBLIE DD DSN=PURPLE.PROGRAMS,[ISP=SHR
    / * UEST=TS
    //IDPLCT PRCC COUNTY=
    // EXEC PGM=LARGER
    //FTO5FOO1 DD DSN=PURPLE.COUNTY(&CCUNTY),LABEL=(,,,IN),OISP=SHR
    //FTOGFOO1 DD SYSOUT=A
//FTOTFOO1 DD DSN=PURPLE.PLUTDC,DISP=SHR
//FT13FOO1 DD DSN=LAKES,UNIT=TAPE,CCB=(RECFM=U,DEN=2,BLKSIZE=512),
//
//FTO8F001 CD DUMMY
// PEND
// EXEC IEFBR14
//ERASE OC DSN=PURPLE.PLCTOO,DISP=(CLD,DFLETE)
// EXEC SAS
//FT12FOOL DD SYSOUT=A,
// DCG=(RECFM=VBA,LRECL=137,BLKSIZE=141)
//PURPLE DD OSN=PURPLL.PLOTDO,UNIT=CISK,SPACE=(TKK,(50,10),KLSE),
// DC B = (RECFM=FB,LRECL=80, ठLKSIZE=6400),DISP=(NEW,CATLG,DELETE)
NACRC SELECT
CCUNTY EQ 'BNR-BONNER' ELEV LE }2400\mathrm{ ACREAGE GE }5
%
CATA MASTER;
INFILE CARDS END=ECF;
INPUT S $1 KCLLE $11. LAKE $25. SEC $2. TCNNSHIP $4. RANGE $4.
                LUNGITUO $10. LATITUUE $10. BASIA 3. CTY 3. ELEV 5.
                SIZE $1. HEIG $1.
#2 T $1 ACREAGE 7.1 BASIN1 $15. BASIN2 $15. BASIN3 $15. COUNTY $10.
        NAFUREST $3. CWNFR1 $1. CWNER2 $1. OWNER3 $1. CWNEP4 $1.
        CWNER5 $1.
#3 U $1 QUAUSHEE $25. LATIN 71-75 2 LLNGIN 7O-80 2;
IF SELELT THEN: DC;
N+1; LUTPUT; ENO;
IF ECF THEN DC;
    LAKE=' '; LATIN=N; LUNGIN=.;
        CUTFUT;ENL;
```

CAKCS;
......data file fcr frilfity lakes ur lakes master glies heke....

```
FILE: SELECT EXAMPLE AI
```

PRUC SCRT; EY LAKE;
DATA _NULL_; SET;
FILE PURPLE;
IF LAKE = ' ' THEN PUT LATIN 3.;
ELSE PUT LAKE \$8. LATII: 5.2 LCNGIN 5.2;
// EXEC IEBGENER
//SYSUTL UU DSN=PURPLE.PLCTDC,OISF=SHR
//SYSUT2 OD SYSOUT=A
// EXEC IDPLCT,CCUNTY=RCNNER
//FTO8FOO1 DD *
SELECT BONNER LAKES ELEV LE 2400 ACREAGE GE 50

```
```

THIS IS A SAS SETUP FUR CBTAINING PRINTER
FREQUENCY BAK CHARTS CF DATA WITHIN THE
LAKES FILES, TG EE OUTPUT CN SPECIAL FCRMS
(WHITE PAPER-LAKGE)

```
```

//JCHARTS JOE (ACCTCCLE, XXX - xx- xxxx, 13), 'LASTNAME'
//* PASSWGRC=XXXXXX
|/ EXEC SAS
//FTL2FOOL LD SYSCLT=(S,,ELOO),
// DCB=(RECFM=VBA,LPECL=137,BLKSIZE=141).
CPTIUNS NODATE;
DATA MASTER;
INPUT S \$1. KUIDE \$11. LAKE \$25. SEC \$2. TOWNSHIP \$4. RANGE \$4.
LENGITUD \$10. LATITUDE \$10. BASIA 3. CTY 3. ELEV 5.
SIZE \&1. HEIG \$1.
\#2 T \$1. ACREAGE 7.1 BASIN1 \$15. BASIN2 \$15. BASIN3 \$15. CUUNTY \$10.
AAFCREST \$3. UWNERI \$1. CWNER2 \$1. CWNER3 \$1. ChNER4 \$1.
OWNER5 \$1.
\#3 U \$1. QUADSHEE \$25. P \$2;
CARDS;
PRUC CHART; VBAK NAFUREST;
PROLC CHART; HEAR NAFOREST;
PROC CHART; V\&AR BASIN;
PROC CHART; HBAR BASIN;
PROC CHART; VBAR HEIG;
PROC CHART; FBAR HEIG;
PRCC CHART; VEAR SIZE;
PKOC CHART; HBAR SIZE;

```
```

THIS IS THE OUTPUT OF 'MACRO SAS' WITH THE SELECT STATUS OF ELEV GT 5279', OR ALL MILE HIGH LAKES IN IDAHO.

```

\section*{THERE ARE 1017 LAKES IN THIS LIST....hARNING, DON'T REQUEST PLOTS INDISCRIMINATELY.}

\section*{EITHER THERE MAY BE LOTS, OR THERE MAY BE AN OVERLAP OF ADJACENT LAKES AS ON THE PLOT FOLLOWING THIS LIST}
```

 AIRPLANE 4.86 4.55
 ALDOUS L 8.23 3.59
ALICE LA 4.53 2.72
ALIDADE 4.26 2.77
ALLAN LA 5.52 5.23
ALPINE L 4.27 2.83
ALPINE L 4.27 3.14
ALPINE L 4.92 4.53
ALTURAS 4.52 2.56
AMBER LA 5.05 2.56
ANDERSON 3.33 4.11
ANDYS LA 3.78 6.15
ANGEL LA 5.47 2.39
ANNS LAK 3.30 4.72
APPENDIX 2.54 5.01
ARCADIA 8.50 2.91
ARCADIA 8.41 3.11
ARDETH L 4.44 2.82
ARROWHEA 5.46 2.47
ARROWHEA 4.32 2.77
ARTILLER 4.10 3.76
AZURE LA 4.16 2.64
BACON LA 4.14 7.44
BAKER LA 4.76 2.32
BALD MTN 4.20 6.75
BALDY LA 2.53 4.80
BALL LAK 2.4210.48
BAPTIE L 5.50 2.53
BARKING 4.78 4.69
BARON LA 4.41 2.83
BARON LA 4.24 2.90
BARON LA 4.41 3.01
BARTLETT 8.67 0.15
BASIN LA 5.83 4.16
BASIN LA 2.49 5.03
BASIN LA 4.62 4.80
BASIN LA 4.62 3.23
BASS LAK 4.45 2.40
BATTLE L 4.86 6.24
BAYHORSE 5.17 3.54
BAYHORSE 5.19 3.54
BEAD LAK 4.39 2.93
BEAR CRE 6.15 2.80
BEAR CRE 3.73 3.79

```
BEAR LAK
B.98
BEAR LAK 4.74 2.95

THESE ARE THE LAKES RESULTING FROM THE SEARCH OF THE MASTER FILE FCR LAKES A MILE HIGH AND LARGER THAN 49 ACRES.

91
ALICE LA 4.532 .72
ALTURAS 4.522 .56
ARCADIA 8.502 .91
ARDETH L 4.442 .82
BEAR LAK 8.850 .37
BEAVER P \(8.94 \quad 3.04\)
BENCH LA 4.412 .99
BIG BOUL 4.922 .87
BIG SAND 5.006 .51
BLACKFOO \(8.53 \quad 0.96\)
BLUE CRE 3.030 .11
BLUE CRE 3.120 .15 BOULDER \(4.95 \quad 2.93\) BOULDER 3.284 .26 BOX LAKE \(3.20 \quad 4.45\) BRUNDAGE 3.024 .53 BUCKHORN \(3.20 \quad 0.32\) BULL TRO \(4.10 \quad 3.35\) BYBEE RE 2.940 .09 CAMPBELL 5.65 1.97
CANYON L 5.165 .68
COWAN RE 3.780 .24
CRAG LAK 8.430 .83
DEADWOCD 3.663 .33
DEVILS C 7.860 .08
DRY CREE 6.122 .98
DRY CREE 2.820 .35
EDNA LAK 4.332 .88
ENOS LAK 3.244 .47
FISH CRE 5.881 .79
FISH LAK \(4.39 \quad 6.43\)
FISH LAK 4.567 .20
GOAT LAK 4.826 .31
GOOSE LA 3.024 .43
GRACE RE 8.240 .56
GRANITE \(3.08 \quad 4.47\)
GRAYS LA 8.761 .23
HAZARD L 3.004 .69
HAZARD L \(3.00 \quad 4.64\)
HELL ROA 4.532 .85
HENRY'S 8.723 .81
HIDDEN L 5.046 .47
ICEHOUSE 8.533 .49
IMOGENE 4.512 .87
INDIAN L 9.19 2.98 ISLAND P \(8.65 \quad 3.35\)
```

JARVIS L 2.97 0.33
JIMMY SM 5.10 2.96
KNAPP LA 4.53 3.49
LITTLE V 8.64 1.23
LIZARD L 4.27 6.24
LOON LAK 3.454.56
MACKAY R 6.01 2.63
MCHAN RE 4.86 1.47
MONTPELI 9.06 0.07
MOORES L 3.30 5.35
MOUNTAIN 3.07 0.32
MUD LAKE 8.89 0.24
OTTER RE 3.30 0.25
PALISADE 9.02 1.92
PALISADE 9.09 1.55
PAYETTE 3.144.61
PAYNE CR 3.15 0.03
PERKINS 4.56 2.59
PETTIT L 4.52 2.85
PORTNEUF 6.90 0.95
REDFISH 4.53 2.88
REDFISH 4.42 3.14
RIORDAN 3.93 4.07
ROUGH LA 4.69 3.12
SAGEHEN 3.03 3.23
SAND CRE 8.42 3.09
SAWTOOTH 4.29 1.49
SHERIDAN 8.41 3.55
SHIP ISL 4.82 4.56
SHOOFLY 2.89 0.08
SILVER L 8.70 3.23
SODA CRE 8.52 0.59
SODA PCI 8.46 0.55
SQUAW CR 3.15 0.08
STANLEY 4.39 1.60
SUBLETT 6.72 0.13
SUMMIT R 6.24 3.31
THORN CR 4.86 1.43
TOXAWAY 4.36 2.75
TWENTY M 3.31 4.61
TWIN LAK 4.41 2.59
WARM LAK 3.66 3.84
WESTON C 7.82 0.19
WHITE CA 5.11 5.76
YELLOW 8 4.52 2.71

```

THIS IS THE SETUP ON SAS-GRAPH TO OBTAIN BAR CHARTS, PIE CHARTS, AND SCATTER DIAGRAMS
```

GOPTIONS DEVICE=TEK4662 BAUD=1200;
...SAS DATA FILE GOES HERE
TITLE1 . F=TRIPLEX IDAHO LAKE DISTRIBUTION;
PROC GCHART;
VBAR NAFOREST SIZE HEIG BASIN;
TITLEI . F=TRIPLEX IDAHO LAKE DISTRIBUTION;
PROC GCHART;
PIE SIZE HEIG BASIN NAFOREST:
PATTERN1 C=BLACK V=E;
PATTERN2 V=R3;
PATTERN3 V=X4;
PATTERN4 V=X2;
..DATA PRIORITY GOES HERE..
TITLEI .F=TRIPLEX PRIORITY LAKE SCATTERPLOT;
TITLE2 .F=SIMPLEX TROPHIC STATUS VS. ELEVATION;
PROC GPLCT;
PLOT TROPHIC * ELEV;

```

On the next page is the first page of an alphabetized listing of the LAKES MASTER file; following that is another part of the listing with different variables displayed. On a subsequent page is a listing sorted by county, this example being only for Shoshone County.

The choice of what is listed is accomplished either through MASTER TRAILER or through a choice selection through MACRO SAS.

Following the listings are sample plots occurring from PLOT SETUP in conjunction with MACRO SAS to choose specific lakes for plotting.

Finally, the last section is a description of how to use STAMPEDE to attain a pen plot of data for contours. When data become available, bathymetric maps can be produced. Negative contours are possible as well.

WARNING: On one map there is a lake totally off the country outline. The entire file's latitudes and longitudes need to be checked. There may be a few slight errors which when multiplied by a factor to plot an entire county on a page, will result in a graver error and put the lake outside the boundary. If this happens in the north-south direction, the program blows up. This was realized after funds for the project were spent and we were displaying the data we had.



\begin{tabular}{|c|}
\hline \begin{tabular}{l}
SALAOR: R \\
SFK BCISER \\
NIFK CLEARW \\
SIVAKE R \\
SNAKER \\
PAYETTE R
\end{tabular} \\
\hline BIG LEST R \\
\hline SALICN R \\
\hline SAL.詣iv \\
\hline BEAK K \\
\hline MFK SALMO: \\
\hline SHAKE R \\
\hline SIdAKE \\
\hline Al. 10 d \\
\hline StK BuISE \\
\hline \(K\) CLEARWATE \\
\hline LNAY R \\
\hline K SALMUN \\
\hline LEMHI R \\
\hline LOLHSA R \\
\hline PEND C R K \\
\hline PEND GR \\
\hline PACK R \\
\hline SNAKE 1 . \\
\hline AKE \\
\hline PENL 0 R R \\
\hline SELWAY R \\
\hline BIU LUST R \\
\hline OKANE F F \\
\hline MFK SALMCIN \\
\hline LMO \\
\hline PAYETTE K \\
\hline SPCRAidE R \\
\hline CWYitel \\
\hline STIAKE P. \\
\hline SNAKE \\
\hline B1G LCST K \\
\hline SALfOH? \\
\hline SALAON? \\
\hline NFK BIG LUST \\
\hline CTEPIA 1 \\
\hline ELWAY \\
\hline  \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline CIY & Lulvjitui & LATITUDE SEC & TCNNSHIP & hance & EASIN & ELEV & ACREACE & GUADSHEE & CWNER1 & NAFERES \\
\hline \％ & 1151600 & 40530024 & T42 H & f．C & & 587 C & 5.0 & BACCN PEAK，IC & & \\
\hline 45 & 1151545 & 46513025 & 142 N & ROSE & 5 & 6140 & 0.9 & BACCN PEAK，IL & & CLE \\
\hline 7u & 113 as cu & 46550615 & T42N & R 65 E & 5 & 5430 & 6.0 & ECEHLS BUTIE & & SI \\
\hline 4 & 1153700 & 46573030 & 142\％ & Fこ7E & 5 & 5450 & 1.0 & NALLARO PEAK，IL & & ST \\
\hline 40 & 1134545 & \(472)\) & T46N： & R \(35 E\) & 3 & 5580 & 1.0 & hALLACE & 1 & ST \\
\hline 4 & 1151610 & 46555036 & \(142 \%\) & RCSE & 5 & 5740 & 3.4 & EACCA PEAK，IC & & CLE \\
\hline 4 & 113 3 115 & 46570028 & \(142 N\) & RC7E & 5 & 589 C & 10.0 & FALLARD PEAK，IC & 1 & ST \\
\hline 40 & 115
115
115
5 & \(\begin{array}{lllll}+7 & C 2 & 40 & 24 \\ +7 & 06 & 50 & 35\end{array}\) & T4 4 先： & RC4
R & 3 & 5750 & 5.0 & hIDCK NTA，ID & 1 & ST \\
\hline 4u & \[
\begin{array}{lll}
115 & 55 & 30 \\
115 & 30 & 00
\end{array}
\] & \(\begin{array}{llll}+1 & 06 & 50 & 35 \\ +6 & 57 & 30 & 25\end{array}\) & T44N & RC4E & \(\frac{3}{5}\) & 5750 & 2.0 & hIDCh NTN，ID & \[
1
\] & ST \\
\hline 40 & 1133000 & \(47 \mathrm{C7} 0031\) & T42N & KC7E & 3 & 5175
5350 & 7.0 & BUZZARD RCCST ID & & \\
\hline 40 & 11 ís 1130 & 47260013 & 1476 & RC3E & 3 & 5350
5100 & 12.0 & NCNIANA PEAK & ， & \\
\hline \(4 J\) & 1153100 & 46573025 & T 42 N & RO7E & 5 & 5912 & 12.0 & MALLARS PEAK，ID & 1 & \\
\hline 40 & 1155730 & \(+7 \quad 06 \quad 3004\) & 143 N & RC4E & 5 & 5457 & 15．C & WIDOK NTA，ID & 1 & \\
\hline 4 J & 1151600 & \(46 \quad 53 \quad 30 \quad 13\) & 142 N & RCSE & 3 & 5760 & 6.0 & BACOA PEAK，ID & 1 & S \\
\hline 40 & 1151930 & 47 C5 3C 11 & T43N & R1CE & 3 & 6300 & 4.0 & ILLIACIS PEAK，MT－10 & 1 & ST \\
\hline 40 & 1134345 & 47310018 & T480 & RCEE & 3 & 5616 & C． 0 & CECPER GULCH，IL & 1 & CDN \\
\hline is & \(115+\frac{2}{5} 00\) & \(43 \quad 310008\) & 148N & kJtE & 3 & 5935 & 5.0 & COOPER GLLCH，10 & 1 & CON \\
\hline 4 & 1153530 & \(\begin{array}{llllll}46 & 57 & 45 & 21\end{array}\) & T42N & FC7E & 5 & 5845 & 3.0 & FALLARO PEAK，ID & 1 & ST \\
\hline 45 & & 46564036 & T42t & RCSE & 5 & 6105 & 3.3 & BACGN PEAK，ID & 1 & CLE \\
\hline 40 & 1151530 & 46583013 & T42N & RCSE & & 6150 & 10.0 & EACEN CREEK & 1 & St \\
\hline 40 & 115
115
115
15 100000 & \(\begin{array}{lllll}46 & 56 & 30 & 33 \\ 46 & 57 & 15 & 25\end{array}\) & T42N & RC7E & 5 & 5990 & 33.0 & NALLARD PEAK，ID & 1 & ST \\
\hline 40 & 1153530 & ＋6 535021 & T421． & RCIE & 5 & 6160
5190 & 6.0
5.0 & GACON PEAK ：IC & & ST \\
\hline 40 & 1153636 & 45510029 & 1421 & ¢ \({ }^{\text {cie }}\) & 5 & 558 C & 11.0 & MALLARD PEAK，ID & & \\
\hline 4 & \(11\rangle 4345\) & 47200012 & \(147 \%\) & RJ5E & 3 & 5598 & 1.0 & halLace 10－MÓA & & \\
\hline 40 & 1153730 & 41 C4 3C 16 & 14 Na & HC4E & 5 & 5536 & 2C．0 & hIDCh NTA．，IE & 1 & S1 \\
\hline 45 & 1105000 & \[
47270031
\] & 14814 & KC4E & 3 & 5040 & 5.0 & hALLACE，ID & 1 & CLN \\
\hline 4.5 & 115
11
11
306 & \(\begin{array}{lllll}41 & 04 & 70 & 15 \\ 45 & 56 & 15 & 36\end{array}\) & T4 321： & RC4E & & & & & 1 & \\
\hline 4.5 & 11 1 3045 & 45561536 & T421： & RC7E & 5 & 5750 & 1.0 & HALLARD PEAK，IL & 1 & \[
51
\] \\
\hline 4 J & & \[
45571529
\] & T42N & R07E & 5 & 5850 & 4.0 & NALLARC PEAK，ID & 1 & St \\
\hline ＋ 4 & \[
\begin{array}{llll}
113 & 46 & 30 \\
11 ; & 34 & 30
\end{array}
\] &  & 143 N & RC5E & & 5500 & 4.0 & FCAUPENTAL BUTTES & & ST \\
\hline 40 & \[
\begin{array}{lll}
115 & 34 & 30 \\
116 & 03 & 0 J
\end{array}
\] & \(\begin{array}{llll}45 & 50 & 15 & 34 \\ 47 & 41 & 00 & 14\end{array}\) & \(142 N\)
\(T 52 N\) & \(\mathrm{K} C 75\)
\(\mathrm{R} ⿹ 勹\) & 5 & \(5 \% 36\)
6000 & 11.0 & MALLARD PEAK，ID & 1 & ST \\
\hline 40 & \(115+500\) & \(\begin{array}{r}7 \\ +733 \\ \hline\end{array}\) & I 4 SN & RCSE & & 67750 & 11.0 & POND PEAK，IL & & CCE \\
\hline 4 & 1101610 & 46560036 & 142 N & & 5 & 5920 & 16.0 & BACON PEAK，IC & & ST \\
\hline 4.1 & 1150130 & 4557 OC 20 & 1420 & RC7E & & 4729 & 13.0 & FALLARD PEAK，IC & & \\
\hline 40 & \(\begin{array}{llll}11 & 4 & 5 & 00 \\ 11 & 4 & 47 & 3\end{array}\) & \(\begin{array}{lllll}47 & 01 & 05 & 04 \\ 47 & \mathrm{Cl} & 15 & 35\end{array}\) & T42N & R115 & 3 & 6450 & 18.0 & ILLINCIS PEAR MCNT－IO & & ST \\
\hline 4 & 115 45 30 & 47260012 & T47N0 & \({ }^{\mathrm{P}} \mathrm{C} 5 \mathrm{~F}\) & & 5953 & 1 C .0 & MGINUMENTAL BUTIES & 1 & \\
\hline 41 & 1154530 & \(+7250012\) & 147 iv & k） 5 E & 3 & 5700 & 17.0 & hALLACE ID－MCAT & & CEN \\
\hline 40 & 1103200 & 47 CS 0013 & T44．0 & \(R C \frac{2}{\text { R }}\) & 3 & 5732 & 3.0 & NARBLE MIN & & \(\mathrm{Si}^{\text {a }}\) \\
\hline 45 &  & \(\begin{array}{lllll}40 & 56 & 30 & 36 \\ 47 & 17 & 30 & 22\end{array}\) & T421，
T \(461 \%\) & F．CSE & 5 & 5140
2144 & 2．C & EACOA PEAK，IC & 1 & CLE \\
\hline
\end{tabular}

\section*{PRIORITY LAKES, ELMORE COUNTY}


PRIORITY LAKES, IDAHO COUNTY


\title{
PRIORITY LAKES, KOOTENAI COUNTY
}






-

\title{
Producing Annotated Contour Maps
}
set up for GRASP Project
by

David E. Hall

November, 1981

\begin{abstract}
EDITOR'S NOTE: STAMEEDE is a Erogram originally vritten by the Geological Survey which has been available at the University of Idaho for several years. The program is not maintained or supported by the computer center, except that it is residing in overlay load modules on the user.proglif the library of programs available at large to the university). It is on the system for use by those that are able. No one in User Services currently is familiar with the system.
\end{abstract}

STAMPEDE can be used to get a contour plot of lake depths or other spatial data. It has many other caparilities as well. but we shall fccus on the plotting facilities. The data to be input must be in the form of scattered \(x\) and \(Y\) values with associated depth or other data. STAMPEDE will generate an interpolated depth fcr each intersection of an imayinary grid placed over the area to be plotted. This is accomplished by using STAMPELE's MAKEFILE and NOMAPRCX functions. The actual plot is created through CONTOURS.

The useful options for each function are explained below. followed by an example run.

\section*{MAKEFILE}

MAKEFILE reads the, \(X, Y\), \(Z\) coordinates from cards (or a card-image data file), one trifie per card. A typical MAKEFILE function call follows, with an explanation of what the program has been told.

An entire MAKEFILE operation might lock like:
```

FUNCTION MAKEFILE
INPUT INFILE=10,FIELD=X (1, 10,1),Y(11,20,1),ZO(21,30,10)
OUTPUT OUTFILE=11
OPTIONS TERMINATE=\$(1, 2)
END

```

This specifies that the \(X\) values will be found in columns 1 through 10 , the \(Y\)-values in columns 11 through 20, and the Z-values in columns 21 through 30 of the data cards to be entered later in the program file. Each \(X\) and \(Y\) value are to be multiplied by 1 when read, and each \(Z\) value will be multiplied by 10. Any card with dollar signs in columns 1
and 2 will indicate the ldst data card. Input data will ke
 stored on unit 11. This output will be used in the NUMAPRCX function.

\section*{NUMAPROX}

NUMAPROX interpolates depth values between those supplied to MAKEFILE. It requires the desired input and output unit numbers (input=11, the output file from MAKEFILE), the field, or \(Z\) values to be considered ( 20 when only one piece of data is recorded for each point), and a grid spacing. The grid spacing is specified by the size of each yrid cell, and the minimum and maximum \(X\) and \(Y\) values, such as:
\(G R I D=2(0,0,16,24)\)
Where '2' specifies \(2 x\) units per grid cell; the minimum \(X\) and \(Y\) values to be considered are 0 , the maximum \(X\) is 16 , and the maximum \(Y\) is 24.

An entire NUMAPROX request might be represented as follous:
FUNCTION NUMAPROX
INPUT INFILE=11,FIELD=20
OUTPUT OUTEILE=12,GRID \(=2(0,0,24,26)\)
END

\section*{CONTOURS}

The contours function takes the gridded data created ty NUMAPROX, and creates a contour map from them. It can be told the desired contour interval, what elevation to not draw below, what contour nct to draw above, contour annotation frequency (the annotation can only have integer values), and the plot scale, among others.

An example CONTOURS Eunction call and an explanation follows:

FUNCTION CONTOURS
INPUT INFILE=12
OUTPUT OUTFILE=13
PLGT SCALE=8, MAPLIMIT \(=(0,0,16,24), E L O T D I M=11\)

\section*{OPTIONS LINES=SINGLE, INTERVAL=100, ANNCTATE=NO,STLINE=15,LOCON=0 END}

This tells the proyram to look in unit number 12 (the output unit from NUMAPRCX) for its grid data, and that a contour map of the section \(f r c m \quad X=0, Y=0\) to \(X=16, Y=24\) with a scale of eight \(X\)-units per inch, and a contour interval of 100 Z-units. The limiting dimension of the plotter has been indicated at 11 inches. No negative contours will be drann (LOCON \(=0\) ), and curved lines will be represented ky straight-line segments no longer than \(15 \%\) of one grid side. Each contour line will be drawn with a single line, and none will be annotated. If the ANNCTATE statement above were replaced by

ANNOTATE= \((2,1)\)
then every other contour would have been annotated, with no more than one inch between annotations across the map.

\section*{GENERAL CONSIDEEATIONS}

The unit numbers are determined by the FORTRAN unit numbers specified in the JCL section of the STAMPEDE program. As the JCL (Job Control Language) is given here, the unit numbers given in the examples work correctly.

The order in which the steps are entered in the program is important; the functicns are executed in the order they are encountered, and the \(X, Y, Z\) data must be read (MaKEFILZ) before the numerical approximation (NUMAPROX) can be run, etc.

Also, each function call ends with an "END" statement, except for the last function call in the job -- which ends with an "END aLL".

The origin for digitizing \(X, Y, Z\) coordinates should be at the Lower left- hand corner; preferably with the x-axis goiny along the shorter side, since the \(x\)-axis is plotted across the limiting direction (11") of the plotter.

An entire jcb, JCL and all, is set up below:
```

//JNAME JOB (ACCTCODE,123-45-6789),NAME,TILE=3,CLASS=A
// EXEC PGM=STAMPEDE
//FT06F001 DD SYSOUT=A
//FT08F001 DD DSN=\&\&NUMWRK,DISP=(NEW,FASS),SPACE=(1600,(400)),
// DCB=(RECFM=F,LRECL=1600, BLKSIZE=1600,DSORG=DA),UNIT=DISK
//FT11F001 DD DSN=\&\&MAKFIL,DISP=(NEW,PASS),SPACE=(TRK, (10,2)).
// UNIT=DISK
//FT12F001 DD DSN=\&\&NUMFIL,DISP=(NEW,FASS),SPACE=(TRK, (10,2)),
// UNIT=DISK
//FT13F001 DD DSN=MYPLOT,ONIT=TAEE,DISP=(,KEEP),LABEL=(,NL),
// DCB=(RECFM=0,BLKSIZE=51\angle,DEN=2)
//FT10F001 DD *
.5 14.5 195.
7.3 25.8 287.
10.5 26.5 159.
12.5 24.8 230.
10.9 9.2 293.
14.5 23.0 265.
17.8 18.2 280.
12.8 5.6 299.
15.7 . 3 465.
18. 21.3 187.
20.8 18.0 223.
23.5 10.5 203.
25.6 19.0 59.
27.1 17.8 295.
29.5 13.8 187.
31.7 16.2 213.
32.1 15.3 86.
33.1 9.8 292.
35. 8.6 100.
36.9 17.8 862.
41.8 14.8 582.
44. 23.7 24.
44.3 20.6 380.
45.1 15.21610.
47.9 13.9 119.
49.2 26.5 117.
50.5 8.9 321.
51.9 13.2 230.
52.3 19. 430.
52.3 5.7 314.
56.4 14.6 212.
56.5 21.3 469.
00.4 16.7 578.
61.1 23.7 454.
64.8 19.2 656.
67.9 20.9 551.
9999
//FT05F001 DD *
FUNCTION MAKEPILE

```
```

INPUT INFILE=10,FIELD=X(10,16,1), Y(05,09,1), 20(17,22,1)
OUTPUT OUTFILE=11
OPTIONS TERMINATE=9(05,08)
END
FUNCTION NUMAPROX
INPUT INFILE=11,FIELD=20
OOTPUT OUTFILE= 12,GRID=1. (0,0,27,68)
END
FUNCTICN CONTOURS
INPUT INFILE=12
OUTPUT OUTFILE=13
PLOT SCALE=4,MAPLIMIT = (0,0,27,68),PLCTDIM=11
OPTIONS LINES=SINGLE, INTERVAL=100., ANNOTATE=(1,2),STLINE=5, LOCON=0
END ALL
/*
//

```

Sample output generated from the above setup appears on the next page.
```

