Research Technical Completion Report Project B-041-IDA

# OPTIMAL PLANNING OF IRRIGATION DISTRIBUTION AND APPLICATION SYSTEMS FOR A LARGE IRRIGATED AREA

by Kyung H. Yoo, J. R. Busch and C. E. Brockway College of Engineering/College of Agriculture





Idaho Water Resources Research Institute University of Idaho Moscow, Idaho

May. 1982

Contents of this publication do not necessarily reflect the views and policies of the Office of Water Research and Technology, U. S. Department of the Interior, nor does mention of trade names or commercial products constitute their endorsement or recommendation for use by the U. S. Government. Technical Completion Report

B-041-IDA

OPTIMAL PLANNING OF IRRIGATION DISTRIBUTION AND APPLICATION SYSTEMS FOR A LARGE IRRIGATED AREA

by

Kyung H. Yoo, J.R. Busch and C.E. Brockway

College of Engineering/College of Agriculture

Submitted to



Office of Water Research and Technology United States Department of the Interior Washington, D.C. 20242

The work on which this report is based was supported in part by funds provided by the United States Department of the Interior as authorized under the Water Research and Development Act of 1978.

> Idaho Water and Energy Resources Research Institute University of Idaho Moscow, ID 83843

> > May, 1982

### ACKNOWLEDGEMENTS

This study was funded by the U.S. Department of the Interior Office of Water Research and Technology and the Idaho Agricultural Experiment Station. Special thanks are due to U.S. Department of the Interior Bureau of Reclamation, Northwest Regional office in Boise, Idaho, for the cooperation, information and advice given in support of this study and for the fund to obtain color infrared film and computer user time.

The authors wish to thank the personnel of the following organizations for their cooperation and for providing necessary information: Water District 01, Idaho Department of Water Resources, Idaho Canal Irrigation District, Snake River Valley Irrigation District and the U.S. Department of Agriculture Soil Conservation Service of Bonneville County, Idaho. Acknowledgement is also given to the farmers from whose fields data were collected.

## TABLE OF CONTENTS

|                                                                                       | aye      |
|---------------------------------------------------------------------------------------|----------|
| CKNOWLEDGEMENTS                                                                       | i        |
| ABLE OF CONTENTS i                                                                    | i        |
| IST OF TABLES                                                                         | v        |
| IST OF FIGURES                                                                        | iii      |
| ROJECT SUMMARY                                                                        | x        |
| BSTRACT                                                                               | ii       |
| HAPTER                                                                                |          |
| I. INTRODUCTION                                                                       | 1        |
| II. OBJECTIVES                                                                        | 5        |
| III. OPTIMIZATION TECHNIQUES USED IN IRRIGATION<br>SYSTEMS PLANNING                   | 7        |
| MIXED INTEGER-LINEAR PROGRAMMING (MIP)                                                | 8        |
| FORMULATION OF A MIXED INTEGER-LINEAR<br>PROGRAMMING (MIP) PROBLEM                    | 9        |
| SOLUTION ALGORITHMS FOR PURE INTEGER AND<br>MIXED INTEGER-LINEAR PROGRAMMING PROBLEMS | 12       |
| GOMORY'S CUTTING PLANE METHOD                                                         | 12<br>13 |
| COMPUTER PROGRAM PACKAGES FOR MIXED<br>INTEGER-LINEAR PROGRAMMING SOLUTIONS           | 14       |
| APPLICATION OF MIXED INTEGER-LINEAR<br>PROGRAMMING TO IRRIGATION SYSTEMS PLANNING     | 15       |
| IV. DESCRIPTION OF THE STUDY AREA                                                     | 23       |
| TOPOGRAPHY                                                                            | 23       |
| CLIMATE                                                                               | 25       |
| FARM CHARACTERISTICS                                                                  | 25       |

## TABLE OF CONTENTS (continued)

|    |                                                                                                              | Page                             |
|----|--------------------------------------------------------------------------------------------------------------|----------------------------------|
|    | SOIL TYPES                                                                                                   | 28                               |
|    | IRRIGATION DISTRICTS                                                                                         | 30                               |
|    | LOW LEVEL AERIAL INFRARED IMAGES FOR<br>INVENTORY OF THE STUDY AREA                                          | 38                               |
|    | INFRARED FILM AND ITS IMAGES                                                                                 | 38<br>39<br>42                   |
| ٧. | IRRIGATION SYSTEMS COST ESTIMATION FOR STUDY AREA                                                            | 45                               |
|    | COMPUTER PROGRAMMING ROUTINES FOR<br>COST ESTIMATION                                                         | 45                               |
|    | APPLICATION OF THE COST ESTIMATION<br>ROUTINES TO THE STUDY AREA                                             | 48                               |
| Ί. | ANALYSIS OF EXISTING IRRIGATION DISTRICT<br>SYSTEMS WITH ALTERNATIVE IRRIGATION<br>APPLICATION SYSTEMS       | 53                               |
|    | CONVEYANCE SYSTEMS PARAMETERS                                                                                | 53                               |
|    | SUBAREA SELECTION AND APPLICATION<br>SYSTEM PARAMETERS                                                       | 58                               |
|    | INPUT DATA FORMULATION OF THE LINEAR<br>PROGRAMMING PROBLEM FOR THE EXISTING<br>SYSTEMS EVALUATION           | 64                               |
|    | SYSTEMS ANALYSIS OF EXISTING IRRIGATION SYSTEMS                                                              | 69                               |
|    | IDAHO IRRIGATION DISTRICT RESULTS<br>OVERALL SYSTEM EFFICIENCY CONSTRAINTS<br>WATER COST CHARGED AT HEADGATE | 71<br>72<br>75<br>79<br>80<br>80 |

## TABLE OF CONTENTS (continued)

Page

| VII  | REHABILITATION AND CONSOLIDATION PLANS<br>FOR THE STUDY AREA                                                                                          | 5  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|      | REHABILITATION PLANS WITH GRAVITY<br>SUPPLY SYSTEMS                                                                                                   | 5  |
|      | OVERALL SYSTEM EFFICIENCY CONSTRAINTS 97<br>WATER COST CHARGED AT HEADGATE 104<br>WATER COST CHARGED AT FARM DIVERSIONS 104                           | 4  |
|      | CONSOLIDATION PLANS WITH HIGH PRESSURE<br>PIPE SUPPLY SYSTEM                                                                                          | 9  |
| VII  | I. SUMMARY AND DISCUSSION                                                                                                                             | 0  |
| LITE | RATURE CITED                                                                                                                                          | 1  |
| APPE | NDICES                                                                                                                                                |    |
| Α.   | Descriptions of the soil series in the study area 14                                                                                                  | 5  |
| в.   | Seasonal monthly and maximum daily ET requirement of subareas and distribution patterns for crops, applica-<br>tion systems, soils and land ownership | 5  |
| c.   | Input parameters and formats of the cost estimation<br>computer programs                                                                              | 7  |
| D.   | Sample outputs of the cost estimation computer programs 18                                                                                            | 8  |
| Ε.   | Control programs, input data and matrix pictures of<br>the mathematical programming problems                                                          | 16 |
| F.   | Summaries of related studies under this project,<br>Project No. B-041-IDA                                                                             | .8 |

iv

### LIST OF TABLES

|        | Pag                                                                                                                                                             | e |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| III-1. | Commercial codes for mathematical programming 1                                                                                                                 | 4 |
| III-2. | Coefficient symbols for irrigation application<br>systems in a hypothetical model                                                                               | 8 |
| III-3. | Coefficient symbols for distribution systems in<br>a hypothetical model 1                                                                                       | 8 |
| IV-1.  | Monthly and daily maximum consumptive irrigation requirement of each crop grown in the study area 2                                                             | 6 |
| IV-2.  | Distribution pattern of crops, irrigation systems<br>and land ownership in the study area in 1978<br>crop year                                                  | 7 |
| IV-3.  | Distribution pattern and properties of the soil series in the study area                                                                                        | 1 |
| IV-4.  | Soil-crop-water relationships of the soil series<br>in the study area                                                                                           | 2 |
| IV-5.  | Excess water flows of the study area in the 1978<br>irrigation season (From U.S. Department of Interior<br>Bureau of Reclamation, Boise, Idaho)                 | 7 |
| IV-6.  | Resolution used to identify crops, irrigation<br>application system types and other objects from<br>the study area                                              | 4 |
| V-1.   | Synopsis of the computerized planning and cost<br>estimation routines used to determine annual costs<br>of irrigation systems (After Allen and others, 1978) 44 | 6 |
| V-2.   | Design assumptions to calcualte costs and efficiencies<br>for gravity irrigation systems                                                                        | 0 |
| V-3.   | System dimensions and descriptions of the sprinkler<br>irrigation systems                                                                                       | 1 |
| VI-1.  | Conveyance system data for the existing irrigation conveyance system sections                                                                                   | 7 |
| VI-2.  | Gravity irrigation application systems data of<br>annual operation for the evaluation under<br>existing canal systems                                           | 1 |
| VI-3.  | Sprinkler irrigation application systems data of<br>annual operation for the evaluation under<br>existing canal systems                                         | 2 |

## LIST OF TABLES (continued)

| VI-4.  | Total annual system costs and description of optimal<br>irrigation systems configuration with existing<br>conveyance systems at various overall system<br>efficiencies, Idaho Irrigation District                         |   |   | 73  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|-----|
| VI-5.  | Total annual system costs and description of optimal<br>irrigation systems configuration with existing<br>conveyance systems at various water costs<br>charged at the headgate, Idaho Irrigation District                 | • |   | 76  |
| VI-6.  | Total annual system costs and description of optimal<br>irrigation systems configuration with existing<br>conveyance systems at various overall system<br>efficiencies, Snake River Valley Irrigation<br>District         |   |   | 81  |
| VI-7.  | Total annual system costs and description of optimal<br>irrigation systems configuration with existing<br>conveyance systems at various water costs<br>charged at the headgate, Snake River Valley<br>Irrigation District |   |   | 83  |
| VII-1. | Conveyance systems data and annual costs for<br>rehabilitations plan using a gravity delivery<br>systems                                                                                                                  |   |   | 91  |
| VII-2. | Gravity irrigation application systems data<br>and annual costs for rehabilitation plans using<br>a gravity delivery systems                                                                                              |   |   | 93  |
| VII-3. | Sprinkler irrigation application systems data and<br>annual costs for rehabilitation plans using a<br>gravity delivery systems                                                                                            |   |   | 94  |
| VII-4. | Annual system costs and description of optimal<br>irrigation system configuration for rehabilitation<br>plans at various overall system efficiencies, Idaho<br>Irrigation District                                        |   | • | 98  |
| VII-5. | Annual system costs and description of optimal<br>irrigation system configuration for rehabilitation<br>plans at various overall systems efficiencies, Snake<br>River Valley Irrigation District                          |   |   | 100 |
| VII-6. | Annual system costs and description of optimal<br>irrigation systems configuration for rehabilitation<br>plans at various water costs charged at the headgate,<br>Idaho Irrigation District                               |   |   | 105 |

## LIST OF TABLES (continued)

0

0

4

1

.

| VII-7.  | Total annual system costs and description of optimal<br>irrigation systems configuration for rehabilitation<br>plans at various water costs charged at the headgate,<br>Snake River Valley Irrigation District |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VII-8.  | Annual system costs and description of optimal<br>irrigation systems configuration for rehabilitation<br>plans at various water costs charged at farm<br>delivery, Idaho Irrigation District                   |
| VII-9.  | Annual system costs and descriptions of optimal<br>irrigation systems configuration for rehabilitation<br>plans at various water costs charged at farm<br>deliver, Snake River Valley Irrigation District 116  |
| VII-10. | Annual pump cost for consolidation plans                                                                                                                                                                       |
| VII-11. | High pressure pipe conveyance systems data and annual cost for consolidation plans                                                                                                                             |
| VII-12. | Sprinkler irrigation application systems data<br>and annual cost for consolidation plans of high<br>pressure pipe conveyance system                                                                            |
| VII-13. | Total annual system costs of the optimal irrigation systrems for the consolidation plans                                                                                                                       |
| VIII-1. | Summary of systems evaluation with the existing unlined conveyance systems of the stydy area 139                                                                                                               |
| VIII-2. | Summary of optimal rehabilitation plans using<br>three gravity convenaynce systems (unlined,<br>lined and gravity pipe) of the study area                                                                      |

## LIST OF FIGURES

|        |                                                                                                                                    |   |  | Page |
|--------|------------------------------------------------------------------------------------------------------------------------------------|---|--|------|
| III-1. | Linear function with fixed cost                                                                                                    |   |  | 10   |
| III-2. | Schematic diagram of a hypothetical irrigation syste<br>showing conveyance sections and service area of<br>each section            |   |  | 16   |
| III-3. | Mixed integer-linear programming problem matrix model of the hypothetical irrigation system                                        |   |  | 19   |
| IV-1.  | Location map of the study area and major canal routes                                                                              |   |  | 24   |
| IV-2.  | Map of the study area showing soil series                                                                                          | • |  | 29   |
| IV-3.  | Schematic diagram of excess water delivery systems in the study area                                                               |   |  | 36   |
| IV-4.  | Flow chart of the procedures used in analyzing the infrared photographs                                                            |   |  | 41   |
| VI-1.  | Locations of canal sections and diversion points for existing gravity supply system                                                |   |  | 55   |
| VI-2.  | Schematic diagram of the canal section routes of<br>the existing system and diversion points of sub-<br>area in the study area     | • |  | 56   |
| VI-3.  | Locations of subareas for the existing systems<br>analysis (numbers and letters match with those<br>canal sections in Figure VI-1) |   |  | 59   |
| VI-4.  | Linear programming matrix for optimal planning of<br>an example irrigation distribution and application<br>systems                 |   |  | 67   |
| VI-5.  | Results obtained for optimum system planning in the Idaho Irrigation District with existing conveyance systems                     |   |  | 77   |
| VI-6.  | Results obtained for optimum systems planning in the<br>Snake River Valley Irrigation District with existing<br>conveyance systems |   |  | 84   |

# LIST OF FIGURES (continued)

Page

| VII-1.  | Map of canal routes and subarea diversion<br>points for a gravity supply system of the<br>rehabilitation plans | 87 |
|---------|----------------------------------------------------------------------------------------------------------------|----|
| VII-2.  | and subarea diversion points of the study                                                                      | 88 |
| VII-3.  | Location map of the subareas analyzed using gravity supply systems of the rehabilitation plans                 | 89 |
| VII-4.  | Results obtained for optimum rehabilitation plans at various overall system efficiencies 1                     | 03 |
| VII-5.  | Results obtained for optimum rehabilitation<br>plans at various water costs charged at the<br>headgate         | 10 |
| VII-6.  | Results obtained for optimum rehabilitation<br>plans at various water costs charged at farm<br>delivery        | 18 |
| VII-7.  | High pressure pipe supply system routes for consolidation plans                                                | 20 |
| VII-8.  | Subareas supplied by the high pressure pipe<br>supply system routes for consolidation plans 1                  | 21 |
| VII-9.  | Schematic diagram of the high pressure pipe<br>supply system routes for consolidation plans 1                  | 23 |
| VII-10. | Alternative routes of high pressure pipe systems for consolidation plan B                                      | 24 |
| VIII-1. | Schematic diagram of the optimal planning procedure<br>of an irrigated agricultural area                       | 32 |

#### PROJECT SUMMARY

The research conducted on OWRT Project B-O41-IDA entitled, "Optimizing Project Systems for Distributing and Applying Irrigation Water" has involved various aspects of irrigation systems evaluation and planning. This report describes the major thrust and findings of the project. In addition, there have been two partial technical completion reports, two M.S. Thesis, one Ph.D. Dissertation and five technical papers resulting from the project. Summaries of studies related to this report are contained in Appendix F. A list of all project publications is shown below.

### Additional Publications Under Project B-041-IDA

- Busch, J.R. and K.H. Yoo. 1981. Optimal multistage decisions using dynamic programming. Paper presented at the 1981 Summer Meeting, American Society of Agricultural Engineers, Orlando, Florida, Paper No. 81-5013.
- Khanjani, M.J. 1980. Methodology for optimization of an irrigation system with storage reservoirs. Unpublished Ph.D. Dissertation. Department of Agricultural Engineering, University of Idaho, Moscow, Idaho.
- Khanjani, M.J. and J.R. Busch. 1981. Optimal irrigation water use from probability cost-benefit analysis. TRANSACTIONS of the American Society of Agricultural Engineers. (Accepted for publication).
- Khanjani, M.J. and J.R. Busch. 1981. Optimal irrigation distribution systems with internal storage. TRANSACTIONS of the American Society of Agricultural Engineers. (Submitted for publication).
- Kim, S. 1981. Analyzing and predicting irrigation diversions in southeastern Idaho. Unpublished M.S. Thesis, Department of Agricultural Engineering, University of Idaho, Moscow, Idaho.
- Netz, K.E. 1980. Evaluation of canal seepage in the Snake River Fan, Bonneville and Bingham Counties, Idaho. Unpublished M.S. Thesis, Department of Agricultural Engineering, University of Idaho, Moscow, Idaho.

Additional Publications Under Project B-041-IDA (continued)

- Yoo, K.H. and J.R. Busch. 1980. User's guide to UIMIP and MTRX: Mixed Integer-Linear Programming and Matrix Generating Program Packages. Partial Research Technical Completion Report, Project B-041-IDA, Idaho Water Resources Research Institute, University of Idaho, Moscow, Idaho.
- Yoo, K.H. and J.R. Busch. 1981. Soil water intake rates and surface irrigation system characteristics by soil series in southeastern Idaho. Partial Research Technical Completion Report, Project B-041-IDA, Idaho Water Resources Research Institute, University of Idaho, Moscow, Idaho.
- Yoo, K.H. and J.R. Busch. 1981. Mixed integer-linear programming for Agricultural Engineering problems. Paper presented at the 1981 Summer Meeting, American Society of Agricultural Engineers, Orlando, Florida, Paper No. 81-5007.
- Yoo, K.H. and J.R. Busch. 1981. Low level aerial infrared images for inventory of an irrigated area. TRANSACTIONS of the American Society of Agricultural Engineering. (Accepted for publication).

### ABSTRACT

The purpose of the research reported was to develop and apply techniques to obtain optimal solutions for multi-objective planning of a large irrigated area. Techniques were developed to effectively inventory a large area, determine the costs and operating characteristics of irrigation system components and obtain optimal system plans using mathematical programming. These techniques were applied to a large irrigated area located near Idaho Falls, Idaho.

All sources of data pertinent to irrigation in the study area were collected, and low level infrared pictures were taken over the area. Files of data from all sources were stored in a digital computer so that they could be easily accessed to obtain information about irrigation practices and systems located in any small subarea within the study area. These data files were also used to obtain detailed computer-drawn maps of the area.

Costs and operating characteristics of all irrigation system components were determined using computerized routines. Annual costs on a per acre basis were computed for on-farm application systems as well as application efficiencies. For conveyance sections annual costs were based on the design flow rate, and conveyance efficiencies were computed to account for conveyance losses. Costs of pumping plants were also based upon the design discharge and were adjusted to account for inflationary trends in energy cost.

Optimal plans of the least cost arrangement of distribution and application system components were obtained using linear programming and mixed integer-linear programming models. Linear programming models were

xii

used when only one type of distribution system was considered such as for the analysis of existing irrigation district distribution systems. Developing rehabilitation plans that considered several alternative types of distribution system components for any one section required the use of mixed integer-linear programming models. Using this type of model assured that one and only one component was selected for any one section. Also, this type of model could incorporate cost functions with step functions.

Using the procedures developed, optimal irrigation system plans were obtained for the study area. These plans were based upon different specified constraints such as overall system efficiency, cost of water delivered to the system at the project headgate and the cost of water diverted from the distribution system to on-farm application systems. The results obtained were useful in determining the costs and configurations necessary to meet specified efficiency levels. When charging for water, it was found that the variation of water cost over a rather narrow range was effective in increasing overall efficiency to a point, and additional charges had little effect. Consolidation plans for the two irrigation districts in the study area showed that it would be most economical to use a high pressure supply and sprinkler application system to attain an overall efficiency greater than 70%.

The planning procedures developed proved to be effective and flexible in producing optimal irrigation system plans for a large area. Results produced were descriptive scenarios that would assist planners, irrigators and other interested parties in making multiple objective planning decisions.

xiii

## CHAPTER I INTRODUCTION

Irrigated agriculture on the Snake River plain of southeastern Idaho was first developed in the late 1800's. In early days, the irrigators found plenty of water to irrigate their farmland and had minimal interest in the most efficient water use. Since that time extensive areas have been developed for irrigated agriculture. When drought hit the area in 1977, the flows in the Snake River could not meet the water rights along the river. This lack of water coupled with inefficient irrigation systems resulted in massive crop damage on many farms. In the United States, irrigated agriculture is the largest consumer of water and is often a culprit of non-point water pollution. To save and keep clean the nation's precious water resources, especially in water short western states, it is necessary that irrigation systems be designed for efficient use of water.

Throughout an irrigation project there are many things that must be considered to maintain an efficient system. Ideally water should be diverted from the source as it is needed, delivered to downstream without loss and applied only to satisfy the amount of water needed for crop growth. However, it is not possible to construct and manage an irrigation system that would operate in this manner as there are water losses due to both physical and management limitations. It is necessary that these limitations be objectively assessed and losses minimized in the most economical way.

Demands on water resources have increased the need to evaluate alternatives in order to achieve better water management for new

irrigation projects and for rehabilitation of older irrigation systems. Often, criteria governing water management such as water and energy availability, quantity and quality of drainage water and acceptable irrigation practices are unknown. The requirements for evaluating many alternatives in multi-objective planning as directed by the U.S. Water Resources Council's proposed Principles and Standards (Principles and Standards for Planning Water and Related Land Resources, Federal Register Vol. 38, No. 174, Part III, September 10, 1973) places heavy burdens on planners using conventional evaluation procedures. An optimizing technique to assist planning engineers in designing project systems to distribute and apply irrigation water and meet specific water management objectives is a necessity. Specifically, the U.S. Bureau of Reclamation in their Westwide Water Management Study (Critical Water Problems Facing the Eleven Western States, U.S. Bureau of Reclamation, April, 1975) has expressed the need for this type of planning tool to assist in achieving the goals of that study.

A computerized irrigation planning model and methodology that conjunctively considers the distribution and application of irrigation water has been developed at the University of Idaho (Busch, 1974). The model was updated by the addition of U.S. Bureau of Reclamation's irrigation system planning routines (Galinato and others, 1977) and other refinements (Allen and others, 1978). This procedure enables systems planners to evaluate many alternative irrigation system plans for use in an initial design or for planning rehabilitation and consolidation of existing irrigation systems. The optimization techniques used in the procedure provide the ability to obtain the best combinations of conveyance and onfarm application systems subject to legal, physical, social and resource constraints over the entire system.

The original methodology was successfully applied to two relatively small irrigation projects; one in eastern Idaho (Busch, 1974) and one in central Washington (Galinato and others, 1977). This procedure was also used to obtain optimal irrigation system rehabilitation plans for a portion of the Teton flood plain inundated by the flood which took place when the nearly completed Teton dam in eastern Idaho failed (Allen and others, 1977 and Brockway and Allen, 1979). These studies indicated that the analytical model used is a valid and useful tool for determining rapid, least cost irrigation system specifications.



# CHAPTER II

### OBJECTIVES

The major objective of this study was to develop and apply techniques to obtain optimal solutions for multi-objective planning of a large scale irrigation system.

The specific objectives are:

- To identify and determine the influence of various criteria on the level of water management within irrigation projects. Specific criteria will include physical, social, economic and legal aspects.
- To develop techniques for determining optimum designs and management plans for large scale irrigation systems to meet specified water management criteria.
- 3. To apply the techniques developed in specifying optimum rehabilitation schemes for a large irrigated area. Application will include evaluation of numerous water management criteria including the consolidation of existing irrigation district systems.



### CHAPTER III

### OPTIMIZATION TECHNIQUES USED IN IRRIGATION SYSTEMS PLANNING

In irrigation systems planning many factors must be considered. There are several alternatives of system components that can be used to deliver and apply water to different crop fields through different irrigation conveyance and application systems. Also considered must be many influences and constraints associated with the physical, social, legal and economic aspects of an irrigation project. In order to specify the best combination of system components and management practices so that minimum system design cost is achieved, some type of systematic decision process should be used.

At the University of Idaho several studies have been conducted to develop a means of obtaining optimal (least cost) irrigation system plans that comply with both physical and institutional constraints. Each of these studies used a two-stage dynamic-linear programming approach. Dynamic programming is the optimization procedure first used to select discrete components for the best possible conveyance system combinations to be used in supplying water to application systems. The linear programming then uses the dynamic programming output to select optimal application and distribution combinations. More details of this procedure are described by Busch (1974), Galinato and others (1977) and Allen and others (1978).

The two-stage dynamic-linear programming approach is best used for small scale problems (1000 - 3000 acres). The diversity of an area increases as the size increases and the irrigation distribution system becomes more complex with many branching pipelines and/or canals. This complexity greatly increases the size and difficulty of the dynamic

programming problem (Allen and others, 1978 and Busch and Yoo, 1981). The problem of obtaining an optimal solution involving discrete components can be solved by another type of linear programming, mixed integerlinear programming (MIP).

### MIXED INTEGER-LINEAR PROGRAMMING (MIP)

In operations research linear programming (LP) is widely used because of its simple form and a thoroughly explored solution algorithm (Hammer and others, 1979). An LP problem consists of a linear objective function to be optimized (i.e., either maximized or minimized) subject to linear equality or inequality constraints. Linear programming also requires that the decision variables be nonnegative and continuous. LP models have proven to be a powerful tool in the area of water resources research because of the relative ease of solution using readily available computer packages (IBM, 1974 and CDC, 1979). The simplex method is the basis for the solution of any LP problem in which the decision variables must be nonnegative and continuous.

In many real world problems the continuous solution of a problem may not be desirable because of the interpretation given to the solution. The requirement of integer values only for certain decision variables may arise in a linear programming problem where nonbreakable items are modeled. These problems can be formulated as LP problems with the additional restriction that some or all of the decision variables can assume only discrete values. Because of this additional constraint an LP problem becomes non-linear (discrete) and cannot be solved by the simplex method. This type of problem is called pure integer or mixed integer-linear programming problems. The solution of these problems requires special

algorithms. Details of these algorithms are beyond the purpose of this paper and are well described by Gomory (1963), Geoffrin and Marsten (1972), Murty (1976) and Land and Powell (1979).

### FORMULATION OF A MIXED INTEGER-LINEAR PROGRAMMING (MIP) PROBLEM

The general mixed integer-linear programming (MIP) problem is formulated as:

Minimize: 
$$z = \sum_{\Sigma}^{m} c_X + \sum_{\Sigma}^{n} c_Y$$
  
 $i=1$   $i$   $i=m+1$   $i$   $i$   $(3-1)$ 

Subject to:  $\sum_{\substack{\Sigma \\ i=1 \\ i \neq i \\ i = m+1 \\ i \neq i \\ i = m+1 \\ m = m+1 \\ m$ 

for all 
$$j = 1, 2, --- p$$
  
 $x_i \ge 0$  for  $i = 1, 2, --- m$   
 $y_i > 0$ , integer only for  $i = m+1, m+2, --- n$ 

where n is the total number of decision variables, m is the number of continuous variables, and p is the number of constraints. The  $c_i$ 's,  $a_{ij}$ 's and  $d_j$ 's are known constants and  $x_i$  and  $y_i$  are the decision variables. If all the decision variables are restricted to assume only integer values, the problem becomes a pure integer programming problem.

In many real world problems the integer decision variables are often restricted to "O or 1" in the pure-integer or mixed integer-linear programming problems. This type of "O or 1" restriction is necessary to solve problems that have variables with step functions as shown in Figure III-1. The function shown may represent the cost of an irrigation system component.



Figure III-1. Linear Function with Fixed Cost

where,

- $F(x_i) = component cost,$ 
  - c<sub>i</sub> = variable cost of decision variable i,
  - $x_i$  = decision variable i, and
  - $f_i$  = fixed charge of decision variable i.

As shown in this figure, the cost of performing the activity  $x_i$  is 0 if  $x_i \leq 0$  and is  $c_i x_i + f_i$  if  $x_i > 0$ . An MIP model which includes variables both with and without fixed costs is formulated as:

Minimize: 
$$a = \sum_{i=1}^{m} c_x + \sum_{i=1}^{n} (c_x + f_y)$$
 (3-3)  
 $i=1$   $i=m+1$   $i=1$   $i=1$ 

Subject to:  

$$\begin{array}{c} n \\ \Sigma & a \\ i=1 \end{array} (< = >)d \text{ for all } j = 1, 2, --- p \qquad (3-4) \\ \\ x_i - \alpha_i y_i \leq 0 \text{ for all } i = m+1, m+2, --- n \\ \\ x_i \geq 0 \text{ for } i = 1, 2, --- n \end{array}$$

$$x_{i} \ge x_{i}$$

 $y_i = 0 \text{ or } 1 \text{ for } i = m+1, m+2, --- n$ 

Where,

n = number of decision variables,

- m = number of decision variables included in the function that are purely linear without fixed costs,
- p = number of constraints related to the continuous variables, and
- $\alpha$  = upper bound of decision variables x<sub>i</sub> for i = m+1, m+2, --- n

The first set of constraints are general linear programming constraints which may be included in the model for all  $x_i$  (i = 1, 2, --- n). The second set indicates that when  $y_i = 0$ ,  $x_i$  must equal to 0 and alternatively  $y_i$  is forced to 1 when  $x_i > 0$ . Therefore,  $y_i$  have values of 0 or 1 dependent upon whether or not  $x_i$  are included in the solution.

Furthermore, if there is more than one alternative for the variables  $x_{m+1}$ ,  $x_{m+2}$ , ---  $x_n$  which include fixed charges, and one and only one variable must be selected for the final decision, the problem becomes a multiple choice problem with a fixed charge linear function. To solve this problem the mixed integer-linear programming formulation equation (3-2) requires additional constraints to specify that exactly one activity be performed as denoted by the following constraints.

Subject to: 
$$\sum_{k=1}^{q} y_{ik} = 1 \text{ for all } i = m+1, m+2, ---n$$
 (3-5)

Where, q = number of alternatives for decision variables  $y_i$ 

Use of an MIP model such as in equation (3-2) allows the incorporation of functions with steps and also assures that discrete components can be selected in the optimal solution by using the constraints of equations (3-3). This and other applications of MIP models are described by Yoo and Busch, (1981).

## SOLUTION ALGORITHMS FOR PURE INTEGER AND MIXED INTEGER-LINEAR PROGRAMMING PROBLEMS

There is no single method such as the simplex method for solving pure integer or mixed integer-linear programming problems. Since Dantzig discovered the simplex method in 1949 there have been several attempts made to solve these problems. The earliest applicable algorithm was a cutting plane method developed by Gomory (1958). Land and Doig (1960) developed an enumerative technique (branch-and-bound algorithm) to solve general pure integer and mixed integer-linear programming problems. The cutting plane and branch-and-bound algorithms are the most widely used methods to solve these problems. These two methods will be briefly discussed in the following sections.

### GOMORY'S CUTTING PLANE METHOD

The cutting plane method is a technique which squeezes down or cuts the feasible region of a solution of pure integer or mixed integer-linear programming problems ignoring the integer constraints. The cuts are achieved by sequentially introducing new constraints to the original constraints set of the problem. Each step in the solution reduces the feasible region at the expense of analyzing the problem by adding one constraint. Each solution is then obtained by the simplex method. The solution will terminate when an optimal feasible solution of the original problem is reached. The main problem associated with this method is

deciding how to construct the new constraints. Discussion of this problem is beyond the purpose of this report and is well described by Gomory (1963) and others (Jeroslow, 1974; Owen, 1973; and Murty (1976)).

### LAND AND DOIG'S BRANCH-AND-BOUND METHOD

The branch-and-bound method is a solution strategy that has been used as one of the major practical tools for the solution of pure integer and mixed integer-linear programming problems. If the total number of feasible integer solutions is small the best optimal feasible solution can be obtained by comparing all individual solutions using a total enumerative method. However, in most real world problems this approach is not practical as the number of solutions required often increases dramatically as the number of integer variables increases.

The branch-and-bound method provides a methodology to search for an optimum feasible solution by doing only a partial enumeration. The initial optimal solution of pure integer and mixed integer-linear programming problems is first obtained by neglecting the integer restriction. The space of all feasible solutions is repeatedly partitioned into smaller subsets (branching) as a better bound of a most promising subset (lower bound for a minimization and higher bound for a maximization problem) is calculated within the subset (bounding). The initial solution and each solution of the partitioned subsets are obtained by the simplex method. In each stage the subsets with feasible integer solutions are temporarily maintained or fathomed to check optimality or to improve the current solution. Those subsets with a bound which exceeds the known feasible integer solution are then excluded from all further

partitioning. Therefore, a large number of subsets may be excluded from bounding without being explored.

The advantage of this method over the cutting plane method is that the branch-and-bound method generates all intermediate feasible integer solutions before the optimal feasible integer solution is reached. The details of this method are discussed by Murty (1976) and Balas and Guignard (1979).

## COMPUTER PROGRAM PACKAGES FOR MIXED INTEGER-LINEAR PROGRAMMING SOLUTIONS

There are several computer programs available which deal with pure integer and mixed integer-linear programming problems. These programs are in two categories, commercial and non-commercial programs. The commercial program codes are those developed by major computer manufacturers and are all based on revised simplex and branch-and-bound methods. These codes include mixed integer-linear programming as well as linear programming. The most popular codes are listed in Table III-1. They are available by monthly lease with the cost usually being quite expensive.

| Code         | Vendor                          | Computer                                     |
|--------------|---------------------------------|----------------------------------------------|
| APEX III     | Control Data Corporation        | Cyber 70 series<br>Cyber 170,760<br>CDC 6000 |
| MPSX/370-MIP | International Business Machines | IBM 370                                      |
| FMPS         | Sperry Univac                   | Univac 1100<br>series                        |

Table III-1. Commercial Codes for Mathematical Programming

Non-commercial codes are those which are less powerful than the commercial codes and are usually developed for academic purposes. They are slow in solution time and can handle only small to medium size (less than 150 x 150 matrix) problems within reasonable computing time. For large problems the solution time is usually beyond reason, and a large computer memory is required. Land and Powell (1979) surveyed and described the non-commercial codes. According to their survey most of them are available to any users without charge or with minimum charges.

One of the non-commercial codes was developed by Yoo and Busch (1980). The program, UIMIP can solve medium sized pure integer and mixed integer-linear programming problems (up to 250 x 250 matrix) as well as linear programming problems. It is based on the simplex algorithm and branch-and-bound method. It also uses some heuristic methods to obtain intermediate feasible integer solutions and approximate the optimal solution to save computing time.

The manual of the UIMIP (Yoo and Busch, 1980) describes the program package and example solutions and is available along with the source programs from the Agricultural Engineering Department of the University of Idaho with minimum charge. Also available is a matrix generating program, which generates input data for the UIMIP in MPS standard format.

## APPLICATION OF MIXED INTEGER-LINEAR PROGRAMMING TO IRRIGATION SYSTEMS PLANNING

Consider the example irrigation system in Figure III-2 which includes two separate cropped areas, subarea A ( $\alpha$  acres) and subarea B ( $\beta$  acres). There are several types of crops grown in each subarea. The irrigation water may be delivered to subareas A and B by unlined or lined

open channel or by gravity pipe system. Water is supplied to subarea A at point a and to subarea B at point b and flows further downstream. Point c is the water source of the conveyance system; in this case it is

a diversion point from a river. The alternative application systems to be considered for each subarea are unimproved gravity, improved gravity and sprinkler irrigation application systems. The maximum flow rates (or design flow rates) of the application systems for each area are obtained from the weighted average of maximum daily evapotranspiration, ET, required by crops grown and application efficiencies of the irrigation application systems in each subarea.





$$Q_{max} = \frac{1}{23.8} \left( \frac{ET'_{max}}{EFF} \right)$$
 (3-6)

where,

- Q<sub>max</sub> = maximum required flow rate of an application system for each area in cfs per acre,
- ET' = weighted average of maximum daily ET of crops grown in each area in inches per day, and
- EFF = application system efficiency expressed as a decimal.

The annual costs for an application system are best expressed on a per acre basis and for a conveyance system as a function of peak design flow rate with a fixed charge. The details of obtaining the system annual costs are discussed later in Chapter V. The alternative systems under consideration and the annual costs, system efficiencies and other coefficients associated with each alternative are given in symbol form in Tables III-2 and III-3.

The mixed integer-linear programming problem matrix of the hypothetical irrigation system is shown in Figure III-3. The sum of the elements in the OBJ row, each multiplied by the value of its proper variable as selected in the optimal solution, is the total annual cost of operating and maintaining the entire system. The water cost for water entering the system is related to the total diversion at point c, VON (acre-feet) multiplied by the cost factor, CVON (\$/acre-feet) shown in the OBJ row. The operation and maintenance costs of the conveyance systems are computed as a function of canal length in miles as developed by Brockway and Reese (1973). Operation and maintenance costs are further discussed in Chapter VI.

| Subarea | System | Cost per<br>acre | Application<br>Efficiency<br>(decimal) | Flow Rate (cfs/acre)<br>at peak use |
|---------|--------|------------------|----------------------------------------|-------------------------------------|
|         | UGA    | CUA              | EUA                                    | QUA                                 |
| A       | IGA    | CIA              | EIA                                    | QIA                                 |
|         | SPA    | CSA              | ESA                                    | QSA                                 |
|         | UGB    | CUB              | EUB                                    | QUB                                 |
| В       | IGB    | CIB              | EIB                                    | QIB                                 |
|         | SPB    | CSB              | ESB                                    | QSB                                 |

### Table III-2. Coefficient Symbols for Irrigation Application Systems in the Hypothetical Model

Note: UG - Unimproved gravity irrigation system

IG - Improved gravity irrigation system
SP - Sprinkler irrigation system

| System          | Canal Length<br>(miles) | Cost Per Unit<br>Flow Rate<br>(\$/CFS) | Fixed Cost<br>(\$) | Delivery<br>Efficiency<br>(decimal) |
|-----------------|-------------------------|----------------------------------------|--------------------|-------------------------------------|
| al              | Lal                     | Cal                                    | Fal                | Eal                                 |
| a2              | La2                     | Ca2                                    | Fa2                | Ea2                                 |
| a3              | La3                     | Ca3                                    | Fa3                | Ea3                                 |
| b1              | Lb1                     | Cb1                                    | Fb1                | Eb1                                 |
| b2              | Lb2                     | Cb2                                    | Fb2                | Eb2                                 |
| b3              | Lb3                     | Cb3                                    | Fb3                | Eb3                                 |
| b2<br>b3<br>c1* | Lc1                     | Cc1                                    | Fc1                | Ec1                                 |

| Table III-3. | Coefficient | Symbols for | Distribution | Systems |
|--------------|-------------|-------------|--------------|---------|
|              |             | ypothetical |              |         |

Note: a - Canal Section a

b - Canal Section b

c - Canal Section c

1 - Unlined open channel system

2 - Lined open channel system

3 - Gravity pipe system

\*Unlined open channel only is considered for section c.

|        | UGA | IGA | SPA | UGB   | IGB   | SPB     | Qa1  | Yal  | Qa2          | Ya2  | Qa3  | Ya3          | Qb1  | Yb1  | Qb2    | Yb2  | Qb3      | Yb3  | Qc1  | Yc1               | OMO   | OMC           | VON  | RMS    |
|--------|-----|-----|-----|-------|-------|---------|------|------|--------------|------|------|--------------|------|------|--------|------|----------|------|------|-------------------|-------|---------------|------|--------|
| OBJ    | CUA | CIA | CSA | CUB   | CIB   | CSB     | Cal  | Fal  | Ca2          | Fa2  | Ca3  | Fa3          | Cb1  | Fb1  | Cb2    | Fb2  | Cb3      | Fb3  | Cc1  | Fc1               | COMO  | COMC          | CVON |        |
| AREAA  | 1   | 1   | 1   | 201.5 |       |         |      |      | 10.75        | 1    |      |              |      |      |        |      |          |      |      |                   |       |               |      | = 0,   |
| AREAB  |     |     |     | 1     | 1     | 1       |      |      | and the same |      |      | C.F. I Grove |      |      |        |      | 1.1.1.1  |      |      |                   |       |               |      | = β    |
| SYSa   | ZAU | ZAI | ZAS |       |       |         | -Eal |      | -Ea2         |      | -Ea3 | 100          | 1    |      | 1      |      | 1        |      |      |                   |       |               |      | <= 0   |
| SYSb   |     |     |     | ZBU   | ZBI   | ZBS     |      |      |              |      |      |              | -Eb1 |      | -Eb2   |      | -Eb3     |      |      |                   |       | course por se |      | <= 0   |
| SYSc   |     |     |     |       |       |         | 1    |      | 1            |      | 1    |              |      |      |        | 200  |          |      | -Ec1 |                   |       |               | -    | <= 0   |
| BETAa  |     |     |     |       |       |         |      | 1    | - Lu         | 1    |      | 1            |      |      |        |      |          |      |      |                   |       |               |      | = 1    |
| BETAb  |     | 1   |     |       | +1010 |         |      |      |              | -    |      |              |      | 1    |        | 1    |          | 1    | _    |                   |       |               |      | = 1    |
| BETAC  |     | 1   | -   |       |       |         | 1.1  |      |              |      |      |              |      |      |        |      | Sec. Sur |      |      | 1                 |       |               |      | = 1    |
| ALPAa1 |     |     |     |       |       |         | 1    | -qal |              |      |      |              |      |      |        |      |          |      |      |                   |       |               |      | <= 0   |
| ALPAa2 |     |     |     | 10    |       |         |      |      | 1            | -qa2 |      |              | -    |      |        |      | 2.1      |      |      | The second second | 100.0 |               |      | <= 0   |
| ALPAa3 | _   |     | _   | _     |       |         |      |      |              |      | 1    | -qa3         |      |      |        |      |          |      |      |                   |       |               |      | <= 0   |
| ALPAb1 |     |     |     |       |       |         | _    |      |              |      |      |              | 1    | -qb1 |        |      | 1        |      |      |                   |       |               |      | <= 0   |
| ALPAb2 |     |     |     |       |       |         |      |      |              |      |      |              |      |      | 1      | -qb2 |          |      |      |                   |       |               |      | <= 0   |
| ALPAb3 |     |     |     |       |       | 1.11.11 |      | 1.   |              |      |      | _            |      |      | 11.4.6 |      | 1        | -qb3 |      |                   |       | _             |      | <= 0   |
| ALPAc1 |     |     |     |       |       |         |      |      |              |      |      |              |      |      |        |      |          |      | 1    | -qcl              |       |               |      | <= 0   |
| SYSOP  |     |     |     | -     |       |         | -    | Lal  |              | La2  | 1000 |              |      | Lb1  | _      | Lb2  |          |      |      | Lc1               | -1    |               |      | = 0    |
| SYSCL  | _   |     |     |       |       | 6 - E   | (    |      |              |      |      | La3          |      |      |        | -    |          | Lb3  |      |                   |       | -1            |      | = 0    |
| WTON   | _   |     |     |       |       |         |      |      |              |      |      | -            |      |      |        |      |          |      | 1    |                   |       |               | <    | =Qspec |
| VOLON  |     |     |     |       |       |         |      |      | _            |      | _    | -            |      |      | -      | -    |          |      | -1   |                   |       |               | 5    | = 0    |

CVON - Water cust charged at headgate diversion point, \$/acre-feet

COMO - O&M cost of open channel system, \$/mile

COMC - O&M cost of pipe system, \$/mile

Qspec - Specified diversion flow to the system, cfs

WTON - Total inflow rate delivered to point c, cfs

- Conversion factor of cfs to acre-feet
- Q.. Design flow rate of distribution system, cfs
- Y.. 0 or 1 integer variables

19

q.. - Flow rate of distribution system which must be greater than or equal to the maximum design flow rate, cfs.

z.. - Maximum flow rate requirement of application system, cfs/acre

\* For other symbols refer to Tables III-2 and III-3.

Figure III-3. Mixed Integer-Linear Programming Problem Matrix Model of the hypothetical Irrigation System

The solution of the problem will give the minimum cost for the objective subject to the constraints given in the rows below the OBJ row. These constraints include size of each subarea, amount of water available to the system and other computational constraints. The BETA constraints are used to force the solution select one and only one system type for a conveyance section by satisfying the following conditions.

 $\Sigma^{n}$  BETA<sub>i</sub> = 1 for n = number of system types of a conveyance system (3-7) i=1

The ALPA constraints are used to force the solution to take zero flow rate for a system type of a conveyance section when a decision variable Y is selected zero by satisfying the following conditions.

Q - q Y  $\leq$  0 for each conveyance system component in each section.(3-8) where,

Q = the flow rate in the section,

q > maximum design flow rate for the section, and

Y = 0 or 1 integer values.

The COMO and COMC are the operation and maintenance costs associated with open channel and pipe systems, respectively. These terms are considered to be dependent upon the distribution system (canal length) and completely independent of the application systems.

The constraint rows define boundary conditions, continuity within the model, and relationships between the source of supply, point c, and areas of water use, subareas A and B. The AREAA row simply indicates that the acreage irrigated by the three irrigation systems must total  $\alpha$ acres. The same concept holds true for the AREAB row. The supply system which connects points c and a must supply any losses along the section, the maximum irrigation requirements imposed by the irrigation systems in

subarea A(ZA.) and those from point B indicated by the coefficients of row SYSa. The efficiency figures, Ea, signify that the flow rate of water entering the conveyance system at point c must include conveyance losses in each system type of the section. In the SYSb row it can be seen that the supply section b must supply water to the irrigation systems in subarea B and downstream need and any losses along the section. This example does not consider any excess or waste water flow from the conveyance system. The water supply entering the entire system must not exceed the specified value of  $Q_{\rm spec}$ , which represents total system flow rate requirement during periods of peak water use at a set project overall efficiency. The value  $Q_{\rm spec}$  may also represent the maximum legal water right of an irrigation system.

An optimal (least cost) solution can be obtained for the problem described by using mixed integer-linear programming techniques and associated computer package. The results would indicate how the limited resource, water, would be conveyed through the canal sections to supply water to the irrigation systems in the two service areas and how many acres would be served by each type of application system in each service area. The effects of variations in water availability and cost could be incorporated into the same problem by altering specified parameters within the matrix.



#### CHAPTER IV

#### DESCRIPTION OF THE STUDY AREA

The Snake River originates in Yellowstone and Teton National Parks of western Wyoming. It flows into Jackson Reservoir and then westward through Palisades Reservoir into Idaho. The river continues north and west to reach the Upper Snake River Plain where it turns southward. The study area for this project is located along the east side of the Snake River near the city of Idaho Falls (Figure IV-1). The area was first brought under irrigation in the late 1880's. Roughly 46,000 acres of the study area are irrigated with water diverted form the Snake River, of which 29,000 acres<sup>1/</sup> are under Idaho Irrigation District and 17,000 acres<sup>1/</sup> under Snake River Valley Irrigation District. Both districts divert water mainly from the Snake River, and both receive some waste or excess water from upstream irrigation districts.

#### TOPOGRAPHY

The topography of the study area is markedly flat, with an average slope of 0.002 ft/ft to 0.004 ft/ft. It is suitable for irrigation by both sprinkler and gravity methods. Sand dunes exist along Sand Creek, a natural channel, on the eastern part of the area. These dunes are hilly and usually lie idle or are cultivated with extensive land leveling and irrigated by sprinkler systems only.

These figures include only irrigated agricultural land of each district obtained from aerial infrared photography taken in August, 1978. It does not include roads, canals, residential areas and wasteland.



#### CLIMATE

The area is semi-arid with 11 to 13 inches of annual precipitation of which about 5 inches occur during the May through August growing season. The peak irrigation demand of the area occurs in July. However, the month of July supplies only 0.7 inches of precipitation on the average. Pan evaporation is 40.5 inches per year and lake evaporation is 29.2 inches per year, and the minimum daily relative humidity remains near 45 percent during the growing season. The area is around 4500 to 4800 feet in elevation above sea level. Temperatures range from 32°F and 100°F during the growing season with generally severe winter temperatures. The growing season is approxiamtely 110 days between freezes.

Consumptive irrigation requirements for crops in the study area were obtained from data in the University of Idaho Agricultural Experiment Station Bulletin No. 516 (Sutter and Corey, 1970) and the Soil Conservation Service Irrigation Guide for Southern and Southeastern Idaho (Soil Conservation Service, USDA, 1970). The monthly ET and maximum daily ET of each crop in the area are shown in Table IV-1.

#### FARM CHARACTERISTICS

The on-farm irrigation systems used in the area are border, furrow, hand-move sprinkler, side-roll sprinkler and center-pivot sprinkler systems. A very small area is under drip irrigation, and no subsurface irrigation is practiced in the area. The major crops raised are potatoes, small grain, alfalfa hay and pasture for forage and grazing. The cropping and on-farm irrigation system patterns of the area in the 1978 crop year are shown in Table IV-2.

| Sheet and the       | Alfalfa | Grain | Pasture | Potatoes |
|---------------------|---------|-------|---------|----------|
| April               | 0.0     | 1.04  | 0.0     | 0.0      |
| May                 | 1.13    | 1.60  | 1.00    | 0.55     |
| June                | 5.06    | 5.68  | 4.26    | 3.3      |
| July                | 7.27    | 8.51  | 6.21    | 8.43     |
| August              | 5.74    | 3.13  | 4.46    | 7.44     |
| September           | 2.28    | 0.0   | 1.08    | 2.27     |
| Total (inches)      | 21.48   | 19.96 | 17.0    | 21.99    |
| Daily Max. (inches) | 0.3     | 0.25  | 0.22    | 0.28     |

Table IV-1. Monthly and daily maximum consumptive irrigation requirement of each crop grown in the study area in inches

Table IV-2. Distribution pattern of crops, irrigation systems and land ownership in the study area in 1978 crop year

#### Cropping Pattern Alfalfa Area Irrigated Potatoes Grain Pasture (%) (acres) (%) (%) (%) 13.82 IID 1/ 28,577 27.11 40.12 18.85 SRVID 2/ 17,177 26.38 39.90 23.21 10.51 Study Area 39.92 20.55 12.46 45,754 27.07

1/ IID - Idaho Irrigation District

2/ SRVID- Snake River Valley Irrigation District

Irrigation Systems Pattern

| Application<br>System Type | Border<br>(%)  | Furrow<br>(%) | HMS 1/<br>(%)  | SRS <u>2/</u><br>(%) | CPS <u>3</u> /<br>(%) |
|----------------------------|----------------|---------------|----------------|----------------------|-----------------------|
| IID<br>SRVID               | 52.71<br>49.54 | 10.5          | 26.16<br>31.00 | 9.0<br>12.00         | 1.63                  |
| Study Area                 | 51.50          | 8.79          | 27.88          | 10.19                | 1.64                  |

1/ HMS - Hand-Move Sprinkler system

2/ SRS - Side-Roll Sprinkler system

3/ CPS - Center-Pivot Sprinkler system

#### Land Ownership Pattern

| Range of<br>ownership<br>size (acres) | <30   | 31-<br>50 | 51-<br>70 | 71-<br>100 | 101-<br>140 | 141-<br>210 | 211-<br>280 | >281 |
|---------------------------------------|-------|-----------|-----------|------------|-------------|-------------|-------------|------|
| IID                                   | 19 1/ | 72        | 20        | 154        | 51          | 43          | 21          | 6    |
| SRVID                                 | 7 -   | 62        | 13        | 94         | 24          | 23          | 8           | 3    |
| Study Area                            | 26    | 134       | 33        | 248        | 75          | 66          | 29          | 9    |

1/ Numbers indicate the number of land ownerships in each size range.

Border irrigation system is the most dominant irrigation practice followed by hand-move sprinkler irrigation systems. There is insignificant area supplied by center-pivot sprinkler systems. These data were obtained from low level aerial infrared images taken over the study area in August, 1978. More details of these photographs will be discussed later.

The U.S. Department of the Interior Bureau of Reclamation provided the land ownership pattern of the study area. Data in Table IV-2 show the summary of this information. The average size of land ownership in the area is about 80 acres and the maximum single ownership was found to be 960 acres.

#### SOIL TYPES

The soils of the study area are composed of silt loam, loam and sandy loam textures for the A horizon with gravelly sand and loam in the B horizon. The soils are excessively well drained with high porosity and permeability. The major soil series of the area are Ammon silt loam (Am), Bannock loam and gravelly loam (Ba), Bock loam (Bo), Hayeston (Ht) and Heiston (He) sandy loam, Paesl silt loam (Pe), Stan (St) and Sasser (Sa) fine sandy loam, and Wolverine sand (Wo). With the exception of Ammon and Paesl silt loam series all of these soils have very gravelly and sandy soils in the B horizon. A brief description of each soil type is contained in Appendix A. Soil maps obtained from the U.S. Department of Agriculture Soil Conservation Service were used to locate the soil series on the study area map developed from the aerial infrared photographs. The resulting study area map showing soil series is shown in Figure IV-2.



As shown in the soil map Bannock loam and gravelly loam and Bock loam are the dominant soils in the area. Hayeston and Heiston sandy loam soils are stretched along the Sand Creek on the east of the study area where several sand dunes of Wolverine sand (Wo) are located. East of the Sand Creek are Paesl and Ammon silt loam soils. In Table IV-3 are the distribution pattern and properties of each soil series in the study area. Also shown in Table IV-4 are the soil-crop-water relationships for each soil in the area.

Water intake rate for all soil except Wolverine sand were obtained from field tests for each crop in the study area. These data are necessary to evaluate and estimate irrigation practices and efficiencies. The details of these tests and results are described in a separate partial completion report of this project (Yoo and Busch, 1981b).

#### IRRIGAITON DISTRICTS

Two irrigation districts deliver irrigation water to the area and operate and maintain separate conveyance systems. The Idaho Irrigation District serves the northern part of the area and the Snake River Valley Irrigation District serves the south (Figure IV-1).

The Idaho Irrigation District was first served with water in the late 1880's. Since then the district has grown in size and in the amount of irrigation water delivered. At present it supplies water to about 29,000 acres of irrigated farmland and operates and maintains over 100 miles of major canals and laterals. The inlet headgate for the main canal is located on the east side of the Snake River about 10 miles north of the city of Idaho Falls (Figure IV-1). The main canal flows for 40 miles to the Blackfoot River where excess water is discharged. The

|               | Distribution<br>(%) | P<br>(in/hr) | AWC<br>(in/in) | FAM | Average<br>Slope<br>(ft/ft) | T Depth<br>(ft) |
|---------------|---------------------|--------------|----------------|-----|-----------------------------|-----------------|
| Am            | 8.8                 | 0.6          | 0.21           | 0.5 | 0.0027                      | 3.75            |
| Ba            | 32.1                | 1.3          | 0.15           | 1.5 | 0.0025                      | 3.0             |
| Во            | 13.8                | 1.0          | 0.17           | 1.0 | 0.0032                      | 3.8             |
| He <u>1</u> / | 10.1                | 2.0          | 0.13           | 2.0 | 0.0030                      | 2.5             |
| Pe            | 10.4                | 0.6          | 0.20           | 0.5 | 0.0016                      | 2.25            |
| Sa <u>2</u> / | 16.0                | 2.0          | 0.13           | 2.0 | 0.0026                      | 4.17            |
| Wo            | 8.8                 | 3.0          | 0.10           | 3.0 | 0.0050                      | 3.0             |

| Table IV-3. | Distribution patter | n and | properties | of | the | soil |
|-------------|---------------------|-------|------------|----|-----|------|
|             | series in the       | study | area       |    |     |      |

| Note: | Р     | = | permeability                     |
|-------|-------|---|----------------------------------|
|       | AWC   | = | available water holding capacity |
|       | FAM   | = | SCS intake family                |
| Т     | Depth | = | top soil depth                   |
|       | 1/    | = | includes He and Ht soil series   |
|       | 751   |   |                                  |

 $\overline{2}$  = includes Sa and St soil series

| Soi | 1 Series             | Potato      | Alfalfa     | Grain      | Pasture    |
|-----|----------------------|-------------|-------------|------------|------------|
| Am  |                      |             |             |            | 2.5        |
|     | RZD (ft)             | 2.5         | 4.0<br>10.1 | 3.5<br>8.8 | 2.5<br>6.3 |
|     | TAM (in)<br>RAM (in) | 6.3<br>2.52 | 5.04        | 4.41       | 3.15       |
|     | KAM (11)             | 2.52        | 5.04        | 4.41       | 0110       |
| Ba  |                      |             | 2.5         | 2.5        | 2.5        |
|     | RZD (ft)             | 2.5         | 3.5         | 3.5 6.3    | 2.5<br>4.5 |
|     | TAM (in)<br>RAM (in) | 1.8         | 3.78        | 3.15       | 2.25       |
|     |                      | 110         | 0110        |            |            |
| 30  | 070 (6+)             | 2.5         | 4.0         | 3.5        | 2.5        |
|     | RZD (ft)<br>TAM (in) | 2.5<br>5.1  | 4.0         | 2.1        | 5.1        |
|     | RAM (in)             | 2.04        | 4.9         | 3.57       | 2.55       |
|     |                      |             |             |            |            |
| łe  | RZD (ft)             | 2.5         | 3.0         | 3.0        | 2.5        |
|     | TAM (in)             | 3.9         | 4.7         | 4.7        | 3.9        |
|     | RAM (in)             | 1.56        | 2.81        | 2.81       | 1.95       |
|     |                      |             |             |            |            |
| Pe  | RZD (ft)             | 2.0         | 3.0         | 2.5        | 2.5        |
|     | TAM (in)             | 4.8         | 7.2         | 6.0        | 6.0        |
|     | RAM (in)             | 1.92        | 3.6         | 3.0        | 3.0        |
| Sa  |                      |             |             |            |            |
| Ju  | RZD (ft)             | 2.5         | 4.0         | 3.5        | 2.5        |
|     | TAM (in)             | 3.9         | 6.2         | 5.5        | 3.9        |
|     | RAM (in)             | 1.56        | 3.74        | 2.73       | 1.95       |
| No  |                      |             |             |            |            |
|     | RZD (ft)             | 2.5         | 4.0         | 3.5        | 2.5        |
|     | TAM (in)             | 3.0         | 4.8         | 4.2        | 3.0        |
|     | RAM (in)             | 1.2         | 2.88        | 2.1        | 1.5        |

| Table IV-4. | Soil-crop-water | relationships | of | the | soils |  |
|-------------|-----------------|---------------|----|-----|-------|--|
|             | in the stu      | udy area      |    |     |       |  |

Note: RZD = Root zone depth TAM = Total available water holding capacity, TAM=RZDxAWC RAM = Readily available moisture replaced in an irrigation

elevation at the inlet headgate is 4,755 feet and at the outlet is 4,575 feet above sea level. The total amount of water diverted to the district through the main canal in 1978 was 272,789 acre-feet, and the maximum flow rate in the canal was 1500 cfs. A natural stream, Sand Creek, flows north to south in the eastern portion of the district. Some reaches of this creek are used to convey irrigation water and others serve as drainage ways.

In addition to diversions from the Snake River, the district receives excess water from upstream districts. This water is not significant and dependable enough as an irrigation source and is often a hindrance as large excess flows often enter the district for short periods of time causing water regulation problems in the canal network. Most excess water from the district flows into the Snake River Valley Irrigation District except that from the main canal which flows into the Blackfoot River.

Irrigation started in the Snake River Valley Irrigation District in the late 1890's. The diversion headgate is located at a point on the east side of the Snake River about 3 miles south of the city of Idaho Falls (Figure IV-1). Since the first service the district has grown in size, and it presently serves about 17,000 acres of irrigated agricultural land. The total diverted water from the Snake River directly to the district in 1978 irrigation season was 166,616 acre-feet with a maximum flow rate of 850 cfs. This district also receives excess water from the upstream Idaho Irrigation District. This excess water is not regular enough as a dependable irrigation water source.

A network of over 50 miles of canals and laterals are used to convey and distribute water in the district. The main canal inlet is located at

4,647 feet above sea level and the outlet of the West Branch of the canal is at 4,555 feet. It is nearly 20 miles from the inlet point to the end of the West Branch of the Snake River Valley canal. The excess water from this district flows into the Reservation and Blackfoot Canals.

The main distribution canals and laterals were originally constructed along property lines and natural contours to minimize excavation as all work was done by men and animals. Since then some improvements have been made, but the major systems are unlined canals and follow basically the original established routes. Because of the highly permeable soils with gravelly sandy subsoils in the area, high canal seepage losses occur as the bottoms of the canals are often found to lie in the gravelly subsoils.

It is necessary to have the conveyance efficiency of each canal system to evaluate and determine project efficiency. Canal seepage of the area was studied and seepage rates were determined as a separate study of this project (Netz, 1980). As expected the seepage rates of most of the canal sections are significantly high and accordingly cause low conveyance efficiencies. Those canal sections located in the east of the study area have relatively low seepage loss. This area has deeper top soils of loam and silt loam. The total seepage rates of the two irrigation districts are an average of 312 cfs at a peak diversion rate of 1500 cfs for the Idaho Irrigation District and an average of 179 cfs at a peak diversion rate of 850 cfs for the Snake River Valley Irrigation District. The data used in this study are based on the 1978 and 1979 irrigation seasons. Seepage rates for individual canal sections are listed in Table VII-1, and additional details are reported by Netz (1980).

Along with the water delivered from the Snake River each district receives excess water from upstream irrigation district(s) and dumps waste water to downstream districts. As a part of its "Water Use Supply" study the U.S. Department of the Interior Bureau of Reclamation in Boise, Idaho measured excess water flows in and out of the two studied districts. The schematic diagram of the excess water delivery systems are shown in Figure IV-3, and Table IV-5 contains the results of the 1978 irrigation season. As shown in the table, Sand Creek (Site 3), Little Sand Creek (Site 1) and Henry's Creek (Site 4) deliver most of the excess water into the study area. These waterways are not only used for irrigation but used for drainage in the area. The excess waters from sites 1, 2, 3 and 4 dump into Idaho Irrigation District, and the water at sites 6, 7, 8, 9 and 10 is waste from the Idaho Irrigation District flowing into the Snake River Valley Irrigation District. The excess water from the other sites shown in the figure is lost out of the study area. Most of it is reused in downstream areas.

There was a total of 28,894 acre-feet of excess water delivered into the Idaho Irrigation District and a total of 36,870 acre-feet of waste water left the district in 1978 irrigation season. For the Snake River Valley Irrigation District in 1978 irrigation season, 27,707 acre-feet of excess water received from Idaho Irrigation District and 60,850 acre-feet of waste water was lost. Overall, the study area received 28,804 acrefeet of waste water and directly wasted 70,013 acre-feet in 1978 irrigation season. The large amount of water lost from the area is not a good source of irrigation water for downstream use since this excess water flow is not regular and does not necessarily occur at the time of irrigation water use in the area downstream. The total diverted inflows



|                     | Total Flow | Average 2/ |       | Flow I | Rate |       |
|---------------------|------------|------------|-------|--------|------|-------|
|                     | acre-feet  | cfs -      | max   | imum   | min  | imum  |
| Site No. <u>1</u> / |            |            | cfs   | date   | cfs  | date  |
| 1                   | 17920      | 97.7       | 440   | 8/14   | 0.1  | 7/26  |
| 2                   | 3500       | 19.0       | 31.3  | 8/3    | 0.2  | 9/19  |
| .3                  | 7384       | 40.0       | 62.2  | 8/20   | 0.1  | 10/12 |
| 4                   | 6680       | 36.0       | 64.5  | 9/9    | 10.6 | 8/4   |
| 4<br>5              | 9163       | 50.0       | 119.7 | 7/31   | 0.0  | 10/7  |
| 6                   | trace      |            |       |        |      |       |
| 7                   | 3745       | 20.0       | 88.4  | 8/6    | 0.0  | 10/31 |
| 8                   | 2350       | 12.8       | 22.6  | 7/9    | 1.3  | 9/26  |
| 8 9                 | trace      |            |       |        |      |       |
| 10                  | 21612      | 117.8      | 234.4 | 9/21   | 1.1  | 7/25  |
| 11                  | 1854       | 10.1       | 20.0  | 8/13   | 0.0  | 10/3  |
| 12                  | trace      |            |       |        |      |       |
| 13                  | 53390      | 291.0      | 744.0 | 8/14   | 23.7 | 6/30  |
| 14                  | 5606       | 30.0       | 35.0  | 11/5   | 0.0  | 8/31  |

Table IV-5. Excess water flows of the study area in the 1978 irrigation season (From U.S. Department of the Interior Bureau of Reclamation, Boise, Idaho)

1/ Record site shown in Figure IV-3 2/ Converted from acre-feet to cfs using conversion factor 0.00545 assuming 92 days of canal flow over 75% of maximum flow.

directly from the Snake River to the districts were 272,789 acre-feet for the Idaho Irrigation District and 166,616 acre-feet for the Snake River Valley Irrigation District in 1978 irrigation season.

#### LOW LEVEL AERIAL INFRARED IMAGES FOR INVENTORY OF THE STUDY AREA

It is necessary to accurately inventory existing irrigation systems, crops and waterways in an irrigated area in the process of developing rehabilitation plans. However, detailed site investigation is highly time and labor consuming for this purpose and important information may be easily overlooked in a cursory on-site survey. In this project low level aerial infrared images were taken over the study area in 1978 irrigation season. The images provided a great deal of information of the area, and the information was accurate enough to be used for the planning study.

#### INFRARED FILM AND ITS IMAGES

Many uses of KODAK AEROCHROME infrared film, type 2443, often called false-color film, have been found in forestry, geology, archeology, medical science, and crop and soil studies. (American Society of Photogrammetry, 1960). The film is sensitive to wavelengths from 360 to 900 nanometers which includes the visible component (400 to 700 nanometers). As a result, this film produces characteristic colors from the reflecting objects. It is the infrared component (700 to 900 nanometers), however, that produces the modified color rendition to the film.

The film is exposed with a yellow filter, Wratten #12, which attentuates wavelength shorter than about 500 nanometers. As a result the

scattered blue and other shorter wavelengths are filtered out, and only the reflected green, red and infrared wavelengths reach the emulsion layers of the color infrared film.

The sensitivity of the film to infrared radiation reflected from vegetation and the high absorption of infrared energy by water bodies can be applied to identify and inventory irrigated agricultural land. The relationship between the colors taken and those resulting in the film is that the sequence of the reproduced colors is in the order of blue, green and red as it is in the spectrum, but the correspondence to the colors being detected is one block toward longer wavelengths, green, red and near infrared.

An object that reflects only infrared energy will expose the cyan layer in the film emulsion to form a red image in the resulting color transparency. Plant foliage reflects a significant amount of energy in the green color spectrum, and a large amount in the infrared spectrum. Thus, the resulting color of green vegetation varies from magenta to red. Deviations from the red color of plant foliage in an infrared image are not always caused by a change in infrared reflectance, but in many cases are caused by changes in visible energy (Knipling, 1973).

#### APPLICATION

Aerial photographs of the study area were taken on August 10, 1978. The KA-2 9-inch camera used was equipped with a 12-inch lens. A Wratten #12 yellow filter was used to eliminate scattered blue and shorter wavelengths in exposing the KODAK AEROCHROME infrared film, Type 2443 Estar base. The airplane was flying at 12,600 feet to 12,800 feet above sea level, approxiamtely 8,000 feet above ground level of the area. The

scale of the resulting image was 1:8,000 (7.9 inches per mile). It took about 4 hours to cover the 50,000 acres area with 60 percent overlap for stereo images. An aerial exposure of 1/500 secong at f/5.6 was used. The total amount of film used was three 125-foot rolls. The film was developed to obtain color infrared transparencies.

After developing, the color positive infrared images of the study area were analyzed to iventory irrigation system components, crops and other details. The procedures used in analyzing the infrared transparencies are shown in Figure IV-4. Coordinates of all crop fields, canals, roads and other features such as residential areas were obtained from each transparency using an X-Y digitizer. These data were then refined by a digital computer by applying proper scaling factors and incorporating any needed corrections. The output consisted of a detailed printout and a composite computer drawn map of the entire area using a CALCOMP plotter.

When digitizing the coordinates of each field boundary, data describing the crops grown and types of irrigation application systems used in the area were also obtained from the color infrared transparencies and entered into the computer. These data were used to obtain distribution patterns of each crop and irrigation system type. There were four major crops (potatoes, alfalfa, grain and pastureland) and five irrigation application system types (furrow, border and hand-move, side-roll and center pivot sprinklers) in the study area. To simplify the analysis in the planning procedure, small areas of other crops were combined with one of the four major crops. For example, small areas of corn were grouped with potatoes as they are both row crops. With the exception of small laterals, the length and width of each irrigation canal were also



Figure IV-4. Flow chart of the procedures used in analyzing the infrared photo-graphs.

obtained as were locations of roads. Soils data were input by digitizing Soil Conservation Service soils maps of the area.

After data analysis, the output obtained included crop distribution, irrigation system type distribution, soil type distribution, and canal locations and sizes. Computer drawn maps consisted of a base map showing study area boundaries and canals and laterals. Several overlay maps could be plotted either individually or on the base map. Individual overlays were of residential areas, roads and soils. The map in Figure IV-1 shows the locations of irrigation canal networks obtained from the infrared transparencies. Since the latest U.S. Geological Service map of the area was published in 1948, this map gives the most updated information about canal system networks of the study area.

#### RESULTS AND DISCUSSION

There are basically five distinctive colors used for identifying different crops from the color infrared images. They are red, magenta, greenish, bluish, and yellow colors. Each color is characterized by the amount of reflected energy of the visible and infrared spectrums. Irrigation system types were detected by physical characteristics recorded from each type, and not by typical colors obtained. Canals, laterals and even small farm ditches were well defined by their black to dark blue color caused by the high infrared absorption of water. Ground truth data were collected and used as base information for the analyses.

The information in Table IV-6 describes how the infrared images were analyzed to identify crops, on-farm irrigation systems and other objects in this study. The data obtained from the pictures include cropping pattern, canal length, width and route, irrigation system type pattern and

other necessary information to inventory the area. More details of this part of the study are described by the authors (Yoo and Busch, 1980a).

| Object                        | Resolution for Identification                                                                                                                                                                                                  |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CROPS                         |                                                                                                                                                                                                                                |
| Grain                         | Unharvested field -yellow (mixture of high visible and<br>high IR reflectance) and bluish green (high visible and<br>low IR relectance)                                                                                        |
|                               | Harvested field - yellow strips between bluish colors                                                                                                                                                                          |
| Potatoes                      | Red to magneta with row marks which are well shown on<br>field ends where crop cover is poor. Potatoes were the<br>only major row crop in the area.                                                                            |
| Alfalfa                       | Unharvested field - red to bright red                                                                                                                                                                                          |
|                               | Harvested field - narrow yellow strips between green or scattered red marks. Hay bales are occasionally found on ground.                                                                                                       |
| Pasture                       | Dark red with large dark and blue spots (water pondage or wet bare soil).                                                                                                                                                      |
| IRRIGATION<br>SYSTEMS         |                                                                                                                                                                                                                                |
| Furrow                        | Row marks on field without any sprinkler marks. In most cases head and tail ends have poor crop cover and large dark area on tail end (wet bare soil or water pondage).                                                        |
| Border                        | No row marks or sprinkler marks on fields. Some fields<br>show border dikes. Most fields have poor crop cover on<br>tail and head ends, and large dark spots are often vivid<br>on tail ends (wet bare soil or water pondage). |
| Hand-move<br>Sprinkler        | This system can be easily detected from the picture when<br>it is operating. Otherwise, it is difficult to identify.<br>Other systems must be first described.                                                                 |
| Side-roll<br>Sprinkler        | Side-roll wheel marks are vividly shown in the picture<br>with or without the system operating. The side-roll<br>driver is a good identification mark of this system.                                                          |
| Center-<br>Pivot<br>Sprinkler | This system is easly detected by circular shaped wheel marks with or without a corner system.                                                                                                                                  |
| THER                          |                                                                                                                                                                                                                                |
| - Idle land                   | Greenish blue and very light color (dry bare soil) with o without tillage marks.                                                                                                                                               |
| - Canals &<br>Laterals        | Black and dark blue with white sparkles from water spray and waves which indicate the direction of water flow.                                                                                                                 |
| - Roads                       | Grey to black for unpaved or paved roads.                                                                                                                                                                                      |

Table IV-6. Resolution used to identify crops, irrigation application system types and other objects from the study area

#### CHAPTER V

#### IRRIGATION SYSTEMS COST ESTIMATION FOR THE STUDY AREA

The optimization technique requires the representation of physical and economic features and values in numerical terms for all irrigation system components. Although the system costs and efficiencies are the major input parameters to the optimization problem matrix, there are many factors which are included in formulating these parameters. The reliability of the results of this study is somewhat dependent upon the accuracy of these parameters. However, the evaluation and comparison of alternative irrigation system plans obtained are rather relative in a decision-making process.

#### COMPUTER PROGRAMMING ROUTINES FOR COST ESTIMATION

Computer programs have been developed to generate numerical values of costs and operating characteristics of physical features of on-farm irrigation systems (Galinato and others, 1977 and Allen and others, 1978). These values are used to formulate mixed integer-linear programming problem matrix for the optimization procedures in this study. The details of the computer programs and their usages are well described by Allen and others (1978). These computer routines have been continuously revised to improve the accuracy and to obtain practical values and are available to any potential users.

The computer routines are composed of four submodels: APSYS, PUMP, CANAL and PIPE. Each subsystem is summarized in Table V-1. The details of input parameters and formats, and sample outputs of the routines are listed in Appendices C and D. The APSYS routine includes two parts,

Table V-1. Synopsis of the computerized planning and cost estimation routines used to determine annual costs of irrigation systems (After Allen and others, 1978).

- APSYS This routine determines the annual costs of owning and operating irrigation application systems including land forming costs. Water application and distribution efficiencies are evaluated for each system design and on-farm managment practice. Specific application methods evaluated are furrow and border surface systems and hand-line, side-roll solid-set, and center pivot sprinkler systems.
- CANAL Annual ownership costs and conveyance efficiencies of open channel conveyance systems are estimated in this routine. The planned system may be lined or unlined and construction costs may be estimated for new or rehabilitated systems. Procedures used in this routine estimate costs of earthwork, canal lining and shaping, lateral turn-outs, and flow control structures.
- PIPE This computer routine estimates costs of constructing a gravity or high pressure pipeline system through undisturbed terrain or along an unlined channel route for a rehabilitation project. Pipe costs can be estimated for concrete, steel, or PVC pipe, and turnout costs can be estimated for high or low pressure operation.
- PUMP Annual ownership, operation, and electrical power costs of large pumping plants and small on-farm pumping units are estimated in this computerized procedure. Provision has been made to estimate escalation of power costs over the system life. On-farm units can be of centrifugal or turbine type, and costs of deep or shallow wells can also be estiamted. USBR planning specifications and procedures are used in the estimation of annual costs for large pumping systems.

SPNKLR and SURFCE. The first part is designed to deal with hand-move, side-roll and center-pivot sprinkler irrigation systems and the second part does the necessary computations for furrow and border gravity irrigation systems. These routines estimate annual system cost, gross system water requirement, water application efficiency and water lost to surface runoff and deep percolation. Procedures developed by the U.S. Department of Agriculture Soil Conservation Service are used for furrow irrigation system evaluation and design (UDSA, 1979). The main method of border irrigation system design and evaluation is from the border irrigation system zero-inertia model developed by Katopodes and Strelkoff (1977). This model uses zero-inertia, open channel flow, continuity and momentum theories. The main APSYS routine reads information for a specific soiltype, and a CROP subroutine inputs soil-plant-water relation data for each crop and soil type. These data and information generated are then utilized by SPNKLR and SURFCE subroutines to calculate the final desired information.

The PUMP routine is used to calculate annual pump and power costs for large pumping plants operating from rivers, canals, or reservoirs and smaller stations designed for on-farm operations. Total construction and power costs associated with each system are calcualted in relation to the design flow capacity of a pump station. Operation and maintenance costs of the pumping station are also estimated by the routine.

The distribution system costs are estimated for open channel and pipe (gravity and pressurized) system components by the computer routines, CANAL and PIPE, respectively. Many of the design procedures and routines have been obtained from the U.S. Department of the Interior Bureau of Reclamation (Galinato and others, 1977). These routines are

used to provide cost estimation for conveyance system rehabilitation over existing systems or for new system development. The routine finally develops a relationship between annual system cost and design flow rate, and calculates canal conveyance efficiency for canal sections. The annual system costs for each section are computed for a range of design flow rates comparable to those expected in each section, and a linear cost function with a fixed cost (e.g. Figure III-1) is developed with this restriction. These functions have been found very suitable with a highly significant (95%) coefficient of determination ( $\mathbb{R}^2$ ) value (Busch, 1974, Galinato and others, 1977 and Allen and others, 1978).

### APPLICATION OF THE COST ESTIMATION ROUTINES TO THE STUDY AREA

The cost estimation routines were applied to the study area with the data obtained from the 1978 crop year. As mentioned in the previous chapter the infrared images of the area taken by low level aerial photographs were used to obtain existing crop and irrigation system patterns of the study rea. Soil type patterns were obtained from Soil Conservation Service soil maps of the study area. The Bureau of Reclamation in Boise, Idaho provided land ownership descriptions of the area.

The base data of the cost estimation routines were obtained from numerous current publications including Gray (1981), Linderborg and others (1979), Gossett and others (1976), Willett (1976) and Pair and others (1975). A 12% annual interest rate, 20-30 year system life and 12% energy escalation rate were used in computing annual costs as well as cost indices used by the Bureau of Reclamation.

Application of the cost routines to the large study area required several assumptions to keep computing time within reasonable limits. The assumptions in Table V-2 were used for surface irrigation systems cost estimation. Sprinkler systems were assumed to require two pump units for fields of 240 acres or larger and one unit for smaller fields. A 150foot total dynamic head (TDH) farm pump for hand-move and side-roll sprinkler irrigation systems and 175-foot TDH farm pump for center-pivot systems were assumed. Land ownership sizes of 40 acres and 160 acres in the area with sandy soils were considered suitable for center-pivot sprinkler systems. In the study area the subareas 9 and 31 in Idaho ID and J, R, and S in Snake River Valley ID (Figure VI-2) are compatible for center-pivot sprinkler systems due to their sandy soil and land ownership sizes. For other sprinkler systems field sizes from 20 acres to 320 acres in all subareas were considered suitable. System dimensions and descriptions of each sprinkler irrigation system considered in the study area are described in Table V-3.

The APSYS cost estimation routine was run for combinations of four crops, seven soil types, and different run lengths for gravity systems and different land ownership sizes for sprinkler systems. The outputs obtained include annual system cost ( $\frac{1}{4}$  cre), deep percolation and surface runoff losses (acre-feet/acre) and system application efficiency ( $\frac{1}{4}$ ). The PUMP routine was run to obtain power and pump costs for each sprinkler irrigation system for different field sizes. An annual energy inflation rate of 12% was used in computing power costs.

<sup>1/</sup> Application efficiency is defined as the ratios of the water stored in the root zone to the amount of water applied to a field.

# Table V-2. Design assumptions to calculate costs and efficiencies for gravity irrigation systems

|                                         | Improved Gravity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            | Unimpro                                                                              | oved Gravity                                                                 |  |  |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|
| 1.                                      | Lined concrete ditch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.                         | No ditch 1                                                                           | ining                                                                        |  |  |
| 2.                                      | Well maintained concrete and<br>metal structures for stream<br>control and measurement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | etal structures for stream |                                                                                      | Minimum stream control and measurement device                                |  |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.                         | Minimum lar                                                                          | nd leveling                                                                  |  |  |
| 3.                                      | Extensive land leveling and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                          |                                                                                      |                                                                              |  |  |
|                                         | operating and irrigation<br>scheduling management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.                         |                                                                                      | time and run<br>an the improved                                              |  |  |
| 4.                                      | Irrigation set time adjusted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                          |                                                                                      | Adams and land la                                                            |  |  |
|                                         | for maximum efficiency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.                         | More labor time and land<br>to production required t                                 |                                                                              |  |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |                                                                                      |                                                                              |  |  |
| 5.                                      | Siphon tube used for distribut ing water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                          |                                                                                      | proved system.                                                               |  |  |
|                                         | ing water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | for the imp                                                                          | proved system.                                                               |  |  |
|                                         | ing water<br><u>1/</u><br>Irrigation run lengths a<br>(feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            | for the imp<br>considered                                                            | for each soil                                                                |  |  |
|                                         | ing water $\frac{1}{1}$ Irrigation run lengths a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            | for the imp<br>considered                                                            | proved system.                                                               |  |  |
| Soi                                     | ing water<br><u>1</u> /<br>Irrigation run lengths a<br>(feet)<br>Improved Gravity<br>length width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | for the imp<br>considered<br>Unimpro<br>length                                       | for each soil<br>oved Gravity<br>width                                       |  |  |
| Soi                                     | ing water<br>1 <u>1</u> /<br>1 Irrigation run lengths a<br>(feet)<br>Improved Gravity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | for the imp<br>considered<br>Unimpro                                                 | for each soil                                                                |  |  |
| Soi<br>Am<br>Ba                         | ing water<br><u>1</u> /<br>Irrigation run lengths a<br>(feet)<br>Improved Gravity<br>length width<br>860 860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            | for the imp<br>considered<br>Unimpro<br>length<br>1300                               | for each soil<br>oved Gravity<br>width<br>1300                               |  |  |
| Soi<br>Am<br>Ba<br>Bo<br>He             | ing water<br>1/<br>1 Irrigation run lengths a<br>(feet)<br>Improved Gravity<br>length width<br>860 860<br>650 650<br>860 860<br>650 650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | for the imp<br>considered<br>Unimpro<br>length<br>1300<br>650<br>1300<br>650         | for each soil<br>oved Gravity<br>width<br>1300<br>860<br>1300<br>860         |  |  |
| 5.<br>Soi<br>Am<br>Ba<br>Bo<br>He<br>Pe | ing water<br>1/<br>Irrigation run lengths a<br>(feet)<br>Improved Gravity<br>length width<br>860 860<br>650 650<br>860 860<br>650 650<br>860 860<br>650 860<br>860 860 |                            | for the imp<br>considered<br>Unimpro<br>length<br>1300<br>650<br>1300<br>650<br>1300 | for each soil<br>oved Gravity<br>width<br>1300<br>860<br>1300<br>860<br>1300 |  |  |
| Soi<br>Am<br>Ba<br>Bo<br>He             | ing water<br>1/<br>1 Irrigation run lengths a<br>(feet)<br>Improved Gravity<br>length width<br>860 860<br>650 650<br>860 860<br>650 650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | for the imp<br>considered<br>Unimpro<br>length<br>1300<br>650<br>1300<br>650         | for each soil<br>oved Gravity<br>width<br>1300<br>860<br>1300<br>860         |  |  |

1/ Soil series discussed in Chapter IV and Appendix A

| Sprinkler System                  | Field<br>Size<br>(acres)                         | Lateral<br>Length<br>(feet)                                         | Description                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------|--------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hand-Move Sprinkler               | 20<br>40<br>60<br>80<br>120<br>160<br>240<br>320 | 1300<br>1300<br>1950<br>1300 & 2600<br>2600<br>2600<br>2600<br>2600 | The layout of this system consists of hand-<br>carried laterals supplied by a buried main-<br>line. Lateral spacing is 60 feet. The over-<br>all application efficiency is 75% with 8%<br>evaporation loss. The system life is 15 years<br>for laterals and 20 years for mainlines. The<br>labor rate over this life time is \$4.50 per<br>hour.                                                                                        |
| Side-roll Wheel<br>line sprinkler | 20<br>40<br>60<br>120<br>160<br>240<br>320       | 1300<br>1300<br>1950<br>1300 & 2600<br>2600<br>2600<br>2600<br>2600 | The layout of this system consists of mechani-<br>cally moved laterlas supplied by a buried main-<br>line. Lateral spacing is 60 feet. The overall<br>application efficiency is 78% with 8% evapora-<br>tion loss. The system life is 15 years for<br>laterals and 20 years for mainlines. The labor<br>rate over the lifetime is \$6.50 per hour.                                                                                      |
| Center-pivot                      | 40<br>160                                        |                                                                     | This system consists of a mechanically moved<br>lateral which rotates about a center pivot<br>point. Water is applied by a permanently bur-<br>ied mainline. The lateral includes an attached<br>corner system. The overall application effi-<br>ciency of the system is 85% with 10% evapora-<br>tion loss. The life is 15 years for laterals<br>and 20 years for mainlines. Minimum labor is<br>involved for operation of the system. |

## Table V-3. System dimensions and descriptions of the sprinkler irrigation systems

Since the mixed integer-linear programming formulation requires information for each subarea supplied by a conveyance section, the weighted averages of the data generated by the cost estimation routines were computed for obtaining site-specific data for each subarea. Weighted averages of the data were obtained from the routines based on crops, soil types and land ownership patterns of each subarea.

For developing rehabilitation and consolidation plans for the irrigation districts in the study area, costs and conveyance efficiencies were obtained for all conveyance system sections using the CANAL and PIPE routines. Annual costs were in the form of, Annual Cost = AQ + B where Q is the design flow rate.

#### CHAPTER VI

### ANALYSIS OF EXISTING IRRIGATION DISTRICT SYSTEMS WITH ALTERNATIVE IRRIGATION APPLICATION SYSTEMS

Much of the water diverted into the irrigation systems in the study area is lost due to inefficiencies in the systems. The average diversion exceeds 10 acre-feet/acre whereas crop water requirements seldom exceed 2.5 acre-feet/acre. High canal seepage and operational losses and low on-farm application efficiencies cause this low overall project efficiency.

An analysis and evaluation of the irrigation systems including the cost and availability of water can be used to provide valuable information for comprehensive future planning of efficient systems. In this chapter the status of the existing systems is presented along with a series of planning scenarios for future changes. The changes are considered for on-farm irrigation system alternatives served by the existing conveyance systems in the area. Therefore, no system costs are involved for conveyance systems except operation and maintenance (0 & M) costs as no alternatives are considered. Evaluation of an existing system can be formulated as a linear programming problem which does not require any discrete solution since all cost functions are linear with no step functions.

#### CONVEYANCE SYSTEM PARAMETERS

The existing conveyance system routes of the study area are shown in Figure VI-1. The canal routes shown are those of existing unlined systems of the two irrigation districts studied. Through the years, portions of the systems have been improved to straighten and realign canal

sections. Also, some wooden structures have been replaced with concrete or steel. However, the entire system still does not efficiently deliver water. As discussed in Chapter IV most of the canal bottoms are exposed to gravelly subsoil, and the results of a canal seepage study done by Netz (1980) show extremely high seepage losses from the canal systems. The seepage rates of the two irrigation districts are an average of 312 cfs at a peak diversion of 1500 cfs for the Idaho Irrigation District and an average of 179 cfs at a peak diversion of 850 cfs for the Snake River Valley Irrigation District.

A total of 32 and 18 conveyance sections were defined for the Idaho and Snake River Valley Irrigation Districts, respectively (Figure VI-1). Some sections are designated to deliver water only to downstream section(s) only while others deliver irrigation water to a farm subarea (subarea will be discussed later) as well as downstream section(s). The locations of sections and diversion points of the sections are shown in Figure VI-1. The dentritic nature of the canal sections is shown in the schematic diagram of the study area's water deliver system in Figure VI-2. The first section of each district is that section through which the entire diverted water from the Snake River is conveyed to meet water requirement of the area. Information for each conveyance section is shown in Table VI-1. These data include seepage rate, length and average width of canal sections, and service area of each canal section and cumulated total service area downstream of each section.

Operation and maintenance (0 & M) costs for distribution systems of the existing systems were computed from a relationship obtained by Allen and Brockway (1979). They found 0 & M costs to be a function of total water delivered to a district. The relationship is:



•



Figure VI-2. Schematic diagram of the canal section routes of the existing system and diversion points of subarea in the study area.

| Tab1 | e | V | I - | 1 |  |
|------|---|---|-----|---|--|
|      | - |   |     | - |  |

Conveyance system data for the existing irrigation conveyance system sections

| Section<br>No.                            | Subarea<br>Served | Total Downstream<br>Area Served                           | Length                                                                               | Average Top<br>Width                                                                         | Canal<br>Seepage                                                                     |
|-------------------------------------------|-------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|                                           | (acres)           | (acres)                                                   | Miles                                                                                | Feet                                                                                         | Ft <sup>3</sup> /Ft <sup>2</sup> /Day                                                |
| 1                                         | 1,248             | 28,577                                                    | 10.38                                                                                | 67.84                                                                                        | 2.68                                                                                 |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0                 | 20,463 15,230                                             | 1.94 0.32                                                                            | 49.98<br>35.70                                                                               | 2.31 2.31                                                                            |
| 4                                         | 1,219             | 12,330                                                    | 1.55                                                                                 | 35.70                                                                                        | 1.31                                                                                 |
| 5                                         | 1,592<br>1,969    | 8,856<br>7,264                                            | 3.83<br>5.29                                                                         | 29.63<br>23.57                                                                               | 1.05 0.60                                                                            |
| 7                                         | 2,474             | 5,295                                                     | 3.99                                                                                 | 18.21                                                                                        | 0.60                                                                                 |
| 8                                         | 1,435             | 2,821                                                     | 4.56                                                                                 | 14.28                                                                                        | 0.60                                                                                 |
| 10                                        | 1,386 1,164       | 1,386 2,255                                               | 2.83<br>3.27                                                                         | 19.28<br>10.71                                                                               | 0.60                                                                                 |
| 11                                        | 1,091             | 1.091                                                     | 2.45                                                                                 | 7.85                                                                                         | 1.31                                                                                 |
| 12<br>13                                  | 1,385 1,515       | 2,900<br>1,515                                            | 6.42<br>3.45                                                                         | 11.78<br>28.56                                                                               | 1.05                                                                                 |
| 14                                        | 189               | 5.233                                                     | 2.04                                                                                 | 28.56                                                                                        | 2.31                                                                                 |
| 15<br>16                                  | 478<br>0          | 4,417 2,273                                               | 1.87 2.36                                                                            | 24.99<br>22.14                                                                               | 2.31<br>2.31                                                                         |
| 17                                        | 363               | 1,630                                                     | 0.93                                                                                 | 11.43                                                                                        | 1.81                                                                                 |
| 18                                        | 374               | 374<br>893                                                | 1.25                                                                                 | 3.57<br>12.14                                                                                | 2.31                                                                                 |
| 19<br>20                                  | 893<br>643        | 643                                                       | 2.24 2.72                                                                            | 5.0                                                                                          | $1.81 \\ 1.81$                                                                       |
| 20<br>21                                  | 627               | 627                                                       | 1.41                                                                                 | 4.28                                                                                         | 3.74                                                                                 |
| 22<br>23                                  | 1,666             | 1,666                                                     | 1.95 2.05                                                                            | 4.28 21.42                                                                                   | 3.74<br>1.31                                                                         |
| 24                                        | 0                 | 6,866<br>6,866                                            | 0.85                                                                                 | 33,20                                                                                        | 2.40                                                                                 |
| 25                                        | 508<br>351        | 2,548<br>2,040                                            | 1.67                                                                                 | 14.28 14.28                                                                                  | 1.00                                                                                 |
| 26<br>27                                  | 1,073             | 1,689                                                     | 7.10                                                                                 | 13.57                                                                                        | 0.60                                                                                 |
| 28                                        | 616<br>435        | 616                                                       | 8.33                                                                                 | 10.71                                                                                        | 0.60                                                                                 |
| 29<br>30                                  | 1,288             | 4,318<br>2,760                                            | 1.34 5.23                                                                            | 60.69<br>28.56                                                                               | 1.05 2.40                                                                            |
| 30<br>31                                  | 1,472             | 1,472                                                     | 4.14                                                                                 | 28.56                                                                                        | 2.40                                                                                 |
| 32<br>A                                   | 1,123             | 1,123<br>15,036 1/                                        | 5.36                                                                                 | 26.78<br>46.41                                                                               | 1.05 3.61                                                                            |
| B                                         | 0                 | 5.074 -                                                   | 0.50                                                                                 | 34.27                                                                                        | 3.74                                                                                 |
| B<br>C<br>D                               | 1,914<br>1,245    | 3,159<br>1,245                                            | 5.70 3.06                                                                            | 22.49<br>17.85                                                                               | 3.74 2.53                                                                            |
|                                           | 0                 | 9,962<br>4,685<br>718<br>1,906<br>2,141 <u>2/</u><br>4637 | 1.68                                                                                 | 46.41                                                                                        | 3.61                                                                                 |
| F                                         | 0<br>2,061<br>718 | 4,685                                                     | 1.68<br>4.25<br>3.44                                                                 | 24.28<br>13.57                                                                               | 1.48<br>1.94                                                                         |
| Ĥ                                         | 1.906             | 1,906                                                     | 5.50                                                                                 | 17.14                                                                                        | 1.04                                                                                 |
| I                                         | 1,678 463         | $2,141 \frac{2}{463}$                                     | 4.99                                                                                 | 31.07                                                                                        | 2.40                                                                                 |
| K                                         | 522               | 5,277                                                     | 2.99                                                                                 | 22.14                                                                                        | 1.31                                                                                 |
| E F G H I J K L M                         | 541<br>553        | 541                                                       | 2.08                                                                                 | 13.57<br>17.14<br>31.07<br>33.92<br>22.14<br>8.93<br>27.85<br>12.14<br>18.92<br>7.14<br>5.26 | 1.40                                                                                 |
| N                                         | 599               | 4,214                                                     | 1.10                                                                                 | 12.14                                                                                        | 1.31                                                                                 |
| N<br>O<br>P                               | 1,218             | 3,062                                                     | 4.51                                                                                 | 18.92                                                                                        | 1.31                                                                                 |
| 0                                         | 1,579             | 3,062<br>265<br>1,579<br>1,915                            | 5.50<br>4.99<br>1.25<br>2.99<br>2.08<br>1.24<br>1.10<br>4.51<br>2.22<br>3.33<br>1.49 | 5,36                                                                                         | 1.04<br>2.40<br>2.40<br>1.31<br>1.40<br>1.31<br>1.31<br>1.31<br>2.53<br>2.53<br>3.74 |
| QR                                        | 1,579<br>1,915    | 1,915                                                     | 1.49                                                                                 | 5.36<br>14.28                                                                                | 3.74                                                                                 |

1/ Total area served by water diverted from Snake River  $\underline{Z}/$  Total area served by water from Sand Creek

COMO = 0.413 AF

where,

COMO = annual operation and maintenance cost for an open channel
 system.

AF = total water delivered to a district in acre-feet.

This relationship was developed from data obtained from Idaho Irrigation District. Since the existing distribution systems of the study area are completely open channel systems, the above function can be directly used to obtain 0 & M costs for the Snake River Valley Irrigation District.

#### SUBAREA SELECTION AND APPLICATION SYSTEM PARAMETERS

Each conveyance section delivers water to a defined subarea as well as any conveyance sections located downstream. The selected subareas served by the existing unlined gravity canal system are shown in Figure VI-3. The numbers and letters both identify the subareas and indicate the conveyance sections shown in Figures VI-1 and VI-2 that serve the subareas. One requirement of a gravity irrigated subarea selection is that it must be located at a lower elevation than the supply point. Small head ditches and sublaterals in a subarea used to deliver and distribute irrigation water to individual fields are considered as part of the on-farm application systems. Subareas can be designated independently of soil type and land use. However, subarea boundaries are defined wherever possible so that there is a homogeneous soil type in the area to reduce the complexity of evaluation. One of the main purposes of each subarea selection is to determine the design flow rate required in each conveyance section so that water can be adequately delivered throughout the system. Another purpose is to obtain more detailed information of



.

each subarea unit by defining a small area as a unit independent from other units.

All necessary information for each subarea was obtained using the background data and methods described in Chapter V. The distribution patterns of crops, on-farm application systems, and soils of each subarea were determined by using low level aerial infrared photographs taken over the area and soils maps obtained form the U.S. Department of Agriculture Soil Conservation Service in the area. The results for the existing system evaluation are shown in Appendix B. This appendix also includes the ownership patterns of the subareas obtained from U.S. Department of the Interior Bureau of Reclamation. These data are vital for analyzing and evaluating irrigation systems and for obtaining for the irrigation water requirement of each subarea.

The daily maximum evapotranspiration requirements (ET) of the major crops grown in the area were weighted for each subarea based on cropping patterns. This information was used to obtain the maximum flow rate requirement of subareas for different application systems. The daily maximum ET and seasonal ET required for each subarea are shown in Table B-1 (Appendix B). Application efficiencies of 75%, 78% and 85% were assumed for hand-move, side-roll and center-pivot sprinkler systems, respectively. For gravity application systems considered in this study, unimproved and improved gravity systems, the application efficiencies were computed by the APSYS computer routines discussed in Chapter V. The maximum flow rates required for application systems in each of the subareas are shown in Tables VI-2 and VI-3. These flow rates are used as design flow rates of the application systems of the subareas in the optimization procedures.

| Subarea |          | Improved G | ravity Irri     | gation (IG) |               | Unimproved Gravity Irrigation (UG) |      |                 |         |         |  |  |
|---------|----------|------------|-----------------|-------------|---------------|------------------------------------|------|-----------------|---------|---------|--|--|
| No. 1/  | Qmax 2/  | EFF 3/     | Annual          | DP 4/       | EP <u>5</u> / | 9 <sub>max</sub>                   | EFF  | Annual          | DP      | SR      |  |  |
|         | Cfs/Acre | ×          | Cost<br>\$/Acre | AF/Acre     | AF/Acre       | Cfs/Acre                           | *    | Cost<br>\$/Acre | AF/Acre | AF/Acre |  |  |
| 1       | 0.0204   | 53.1       | 85              | 0.196       | 1.521         | 0.0321                             | 33.7 | 59              | 1.015   | 2.85    |  |  |
| 4       | 0.019    | 57.2       | 89              | 0.283       | 1.178         | 0.0313                             | 35.6 | 68              | 1.063   | 2.09    |  |  |
| 5       | 0.0207   | 51.5       | 82              | 0.202       | 1.410         | 0.0361                             | 29.5 | 57              | 1.067   | 3.05    |  |  |
| 6       | 0.0190   | 58.2       | 90              | 0.136       | 1.373         | 0.0275                             | 40.2 | 63              | 0.887   | 2.00    |  |  |
| 7       | 0.0194   | 59.1       | 80              | 0.093       | 1.574         | 0.0287                             | 39.9 | 51              | 0.832   | 2.18    |  |  |
| 8       | 0.0188   | 59.9       | 90              | 0.089       | 1.370         | . 0.272                            | 41.5 | 63              | 0.780   | 1.975   |  |  |
| 9       | 0.0195   | 58.3       | 135             | 0.259       | 1.217         | 0.0273                             | 41.6 | 121             | 0.990   | 1.835   |  |  |
| 10      | 0.0203   | 55.4       | 90              | 0,301       | 1.264         | 0.0321                             | 35.0 | 69              | 1.096   | 2.242   |  |  |
| 11      | 0.0213   | 52.9       | 93              | 0.468       | 1.322         | 0.0304                             | 37.1 | 74              | 1.346   | 1.734   |  |  |
| 12      | 0.0200   | 54.6       | 87              | 0.279       | 1.300         | 0.0337                             | 32.5 | 65              | 1.132   | 2.667   |  |  |
| 13      | 0.0203   | 54.7       | 112             | 0.329       | 1.393         | 0.0300                             | 37.0 | 94              | 1.090   | 2.240   |  |  |
| 14      | 0.0202   | 53.5       | 86              | 0.276       | 1.393         | 0.0380                             | 28.5 | 62              | 1.247   | 3.374   |  |  |
| 15      | 0.0195   | 55.5       | 84              | 0.216       | 1.302         | 0.0372                             | 29.1 | 59              | 1.173   | 3.188   |  |  |
| 18      | 0.0195   | 56.4       | 88              | 0.308       | 1.209         | 0.0304                             | 36.3 | 66              | 1.124   | 2.003   |  |  |
| 19      | 0.0202   | 55.2       | 93              | 0.415       | 1.226         | 0.0301                             | 37.1 | 76              | 1.203   | 1.789   |  |  |
| 20      | 0.0204   | 54.9       | 93              | 0.394       | 1,253         | 0.0308                             | 36.4 | 74              | 1.191   | 1.92    |  |  |
| 21      | 0.0213   | 53.7       | 89              | 0.347       | 1.272         | 0.0369                             | 31.0 | 68              | 1.290   | 2.62    |  |  |
| 22      | 0.0208   | 53.8       | 92              | 0.428       | 1.238         | 0.0327                             | 34.3 | 74              | 1.286   | 2.172   |  |  |
| 25      | 0.0179   | 57.1       | 78              | 0.076       | 1.298         | 0.0283                             | 36.0 | 49              | 0.776   | 2.31    |  |  |
| 26      | 0.0204   | 56.6       | 78              | 0.086       | 1.796         | 0.0304                             | 37.9 | 50              | 0.804   | 2.428   |  |  |
| 20      |          | 56.1       | 77              | 0.110       | 1.693         | 0.0288                             | 37.2 | 50              | 0.854   | 2.118   |  |  |
|         | 0.0202   |            | 79              | 0.130       | 2.253         | 0.0321                             | 36.4 | 52              | 0.884   | 2.523   |  |  |
| 28      | 0.0227   | 50.1       |                 |             | 1.437         | 0.0291                             | 37.6 | 56              | 0.843   | 2.178   |  |  |
| 29      | 0.0185   | 58.4       | 82              | 0.146       |               | 0.0291                             | 39.5 | 67              | 0.878   | 2.189   |  |  |
| 30      | 0.0192   | 56.8       | 93              | 0.149       | 1.453         |                                    | 42.5 | 79              | 0.893   | 2.362   |  |  |
| 31      | 0.0190   | 57.0       | 105             | 0.164       | 1.316         | 0.0255                             | 34.3 | 57              | 0.928   | 2.813   |  |  |
| 32      | 0.0193   | 55.6       | 83              | 0,130       | 1.421         | 0.0313                             |      | 65              | 1.186   | 2.189   |  |  |
| С       | 0.0196   | 56.0       | 87              | 0.322       | 1.198         | 0.0313                             | 35.0 | 62              | 1.217   | 2.406   |  |  |
| D       | 0.0204   | 55.4       | 95              | 0.229       | 0.290         | 0.0332                             | 34.2 |                 |         |         |  |  |
| F       | 0.0196   | 56.5       | 95              | 0.278       | 1.222         | 0.0304                             | 36.5 | 73              | 1.072   | 2.113   |  |  |
| G       | 0.0194   | 58.8       | 140             | 0.251       | 1.122         | 0.0271                             | 42.2 | 125             | 0.954   | 1.658   |  |  |
| н       | 0.0192   | 60.3       | 96              | 0.104       | 1.293         | 0.0288                             | 40.2 | 71              | 0.832   | 2.111   |  |  |
| 1       | 0.0199   | 55.4       | 110             | 0.227       | 1.355         | 0.0274                             | 40.1 | 88              | 0.988   | 2.399   |  |  |
| J       | 0.0195   | 58.1       | 118             | 0.197       | 1.313         | 0.0272                             | 41.7 | 99              | 0.937   | 2.210   |  |  |
| К       | 0.0193   | 58.2       | 85              | 0.248       | 1.165         | 0.0302                             | 37.3 | 61              | 1.072   | 1.933   |  |  |
| L       | 0.0201   | 57.5       | 83              | 0.266       | 1.234         | 0.0304                             | 38.2 | 57              | 1.212   | 1.333   |  |  |
| м .     | 0.0180   | 60.5       | 85              | 0.214       | 1.036         | 0.0298                             | 36.6 | 62              | 0.982   | 1.926   |  |  |
| N       | 0.0189   | 59.2       | 87              | 0.198       | 1.125         | 0.0305                             | 36.8 | 63              | 0,983   | 2.046   |  |  |
| 0       | 0.0193   | 59.0       | 97              | 0.203       | 1.161         | 0.0288                             | 39.4 | 73              | 1.020   | 1.879   |  |  |
| Р       | 0.0183   | 63.6       | 76              | 0.027       | 1.023         | 0.0306                             | 38.0 | 46              | 0.849   | 2.117   |  |  |
| Q       | 0.0192   | 56.7       | 115             | 0.330       | 1.256         | 0.0282                             | 38.5 | 98              | 1.089   | 2.102   |  |  |
| R       | 0.0197   | 56.7       | 80              | 0.307       | 1.179         | 0.315                              | 35.4 | 66              | 1.142   | 2.099   |  |  |

#### Table VI-2. Gravity irrigation application systems data of annual operation for the evaluation under existing canal systems

1/ Subareas are shown in Figure VI-3 2/ Maximum flow rate required 3/ Application system efficiency

4/ Deep percolation loss 5/ Surface runoff loss

| Subarea | nand-M   | ovement Sprin    | ikler (HM  | 15)   |         |                  | Side-Ro |              |       |         |
|---------|----------|------------------|------------|-------|---------|------------------|---------|--------------|-------|---------|
| No. 1/  | Q2/      | Annual C         | Cost (\$/A | cre)  | DP 4/   | Q <sub>max</sub> | Annua   | I Cost (\$/A | cre)  | DP      |
|         | Cfs/Acre | Total <u>3</u> / | Pump       | Power | AF/Acre | Cfs/Acre         | Total   | Pump         | Power | AF/Acre |
| 1       | 0.0144   | 89               | 36         | 16    | 0.4058  | 0.0139           | 99      | 17           | 33    | 0.3571  |
| 4       | 0.0149   | 97               | 40         | 18    | 0.4195  | 0.0143           | 104     | 19           | 36    | 0.3691  |
| 5       | 0.0142   | 89               | 37         | 15    | 0.3911  | 0.0137           | 99      | 14           | 34    | 0.3442  |
| 6       | 0.0147   | 89               | 34         | 19    | 0.4155  | 0.0142           | 99      | 18           | 32    | 0.3656  |
| 7       | 0.0153   | 90               | 34         | 19    | 0.4272  | 0.0147           | 100     | 18           | 32    | 0.3670  |
| 8       | 0.0150   | 82               | 34         | 14    | 0.4197  | 0.0145           | 92      | 14           | 32    | 0.3694  |
| 9       | 0.0151   | 88               | 34         | 12    | 0.4255  | 0.0134           | 97      | 10           | 31    | 0.3744  |
| 10      | 0.0150   | 95               | 41         | 15    | 0.4212  | 0.0144           | 104     | 15           | 37    | 0.3707  |
| 11      | 0.0150   | 95               | 37         | 18    | 0.4324  | 0.0144           | 101     | 13           | 33    | 0.3805  |
| 12      | 0.0146   | 93               | 39         | 14    | 0.4110  | 0.0140           | 105     | 14           | 36    | 0.3617  |
| 13      | 0.0148   | 93               | 38         | 15    | 0.4211  | 0.0142           | 102     | 14           | 35    | 0.3705  |
| 14      | 0.0144   | 100              | 36         | 24    | 0.4054  | 0.0139           | 108     | 24           | 35    | 0.3567  |
| 15      | 0.0144   | 84               | 32         | 14    | 0.4045  | 0.0139           | 96      | 13           | 30    | 0.3560  |
| 18      | 0.0147   | 92               | 37         | 16    | 0.4183  | 0.0141           | 101     | 16           | 34    | 0.3681  |
| 19      | 0.0149   | 101              | 40         | 17    | 0.4269  | 0.0143           | 110     | 17           | 37    | 0.3757  |
| 20      | 0.0149   | 95               | 38         | 18    | 0.4260  | 0.0143           | 101     | 18           | 34    | 0.3749  |
| 21      | 0.0152   | 87               | 33         | 14    | 0.4245  | 0.0146           | 95      | 12           | 30    | 0.3735  |
| 22      | 0.0149   | 94               | 38         | 15    | 0.4241  | 0.0143           | 103     | 15           | 34    | 0.3732  |
| 25      | 0.0136   | 85               | 34         | 16    | 0.3846  | 0.0131           | 97      | 16           | 32    | 0.2385  |
| 26      | 0.0154   | 87               | 36         | 15    | 0.4289  | 0.0148           | 102     | 15           | 34    | 0.3774  |
| 27      | 0.0151   | 84               | 36         | 14    | 0.4227  | 0.0145           | 96      | 14           | 33    | 0.3720  |
| 28      | 0.0152   | 82               | 34         | 12    | 0.4309  | 0.0146           | 93      | 13           | 31    | 0.3792  |
| 29      | 0.0144   | 98               | 35         | 25    | 0.4084  | 0.0138           | 106     | 25           | 32    | 0.3593  |
| 30      | 0.0145   | 86               | 33         | 17    | 0.4107  | 0.0140           | 96      | 16           | 31    | 0.3614  |
| 31      | 0.0145   | 89               | 34         | 18    | 0.4056  | 0.0139           | 96      | 17           | 32    | 0.3569  |
| 32      | 0.0143   | 87               | 35         | 16    | 0.3990  | 0.0138           | 97      | 15           | 33    | 0.3511  |
| C       | 0.0146   | 89               | 15         | 35    | 0.4151  | 0.0140           | 98      | 14           | 32    | 0.3653  |
| D       | 0.0151   | 92               | 19         | 36    | 0.4229  | 0.0145           | 99      | 18           | 33    | 0.3782  |
| F       | 0.0148   | 96               | 17         | 39    | 0.4180  | 0.0142           | 106     | 15           | 36    | 0.3478  |
| G       | 0.0152   | 99               | 17         | 39    | 0.4282  | 0.0147           | 108     | 16           | 36    | 0.3769  |
| н       | 0.0154   | 87               | 14         | 37    | 0.4260  | 0.0148           | 98      | 13           | 35    | 0.3748  |
| 1       | 0.0147   | 95               | 20         | 36    | 0.4125  | 0.0141           | 102     | 19           | 33    | 0.3630  |
| j       | 0.0152   | 93               | 16         | 36    | 0.4206  | 0.0146           | 102     | 10           | 33    | 0.3701  |
| ĸ       | 0.0150   | 90               | 15         | 38    | 0.4227  | 0.0144           | 97      | 15           | 34    | 0.3720  |
| ĩ       | 0.0154   | 83               | 13         | 33    | 0.4341  | 0.0149           | 93      | 13           | 30    | 0.3820  |
| M       | 0.0145   | 94               | 18         | 39    | 0.4117  | 0.0149           | 103     | 19           | 35    | 0.3623  |
| N ·     | 0.0149   | 97               | 20         | 39    | 0.4179  | 0.0140           | 105     | 19           | 36    | 0.3677  |
| 0       | 0.0151   | 90               | 17         | 36    | 0.4243  | 0.0144           | 98      | 17           | 33    | 0.3734  |
| P       | 0.0155   | 86               | 18         | 37    | 0.4219  | 0.0149           | 91      | 17           | 34    | 0.3713  |
| Q       | 0.0147   | 97               | 19         | 37    | 0.4178  | 0.0139           | 103     | 20           | 33    | 0.3676  |
| R       | 0.0149   | 91               | 17         | 37    | 0.4200  | 0.0143           | 99      | 16           | 34    | 0.3700  |

# Table VI-3. Sprinkler irrigation application systems data of annual operation for the evaluation under existing canal systems

| No 1/ | Q 2/     | Center-Pivo<br>Annual C |      |       | DP 4/   |
|-------|----------|-------------------------|------|-------|---------|
| -     | Cfs/Acre | Total 3/                | Pump | Power | AF/Acre |
| 9     | 0.0134   | 129                     | 13   | 30    | 0,2533  |
| 31    | 0.0128   | 165                     | 20   | 30    | 0.2433  |
| J.    | 0.0134   | 164                     | 19   | 32    | 0.2523  |
| Q     | 0.0128   | 154                     | 16   | 30    | 0.2397  |
| R     | 0.0131   | 109                     | 8    | 29    | 0.2477  |

- 1/ Subareas are shown in Figure VI-3
- 2/ Maximum flow rate required
- 3/ Total cost includes pump and power cuts
- 4/ Deep percolation loss

Cost and efficiency data for alternative application systems were also computed and are shown in Tables VI-2 and VI-3. The weighted average of annual cost (\$/acre), deep percolation loss (acre-feet/acre) and runoff loss (acre-feet/acre) of the application systems for each subarea were obtained based on the distribution patterns of crops, soils and land ownerships. The system cost data includes capital, operating and maintenance costs. For sprinkler irrigation systems it was assumed that deep percolation is the only source of water loss with no surface runoff, and that each system is operated at the given application efficiency level. Total annual cost of sprinkler system includes pump and power costs. The five subarea units 9 and 31 in Idaho ID and J, Q anr R in Snake River Valley ID were considered suitable for center-pivot irrigation systems due to their sandy top soils and large land ownerships. In general, the application system costs are in descending order for center-pivot, sideroll, hand-move, improved and unimproved gravity irrigation systems. However, some subareas such as units 9 and 31 have lower cost for sprinkler systems than for gravity systems. This fact is due to the high labor cost involved in operating gravity systems on soils with high water intake rates.

# INPUT DATA FORMULATION OF THE LINEAR PROGRAMMING PROBLEM FOR THE EXISTING SYSTEMS EVALUATION

The data in Tables VI-1, VI-2 and VI-3 are used to develop a linear programming (LP) model of each irrigation district in the study area. Optimum values obtained were least cost systems as the objective function denoting total annual cost is minimized subject to constraints. Constraints establish continuity in the model and contain necessary relationships between the source(s) of supply and areas of demand (various application systems).

A linear programming formulation of analyzing an existing irrigation system contains the following equality and inequality functions:

Minimize objective function OBJ (OBJ =  $\sum_{i=1}^{N} C_i X_i$ , N = number of decision variables, C = unit cost of a variable and X = value of a decision variable) subject to:

a) Area constraints:

$$\sum_{j=1}^{m} AREA_{ij} = ACRE; \text{ for all } j \qquad (6-2)$$

where

 $AREA_{ij}$  = size of a field in subarea j which is irrigated by application system i,

ACRE<sub>j</sub> = total acreage of subarea j,

m = number of application systems alternative considered in a subarea

$$Q_k - \sum_{i=1}^{m} Q_{ik} - \sum_{j=1}^{n} Q_{jk} \ge \text{Seepage}_k$$
, for all k

where

- $Q_k$  = design flow rate of canal section k which supplies water to application systems in a subarea and/or canal section(s) downstream,
- Q<sub>ik</sub> = flow rate required by application system i supplied by canal section k,
- Q<sub>jk</sub> = design flow rate in canal section j supplied by canal section k,
  - m = number of application system alternatives which are supplied by canal section k,
  - n = number of canal sections downstream directly supplied by
    canal section k, and

Seepage<sub>k</sub> = seepage rate of canal section k.

c) Resource constraints

$$Q_{head} \leq Q_{spec}$$

(6-4)

where

 $Q_{head}$  = flow rate required at headgate of a district, and

Q<sub>spec</sub> = specified or available flow rate entering a system.

d) Flow-rate-to-volume conversion constraints: (6-5)

 $\S \cdot WN - Q_{head} = 0.$ 

where

 $\S$  = conversion factor of cfs to acre-feet, 0.00545

WN = delivered inflow at headgate in acre-feet, and

 $Q_{head}$  = delivered inflow at headgate in cfs.

e) Deep percolation constraints:

 $\sum_{i=1}^{m} \sum_{j=1}^{n} DP_{ij} AREA_{ij} = VDP$ (6-6)

where

DP<sub>ij</sub> = deep percolation loss in acre-feet/acre from application
 system j in subarea i,

AREA<sub>jj</sub> = area irrigated by system j in subarea i,

m = number of subareas,

n = number of application systems alternatives, and

VDP = total deep percolation loss.

f) Surface runoff constraint:

 $\sum_{i=1}^{m} \sum_{j=1}^{n} SR_{ij} AREA_{ij} = VSR$ (6-7)

where

SR<sub>ij</sub> = surface runoff loss in acre-feet/acre from system j in subarea i (no surface runoff is considered for sprinkler application systems),

Areaii = area irrigated by application system in subarea i,

m = number of subareas,

n = number of application systems alternatives, and

VSR = total surface runoff loss.

These relationships are the rows in the linear programming matrix map shown in Figure VI-4 for an example system. This matrix map represents a small irrigation system starting at diversion point B of the Snake River Valley Irrigation District. The system includes subareas C, D and R which are supplied through canal sections B, C, D and R. The matrix map is given in abbreviated form; that is, all numbers other than 1.0 are represented by letter symbols whose ranges of value are also shown in the figure. The application systems for all units represented in columns of the matrix correspond to those symbols and systems UG, IG, HMS, SRS and

|                |        | S<br>R<br>C | H<br>M<br>C | U<br>G<br>C | I<br>G<br>C | S<br>R<br>D | H<br>M<br>D | U<br>G<br>D | I<br>G<br>D | S<br>R<br>R | H<br>M<br>R | U<br>G<br>R | I<br>G<br>R | W<br>N | V<br>D<br>P | V<br>S<br>R | S<br>E<br>C<br>B | S E C C | S E C D | S<br>E<br>C<br>R | 0<br>M<br>U | R<br>H<br>S |
|----------------|--------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------|-------------|-------------|------------------|---------|---------|------------------|-------------|-------------|
| OBJ            | N      | В           | В           | В           | В           | В           | В           | В           | В           | В           | В           | В           | В           |        |             |             |                  |         |         |                  |             | -           |
| AREAC          | E      | 1           | 1           | 1           | 1           |             |             |             |             |             |             |             |             |        |             |             |                  |         |         |                  |             | D<br>D      |
| AREAD          | E      |             |             |             |             | 1           | 1           | 1           | 1           |             |             |             |             |        |             |             |                  |         |         |                  |             | D           |
| AREAR          | E      |             |             |             |             |             |             |             |             | 1           | 1           | 1           | 1           |        |             |             | -1               | 1       |         | 1                |             | -A          |
| SYSB           | Ļ      |             | U           | υ           | U           |             |             |             |             |             |             |             |             |        |             |             | -+               | -1      | 1       | 1                |             | -B          |
| SYSC<br>SYSD   | L      | U           | 0           | 0           | 0           | U           | U           | U           | U           |             |             |             |             |        |             |             |                  |         | -1      |                  |             | -A          |
| SYSR           | L      |             |             |             |             | U           |             |             |             | U           | U           | U           | U           |        |             |             |                  |         |         | -1               |             | -A          |
| WTON           | Ē      |             |             |             |             |             |             |             |             |             |             |             |             |        |             |             | 1                |         |         |                  |             | С           |
| WON            | E      |             |             |             |             |             |             |             |             |             | _           |             | -           | ۷      |             |             | -1               |         |         |                  |             |             |
| DP             |        | - T         | - T         | -A          |             | -T          | -T          |             | -T          | -T          | -1          |             | -T          |        | 1           | 1           |                  |         |         |                  |             |             |
| SR             | E      |             |             | -A          | -A          |             |             | -A          | -A          |             |             | -A          | -A          |        |             | T           | 1                | 1       | 1       | 1                | -V          |             |
| S YS U<br>CHON | E<br>N |             |             |             |             |             |             |             |             |             |             |             |             | 1      |             |             | -                | -       | -       | -                | Ť           |             |
| CNDP           | N      |             |             |             |             |             |             |             |             |             |             |             |             | -      | 1           |             |                  |         |         |                  |             |             |
| CHSR           | N      |             |             |             |             |             |             |             |             |             |             |             |             |        |             | 1           |                  |         |         |                  |             |             |

# SUMMARY OF MATRIX

| SYMBOL |                | RANGE       | 19 - 19 - 19 - 19 - 19 - 19 - 19 - 1 |
|--------|----------------|-------------|--------------------------------------|
| Z ·    | LESS           | THAN        | .000001                              |
| . Y    | .000001        | THRJ        | .000009                              |
| x      | .00010         |             | :000099                              |
| W      | .00100         |             | .000999                              |
| ٧      | .001000        |             | .009999                              |
| U ,    | .010000        |             | .099999                              |
| T      | .100000        |             | .999999                              |
| 1      | 1.00000        | 15 a. 5 mil | 1.000000                             |
| Α      | 1.00001        |             | 10.000000                            |
| B      | 10.000001      |             | 100.000000                           |
| С      | 100.00001      | 1           | 1,000.000000                         |
| D      | 1,000.000001   |             | 10,000.000000                        |
| Ε·     | 10,000.000001  |             | 100,000.000000                       |
| F      | 100,000.000001 |             | 1,000,000.000000                     |
| G      | GREATER        | THAN        | 1,000,000.000000                     |
|        |                | T           |                                      |

Figure VI-4. Linear programming matrix for optimum planning of an example irrigation distribution and application systems.

CPS) listed in Tables VI-2 and VI-3. All column headings beginning with "SEC" represent distribution system component sections.

The WN, VDP and VSR columns in the matrix represent annual volumes of water (acre-feet) diverted into the system at the headgate, deep percolation loss and surface runoff loss, respectively, for the entire system. Annual operation and maintenance cost for the distribution system appears in the OMU column.

Rows of the matrix in Figure VI-4 consist of the objective (OBJ) row, constraint rows, and change rows. The elements of the objective row are unit costs, the sum of which is minimized in the problem solution. Constraint rows assure continuity and establish necessary relationships. The "AREA" rows ensure that each subarea receives irrigation water via one or more of the listed application system alternatives. Total acreages of each of these rows must equal to the total land area of the subarea listed in the RHS column. The "SYS" rows provide for continuity of water flowing through the distribution system and for distribution of water to application systems from the proper section. For example, the coefficients in the SYSC row indicate that distribution section SECC must convey enough water, considering the seepage loss of that section, to supply the application systems selected for subarea C in addition to section SECD. The total flow rate of water entering the entire system is depicted and controlled by elements of the WTON row. The coefficient in the RHS column of this row is the Q<sub>spec</sub> value. The WON row is necessary to convert the total system flow rate (cfs) to a total annual volume (acre-feet). The coefficient necessary for this conversion entered in the WN column has been set equal to 0.00545 CFS/AF for this particular example. This coefficient was estimated, using a seasonal ET curve for

the area, by setting the maximum flow rate required by the system equal to the peak of the seasonal ET curve and integrating under the curve over the total length of the irrigation season.

The DP and SR rows are necessary for calculation of deep total percolation and surface runoff losses of program-selected application system alternatives. Coefficients entered into these rows are obtained from output of the APSYS application system evaluation computer routine described in Chapter V and listed in Tables VI-2 and VI-3. The change rows, whose names begin with the letters "CH", are rows whose elements are multiplied by some factor and added to another row in the process of parametric programming. Right-hand-side, RHS, elements represent the limits placed on all constraints.

The letter immediately to the right of each row name defines the type of row; i.e., the proper sign to be inserted between the row coefficients and the right-hand-side. The symbols are defined as follows:

- N No constraint (change or objective row)
- G Greater than or equal to
- E Equality
- L Less than or equal to

#### SYSTEMS ANALYSIS OF EXISTING IRRIGATION SYSTEMS

The purpose of the systems analysis for the irrigation systems was to obtain the "optimal" (lease cost) system plans for a specified set of conditions. To accomplish this purpose, relations present in the existing conveyance systems and alternative on-farm irrigation application systems were formulated into linear programming models for the two studied irrigation districts. The problem matrix of each irrigation district

is similar to the one in Figure VI-4. The solutions and analysis were obtained using the MPS/360 Version 2 computer routine by International Business Machines, Inc.. The method of data formatting and control programs are discussed in detail in the MPS/360 Version 2 User's Manual (International Business Machines, 1974). The control program was used for program solution, parametric programming, and problem revision of the linear programming matrix representing the irrigation distribution and application systems.

The specific conditions considered in the evaluation for optimum planning of the existing irrigation systems of the study area were the overall project irrigation system efficiency and the water cost charged to water users for water entering a system at the headgate. Since no alternatives of the conveyance systems were considered, only those combinations of application systems which achieve these conditions at minimum cost were obtained in the existing systems analysis. The two studied irrigation districts were tested and will be discussed separately.

The specified overall irrigation efficiency during the peak ET period was computed for various flows entered to the systems as:

$$OSE = \frac{Q_{ET}}{Q_{IN}} \quad (100) \tag{6-8}$$

where,

OSE = overall system efficiency (%)  $Q_{ET}$  = flow rate required to satisfy maximum ET requirement  $Q_{IN}$  = flow rate entering a system at headgate

Efficiency levels were specified by adjusting the value of  $Q_{\rm IN}$  in the linear programming matrix ( $Q_{\rm spec}$  in RHS column of Figure VI-4), representing the maximum flow rate allowed to enter the system. Variations in prices for water diverted into each irrigation district were obtained by changing the coefficients in the objective function of WN column. These changes were accomplished by using parametric programming available in the MPS/360 routine. More details on the use and interpretation of parametric programming are described in the IBM manual and by Allen and others (1980).

## IDAHO IRRIGATION DISTRICT RESULTS

During the 1978 irrigation season, 272,787 acre-feet of water was diverted from the Snake River District. The excess water received from upstream irrigation districts was 28,804 acre-feet and the excess water outflow from the district was 36,870 acre-feet. Hence, the water used in the district, which includes crop ET, deep percolation, canal seepage and other minor losses was 264,721 acre-feet. The approximate canal seepage loss measured by Netz (1980) was 52,477 acre-feet during the season. Based on the crop distribution pattern presented in Chatper IV, the crop ET requirement of this district was 57,431 acre-feet. Therefore, the overall system efficiency (OSE) of the existing system was:

 $OSE = \frac{Crop \ ET \ Requirement}{Total \ Water \ Entered \ - \ Excess \ Water \ Outflow} (100)$  $= \frac{57,431}{272,787 \ + \ 28,804 \ - \ 36,870} (100) \ = \ 21.7\% (6-9)$ 

The on-farm application efficiency was:

$$E_{app} = \frac{Crop \ ET \ Requirement}{Total \ Water \ Delivered \ to \ Farm} (100)$$
$$= \frac{57,431}{272,787 + 28,805 - 36,870 - 52,477} (100) = 27.1\% (6-10)$$

The excess water inflow from upstream districts and natural streams were not considered as suitable sources of irrigation water. The excess water inflows are usually high when the irrigation demand is low when the demand is high. Therefore, they are not suitable and dependable sources for irrigation.

# OVERALL SYSTEM EFFICIENCY CONSTRAINTS

Different levels of overall system efficiencies may be imposed by limiting the flow rate entering the district in the LP model. The optimal linear programming solutions for various efficiencies are summarized in Table VI-4 and Figure VI-6. The table includes the optimal combination of the application systems at each efficiency level. It can be seen that by increasing the efficiency, more sprinkler irrigation systems are included in the optimal combination. In most cases each subarea is assigned one application system, except a few subareas which share two application systems.

Annual system costs are itemized as distribution and application system costs on a total area and also unit area basis (\$/acre). The distribution system costs include only canal operation and maintenance costs. The application system costs include capital, operation and maintenance costs. The project overall system and application efficiency, total water required in the district, water lost to deep percolation and surface runoff are also shown in the Table VI-4.

|                              | Overall System Efficiency (\$)           27.8         30.0         35.0         40.0         45.0         45.5 |           |                   |                  |                      |          |  |  |  |  |  |
|------------------------------|----------------------------------------------------------------------------------------------------------------|-----------|-------------------|------------------|----------------------|----------|--|--|--|--|--|
|                              | 27.8                                                                                                           | 30.0      | 35.0              | 40.0             | 45.0                 | 45.5     |  |  |  |  |  |
| Total annual cost (\$)       | 1,961,406                                                                                                      | 2,038,253 | 2,244,877         | 2,435,824        | 2,771,553            | 3,914,70 |  |  |  |  |  |
| App. sys. cost (\$)          |                                                                                                                |           |                   |                  |                      |          |  |  |  |  |  |
|                              | 1,876,301                                                                                                      | 1,959,190 | 2,177,109         | 2,376,527        | 2,718,845            | 2,862,56 |  |  |  |  |  |
| Dist. sys. cost - 0&M (\$)   | 85,105                                                                                                         | 79,063    | 67,768            | 59,297           | 52,708               | 52,13    |  |  |  |  |  |
| Total annual cost (\$/AC)    | 68.6                                                                                                           | 71.3      | 78.6              | 85.2             | 97.0                 | 102.0    |  |  |  |  |  |
| App. sys. cost (\$/AC)       | 65.6                                                                                                           | 68.5      | 76.2              | 83.1             | 95.2                 | 100.2    |  |  |  |  |  |
| Dist. sys. cost - O&M(\$/AC) | 3.0                                                                                                            | 2.8       | 2.4               | 2.1              | 1.8                  | 1.8      |  |  |  |  |  |
| Inflow rate (cfs)            | 1123                                                                                                           | 1043      | 894               | 782              | 696                  | 688      |  |  |  |  |  |
| Overall eff. (%)             | 27.8                                                                                                           | 30.0      | 35.0              | 40.0             | 45.0                 | 45.5     |  |  |  |  |  |
| App. sys. eff. (%)           | 37.4                                                                                                           | 41.3      | 51.5              | 63.1             | 76.3                 | 77.9     |  |  |  |  |  |
|                              | 57.4                                                                                                           | 41.5      | 51.5              | 03.1             | 10.5                 |          |  |  |  |  |  |
| Vol. of D.P. (AF)            | 27,303                                                                                                         | 23,749    | 17,955            | 13,933           | 10,799               | 10,13    |  |  |  |  |  |
| /ol. of S.R. (AF)            | 61,021                                                                                                         | 49,638    | 28,980            | 12,376           | 0                    | 0        |  |  |  |  |  |
| Total vol. used (AF)         | 206,066                                                                                                        | 191,437   | 164,089           | 143,577          | 127,624              | 126,23   |  |  |  |  |  |
| Total vol. used (AF/AC)      | 7.2                                                                                                            | 6.7       | 5.7               | 5.0              | 4.5                  | 4.4      |  |  |  |  |  |
| Section no.                  |                                                                                                                | Opt       | timal Application | n System Combina | tion                 |          |  |  |  |  |  |
| a straight and               | 110                                                                                                            | 10        | 110               | 1.54             |                      | 02       |  |  |  |  |  |
|                              | UG                                                                                                             | UG        | UG                | HM               | HM                   | SR       |  |  |  |  |  |
| 4                            | UG                                                                                                             | UG        | UG                | HM               | HM                   | SR ·     |  |  |  |  |  |
| 5                            | UG                                                                                                             | UG        | HM                | HM               | HM                   | SR       |  |  |  |  |  |
| 6                            | UG                                                                                                             | UG        | UG                | HM               | HM                   | SR       |  |  |  |  |  |
| 7                            | UG                                                                                                             | UG        | UG                | UG               | SR (85%)<br>HM (15%) | SR       |  |  |  |  |  |
| 8                            | UG                                                                                                             | UG        | HM                | HM               | HM                   | SR       |  |  |  |  |  |
| 9                            | CP                                                                                                             | CP        | CP                | CP               | CP                   | CP       |  |  |  |  |  |
| 10                           | UG                                                                                                             | UG        | HM                | HM               | SR                   | SR       |  |  |  |  |  |
| 11                           | UG                                                                                                             | UG        | HM                | HM               | SR                   | SR       |  |  |  |  |  |
| 12                           | UG                                                                                                             | UG        | HM (20%)          | HM               | HM                   | SR       |  |  |  |  |  |
| 12                           | 00                                                                                                             | 00        | UG (80%)          |                  |                      |          |  |  |  |  |  |
| 13                           | UG                                                                                                             | HM        | HM                | HM               | SR                   | SR       |  |  |  |  |  |
| 14                           | UG                                                                                                             | UG        | IG                | IG               | SR                   | SR       |  |  |  |  |  |
| 15                           | UG                                                                                                             | HM (80%)  | HM                | HM               | HM                   | SR       |  |  |  |  |  |
| 12                           | 00                                                                                                             | UG (20%)  |                   |                  |                      | JIX      |  |  |  |  |  |
| 17                           | UG                                                                                                             | UG        | UG                | HM               | SR                   | SR       |  |  |  |  |  |
| 18                           | UG                                                                                                             | UG        | UG                | HM               | SR                   | SR       |  |  |  |  |  |
| 19                           | UG                                                                                                             | UG        | HM                | HM               | SR                   | SR       |  |  |  |  |  |
| 20                           | UG                                                                                                             | UG        | HM                | HM               | SR                   | SR       |  |  |  |  |  |
| 21                           | UG                                                                                                             | HM        | HM                | HM               | SR                   | SR       |  |  |  |  |  |
| 22                           | UG                                                                                                             | HM        | HM                | HM               | SR                   | SR       |  |  |  |  |  |
| 25                           | UG                                                                                                             | UG        | UG                | UG               | HM ·                 | SR       |  |  |  |  |  |
| 26                           | UG                                                                                                             | UG        | UG                | UG               | HM                   | SR       |  |  |  |  |  |
| 27                           | UG                                                                                                             | UG        | UG                | UG               | HM                   | SR       |  |  |  |  |  |
| 28                           | UG                                                                                                             | UG        | UG                | HM               | HM                   | SR       |  |  |  |  |  |
| 29                           | UG                                                                                                             | UG        | UG                | UG               | SR                   | SR       |  |  |  |  |  |
| 30                           | UG                                                                                                             | UG        | HM                | HM               | HM                   | SR       |  |  |  |  |  |
|                              |                                                                                                                |           |                   | HM               | CP                   | CP       |  |  |  |  |  |
| 31                           | UG                                                                                                             | HM        | HM                | HM               |                      | 1.00     |  |  |  |  |  |

Table VI-4. Total annual system costs and descriptions of optimal irrigation systems with existing conveyance systems at various overall system efficiencies, Idaho Irrigation District

The minimum overall system efficiency obtained from the LP model of the existing system was 27.8% and the application efffficiency was 37.4%. These efficiencies were obtained with all unimproved gravity application systems except in subarea 9 where center-pivot sprinkler systems were specified. (The application system in subarea 9 were restricted to be center-pivot sprinkler due to its sandy soil.) These efficiencies from the model are higher than those obtained from the observed data considering the fact that sprinkler systems are currently used to irrigate about 37% or 10,500 acres in the district.

Several reasons for this discrepancy could be presented. Some of them are:

- No excess water outflow from the district due to operational waste was considered;
- The design parameters of each on-farm application system are not same as those of existing systems, especially the management aspects;
- Errors in determining canal seepage loss and excess water inflow and outflow measurements; and
- The conversion factor used to convert peak flow rate in cfs to annual volume in acre-feet.

Most of these factors cannot be easily identified and corrected. However, for planning purposes it is not uncommon to accept a certain level of error in initial measurements and data preparation.

As the system efficiency is increased the irrigation systems used change from gravity to sprinkler systems. The maximum overall system efficiency attainable is 45.5% with an application efficiency of 77.9%.

To achieve this efficiency, all subareas must be irrigated by sprinkler irrigation systems.

The results increasing system efficiencies are summarized in Figure VI-5. This figure illustrates the relationships of total system cost, total water used and application efficiency associated with the overall efficiencies considered. As expected, Figure VI-5 shows that the total system cost increases as the system efficiency is improved. It can be noted that the rate at which system costs increase is nearly constant for system efficiencies less than 40%, but becomes markedly greater for higher efficiencies.

The low overall system efficiency even with the high application efficiency is caused by high canal seepage losses that would be expected from the existing conveyance system. Since the size of canal sections remain unchanged with different flow rates required for different overall efficiencies, canal seepage loss was assumed constant for all flow rates tested in this study.

# WATER COST CHARGED AT HEADGATE

To evaluate the effect of water cost on the system, water entering the district was charged from \$0 to \$15 per acre-foot at \$3 per acre-foot increments. The optimization results related to this test are shown in Table VI-5 and Figure VI-5. The table includes the optimal combinations of the application irrigation systems for each water charge. Annual system costs are itemized as distribution and application system costs on a total area and also unit area basis (\$/acre). The table also includes the total annual system costs with water cost. With no-charge the overall system efficiency is 27.8%, the application efficiency is 37.4%. By

|                              |           | Wa        | ter Cost at Head | gate (\$/AF) |           |          |
|------------------------------|-----------|-----------|------------------|--------------|-----------|----------|
|                              | 0.        | 3         | 6                | 9            | 12        | 15       |
| Total annual cost (\$)       | 1,961,406 | 1,974,600 | 2,179,823        | 2,450,551    | 2,527,109 | 2,623,22 |
| App. sys. cost (\$)          | 1,876,301 | 1,890,729 | 2,108,726        | 2,391,943    | 2,470,936 | 2,569,65 |
| Dist. sys. cost - O&M (\$)   | 85,105    | 83,871    | 71,097           | 58,608       | 56,173    | 53,56    |
| Water cost (\$)              | 0         | 609,237   | 1,032,900        | 1,277,181    | 1,632,156 | 1,945,57 |
| Total annual cost (\$/AC)    | 68.6      | 69.0      | 76.3             | 85.8         | 88.5      | 91.8     |
| App. sys. cost (\$/AC)       | 65.6      | 66.1      | 73.8             | 83.7         | 86.5      | 89.9     |
| Dist. sys. cost - O&M(\$/AC) | 3.0       | 2.9       | 2.5              | 2.8          | 2.0       | 1.9      |
| Water cost (\$/AC)           | 0         | 21.4      | 36.2             | 44.7         | 57.1      | 68.0     |
| Inflow rate (cfs)            | 1123      | 1106      | 938              | 773          | 741       | 707      |
| Overall eff. (%)             | 27.8      | 28.3      | 33.3             | 40.4         | 42.2      | 44.3     |
| App. sys. eff. (%)           | 37.4      | 38.2      | 48.0             | 64.3         | 68.8      | 74.3     |
| Vol. of D.P. (AF)            | 27,303    | 26,586    | 19,835           | 13,620       | 12,523    | 11,54    |
| Vol. of S.R. (AF)            | 61,021    | 57,544    | 34,589           | 10,910       | 6,289     | 62       |
| Total vol. used (AF)         | 206,066   | 203,079   | 172,150          | 141,909      | 136,013   | 129,70   |
| Total vol. used (AF/AC)      | 7.2       | 7.1       | 6.0              | 5.0          | 4.8       | 4.5      |

| Table VI-5. | Total annual system costs and descriptions of optimal                      |
|-------------|----------------------------------------------------------------------------|
|             | irrigation systems with existing conveyance systems at various water costs |
|             | charged at headgate, Idaho Irrigation District                             |

| Section no. |    |    | Optimal App | lication System | Combination |    |
|-------------|----|----|-------------|-----------------|-------------|----|
| 1           | UG | UG | UG          | HM              | HM          | HM |
| 4           | UG | UG | UG          | HM              | HM          | HM |
| 5           | UG | UG | HM          | HM              | HM          | HM |
| 6           | UG | UG | UG          | HM              | HM          | HM |
| 7           | UG | UG | UG          | UG              | UG          | HM |
| 8           | UG | UG | HM          | HM              | HM          | HM |
| 9           | CP | CP | CP          | CP              | CP          | CP |
| 10          | UG | UG | UG          | HM              | HM          | HM |
| 11          | UG | UG | HM          | HM              | HM          | HM |
| 12          | UG | UG | UG          | HM              | HM          | HM |
| 13          | UG | HM | HM          | HM              | HM          | HM |
| 14          | UG | UG | IG          | IG              | IG          | HM |
| 15          | UG | UG | HM          | HM              | HM          | HM |
| 17          | UG | UG | UG          | HM              | HM          | HM |
| 18          | UG | UG | UG          | HM              | HM          | HM |
| 19          | UG | UG | UG          | HM              | HM          | HM |
| 20          | UG | UG | HM          | HM              | HM          | HM |
| 21          | UG | UG | HM          | HM              | HM          | HM |
| 22          | UG | UG | HM          | HM              | HM          | HM |
| 25          | UG | UG | UG          | UG              | HM          | HM |
| 26          | UG | UG | UG          | UG              | HM          | HM |
| 27          | UG | UG | UG          | HM              | HM          | HM |
| 28          | UG | UG | UG          | HM              | HM          | HM |
| 29          | UG | UG | UG          | UG              | IG          | IG |
| 30          | UG | UG | HM          | HM              | HM          | НМ |
| 31          | UG | HM | HM          | HM              | HM          | HM |
| 32          | UG | UG | UG          | HM              | HM          | HM |





Figure VI-5. Results obtained for optimum system planning in the Idaho Irrigation District with existing conveyance systems.

raising the water cost the overall system efficiency increases up to 44.3% with an application efficiency at 74.3% at a water cost of \$15 per acre-foot. These efficiencies are only slightly lower than the maximum attainable efficiencies for this district.

The optimum combinations of application system alternatives at each water cost are shown in the Table VI-5. With no water charge, the optimal application system combination is to use unimproved gravity systems at all subareas except subarea 9 where only center-pivot sprinkler systems are considered. At a \$15 per acre-foot water cost the optimum application system combination is all hand-move sprinkler irrigation systems except subareas 9 (center-pivot sprinkler) and 29 (improved gravity). As illustrated in the Table VI-5, the average system cost required for an increase of one percent in the overall system efficiency above the minimum attainable efficiency (27.8%) is \$1.40 per acre. To improve the overall system efficiency from 44.3% (at \$15 per acre-foot water cost) to the maximum attainable efficiency of 45.5% the total system cost is \$7 per acre for every one percent increment. The total annual system costs increase linearly in proportion to the charges assessed for water due to the insignificant change in the system cost compared to the water cost.

As shown in the Figure VI-6, the incremental rate of increase in overall system efficiency is very low for water costs above \$9 per acrefoot. Also shown is the significant increase of application system efficiencies and corresponding decrease in total volume of water used between \$6 per acre-foot and \$9 per acre-foot water costs. This fact indicates that a water cost greater than \$9 per acre-foot is not a good incentive to the efficiency of this system.

# SNAKE RIVER VALLEY IRRIGATION DISTRICT RESULTS

During the 1978 irrigation season, the Snake River Valley Irrigation District diverted 166,616 acre-feet of water from the Snake River and received 27,707 acre-feet as excess water from Idaho Irrigation District. The excess water outflow from this district was 60,850 acre-feet during the same season. Hence, this district used 133,473 acre-feet which includes crop ET requirements, deep percolation losses, canal seepage losses and other minor losses. The canal seepage losses measured were 33,944 acre-feet during the crop year. Based on the crop distribution pattern presented in Chapter IV, the crop ET requirements of this district in 1978 crop year were 35,412 acre-feet. Therefore, the overall system efficiency (OSE) of the existing system was:

$$OSE = \frac{Crop \ ET \ Requirement}{Total \ Water \ Entered \ - \ Excess \ Water \ Outflow} (100)$$
$$= \frac{35,412}{166,616 \ + \ 27.707 \ - \ 60,850} (100) \ = \ 26.5\% (6-11)$$

The on-farm application efficiency was:

$$Eapp = \frac{Crop \ ET \ Requirement}{Total \ Water \ Delivered \ to \ Farm} (100)$$
$$= \frac{35,412}{166,616 + 27,707 - 60,850 - 33.944} (100) = 35.6\% (6-12)$$

The excess water entering this district from Idaho Irrigation District was not considered in this analysis. This inflow is not stable and not dependable as irrigation water source.

# OVERALL SYSTEM EFFICIENCY CONSTRAINTS

The effects of different levels of overall system efficiency on system configuration and total annual cost were obtained by constraining the available inflow rate entering the district,  $Q_{\rm spec}$  in the linear programming model. The results are summarized in Table VI-6 which shows the optimal combination of the application systems at each efficiency level. All costs involved in the optimal system configurations are also shown.

With no restriction on water entering the district, the overall system efficiency is 29.0% and the application efficiency is 40.2%. These efficiencies are somewhat greater than the measured system efficiencies even though about 40% of the existing application systems in the district are sprinkler systems. Sevral possible reasons for this difference are presented in the previous section for the Idaho Irrigation District. Results in Table VI-6 show that at the lowest irrigation efficiency all application systems are unimproved gravity systems and as efficiency increase more sprinkler systems are selected for use.

The results are also illustrated in Figure VI-6 which shows the overall efficiency versus total annual system cost, total water diverted and application efficiency. As in the case of the Idaho Irrigation District incremental rate increases markedly as overall efficiency exceeds 40% thus pointing to the need of reducing canal seepage losses in the existing canal system.

# WATER COST CHARGED AT HEADGATE

To evaluate the effect of water cost on system configuration and total annual cost the water entering the district was charged varying rates from \$0 to \$15 per acre-foot at \$3 per acre-foot increments. The

|                              |           | Overall System E | fficiency (%) |           |           |
|------------------------------|-----------|------------------|---------------|-----------|-----------|
|                              | 29.0      | 30.0             | 35.0          | 40.0      | 45.0      |
| Total annual cost (\$)       | 1,301,320 | 1,312,413        | 1,427,575     | 1,528,520 | 1,813,500 |
| App. sys. cost (\$)          | 1,250,877 | 1,263,662        | 1,385,789     | 1,491,597 | 1,780,900 |
| Dist. sys. cost - O&M (\$)   | 50,443    | 48,751           | 41,786        | 36,563    | 32,600    |
| Total annual cost (\$/AC)    | 75.7      | 76.4             | 83.1          | 89.0      | 105.6     |
| App. sys. cost (\$/AC)       | 72.8      | 73.6             | 80.7          | 86.9      | 103.7     |
| Dist. sys. cost - O&M(\$/AC) | 2.9       | 2.8              | 2.4           | 2.1       | 1.9       |
| Inflow rate (cfs)            | 665.6     | 643.3            | 551.4         | 482.5     | 430.2     |
| Overall eff. (%)             | 29.0      | 30.0             | 35.0          | 40.0      | 45.0      |
| App. sys. eff. (%)           | 40.2      | 42.1             | 52.7          | 64.9      | 78.7      |
| Vol. of D.P. (AF)            | 16,574    | 15,570           | 11,852        | 8,875     | 6,208     |
| Vol. of S.R. (AF)            | 31,684    | 27,459           | 14,278        | 5,277     | 0         |
| Total vol. used (AF)         | 122,140   | 118,042          | 101,179       | 88,532    | 78,933    |
| Total vol. used (AF/AC)      | 7.1       | 6.9              | 5.9           | 5.2       | 4.6       |

Table VI-6. Total annual system costs and descriptions of optimal irrigation systems with existing conveyance systems at various overall system efficiencies, Snake River Valley Irrigation District

| ection no. |    | Optimal Appl | Ication System Co | ombination |    |
|------------|----|--------------|-------------------|------------|----|
| С          | UG | UG           | HM                | HM         | SR |
| D          | UG | UG           | UG                | HM(86%)    | SR |
|            |    |              |                   | UG(14%)    |    |
| F          | UG | UG           | HM(45%)           | HM         | SR |
|            |    |              | UG(55%)           |            |    |
| G          | HM | HM           | HM                | HM         | SR |
| н          | UG | UG           | HM                | HM         | SR |
| 1          | UG | HM           | HM                | HM         | SR |
| J          | HM | HM           | HM                | HM         | CP |
| к          | UG | UG           | UG                | UG         | SR |
| L          | UG | UG           | UG                | UG         | SR |
| м          | UG | UG           | UG                | ÜG         | SR |
| N          | UG | UG           | UG                | UG         | SR |
| 0          | UG | UG           | HM                | HM         | SR |
| Р          | UG | UG           | UG                | UG         | SR |
| Q          | UG | HM(20%)      | HM                | HM         | CP |
|            |    | UG(80%)      |                   |            |    |
| R          | UG | UG           | UG                | UG         | SR |

optimization results related to this test are shown in Table VI-7 and Figure VI-6. With no water charge, the system has an overall efficiency of 29.0% and an application efficiency of 40.2%. By increasing the water cost to \$15 per acre-foot the district could obtain system efficiencies of up to 45% for the overall efficiency and 78.7% for the application efficiency. These efficiencies are slightly lower than the maximum attainable efficiencies of the district. It should be noted that a charge of over \$30 per acre-foot water cost would be required to obtain the maximum efficiencies. At the maximum charge, all application systems except for subarea P are hand-move sprinkler irrigation systems. The table shows annual cost, application and distribution system costs, and water cost for the entire system and per unit area. It can also be seen that increases in the system costs are not significant compared to those for water costs. This fact is shown as a linear increment of total annual cost vs. water cost in Figure VI-6. The comparative large increase in application system efficiency and the consequent reduction of total volume required between \$6 and \$9 per acre-foot of water costs indicate that the most effective water cost for reducing water use is located between these two water costs.

The results obtained from the evaluation of irrigation application systems show that the overall effects of rehabilitation are severely limited as long as existing irrigation district systems remain unchanged. Not only is the possible improvement in irrigation efficiency limited, but the cost of rehabilitating application systems only may be greater than the cost of upgrading at least a portion of the distribution system. It is necessary that both application and distribution system components be conjunctively considered in the planning process for rehabilitation and consolidation of the system.

| Contraction of the second second | Water Cost at Headgate (\$/AF) |           |                  |                   |           |           |  |  |  |  |
|----------------------------------|--------------------------------|-----------|------------------|-------------------|-----------|-----------|--|--|--|--|
|                                  | 0                              | 3         | 6                | 9                 | 12        | 15        |  |  |  |  |
| Total annual cost (\$)           | 1,301,320                      | 1,666,101 | 2,022,017        | 2,326,520         | 2,612,676 | 2,856,518 |  |  |  |  |
| App. sys. cost (\$)              | 1,250,877                      | 1,262,630 | 1,318,723        | 1,524,043         | 1,601,154 | 1,605,985 |  |  |  |  |
| Dist. sys. cost - 0&M (\$)       | 50,443                         | 48,823    | 45,292           | 35,209            | 33,654    | 33,508    |  |  |  |  |
| Water cost (\$)                  | 0                              | 354,648   | 658,002          | 767,268           | 977,868   | 1,217,025 |  |  |  |  |
|                                  | U                              | 334,040   | 030,002          | 101,200           | 977,000   | 1,217,025 |  |  |  |  |
| Total annual cost (\$/AC)        | 75.8                           | 97.1      | 117.7            | 135.5             | 152.1     | 166.4     |  |  |  |  |
| App. sys. cost (\$/AC)           | 72.9                           | 73.5      | 76.8             | 88.8              | 93.2      | 93.5      |  |  |  |  |
| Dist. sys. cost - O&M(\$/AC)     | 2.9                            | 2.8       | 2.6              | 2.0               | 2.0       | 1.9       |  |  |  |  |
| Water cost (\$/AC)               | 0                              | 20.6      | 38.3             | 44.7              | 56.9      | 71.0      |  |  |  |  |
| Inflow rate (cfs) 665.6          |                                | 644.3     | 597.7            | 464.6             | 444.1     | 442.2     |  |  |  |  |
| Overall eff. (%)                 | 29.0                           | 30.0      | 32.3             | 41.5              | 43.4      | 43.6      |  |  |  |  |
| App. sys. eff. (%)               | 40.2                           | 42.0      | 46.8             | 69.0              | 74.5      | 75.0      |  |  |  |  |
| /ol. of D.P. (AF)                | 16,574                         | 15,608    | 13,929           | 7,889             | 6,994     | 7,103     |  |  |  |  |
| Iol. of S.R. (AF)                | 31,684                         | 27,656    | 20,409           | 3,368             | 844       | 271       |  |  |  |  |
| Total vol. used (AF)             | 122,140                        | 118,216   | 109,667          | 85,252            | 81,489    | 81,135    |  |  |  |  |
| Total vol. used (AF/AC)          | 7.1                            | 6.9       | 6.4              | 5.0               | 4.7       | 4.7       |  |  |  |  |
| Section no.                      |                                | (         | )ptimal Applicat | ion System Combin | nation    |           |  |  |  |  |
| С                                | UG                             | UG        | UG               | HM                | НМ        | HM        |  |  |  |  |
| D                                | UG                             | UG        | UG               | HM                | HM        | HM        |  |  |  |  |
| F                                | UG                             | UG        | UG               | HM                | HM        | HM        |  |  |  |  |
| G                                | HM                             | HM        | HM               | HM                | HM        | НМ        |  |  |  |  |
| н                                | UG                             | UG        | НМ               | HM                | HM        | HM        |  |  |  |  |
| 1                                | UG                             | HM        | HM               | HM                | HM        | HM        |  |  |  |  |
| J                                | HM                             | НМ        | HM               | HM                | HM        | НМ        |  |  |  |  |
| к                                | UG                             | UG        | UG               | UG                | HM        | HM        |  |  |  |  |
| L                                | UG                             | UG        | UG               | HM                | HM        | НМ        |  |  |  |  |
| м                                | UG                             | UG        | UG               | IG                | IG        | HM        |  |  |  |  |
| N                                | UG                             | UG        | UG               | UG                | HM        | НМ        |  |  |  |  |
| 0                                | UG                             | UG        | HM               | HM                | HM        | HM        |  |  |  |  |
| р                                | UG                             | UG        | UG               | UG                | IG        | IG        |  |  |  |  |
| Q                                | UG                             | UG        | HM               | HM                | HM        | HM        |  |  |  |  |
| R                                | UG                             | UG        | UG               | HM                | HM        | HM        |  |  |  |  |

Table VI-7. Total annual system costs and descriptions of optimal irrigation systems with existing conveyance systems at various water costs charged at headgate, Snake River Valley Irrigation District





Figure VI-6. Results obtained for optimum system planning in the Snake River Valley Irrigation District with existing conveyance systems.

# CHAPTER VII

## REHABILITATION AND CONSOLIDATION PLANS FOR THE STUDY AREA

Rehabilitation or consolidation of the studied irrigation district(s) is necessary to improve overall system efficiency. As discussed in the previous chapter the existing system of the study area could increase its overall system efficiency by only 15% (from 30% to 45%) even though the application system efficiency was improved by 40% (from 35% to 75%). This discrepancy is all due to the low conveyance efficiency of the existing canal systems of the area. In order to improve the overall system efficiency it would be necessary to rehabilitate or even to consolidate the conveyance systems of the two irrigation districts.

In this chapter, rehabilitation plans for each irrigation district using a gravity water delivery system using canals and/or low head gravity pipe systems and consolidation plans for the two districts using a high pressure pipe systems to test the effects of water availability and water charge on overall system efficiency and system configuration. The water charges were imposed both at headgate diversion and at each subarea diversion point, and different overall system efficiencies were attained by restricting the inflow rate available to the districts. Those combinations of conveyance and applicaton systems which achieved these conditions at minimum cost are the results presented in this chapter.

Mixed integer-linear programming (MIP) was required to develop the rehabilitation plans by selecting the optimal (least cost) combination of conveyance and application systems for a specified set of boundary conditions. The MIP problems were solved by the APEX III mathematical

programming package (Control Data Corporation, 1979) supported on the Bureau of Reclamation's CDC CYBER computer system in Denver, Colorado. For the consolidation plans, linear programming was used since only one conveyance system (high pressure pipe system) was considered for the plan. The linear programming (LP) problems were solved by MPS/360 mathematical programming (International Business Machines, 1969). Input data and problem pictures of example matrices (smaller than real problems used in this study) for the mixed integer-linear programming and linear programming problems are contained in Appendix E. The MIP and LP problem matrices used to model problems presented in this chapter have same formats as the examples given in Chapters III and VI but only expanded for the larger problems. The example control programs to solve the mixed integer-linear programming and the linear programming problems of the rehabilitation and consolidation plans are also listed in Appendix E.

# REHABILITATION PLANS WITH GRAVITY SUPPLY SYSTEMS

Minimum changes of existing conveyance system routes were considered for the rehabilitation of the gravity supply systems in the two irrigation districts. One major change is that the Sand Creek would be used strictly as a drainage system and not convey any irrigation water. To achieve this change, some subarea diversion points were relocated. The altered system of canal routes and subarea diversion points for the rehabilitation plan are shown on the map in Figure VII-1 and by the schematic diagrams in Figure VII-2. The subarea of each new diversion point for the rehabilitation plan was analyzed to obtain necessary data as described for the existing system evaluation in Chapter VI. As shown in Figure VII-3 the new subarea boundaries were relocated to coincide with the canal diversion points in the rehabilitation plan.



.



Figure VII-2. Schematic diagrams of canal section routes and subarea diversion points of the study area for rehabilitation plans.



The computer routines described in Chapter V were used to compute necessary cost data and operating characteristics for each conveyance system alternative for each section in the conveyance system route. Likewise, the cost and application efficiency for each type of application system was computed for each subarea within the irrigation districts. The data for conveyance system components are listed in Table VII-1 and for application systems in Tables VII-2 and VII-3.

Operation and maintenance (O&M) costs for irrigation conveyance system alternatives used in this study were obtained on the basis of the relationships developed by Brockway and Reese (1973) for selected irrigated areas in the Western United States. These relationships were expressed as:

and 
$$COM_0 = 96.3 L^{0.663} CV^{0.774}$$
 (7-1)

 $COM_{c} = 89.5 L$  <sup>1.072</sup> CV <sup>0.351</sup> (7-2)

- COM<sub>O</sub> = annual operation and maintenance cost for an open distribution system in dollars
- COM<sub>C</sub> = annual operation and maintenance cost for a closed distribution system in dollars

L = system length in miles

CV = average annual gross crop value in dollars per acre.

Equations 7-1 and 7-2 were developed from data gathered from predominantly open or closed distribution systems. However, these relationships could not be directly applied to the mixed integer-linear programming procedure because of their non-linearity. As discussed in Chapter II a

|         |         | Total Downstream |         | Canal 1/                              | Cost 2/ |            |        |            |              |           |
|---------|---------|------------------|---------|---------------------------------------|---------|------------|--------|------------|--------------|-----------|
|         |         |                  |         |                                       | Unlined |            | Lined  |            | Gravity Pipe |           |
| Section | Subarea | Area Served      | Length  | Seepage                               | a       | b          | с      | d          | e            | f         |
| no.     | (Acres) | (Acres)          | (Miles) | ft <sup>3</sup> /ft <sup>2</sup> /day | \$/CFS  | Fixed (\$) | \$/CFS | Fixed (\$) | \$/CFS       | Fixed (\$ |
| 1       | 1,248   | 28,577           | 10.38   | 2.68                                  | 0       | 40,086     | 344.8  | 505,547    | -            | -         |
| 2       | 0       | 20,491           | 1.94    | 2.31                                  | -3/     | -          | -      | -          | 296.9        | 93,187    |
| 3       | 0       | 15,258           | 0.32    | 2.31                                  | -       | -          | 23.5   | 12,355     | 38.9         | 12,321    |
| 4       | 1,219   | 13,873           | 1.55    | 1.31                                  | -       | -          | 58.2   | 64,526     | 376.1        | 65,181    |
| 5       | 1,592   | 19,399           | 3.83    | 1.05                                  | 0       | 7,579      | 615.2  |            | 609.7        | 145,608   |
| 6       | 1,848   | 8,807            | 3.53    | 0.6                                   | 0       | 16,268     | 213.7  |            |              | 141,948   |
| 7       | 2,474   | 5,295            | 3.99    | 0.6                                   | 0       | 9,237      | 256.9  | 55,392     | 1,218.3      | 111,006   |
| 8       | 1,435   | 2,821            | 4.56    | 0.6                                   | 0       | 3,866      | 192.5  | 42,698     | 974.9        | 77,486    |
| 9       | 1,386   | 1,386            | 2.83    | 9.6                                   | 0       | 1,909      | 233.0  | 14,336     | 742.4        | 41,351    |
| 10      | 1,164   | 2,255            | 3.27    | 1.31                                  | 0       | 3,119      | 196.1  | 24,041     | 832.8        | 53,262    |
| 11      | 1,091   | 1,091            | 1.45    | 1.31                                  | 0       | 2,129      | 306.5  | 8,866      | 884.7        | 31,811    |
| 12      | 1,385   | 1,385            | 6.42    | 1.05                                  | 0       | 4,249      | 548    | 33,379     | 2,121.0      | 86,874    |
| 13      | 1,051   | 1,961            | 1.50    | 1.05                                  | 0       | 2,482      | 151.7  | 9,565      | 427.1        | 31,386    |
| 14      | 189     | 5,233            | 2.04    | 2.31                                  | -       | -          | 322.6  | 12,118     | 294.7        | 44,767    |
| 15      | 478     | 4,417            | 1.87    | 2.31                                  | 0       | 2,132      | 75.6   | 21,179     | 552.9        | 52,071    |
| 16      | 0       | 2,273            | 2.36    | 2.31                                  | 0       | 5,512      | 217.9  | 15,408     | 610.6        | 39,351    |
| 17      | 363     | 1,630            | 0.93    | 1.81                                  | 0       | 1,521      | 98.2   | 6,423      | 350.2        | 16,906    |
| 18      | 374     | 374              | 1.25    | 2.31                                  | 0       | 839        | 111.4  | 5,220      | 800.0        | 10,896    |
| 19      | 893     | 893              | 2.24    | 1.81                                  | 0       | 2,055      | 142.9  | 11,246     | 692.6        | 31,386    |
| 20      | 643     | 643              | 2.72    | 1.81                                  | 0       | 1,341      | 216.0  | 12,284     | 1,123.7      | 27,647    |
| 21      | 627     | 627              | 1.41    | 3.74                                  | 0       | 1,055      | 155.7  | 5,093      | 613.8        | 17,496    |
| 22      | 1,666   | 1,666            | 1.95    | 3.74                                  | 0       | 1,362      | 103.3  | 9,319      | 606.8        | 27,644    |
| 23      | 0       | 6,838            | 2.70    | 1.31                                  | 11.4    | 15,211     | 57.6   | 35,288     | 418.7        | 80,231    |
| 24      | 0       | 3,169            | 0.95    | 2.4                                   | 30.8    | 1,731      | 46.7   | 5,116      | -            | -         |
| 25      | 508     | 3,169            | 1.42    | 1.0                                   | 0       | 1,023      | 126.7  | 6,639      |              | -         |
| 26      | 972     | 2,661            | 1.54    | 1.0                                   | 0       | 1,600      | 166.4  | 7,126      | -            | -         |
| 27      | 1,073   | 1,689            | 7.10    | 0.6                                   | 0       | 1,641      | -      | -          | -            | -         |
| 28      | 616     | 616              | 8.33    | 0.6                                   | 0       | 1,519      | -      |            | -            | -         |
| 29      | 435     | 3,669            | 2.40    | 1.05                                  | 59.7    | 5,554      | 94.9   | 13,766     | 943.4        | 56,687    |
| 30      | 1,664   | 6,959            | 1.76    | 0.6                                   | 0       | 1,487      | 76.6   | 24,773     | 340.1        | 42,063    |
| 31      | 910     | 910              | 1.95    | 1.05                                  | 0       | 1,959      | 244.5  | 11,224     | 637.4        | 29,757    |
| 32      | 1,273   | 3,234            | 4.36    | 0.6                                   | 0       | 3,303      | 218.4  | 40,865     | 893.4        | 79,573    |

#### Table VII-1. Conveyance systems data and annual costs for rehabilitation plan using gravity delivery system.

1/ Total service area located below each section.

2/ Conveyance system cost = ax + b

where, a = Variable cost, \$/CFS

b = Fixed cost, \$

x = Design flow rate, CFS

 $\underline{3}$ / These conveyance systems are not considered for the sections.

| Section |         |                                            | Length |                                                                      | Cost 2/ |            |        |            |              |            |  |
|---------|---------|--------------------------------------------|--------|----------------------------------------------------------------------|---------|------------|--------|------------|--------------|------------|--|
|         | Subarea | Total Downstream<br>Area Served<br>(Acres) |        | Canal <u>1</u> /<br>Seepage<br>ft <sup>3</sup> /ft <sup>2</sup> /day | Unlined |            | Lined  |            | Gravity Pipe |            |  |
|         |         |                                            |        |                                                                      | а       | b          | с      | d          | е            | f          |  |
| no.     | (Acres) |                                            |        |                                                                      | \$/CFS  | Fixed (\$) | \$/CFS | Fixed (\$) | \$/CFS       | Fixed (\$) |  |
| A       | 0       | 17,177                                     | 3.24   | 3.61                                                                 | 0       | 0          | 135.6  | 83,516     | -            | -          |  |
| В       | 359     | 4,833                                      | 0.50   | 3.74                                                                 | 0       | 667        | 23.3   | 8,860      | -            | -          |  |
| С       | 1,914   | 3,079                                      | 5.70   | 3.74                                                                 | 0       | 4,764      | 347.6  | 35,752     | 1,395.6      | 135,854    |  |
| D       | 1,165   | 1,165                                      | 3.06   | 1.53                                                                 | 0       | 1,952      | 245.0  | 22,686     | 1,391.6      | 50,794     |  |
| E       | 0       | 12,343                                     | 1.68   | 3.61                                                                 | 0       | 0          | 96.7   | 38,300     | -            | -          |  |
| F       | 1,257   | 5,392                                      | 1.95   | 1.48                                                                 | 0       | 3,323      | 71.6   | 23,681     | 576.7        | 60,638     |  |
| G       | 1,058   | 1,058                                      | 3.44   | 1.94                                                                 | 0       | 2,863      | 198.6  | 20,926     | 1,166.0      | 47,916     |  |
| н       | 1,497   | 2,346                                      | 3.70   | 1.04                                                                 | 0       | 3,737      | 171.0  | 28,061     | 973.7        | 65,502     |  |
| 1       | 849     | 849                                        | 1.80   | 1.04                                                                 | 0       | 1,587      | 201.3  | 9,546      | 888.8        | 26,972     |  |
| J       | 1,331   | 4,735                                      | 2.30   | 1.48                                                                 | 0       | 9,532      | 134.1  | 28,285     | 481.6        | 54,140     |  |
| к       | 522     | 6,351                                      | 2.99   | 1.31                                                                 | 0       | 3,684      | 168.3  | 34,195     | 697.1        | 79,630     |  |
| L       | 541     | 541                                        | 2.08   | 1.40                                                                 | 0       | 1,292      | 103.3  | 9,605      | 1,032.9      | 20,724     |  |
| м       | 553     | 5,288                                      | 1.24   | 1.31                                                                 | 0       | 1,388      | 48.5   | 16,855     | 264.0        | 31,823     |  |
| N       | 599     | 599                                        | 1.10   | 1.31                                                                 | 0       | 1,036      | 43.1   | 9,164      | 537.0        | 16,691     |  |
| 0       | 1,477   | 3,320                                      | 3.01   | 1.31                                                                 | 0       | 3,434      | 126.9  | 21,927     | 639.4        | 70,362     |  |
| P       | 265     | 265                                        | 2.22   | 2.53                                                                 | 0       | 985        | 242.9  | 10,276     | 1,831.4      | 22,392     |  |
| Q       | 1,578   | 1,578                                      | 3.33   | 2.53                                                                 | 0       | 1,875      | 302.5  | 13,087     | 1,089.1      | 53,453     |  |
| R       | 1,395   | 1,395                                      | 1.49   | 3.74                                                                 | 0       | 1,487      | 96.9   | 7,574      | 454.9        | 26,080     |  |
| S       | 816     | 2,659                                      | 1.50   | 1.31                                                                 | 0       | 6,603      | 113.4  | 1,326      | 381.2        | 32,336     |  |

1/ Total service area located below each section. 2/ Conveyance system cost = ax + b

where, a = Variable cost, \$/CFS

b = Fixed cost, \$

x = Design flow rate, CFS

3/ These conveyance systems are not considered for the sections

|         | 1        |        | Gravity |         | 1.1     | Unimproved Gravity Irrigation |      |         |         |         |  |
|---------|----------|--------|---------|---------|---------|-------------------------------|------|---------|---------|---------|--|
| iection | Q max 1/ | EFF 2/ | Cost    | DP 3/   | SR 4/   | Q max                         | EFF  | Cost    | DP      | SR      |  |
| No.     | CFS/Acre | \$     | \$/Acre | AF/Acre | AF/Acre | CFS/Acre                      | Å    | \$/Acre | AF/Acre | AF/Acre |  |
| 1       | 0.0204   | 53.0   | 85      | 0.196   | 1.520   | 0.0318                        | 34.1 | 59      | 1.039   | 2.472   |  |
| 4       | 0.0203   | 54.9   | 85      | 0.272   | 1.130   | 0.0304                        | 36.6 | 65      | 1.122   | 1.801   |  |
| 5       | 0.0207   | 51.4   | 82      | 0.202   | 1.410   | 0.0315                        | 33.8 | 57      | 0.978   | 2.283   |  |
| 6       | 0.0182   | 56.6   | 83      | 0.102   | 1.128   | 0.0286                        | 36.2 | 57      | 0.911   | 1.906   |  |
| 7       | 0.0193   | 59.1   | 80      | 0.093   | 1.574   | 0.0298                        | 38.3 | 51      | 0.992   | 2.457   |  |
| 8       | 0.0188   | 59.9   | 90      | 0,089   | 1.370   | 0.0286                        | 39.4 | 63      | 0.903   | 2.131   |  |
| 9       | 0.0195   | 58.3   | 135     | 0.259   | 1.217   | 0.0300                        | 37.9 | 121     | 1.205   | 1.940   |  |
| 10      | 0.0201   | 56.3   | 91      | 0.305   | 1.224   | 0.0302                        | 37.5 | 70      | 1.231   | 1.944   |  |
| 11      | 0.0204   | 54.6   | 92      | 0.373   | 1.271   | 0.0307                        | 36.3 | 73      | 1.390   | 1.989   |  |
| 12      | 0.0200   | 54.7   | 87      | 0.279   | 1.300   | 0.0301                        | 36.4 | 65      | 1,137   | 2.073   |  |
| 13      | 0.0207   | 54.1   | 101     | 0.365   | 1.338   | 0.0312                        | 35.8 | 82      | 1.394   | 2.069   |  |
| 14      | 0.0202   | 53.5   | 86      | 0.276   | 1.393   | 0.0302                        | 35.8 | 62      | 1.097   | 2.201   |  |
| 15      | 0.0195   | 55.5   | 84      | 0.216   | 1.302   | 0.0291                        | 37.2 | 59      | 0.996   | 2.069   |  |
| 17      | 0.0220   | 51.4   | 95      | 0.522   | 1.367   | 0.0334                        | 33.9 | 78      | 1.882   | 1.990   |  |
| 18      | 0.0196   | 56.7   | 88      | 0.313   | 1.219   | 0.0297                        | 37.4 | 67      | 1.329   | 1.926   |  |
| 19      | 0.0202   | 55.3   | 93      | 0.415   | 1.226   | 0.0302                        | 37.0 | 76      | 1.508   | 1,873   |  |
| 20      | 0.0204   | 54.9   | 93      | 0.394   | 1.253   | 0.0306                        | 36.5 | 74      | 1.460   | 1.941   |  |
| 21      | 0.0213   | 53.7   | 89      | 0.347   | 1.272   | 0.0319                        | 35.7 | .68     | 1.288   | 2.000   |  |
| 22      | 0.0202   | 54.6   | 89      | 0.358   | 1.232   | 0.0305                        | 36.2 | 68      | 1.329   | 1.945   |  |
| 25      | 0.0179   | 57.1   | 78      | 0.076   | 1.298   | 0.0276                        | 36.9 | 49      | 0.778   | 2.179   |  |
| 26      | 0.0204   | 54.7   | 80      | 0.124   | 1.899   | 0.0309                        | 36.1 | 53      | 1.043   | 2.816   |  |
| 27      | 0.0201   | 56.4   | 78      | 0.110   | 1.704   | 0.0302                        | 37.4 | 50      | 1.061   | 2.455   |  |
| 28      | 0.0227   | 50.1   | 79      | 0.130   | 2.253   | 0.0339                        | 33.5 | 52      | 1.161   | 3.037   |  |
| 29      | 0.0184   | 58.4   | 82      | 0.146   | 1.437   | 0.0274                        | 39.3 | 56      | 0.942   | 2.220   |  |
| 30      | 0.0195   | 56.4   | 108     | 0.180   | 1.394   | 0.0302                        | 36.5 | 84      | 1.073   | 2.218   |  |
| 31      | 0.0194   | 55.6   | 104     | 0.189   | 1.366   | 0.0298                        | 36.1 | 79      | 0.987   | 2.255   |  |
| 32      | 0.0192   | 55.8   | 86      | 0.141   | 1.427   | 0.0300                        | 35.8 | 60      | 0.910   | 2.408   |  |
| B       | 0.0210   | 53.1   | 94      | 0.428   | 1.325   | 0.0316                        | 35.2 | 76      | 1.510   | 2.048   |  |
| c       | 0.0196   | 56.7   | 87      | 0.307   | 1.172   | 0.0300                        | 37.1 | 65      | 1.326   | 1.873   |  |
| D       | 0.0207   | 54.7   | 86      | 0.290   | 1.327   | 0.0328                        | 34.6 | 62      | 1.318   | 2.209   |  |
| F       | 0.0205   | 54.3   | 97      | 0.395   | 1.283   | 0.0311                        | 35.8 | 79      | 1.479   | 1.996   |  |
| G       | 0.0194   | 57.8   | 129     | 0.238   | 1.223   | 0.0298                        | 37.6 | 112     | 1.136   | 1.974   |  |
| н       | 0.0191   | 59.5   | 98      | 0.117   | 1.339   | 0.0298                        | 38.1 | 73      | 0.944   | 2.229   |  |
| ï       | 0.0189   | 62.3   | 99      | 0.090   | 1.138   | 0.0295                        | 39.9 | 75      | 0.892   | 1.972   |  |
| J       | 0.0190   | 58.1   | 91      | 0.158   | 1.189   | 0.0289                        | 38.2 | 65      | 0.944   | 1.951   |  |
| ĸ       | 0.0193   | 58.2   | 85      | 0.248   | 1.165   | 0.0297                        | 37.9 | 61      | 1.241   | 1.900   |  |
| L       | 0.0201   | 57.5   | 83      | 0.266   | 1.234   | 0.0323                        | 35.9 | 57      | 1.516   | 2.029   |  |
| M       | 0.0180   | 60.5   | 85      | 0.214   | 1.036   | 0.0269                        | 40.5 | 62      | 1.036   | 1.676   |  |
| N       | 0.0189   | 59.2   | 87      | 0.198   | 1.125   | 0.0287                        | 39.0 | 63      | 1.047   | 1.840   |  |
| 0       | 0.0202   | 55.4   | 103     | 0.270   | 1.310   | 0.0320                        | 35.0 | 81      | 1.348   | 2.134   |  |
| P       | 0.0183   | 63.6   | 76      | 0.027   | 1.023   | 0.0292                        | 39.8 | 46      | 0.808   | 1.948   |  |
| Q       | 0.0192   | 56.8   | 109     | 0.229   | 1.317   | 0.0294                        | 37.0 | 89      | 1.074   | 2.160   |  |
| R       | 0.0192   | 56.3   | 87      | 0.302   | 1.192   | 0.0293                        | 37.3 | 65      | 1.245   | 1.896   |  |
|         | 0.0134   | 2002   | 07      | 00502   | 1.01.74 |                               | 39.9 |         | 0.977   |         |  |

Table VII-2. Gravity irrigation application systems data and annual costs for rehabilitation plans using gravity delivery systems.

1/ maximum flow rate required for subarea 3/ deep percolation loss  $\frac{2/}{4/}$  application system efficiency  $\frac{4}{4/}$  surface runoff loss

4/ sur

|         |          | Hand-Move |      |       |         |                                                                                                                 |             |      |       |         |
|---------|----------|-----------|------|-------|---------|-----------------------------------------------------------------------------------------------------------------|-------------|------|-------|---------|
| Section | Q max 1/ |           |      | DP 3/ | Q max   | the second se | Cost (\$/Ac | re)  | DP    |         |
| No.     | CFS/Acre | Total 2/  | Pump | Power | AF/Acre | CFS/Acre                                                                                                        | Total       | Pump | Power | AF/Acre |
| 1       | 0.0144   | 89        | 15   | 36    | 0.4055  | 0.0139                                                                                                          | 99          | 15   | 33    | 0.3568  |
| 4       | 0.0149   | 93        | 16   | 38    | 0.4024  | 0.0143                                                                                                          | 100         | 16   | 35    | 0.3541  |
| 5       | 0.0142   | 89        | 14   | 37    | 0.3911  | 0.0137                                                                                                          | 100         | 14   | 34    | 0.3441  |
| 6       | 0.0138   | 82        | 16   | 32    | 0.3865  | 0.0132                                                                                                          | 91          | 16   | 30    | 0.3401  |
| 7       | 0.0152   | 90        | 18   | 34    | 0.4272  | 0.0147                                                                                                          | 100         | 17   | 32    | 0.3759  |
| 8       | 0.0150   | 82        | 13   | 34    | 0.4197  | 0.0144                                                                                                          | 92          | 13   | 32    | 0.3693  |
| 9       | 0.0151   | 88        | 10   | 34    | 0.4255  | 0.0146                                                                                                          | 97          | 10   | 31    | 0.3744  |
| 10      | 0.0151   | 95        | 14   | 41    | 0.4253  | 0.0145                                                                                                          | 103         | 13   | 38    | 0.3742  |
| 11      | 0.0148   | 96        | 17   | 39    | 0.4228  | 0.0143                                                                                                          | 104         | 17   | 35    | 0.3720  |
| 12      | 0.0146   | 93        | 14   | 39    | 0.4110  | 0.0140                                                                                                          | 105         | 13   | 36    | 0.3617  |
| 13      | 0.0149   | 96        | 16   | 39    | 0.4250  | 0.0143                                                                                                          | 105         | 16   | 36    | 0.3740  |
| 14      | 0.0144   | 100       | 22   | 36    | 0.4053  | 0.0139                                                                                                          | 108         | 23   | 35    | 0.3567  |
| 15      | 0.0144   | 84        | 13   | 32    | 0.4045  | 0.0139                                                                                                          | 96          | . 12 | 30    | 0.3559  |
| 17      | 0.0151   | 96        | 16   | 37    | 0.4357  | 0.0145                                                                                                          | 104         | 16   | 34    | 0.3834  |
| 18      | 0.0148   | 92        | 15   | 37    | 0.4210  | 0.0142                                                                                                          | 102         | 15   | 34    | 0.3705  |
| 19      | 0.0149   | 101       | 17   | 40    | 0.4269  | 0.0143                                                                                                          | 110         | 16   | 37    | 0.3756  |
| 20      | 0.0149   | 95        | 17   | 38    | 0.4260  | 0.0143                                                                                                          | 101         | 17   | 34    | 0.3749  |
| 21      | 0.0152   | 87        | 12   | 33    | 0.4244  | 0.0146                                                                                                          | 95          | 11   | 30    | 0.3735  |
| 22      | 0.0147   | 90        | 13   | 36    | 0.4164  | 0.0142                                                                                                          | 99          | 13   | 33    | 0.3664  |
| 25      | 0.0136   | 85        | 15   | 34    | 0.3846  | 0.0131                                                                                                          | 97          | 14   | 32    | 0.3384  |
| 26      | 0.0149   | 85        | 13   | 34    | 0.4211  | 0.0143                                                                                                          | 99          | 13   | 32    | 0.3706  |
| 27      | 0.0151   | 84        | 13   | 36    | 0.4253  | 0.0145                                                                                                          | 97          | 13   | 34    | 0.3743  |
| 28      | 0.0151   | 82        | 11   | 34    | 0.4309  | 0.0146                                                                                                          | 93          | 11   | 31    | 0.3791  |
| 29      | 0.0143   | 98        | 24   | 35    | 0.4083  | 0.0138                                                                                                          | 106         | 24   | 32    | 0.3593  |
| 30      | 0.0147   | 88        | 15   | 35    | 0.4151  | 0.0141                                                                                                          | 98          | 14   | 33    | 0.3653  |
| 31      | 0.0144   | 87        | 14   | 35    | 0.4038  | 0.0138                                                                                                          | 93          | 14   | 32    | 0.3553  |
| 32      | 0.0143   | 88        | 18   | 34    | 0.4005  | 0.0138                                                                                                          | 97          | 17   | 32    | 0.3524  |
| В       | 0.0148   | 98        | 17   | 40    | 0.4249  | 0.0143                                                                                                          | 107         | 17   | 36    | 0.3739  |
| c       | 0.0149   | 89        | 14   | 36    | 0.4200  | 0.0143                                                                                                          | 98          | 13   | 33    | 0.3696  |
| D       | 0.0151   | 91        | 18   | 35    | 0.4218  | 0.0145                                                                                                          | 98          | 17   | 33    | 0.3712  |
| F       | 0.0149   | 98        | 17   | 39    | 0.4242  | 0.0143                                                                                                          | 107         | 16   | 36    | 0.3733  |
| G       | 0.0150   | 99        | 17   | 38    | 0.4209  | 0.0144                                                                                                          | 109         | 16   | 35    | 0.3704  |
| н       | 0.0151   | 87        | 12   | 37    | 0.4211  | 0.0146                                                                                                          | 100         | 12   | 34    | 0.3705  |
| 1       | 0.0157   | 86        | 13   | 37    | 0.4287  | 0.0151                                                                                                          | 96          | 13   | 35    | 0.3773  |
| J       | 0.0147   | 88        | 12   | 39    | 0.4110  | 0.0142                                                                                                          | 97          | 12   | 36    | 0.3616  |
| к       | 0.0150   | 90        | 15   | 38    | 0.4227  | 0.0144                                                                                                          | 97          | 14   | 34    | 0.3719  |
| L       | 0.0154   | 83        | 12   | 33    | 0.4341  | 0.0148                                                                                                          | 93          | 12   | 30    | 0.3820  |
| м       | 0.0145   | 94        | 18   | 39    | 0.4117  | 0.0140                                                                                                          | 103         | 17   | 35    | 0.3623  |
| N       | 0.0149   | 97        | 19   | 39    | 0.4178  | 0.0143                                                                                                          | 104         | 19   | 36    | 0.3677  |
| 0       | 0.0149   | 94        | 19   | 36    | 0.4220  | 0.0143                                                                                                          | 101         | 18   | 33    | 0.3714  |
| Р       | 0.0155   | 86        | 17   | 37    | 0.4219  | 0.0149                                                                                                          | 91          | 16   | 34    | 0.3712  |
| Q       | 0.0145   | 92        | 17   | 36    | 0.4086  | 0.0139                                                                                                          | 98          | 17   | 32    | 0.3596  |
| R       | 0.0146   | 89        | 15   | 36    | 0.4132  | 0.0140                                                                                                          | 97          | 15   | 33    | 0.3636  |
| S       | 0.0153   | 91        | 16   | 37    | 0.4246  | 0.0147                                                                                                          | 99          | 15   | 34    | 0.3736  |

Table VII-3. Sprinkler irrigation application systems data and annual costs for rehabilitation plans using a gravity delivery system.

#### Table VII-3. (continued)

|         |          | Center         | -Pivot Sprinkler (CPS) |       |        |               |
|---------|----------|----------------|------------------------|-------|--------|---------------|
| Section | Q max    | Cost (\$/Acre) |                        |       |        | DP<br>AF/Acre |
| No.     | CFS/Acre | Total          | Pump                   | Power | 1 Anna |               |
| 9       | 0.0134   | 122            | 11                     | 30    | 1.1    | 0.2553        |
| 30      | 0.0128   | 161            | 18                     | 31    |        | 0.2491        |
| 31      | 0.0127   | 161            | 18                     | 30    |        | 0.2423        |
| G       | 0.0132   | 165            | 19                     | 32    |        | 0.2525        |
| н       | 0.0134   | 158            | 18                     | 32    |        | 0.2526        |
| 1       | 0.0138   | 147            | 16                     | 32    |        | 0.2572        |
| Q       | 0.0128   | 154            | 17                     | 30    |        | 0.2452        |
| S       | 0.0135   | 157            | 18                     | 32    |        | 0.2547        |

1 maximum flow rate required for subarea with application efficiencies:

75% for hand-made sprinkler

78% for side-roll sprinkler

85% for center-pivot sprinkler

 $\frac{2}{3}$  includes on-farm irrigation system and pump system costs  $\frac{3}{3}$  seep percolation loss

linear programming requires that objective functions be linear. To approximate the non-linearity of the O&M cost to linear function annual total O&M costs of all canal systems of the districts were computed using total canal lengths and weighted crop values per unit area of each district. The crop values and canal lengths used are:

|                        | Weighted Crop<br>Values (\$/Acre) | Total Canal<br>Length (miles) |
|------------------------|-----------------------------------|-------------------------------|
| Idaho ID               | 254.0                             | 95.0                          |
| Snake River Valley, ID | 305.0                             | 46.0                          |

The linear functions to estimate the operation and maintenance costs of open channel and closed conduit are expressed as:

For Idaho ID

| $COM_0 = 1506 L_0$    | (7-3) |
|-----------------------|-------|
| $COM_{c} = 869 L_{c}$ | (7-4) |

For Snake River Valley, ID

 $COM_0 = 2123 L_0$  (7-5)

 $COM_{c} = 887 L_{c}$  (7-6)

where

 $L_0$  = system length of a open channel canal subsection in miles

 $L_c$  = system length of a closed conduit canal subsection in miles. For varying combinations of open and closed systems, the operation and maintenance costs are determined for both open and closed systems using the total length of the combination under consideration. The O&M cost for the composite system is then computed as:

 $COM_{total} = all n^{\Sigma} COM_{o} + all m^{\Sigma} COM_{c}$ (7-7)

where

- COM<sub>total</sub> = annual composite 0&M cost of an irrigation distribution
   system.
  - n = number of open channel subsections selected.
  - m = number of closed ocnduit subsections selected.

#### OVERALL SYSTEM EFFICIENCY CONSTRAINTS

The results of optimal mixed integer-linear programming solutions obtained for the combination of conveyance and application systems at various imposed overall efficiencies are shown in Table VII-4 for the Idaho Irrigation District (IID) and in Table VII-5 for the Snake River Valley Irrigation District (SRVID). In the Tables annual system costs have been itemized as distribution system and application system costs on a total area and unit area basis. On-farm pumping costs are included in the application system costs of sprinkler systems.

With an unlimited water supply, the districts would have an overall efficiency of about 30%. In this case the conveyance system sections are composed of almost all unlined canals which supply unimproved gravity application systems in each subarea. For the IID canal system, in consideration of safety, high seepage losses and an aesthetic point of view, section 2 of the delivery system is constrained to be a gravity pipe system, and section 3, 4 and 14 to be lined canal or gravity pipe system alternatives. Other constraints for delivery system sections are no gravity pipe systems for sections 1, 24, 25 and 26 in the IID and for sections A, B and E in the SRVID, and unlined canals only for sections 27 and 28 in the IDD.

Table VII-4. Annual system costs and descriptions of optimal irrigation systems configuration for rehabilitation plans at various overall system efficiencies, Idaho Irrigation District

|                               |           |           | Overall   | System Effic | iency (%) |           |           |           |
|-------------------------------|-----------|-----------|-----------|--------------|-----------|-----------|-----------|-----------|
|                               | 31.7      | 40.0      | 45.0      | 50.0         | 55.0      | 60.0      | 70.0      | 76.6      |
| Total system cost (\$)        | 2,627,397 | 2,758,055 | 2,858,767 | 2,950,392    | 3,044,157 | 3,132.286 | 3,999,575 | 6,025,756 |
| Application system cost (\$)  | 1,799,204 | 2,063,347 | 2,164,059 | 2,255,684    | 2,349,449 | 2,437,578 | 2,670,992 | 2,926,144 |
| Conveyance System cost (\$)   | 828,193   | 694,708   | 694,708   | 694,708      | 694,708   | 694,708   | 1,328,583 | 3,099,612 |
| Total system cost (\$/AC)     | 92.0      | 96.5      | 100.0     | 103.2        | 106.5     | 109.6     | 140.0     | 210.8     |
| Application system cost (\$/A | AC) 63.0  | 71.3      | 75.7      | 79.6         | 83.0      | 86.6      | 93.5      | 102.4     |
| Conveyance system cost (\$/AC | 29.0      | 24.3      | 24.3      | 24.3         | 24.3      | 24.3      | 46.5      | 108.4     |
| Inflow rate (cfs)             | 989       | 789       | 701       | 631          | 574       | 526       | 451       | 412       |
| Overall eff. (%)              | 31.7      | 40        | 45        | 50           | 55        | 60        | 70        | 76.6      |
| Vol. of D.P. (AF/year)        | 29,824    | 21,143    | 18,140    | 15,881       | 13,962    | 12,410    | 10,971    | 10,139    |
| Vol. of S.R. (AF/year)        | 55,746    | 35,135    | 25,201    | 17,105       | 9,332     | 2,730     | 0         | 0         |
| Total vol. diverted (AF/year  | ) 181,431 | 144,770   | 128,678   | 115,816      | 105,284   | 96,513    | 82,733    | 75,596    |
| Total vol. diverted (AF/AC/y  | (r) 6.35  | 5.07      | 4.50      | 4.05         | 3.68      | 3.38      | 2.90      | 2.65      |
|                               |           |           |           |              |           |           |           |           |

Section no.

Optimal Conveyance System Combination

|      | 32.0       | 40.0 | 45.0 | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 55.0 | 60.0 | 70.0  | 76.6 |  |  |  |  |  |
|------|------------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-------|------|--|--|--|--|--|
|      | 11         |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |       |      |  |  |  |  |  |
| 1    | <u>1</u> / | U    | U    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U    | U    |       |      |  |  |  |  |  |
| 2    | G          | G    | G    | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G    | G    | G     | -    |  |  |  |  |  |
| 3    | 6          | G    | G    | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G    | G    | G     | GG   |  |  |  |  |  |
| 2    |            | G    | 6    | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6    | 0    | 6     | 6    |  |  |  |  |  |
| 4    | Ŭ          | ŭ    | ŭ    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ŭ    | U    | U     | G    |  |  |  |  |  |
| 6    | U          | U    | U    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U    | U    |       |      |  |  |  |  |  |
| 0    | U          | U    | u    | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U    | U    | U     | G    |  |  |  |  |  |
| 1    |            | U    |      | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00 |      | U     | G    |  |  |  |  |  |
| 8    | U          | -    | U    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U    | U    | U     | G    |  |  |  |  |  |
| 9    | U          | U    | U    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U    | U    | U     | G    |  |  |  |  |  |
| 10   | U          |      | U    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U    | U    | U     | G    |  |  |  |  |  |
| 11   | · U        | U    | U    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U    | U    | U.    | G    |  |  |  |  |  |
| 12   | U          | U    | U    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U    | U    | U     | G    |  |  |  |  |  |
| 13   | U          | U    | U    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U    | U    | U     | G    |  |  |  |  |  |
| 14   | L          | L    | L    | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L    | L    | L     | G    |  |  |  |  |  |
| 15   | U          | U    | U    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U    | U    | U     | G    |  |  |  |  |  |
| 16   | U          | U    | U    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U    | U    | L     | G    |  |  |  |  |  |
| 17   | U          | U    | U    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U    | U    | U     | G    |  |  |  |  |  |
| 18   | U          | U    | U    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U    | U    | U     | G    |  |  |  |  |  |
| 19   | U          | U    | U    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U    | U    | L     | G    |  |  |  |  |  |
| 20   | U          | U    | U    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U    | U    | U     | G    |  |  |  |  |  |
| 21   | U          | U    | U    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U    | U    | L     | G    |  |  |  |  |  |
| 22 * | U          | U    | U    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U    | U    | U     | G    |  |  |  |  |  |
| 23   | U          | U    | U    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U    | U    | U     | G    |  |  |  |  |  |
| 24   | U          | U    | U    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U    | U    | L     | L    |  |  |  |  |  |
| 25   | U          | U    | U    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U    | U    | U     | L    |  |  |  |  |  |
| 26   | U          | U    | U    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U    | U    | U     | L    |  |  |  |  |  |
| 27   | U          | U    | U    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U    | U    | U     | U    |  |  |  |  |  |
| 28   | U          | U    | U    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U    | U    | U     | U    |  |  |  |  |  |
| 29   | Ŭ          | ŭ    | ŭ    | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ŭ    | Ŭ    | L     | G    |  |  |  |  |  |
| 30   | Ű          | ŭ    | U    | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U    | Ŭ    | U.    | G    |  |  |  |  |  |
| 31   | Ŭ          | Ŭ    | Ŭ    | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ŭ    | Ŭ    | Ĩ.    | i    |  |  |  |  |  |
| 32   |            |      | -    | 100 March 100 Ma | -    |      | ii ii | G    |  |  |  |  |  |
| 32   | Ŭ          | Ŭ    | Ŭ    | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ŭ    | U    |       | U    |  |  |  |  |  |

 $\frac{1}{2}$  Symbols for conveyance system sections are described in Table VII-1.  $\frac{2}{3}$  Symbols for application systems are described in tables VII-2 and VII-3.  $\frac{3}{3}$  No subarea supplied by canal section.

| Table VII-4. (d | continued) |
|-----------------|------------|
|-----------------|------------|

| operative) of this of | A CONTRACTOR OF A CONTRACTOR O |      |          |         | System Combinat |          | and an and |         |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|---------|-----------------|----------|------------|---------|
|                       | 32.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40.0 | 45.0     | 50.0    | 55.0            | 60.0     | 70.0       | 76.6    |
|                       | 2/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |          |         |                 |          |            |         |
| 1                     | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG   | UG       | UG      | HM              | HM       | HM         | SR      |
| 1. 19 C               | 3/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00   | 00       | 00      |                 |          |            | JIL     |
| 2                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -    | -        | -       |                 |          | -          | -       |
| 3                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -    | -        | -       | _               | -        | -          | -       |
| 4                     | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG   | UG       | HM      | HM              | HM       | SR         | SR      |
| 5                     | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG   | UG (20%) | HM      | HM              | HM       | HM         | SR      |
|                       | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00   | HM (80%) |         |                 |          |            | 5.4     |
| 6                     | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG   | HM       | HM      | HM              | HM       | SR         | SR      |
| 7                     | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG   | UG       | UG      | UG              | UG (93%) | HM         | SR      |
| '                     | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00   | 00       | 00      | 00              | HM (7%)  | 1.104      | Sh      |
| 8                     | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HM   | HM       | HM      | HM              | HM       | SR         | SR      |
| 9                     | HM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HM   | HM       | HM      | HM              | HM       | SR         | CP      |
| 10                    | UG (42%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HM   | HM       | HM      | HM              | HM       | SR         | SR      |
| 10                    | HM (38%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |          |         |                 |          | SIL        | 514     |
| 11                    | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HM   | HM       | HM      | HM              | HM       | SR         | SR      |
| 12                    | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG   | HM       | HM      | HM              | HM       | HM         | SR      |
| 13                    | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HM   | HM       | HM      | HM              | HM       | SR         | SR      |
| 14                    | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG   | UG       | UG      | LM              | HM       | SR         | SR      |
| 15                    | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HM   | HM       | HM      | e HM            | HM       | HM         | SR      |
| 16                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -    |          | -       | -               | -        | -          | -       |
| 17                    | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HM   | HM       | HM      | HM              | HM       | SR         | SR      |
| 18                    | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HM   | HM       | HM      | HM              | HM       | SR         | SR      |
| 19                    | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HM   | HM       | HM      | HM              | HM       | SR         | SR      |
| 20                    | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HM   | HM       | HM      | HM              | HM       | SR         | SR      |
| 21                    | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HM   | HM       | HM      | HM              | HM       | SR         | SR      |
| 22                    | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HM   | HM       | HM      | HM              | HM       | HM (61%)   | SR      |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |         |                 |          | SR (39%)   |         |
| 23                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -    | -        | -       | -               | -        | -          |         |
| 24                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -    | -        | -       | -               | -        | -          | -       |
| 25                    | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG   | UG       | UG      | UG              | UG       | HM         | SR      |
| 26                    | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG   | UG       | UG      | HM              | HM       | HM         | SR      |
| 27                    | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG   | UG       | UG      | UG (45%)        | HM       | HM         | SR      |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |         | HM (55%)        |          |            |         |
| 28                    | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG   | HM       | HM      | HM              | HM       | HM         | SR      |
| 29                    | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG   | UG       | UG      | UG              | UG       | SR         | SR      |
| 30                    | HM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HM   | HM       | HM      | HM              | HM       | SR         | SR      |
| 31 .                  | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HM   | HM       | HM      | HM              | HM       |            | SR (1%) |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          |         |                 |          |            | P (999  |
| 32                    | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG   | UG       | UG (3%) | HM              | HM       | SR         | SR      |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |          | HM (97% | )               |          |            |         |

 $\frac{1}{2}$  Symbols for conveyance system sections are described in Table VII-1.  $\frac{2}{3}$  Symbols for application systems are described in tables VII-2 and VII-3.  $\frac{3}{3}$  No subarea supplied by canal section.

| Table VII-5.       | Annual  | system costs | and d  | lescriptions | of optimal | irrigation  | systems | configuration       |
|--------------------|---------|--------------|--------|--------------|------------|-------------|---------|---------------------|
| for rehabilitation | n plans | at various o | verall | system effi  | ciencies,  | Snake River | Valley  | Irrigation District |

|            |                                                                                                                   | Overall                                                                                                                                                                                    | System Effic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | iency (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |                                                       |
|------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| 30.5       | 40.0                                                                                                              | 45.0                                                                                                                                                                                       | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70.0                                                  | 78.6                                                  |
| 1,401,690  | 1,496,402                                                                                                         | 1,556,059                                                                                                                                                                                  | 1,611,280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,661,488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,741,348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,139,905                                             | 3,463,124                                             |
| 1,254,583  | 1,349,194                                                                                                         | 1,408,851                                                                                                                                                                                  | 1,464,071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,514,280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,546,144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,675,748                                             | 2,035,593                                             |
| 147,107    | 147,208                                                                                                           | 147,208                                                                                                                                                                                    | 147,208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 147,208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 195,204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 464,157                                               | 1,427,581                                             |
| 81.6       | 87.1                                                                                                              | 90.6                                                                                                                                                                                       | 93.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 96.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 101.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 124.6                                                 | 201.6                                                 |
| AC) 73.0   | 78.5                                                                                                              | 82.0                                                                                                                                                                                       | 85.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 88.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 90.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 97.6                                                  | 118.5                                                 |
| C) 8.6     | 8.6                                                                                                               | 8.6                                                                                                                                                                                        | 8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.0                                                  | 83.1                                                  |
| 632        | 480                                                                                                               | 426                                                                                                                                                                                        | 384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 274                                                   | 245                                                   |
| 30.5       | 40.0                                                                                                              | 45.0                                                                                                                                                                                       | 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70.0                                                  | 78.6                                                  |
| 19,450     | 14,267                                                                                                            | 11,620                                                                                                                                                                                     | 9,464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8,151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7,431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6,526                                                 | 5,669                                                 |
| 32,323     | 16,528                                                                                                            | 11,274                                                                                                                                                                                     | 6,816                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3,065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                     | 0                                                     |
| r) 115,971 | 88,036                                                                                                            | 78,256                                                                                                                                                                                     | 70,422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 64,018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 58,678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50,293                                                | 45,045                                                |
| 'yr) 6.75  | 6.13                                                                                                              | 4.56                                                                                                                                                                                       | 4.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.93                                                  | 2,62                                                  |
|            | 1,401,690<br>1,254,583<br>147,107<br>81.6<br>(AC) 73.0<br>C) 8.6<br>632<br>30.5<br>19,450<br>32,323<br>r) 115,971 | 1,401,690 1,496,402<br>1,254,583 1,349,194<br>147,107 147,208<br>81.6 87.1<br>(AC) 73.0 78.5<br>C) 8.6 8.6<br>632 480<br>30.5 40.0<br>19,450 14,267<br>32,323 16,528<br>rr) 115,971 88,036 | 30.5         40.0         45.0           1,401,690         1,496,402         1,556,059           1,254,583         1,349,194         1,408,851           147,107         147,208         147,208           81.6         87.1         90.6           (AC)         73.0         78.5         82.0           C)         8.6         8.6         8.6           632         480         426           30.5         40.0         45.0           19,450         14,267         11,620           32,323         16,528         11,274           wr)         115,971         88,036         78,256 | 30.5         40.0         45.0         50.0           1,401,690         1,496,402         1,556,059         1,611,280           1,254,583         1,349,194         1,408,851         1,464,071           147,107         147,208         147,208         147,208           81.6         87.1         90.6         93.8           (AC)         73.0         78.5         82.0         85.2           (C)         8.6         8.6         8.6         8.6           632         480         426         384           30.5         40.0         45.0         50.0           19,450         14,267         11,620         9,464           32,323         16,528         11,274         6,816           wr)         115,971         88,036         78,256         70,422 | 1,401,690       1,496,402       1,556,059       1,611,280       1,661,488         1,254,583       1,349,194       1,408,851       1,464,071       1,514,280         147,107       147,208       147,208       147,208       147,208         81.6       87.1       90.6       93.8       96.7         (AC)       73.0       78.5       82.0       85.2       88.1         C)       8.6       8.6       8.6       8.6       8.6         632       480       426       384       349         30.5       40.0       45.0       50.0       55.0         19,450       14,267       11,620       9,464       8,151         32,323       16,528       11,274       6,816       3,065         r)       115,971       88,036       78,256       70,422       64,018 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

| Section no. | Optimal Conveyance System Combination |      |      |      |      |      |      |      |  |  |
|-------------|---------------------------------------|------|------|------|------|------|------|------|--|--|
|             | 30.3                                  | 40.0 | 45.0 | 50.0 | 55.0 | 60.0 | 70.0 | 78.2 |  |  |
|             | 1/                                    |      |      |      |      |      |      |      |  |  |
| A           | U                                     | U    | U    | U    | U    | U    | L    | L    |  |  |
| В           | U                                     | U    | U    | U    | U    | U    | U    | L    |  |  |
| С           | U                                     | U    | U    | U    | U    | L    | L    | G    |  |  |
| D           | U                                     | U    | U    | U    | U    | U    | L    | G    |  |  |
| E           | U                                     | U    | U    | U    | U    | U    | L    | L    |  |  |
| F           | U                                     | U    | U    | U    | U    | U    | U    | G    |  |  |
| G           | U                                     | U    | U    | U    | U    | U    | L    | G    |  |  |
| Н           | U                                     | U    | U    | U    | U    | U    | U    | G    |  |  |
| 1           | U                                     | U    | U    | U    | U    | U    | L    | G    |  |  |
| J           | U                                     | U    | U    | U    | U    | U    | U    | G    |  |  |
| к           | U                                     | U    | U    | U    | U    | U    | U    | G    |  |  |
| L           | U                                     | U    | U    | U    | U    | U    | U    | G    |  |  |
| М           | U                                     | U    | U    | U    | U    | U    | U    | G    |  |  |
| N           | U                                     | U    | U    | U    | U    | U    | U    | G    |  |  |
| 0           | U                                     | U    | U    | U    | U    | U    | U    | G    |  |  |
| Р           | U                                     | U    | U    | U    | U    | U    | L    | G    |  |  |
| 9           | U                                     | U    | U    | U    | U    | U    | L    | G    |  |  |
| R           | U                                     | U    | U    | U    | U    | U    | L    | G    |  |  |
| S           | U                                     | . L  | L    | L    | L    | L    | L    | G    |  |  |

 $\frac{1}{2}$  Symbols for conveyance system sections are described in Table VII-1.  $\frac{2}{2}$  Symbols for application systems are described in tables VII-2 and VII-3. No subarea supplied by canal section.

Table VII-5. (continued)

|        | 30.3                | 40.0     | 45.0     | 50.0     | 55.0     | 60.0     | 70.0     | 78.2  |
|--------|---------------------|----------|----------|----------|----------|----------|----------|-------|
|        | *                   |          |          |          |          |          |          |       |
| A      | State of the second | -        | -        | -        |          | -        |          | -     |
|        | 2/                  |          |          |          |          |          |          |       |
| В      | <u>2/</u><br>UG     | UG       | UG       | HM       | HM       | HM       | HM (76%) | SR    |
|        |                     |          |          |          |          |          | SR (24%) |       |
| С      | UG                  | UG       | UG (18%) | HM       | HM       | HM       | SR       | SR    |
|        |                     |          | HM (82%) |          |          |          |          |       |
| D      | UG                  | HM       | HM       | HM       | HM       | HM       | SR       | SR    |
| E<br>F | -                   | -        | -        | -        | -        | -        | -        | -     |
| F      | UG                  | UG (93%) | HM       | HM       | HM       | HM       | SR       | SR    |
|        |                     | HM (7%)  |          |          |          |          |          |       |
| G      | UG                  | HM       | HM       | HM       | HM       | HM       | SR       | CP    |
| H      | UG                  | HM       | HM       | HM       | HM       | HM       | HM       | CP    |
| 1      | UG                  | HM       | HM       | HM       | HM       | HM       | SR       | CP    |
| J      | UG                  | UG       | UG       | UG       | HM       | HM       | HM       | SR    |
| К      | UG                  | UG       | UG       | UG       | UG (77%) | HM       | SR       | SR    |
|        |                     |          |          |          | HM (23%) |          |          |       |
| L      | UG                  | UG       | UG       | HM       | HM       | HM       | SR       | SR    |
| м      | UG                  | UG       | UG       | UG       | UG       | UG       | HM       | SR    |
| N      | UG                  | UG       | UG       | UG       | UG       | IG (11%) | SR       | SR    |
|        |                     |          |          |          |          | HM (89%) |          |       |
| 0      | UG                  | HM       | HM       | HM       | HM       | HM       | SR       | SR    |
| Р      | UG                  | UG       | UG       | UG       | IG       | IG       | SR       | SR    |
| Q      | UG                  | HM       | HM       | HM       | HM       | HM       | SR       | CP    |
| R      | UG                  | UG       | UG       | UG (26%) | HM       | HM       | SR       | SR    |
|        |                     |          |          | HM (74%) |          |          |          |       |
| S      | UG                  | HM       | HM       | HM       | HM       | HM       | SR S     | R (6% |
|        |                     |          |          |          |          |          | C        | P (94 |

1/ Symbols for conveyance system sections are described in Table VII-1.
2/ Symbols for application systems are described in tables VII-2 and VII-3.
No subarea supplied by canal section.

The maximum attainable overall efficiencies are 76.6% and 78.6% for Idaho and Snake River Valley Irrigation Districts, respectively. These figures are almost 30% higher than the maximum attainable with existing distribution systems analyzed in Chapter VI. The effects of overall efficiency on total annual cost and total volume of water required for the optimal rehabilitation plans of the two irrigation districts are shown in Figure VII-4.

The specified overall efficiency for the systems considered affects both the total annual cost and the configuration of the system. From Tables VII-4 and VII-5 it can be seen that with unlimited water supply the IID would require a maximum diversion rate of 989 cfs to operate at an overall efficiency of 31.7% with a total annual cost of \$2,627,397, and the SRVID would require a maximum flow rate of 632 cfs supplied by gravity distribution system and operate at an overall efficiency of 30.5% with a total annual cost of \$1,401,690. Almost all conveyance system components are unlined canals, except for those which are constrained otherwise, and the application systems are unimproved gravity systems except for subareas 9 in the IID. This subarea has hand-move sprinkler application systems due to the dominant sandy soil of the area which causes gravity systems more costly than sprinkler systems. At a specified overall efficiency of 60%, the total annual cost for the system is \$3,132,286 and the maximum required flow rate is 526 cfs for the IID, and \$1,741,348 and 320 cfs for the SRVID. At an efficiency of 60%, the nearly all conveyance system sections remain as unlined open channel with a few lined sections, but the application systems for nearly all subareas are hand-move sprinkler systems. It is not until the overall system efficiency reaches 70% that there is much of a change in distribution









# Figure VII-4. Results obtained for optimum rehabilitation plans at various overall system efficiencies.

system components, and an overall system efficiency of over 75% is required for conveyance system sections to change from open channel to gravity pipe.

As shown in Figure VII-4, the total system cost increases almost linearly to the 60% level and then rises sharply. At overall system efficiencies of less than 60%, the change in cost is caused mostly by changes in application systems, and the sharp increment is caused by the increased costs of lined canal and gravity pipeline sections required to achieve the higher efficiencies. Therefore, the best investment for improving the overall efficiency is to first improve the application system efficiency up to a certain level with changes in the distribution system only in those sections with high conveyance losses. To achieve the highest possible efficiencies, it would also be necessary to radically change the distribution system.

In this study potentially higher crop yields resulting from higher irrigation efficiency and better water control and management were not considered in the cost analysis. In other words, cost of irrigation is the only factor considered in the optimization procedure.

#### WATER COST CHARGED AT HEADGATE

Charges for water are often assessed for water diverted at a headgate to an irrigation district. The basis for charge can result from costs of supplying water to the district through a main supply system, and the cost of water is commonly charged per unit volume, usually dollars per acre-foot.

The charges for surface water entering the two studied irrigation districts were allowed to vary from \$0 to \$30 per acre-foot. Optimal results related to the various water charges summarized in Tables VII-6

|                               |             |           |           | Water Cost | (\$/AF)   |           | 1. A        |
|-------------------------------|-------------|-----------|-----------|------------|-----------|-----------|-------------|
|                               | 0.0         | 5.0       | 8.0       | 10.0       | 15.0      | 20.0      | 30.0        |
| Total cost (\$)               | 2,627.308   | 3,479,142 | 3,879,059 | 4,096,422  | 4,569,365 | 5,035,001 | 5,962,887   |
| Total system cost (\$)        | 2,627,397   | 2,882,450 | 2,917,243 | 3,060,172  | 3,170,045 | 3,176,861 | 3, 191, 217 |
| Application system cost (\$)  | 1,799,204   | 2,155,780 | 2,245,217 | 2,388,146  | 2,498,019 | 2,504,835 | 2,521,192   |
| Conveyance system cost (\$)   | 828,193     | 726,670   | 672,026   | 672,026    | 672,026   | 672,026   | 669,998     |
| Water cost (\$)               | . 0         | 596,692   | 961,816   | 1,036,250  | 1,399,320 | 1,858,140 | 2,771,670   |
| Total cost (\$/AC)            | 92.0        | 121.7     | 135.7     | 143.3      | 159.9     | 176.2     | 208.6       |
| Total system cost (\$/AC)     | 92.0        | 100.9     | 102.1     | 107.1      | 110.9     | 111.2     | 111.7       |
| Application system cost (\$/A | C) 63.0     | 75.4      | 78.5      | 83.6       | 87.4      | 87.7      | 88.2        |
| Conveyance system cost (\$/AC | ) 29.0      | 25.5      | 23.5      | 23.5       | 23.5      | 23.5      | 23.5        |
| Water cost (\$/AC)            | 0           | 20.8      | 33.6      | 36.2       | 49.0      | 65.0      | 96.9        |
| Inflow rate (CFS)             | 989         | 813       | 655       | 565        | 508       | 506       | 503         |
| Overall system eff. (%)       | 31.7        | 38.5      | 47.8      | 55.4       | 61.6      | 61.8      | 62.2        |
| Volume of D.P. (AF/year)      | 29,824      | 21,969    | 16,513    | 13,656     | 11,713    | 11,827    | 11,827      |
| Volume of S.R. (AF/year)      | 55,746      | 37,434    | 20,089    | 8,151      | 625       | 0         | 0           |
| Total volume diverted (AF/ye  | ar) 181,431 | 149,173   | 120,227   | 103,625    | 93,288    | 92,907    | 92,389      |
| Total volume diverted (AF/AC, | /yr) 6.35   | 5,22      | 4.21      | 3.63       | 3.26      | 3.25      | 3.23        |
|                               |             |           |           |            |           |           |             |

Optimal Conveyance System Combination

Table VII-6. Annual system costs and descriptions of optimal irrigation systems configuration for rehabilitation plans at various water costs charged at the headgate, Idaho Irrigation District

|                  | 0.0 | 5.0 | 8.0 | 10.0 | 15.0 | 20.0 | 30.0 |
|------------------|-----|-----|-----|------|------|------|------|
|                  | 1/  |     |     |      |      |      |      |
| 1                | U   | U   | U   | U    | U    | U    | U    |
| 2                | G   | G   | G   | G    | G    | G    | G    |
| 3                | L   | G   | G   | G    | G    | G    | G    |
| 4                | L   | L   | L   | 1 L  | L    | L    | L    |
| 5                | U   | U   | U   | U    | U    | U    | U    |
| 6                | U   | U   | U   | U    | U    | U    | U    |
| 7                | U   | U   | U   | U    | U    | U    | U    |
| 8                | U   | U   | U   | U    | U    | U    | U    |
| 9                | U   | U   | U   | U    | U    | U    | U    |
| 0                | U   | U   | U   | U    | U    | U    | U    |
| 1                | U   | U   | U   | U    | U    | U    | U    |
| 2                | U   | U   | U   | U    | U    | U    | U    |
| 3                | U   | U   | U   | U    | U    | U    | U    |
| 4                | L   | U   | L   | L    | î.   | L    | L    |
| 5                | U   | U   | U   | U    | U    | ŭ    | Ű    |
| 6                | ŭ   | U   | u   | U    | U    | U    | U    |
| 7                | U   | U   | U   | u    | U    | Ű    | U    |
| 8                | Ŭ   | Ŭ   | u   | U    | U    | U    | U    |
| 9                | U   | U   | u   | U    | U    | U    | Ű.   |
| 0                | U   | Ŭ   | u   | U    | U    | Ŭ    | Ű    |
| 1                | Ŭ   | Ŭ   | Ű   | Ŭ    | U    | U    | U    |
| 2                | Ŭ   | Ŭ   | u   | U    | U    | Ű    | U    |
| 3                | Ŭ   | U   | U   | U    | U    | U    | U    |
| 4                | U   | U   | U   | U    | U    | U    | L    |
| 4<br>5<br>6<br>7 | U   | U   | U   | U    | U    | U    | U    |
| 6                | U   | U   | U   | U    | U    | U    | U    |
| 7                | U   | U   | U   | U    | U    | U    | U    |
| 8                | U   | U   | U   | U    | U    | U    | U    |
| 9                | Ŭ   | U   | Ŭ   | U    | U    | U    | U    |
| 9<br>0           | U   | U   | U   | U    | U    | U    | U    |
| 1                | U   | U   | U   | U    | U    | U    | U    |
| 2                | ŭ   | ŭ   | U   | U    | U    | U    | U    |

 $\frac{1/}{2/} \begin{array}{c} \text{Symbols for conveyance system sections are described in Table VII-1.} \\ \hline \frac{2}{2}/\\ \hline \frac{3}{2} \end{array} \\ \begin{array}{c} \text{No subarea supplied by canal section.} \end{array}$ 

Section no.

| Section no. |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Optimal App | olication Sys | tem Combinatio | n    |                       |
|-------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|----------------|------|-----------------------|
|             | 0.0 | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.0         | 10.0          | 15.0           | 20.0 | 30.0                  |
|             | 2/  | No. of the other states of |             |               |                |      | and the second second |
| 1           | UG  | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG          | HM            | HM             | HM   | HM                    |
|             | *   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |               |                |      |                       |
| 2           | -   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | -             | -              | -    | -                     |
| 3           | -   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -           | -             | -              | -    | -                     |
| 4           | UG  | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HM          | HM            | HM             | HM   | HM                    |
| 5           | UG  | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HM          | HM            | HM             | HM   | HM                    |
| 6           | UG  | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HM          | HM            | HM             | HM   | HM                    |
| 7           | UG  | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG          | UG            | HM             | HM   | HM                    |
| 8           | UG  | HM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HM          | HM            | HM             | HM   | HM                    |
| 9           | HM  | HM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HM          | HM            | HM             | HM   | HM                    |
| 10          | UG  | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HM          | HM            | HM             | HM   | HM                    |
| 11          | UG  | HM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HM          | HM            | HM             | HM   | HM                    |
| 12          | UG  | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | НМ          | HM            | HM             | HM   | HM                    |
| 13          | UG  | HM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HM          | HM            | HM             | HM   | НМ                    |
| 14          | UG  | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG          | HM            | HM             | HM   | HM                    |
| 15          | UG  | HM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HM          | HM            | HM             | HM   | НМ                    |
| 16          |     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -           | -             | -              | -    | _                     |
| 17          | UG  | HM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HM          | HM            | HM             | HM   | HM                    |
| 18          | UG  | HM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HM          | HM            | HM             | HM   | НМ                    |
| 19          | UG  | HM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HM          | HM            | HM             | HM   | HM                    |
| 20          | UG  | HM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HM          | HM            | HM             | HM   | HM                    |
| 21          | UG  | HM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HM          | HM            | HM             | HM   | HM                    |
| . 22        | UG  | HM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HM          | HM            | HM             | HM   | HM                    |
| 23          | -   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -           | -             | -              | -    | -                     |
| 24          | -   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -           |               | -              | -    | -                     |
| 25          | UG  | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG          | UG            | HM             | HM   | HM                    |
| 26          | UG  | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG          | HM            | HM             | HM   | HM                    |
| 27          | UG  | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG          | HM            | HM             | HM   | HM                    |
| 28          | UG  | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HM          | HM            | HM             | HM   | HM                    |
| .29         | UG  | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG          | UG            | IG             | HM   | HM                    |
| 30          | HM  | HM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HM          | HM            | НМ             | HM   | HM                    |
| 31          | UG  | HM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HM          | HM            | HM             | HM   | HM                    |
| 32          | UG  | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UG          | НМ            | HM             | HM   | HM                    |

Table VII-6. (continued)

1/2/

Symbols for conveyance system sections are described in Table VII-1. Symbols for application systems are described in tables VII-2 and VII-3. No subarea supplied by canal section.

Table VII-7. Annual system costs and descriptions of optimal irrigation systems configuration for rehabilitation plans at various water costs charged at the headgate, Snake River Irrigation District

|                               |             |           |           | Water Cost | t (\$/AF) |           |           |
|-------------------------------|-------------|-----------|-----------|------------|-----------|-----------|-----------|
|                               | 0.0         | 5.0       | 8.0       | 10.0       | 15.0      | 20.0      | 30.0      |
| Total cost (\$)               | 1,401,690   | 1,932,850 | 2,172,585 | 2,301,021  | 2,602,615 | 2,898,896 | 3,469,509 |
| Total system cost (\$)        | 1,401,690   | 1,460,920 | 1,650,537 | 1,673,181  | 1,713,775 | 1,713,775 | 1,771,627 |
| Application system cost (\$)  | 1,254,583   | 1,313,712 | 1,503,329 | 1,525,973  | 1,566,567 | 1,566,567 | 1,568,475 |
| Conveyance system cost (\$)   | 147,107     | 147,208   | 147,208   | 147,208    | 147,208   | 147,208   | 203,154   |
| Water cost (\$)               | 0           | 471,930   | 522,048   | 627,840    | 888,840   | 1,185,120 | 1,697,880 |
| Total cost (\$/AC)            | 81.5        | 112.5     | 126.5     | 134.0      | 151.5     | 168.8     | 202.0     |
| Total system cost (\$/AC)     | 81.5        | 85.1      | 96.1      | 97.4       | 99.8      | 99.8      | 103.1     |
| Application system cost (\$/A | C) 73.0     | 76.5      | 87.5      | 88.8       | 91.2      | 91.2      | 91.3      |
| Conveyance system cost (\$/AC | ) 8.5       | 8.6       | 8.6       | 8.6        | 8.6       | 8.6       | 11.8      |
| Water cost (\$/AC)            | 0           | 27.4      | 30.4      | 36.6       | 51.7      | 69.0      | 98.9      |
| Inflow rate (CFS)             | 632         | 514       | 356       | 342        | 323       | 323       | 308       |
| Overall system eff. (%)       | 30.5        | 37.5      | 54.3      | 56.4       | 59.8      | 59.8      | 62.6      |
| Volume of D.P. (AF/year)      | 19,450      | 15,405    | 8,455     | 7,821      | 7,204     | 7,204     | 7,190     |
| Volume of S.R. (AF/year)      | 32,323      | 19,280    | 3,537     | 2,300      | 0         | 0         | 0         |
| Total volume diverted (AF/yes | ar) 115,971 | 94,386    | 65,256    | 62,784     | 59,256    | 59,256    | 56,596    |
| Total volume diverted (AF/AC, | /yr) 6.75   | 5.50      | 3.80      | 3.66       | 3.45      | 3.45      | 3.30      |

| Section no.    |       |     | Optimal Con | nveyance Syste | em Combinatio | n    |      |
|----------------|-------|-----|-------------|----------------|---------------|------|------|
| Los Profession | 0.0   | 5.0 | 8.0         | 10.0           | 15.0          | 20.0 | 30.0 |
|                | 1/    |     |             |                |               |      |      |
| A              | U     | U   | U           | U              | U             | U    | U    |
| В              | U     | U   | U           | U              | U             | U    | U    |
| C              | U     | U   | U           | U              | U             | U    | L    |
| D              | U     | U   | U           | U              | U             | U    | U    |
| E              | U     | U   | U           | U              | U             | U    | U    |
| F              | U     | U   | U           | U              | U             | U    | U    |
| G              | · · U | U   | U           | U              | U             | U    | U    |
| н              | U     | U   | U           | U              | U             | U    | U    |
| 1              | U     | U   | U           | U              | U             | U    | U    |
| J              | U     | U   | U           | U              | U             | U    | U    |
| к              | U     | U   | U           | U              | U             | U    | U    |
| L              | U     | U   | U           | U              | U             | U    | U    |
| м              | U     | U   | U           | U              | U             | U    | U    |
| N              | U     | U   | U           | U              | U             | U    | U    |
| 0              | U     | U   | U           | U              | U             | U    | U    |
| Р              | U     | U   | U           | U              | U             | U    | U    |
| 9              | U     | U   | U           | U              | U             | U    | U    |
| R              | U     | U   | U           | U              | U             | U    | L    |
| S              | U     | L   | L           | L              | L             | L    | L    |

\* No subarea supplied by canal section.

1/ Symbols for conveyance system sections are described in Table VII-1.

2/ Symbols for application systems are described in tables VII-2 and VII-3.

| Section no. |                 |     | Optimal App | lication Syst | tem Combinatio | n    |      |
|-------------|-----------------|-----|-------------|---------------|----------------|------|------|
|             | 0.0             | 5.0 | 8.0         | 10.0          | 15.0           | 20.0 | 30.0 |
| A           |                 |     | -           | -             | -              | -    | -    |
|             | 2/              |     |             |               |                |      |      |
| В           | <u>2/</u><br>UG | UG  | HM          | HM            | HM             | HM   | HM   |
| C           | UG              | UG  | HM          | HM            | HM             | HM   | HM   |
| D           | UG              | UG  | HM          | HM            | HM             | HM   | HM   |
| E           | -               | -   | -           | -             | -              | -    | -    |
| F           | UG              | UG  | HM          | HM            | HM             | HM   | HM   |
| G           | UG              | HM  | HM          | HM            | HM             | HM   | HM   |
| Н           | UG              | HM  | HM          | HM            | HM             | HM   | HM   |
| 1           | UG              | HM  | HM          | HM            | HM             | HM   | HM   |
| J           | UG              | UG  | HM          | HM            | HM             | HM   | HM   |
| К           | UG              | UG  | UG          | HM            | HM             | HM   | HM   |
| L           | UG              | UG  | HM          | HM            | HM             | HM   | HM   |
| М           | UG              | UG  | UG          | UG            | HM             | HM   | HM   |
| N           | UG              | UG  | UG          | UG            | HM             | HM   | HM   |
| 0           | UG              | HM  | HM          | HM            | HM             | HM   | HM   |
| Р           | UG              | UG  | UG          | IG            | HM             | HM   | SR   |
| 9           | UG              | HM  | HM          | HM            | HM             | HM   | HM   |
| R           | UG              | UG  | HM          | HM            | HM             | HM   | HM   |
| S           | UG              | HM  | HM          | HM            | HM             | HM   | HM   |

Table VII-7. (continued)

No subarea supplied by canal section.
 <u>1</u>/ Symbols for conveyance system sections are described in Table VII-1.
 <u>2</u>/ Symbols for application systems are described in tables VII-2 and VII-3.

and VII-7 are the optimal rehabilitation plans of the two districts. The tables show optimal combinations of distribution and application systems along with total annual cost, system efficiency, volume of water diverted and volume of water lost to deep percolation and surface runoff. As shown in Figure VII-5 the total annual cost increases almost linearly in proportion to the water charge assessed due to the insignificant changes in total system cost compared to the cost of water.

The results obtained show that the application system components are the first to be changed with increasing water cost. There are sharp increases in overall efficiency as water costs increase between \$5 and \$10 per acre-foot. These increases are caused by changes in application systems from predominately unimproved gravity systems at a charge of \$5 per acre-foot to nearly all sprinkler systems at \$8 and \$10 per acrefoot. Conveyance system component configurations remain essentially unchanged up to the maximum with charge invested at \$30 per acre-foot. At this charge the overall efficiency for both the IID and SRVID is 62%, about 14% and 16% lower than that of maximum attainable efficiencies of 76% and 78% for the two districts, respectively. A charge of more than \$30 per acre-foot to achieve higher efficiencies is not realistic under present farming practices.

#### WATER COST CHARGED AT FARM DIVERSIONS

Another way of assessing water cost is to charge for the amount of water delivered at farm diversion points from irrigation district canals. This assessment does not charge for any water lost in the conveyance system between the headgate and farm diversion points. The basis of the charge is cost per unit volume diverted or dollars per acre-foot diverted







Figure VII-5. Results obtained for optimum rehabilitation plans for various water costs charged at the headgate.

from canal to farm field. However, because of difficulties in formulating the mixed integer-linear programming problem matrix, this charge method could not be directly applied as dollars per acre-foot. Water cost must be converted to dollars per acre of land in the subarea where the water is delivered. The maximum irrigation flow rate requirement (cfs/acre) for each irrigation application system in each subarea was converted to the seasonal volume requirement (acre-feet per acre) by using the cfs-to-acre-feet conversion factor. The water charge in dollars per acre-foot is then converted for the seasonal volume requirement in dollars per acre.

Because the irrigation requirement of a subarea is influenced by application system efficiency the water cost in dollars per acre will be low for a application system with a high application efficiency and high for a system with low application efficiency. For example, a \$1 per acre-foot water charge for an unimproved gravity application system in subarea 30 of the Idaho Irrigation District is converted as follows: Irrigation requirement rate = 0.0302 cfs/acre

| Seasonal              |   | 0.0302 cfs/acre            |   |      |                     |
|-----------------------|---|----------------------------|---|------|---------------------|
| Volume<br>Requirement | = | 0.00545 cfs/acre-foot/year | = | 5.54 | acre-feet/acre/year |

Seasonal Water = 5.54 acre-feet/acre/year x 1.0 \$/acre-foot = 5.54 \$/acre/year Charge

Using the same procedure the water costs in dollars per acre could be obtained for all application systems in the subareas shown in Figure VII-3.

The charges at farm diversion points were allowed to vary from \$0 to \$20 per acre-foot. The total assessed revenue for water is constrained to be less than or equal to the total conveyance system cost including operation and maintenance costs. With this constraint the conveyance system cost is equal to the total water cost as long as the water cost is greater than or equal to the minimum conveyance system cost since the objective of the problem is to find the mimimum total cost.

The optimal results related to various water costs charged at the farm deliveries are shown in Tables VII-8 and VII-9 and in Figure VII-6. The tables include data for total annual cost, overall system efficiency, water diverted at the headgate, water lost to deep percolation and surface runoff and optimal combinations of distribution and application systems for each level of water cost. The total system cost for this case does not include the water cost as the objective of this particular model is to minimize total system cost subject to the constraint described in the preceding paragraph. The results listed in the tables show that a water cost of \$6 per acre-foot is necessary to meet the minimum distribution system costs (\$888,656) for the IID whereas a cost of \$4 per acrefoot is necessary for the SRVID (\$319,576). The graphs in Figure VII-6 show that the greatest increase in overall efficiency for both districts occur at water charges of \$12 per acre-foot or less.

At a \$20 per acre-foot cost, the optimal systems would have overall efficiencies of 63.4% and 69.3% for the Idaho and Snake River Valley Irrigation Districts, respectively. These numbers are higher than those for the \$20 per acre-foot water cost charged at the headgate diversions for the two districts. In comparing both types of water charge, it can be seen that the application system combinations are not much different from each other. However, try constraining the distribution system cost greater than or equal to the water costs charged at farm diversion points

|                               |           | and the second | W         | ater Cost (\$ | /AF)      |           |           | -         |
|-------------------------------|-----------|----------------|-----------|---------------|-----------|-----------|-----------|-----------|
|                               | 0         | 4.0            | 6.0       | 8.0           | 10.0      | 12.0      | 16.0      | 20.0      |
| Total system cost (\$)        | 2,627,397 | 2,627,397      | 2,691,332 | 2,993,357     | 3,228,593 | 3,417,031 | 3,774,802 | 4,070,629 |
| Total system cost +           |           |                |           |               |           |           |           |           |
| water cost (\$)               | 2,627,397 | 3,225,984      | 3,579,988 | 4,159,338     | 4,408,065 | 4,477,961 | 5,004,160 | 5,608,547 |
| Application system cost (\$)  | 1,799,204 | 1,799,204      | 1,802,676 | 1,827,376     | 2,048,721 | 2,356,101 | 2,545,444 | 2,532,711 |
| Conveyance system cost (\$)   | 828,193   | 828,193        | 888,656   | 1,165,981     | 1,179,672 | 1,060,930 | 1,229,358 | 1,537,918 |
| Water cost (\$)               | 0         | 598,587        | 888,656   | 1,165,981     | 1,179,672 | 1,060,930 | 1,229,358 | 1,537,918 |
|                               |           |                |           |               |           |           |           |           |
| Total system cost (\$/AC)     | 92.0      | 92.0           | 94.2      | 104.7         | 113.0     | 119.6     | 132.1     | 142.4     |
| Total system cost +           |           |                |           |               |           |           |           |           |
| water cost (\$)               | 92.0      | 112.9          | 125.3     | 145.5         | 154.2     | 156.7     | 175.1     | 196.2     |
| Application system cost (\$/A | C) 63.0   | 63.0           | 63.1      | 63.9          | 71.7      | 82.4      | 89,1      | 88.6      |
| Conveyance system cost (\$/AC | 29.0      | 29.0           | 31.1      | 40.8          | 41.3      | 37.2      | 43.0      | 53.8      |
| Total inflow rate (CFS)       | 989       | 989            | 978       | 954           | 767       | - 574     | 507       | 493       |
| Overall system eff. (%)       | 31.7      | 31.7           | 32.0      | 32.8          | 40.8      | 54.5      | 61.8      | 63.4      |
| Volume of D.P. (AF/Year)      | 29,824    | 29,824         | 29,566    | 29,060        | 21,656    | 14,230    | 11,772    | 11,801    |
| Volume of S.R. (AF/Year)      | 55,746    | 55,746         | 54,750    | 52,415        | 32,344    | 10,280    | 0         | 0         |
| Total volume used (AF/Year)   | 181,431   | 181,431        | 179,418   | 175,095       | 140,656   | 105,356   | 92,976    | 90,536    |
| Total volume used (AF/AC/Yea  | r) 6.35   | 6.35           | 6.28      | 6.13          | 4.92      | 3.69      | 3.25      | 3.17      |

Table VII-8. Annual system costs and description of optimal irrigation systems configuration for rehabilitation plans at various water costs at farm diversion idaho Irrigation District

#### Table VII-8. (continued)

| and the second second | -1-        |   | Optima   | I Conveyanc | e System Com  | bination          |    |    |
|-----------------------|------------|---|----------|-------------|---------------|-------------------|----|----|
| SECTION               |            |   | Water Co | st at Farm  | Diversion (\$ | /Acre-Foot)<br>12 | 16 | 20 |
| NO.                   | 0          | 4 | 6        | 8           | 10            | 12                | 10 | 20 |
|                       | <u>ل</u> ل |   |          |             |               | ·U                | U  |    |
| 1                     |            | U | U        | U           | U             |                   | G  | 0  |
| 2                     | G          | G | G        | G           | G             | G                 | G  |    |
| 3                     | L          | L | L        | L           | L             | L                 | -  |    |
| 4                     | L          | L | L        | G           | L             | G                 | -  |    |
| 5                     | U          | U | U        | L           | L             | U                 | L  |    |
| 6                     | U          | U | U        | U           | U             | U                 | G  |    |
| 7                     | U          | U | U        | U           | U             | L                 | U  | L  |
| 8                     | U          | U | U        | U           | U             | U                 | U  | 0  |
| 9                     | U          | U | U        | U           | U             | G                 | U  | l  |
| 10                    | U          | U | U        | U           | L             | U                 | L  | l  |
| 11                    | U          | U | U        | U           | U             | U                 | L  | ι  |
| 12                    | U          | U | U        | U           | U             | U                 | U  | (  |
| 13                    | U          | U | U        | U           | U             | G                 | U  | l  |
| 14                    | L          | L | L        | L           | L             | L                 | L  | 1  |
| 15                    | U          | U | L        | L           | L             | L                 | L  | 1  |
| 16                    | U          | U | U        | U           | U             | U                 | U  | ι  |
| 17                    | U          | U | U        | U           | U             | U                 | U  | 1  |
| 18                    | U          | U | U        | U           | U             | G                 | G  | (  |
| 19                    | U          | U | U        | U           | U             | U                 | G  | 1  |
| 20                    | U·         | U | U        | U           | U             | U                 | U  | 1  |
| 21                    | U          | U | U        | U           | U             | U                 | U  | l  |
| 22                    | U          | U | U        | U           | U             | U                 | U  | l  |
| 23                    | Ŭ          | U | L        | U           | U             | U                 | U  | (  |
| 24                    | ü          | U | U        | U           | U             | U                 | U  | l  |
| 25                    | ŭ          | U | U        | U           | U             | L                 | L  | 1  |
| 26                    | Ŭ          | U | u        | U           | U             | U                 | U  | 1  |
| 27                    | Ŭ          | Ŭ | Ŭ        | U           | U             | U                 | U  | 1  |
| 28                    | ŭ          | Ŭ | Ŭ        | Ŭ           | U             | U                 | U  | 1  |
| 29                    | U          | ŭ | ü        | U           | U             | U                 | U  | (  |
| 30                    | U          | U | Ŭ        | ŭ           | Ŭ             | G                 | U  | (  |
| 31                    | U          | Ŭ | Ŭ        | U           | Ŭ             | U                 | U  | (  |
| 32                    | U          | U | U        | ŭ           | Ŭ             | Ŭ                 | U  | (  |

1/ Symbols for conveyance system sections are described in Table VII-1.

| SECTION |    |      |         |         | System Comb         |         |         |        |
|---------|----|------|---------|---------|---------------------|---------|---------|--------|
|         | 0  |      | 6       |         | elivery (\$/A<br>10 | 12      | 16      |        |
| NO.     |    | 4    | 0       | 8       | 10                  | 12      | 10      | 20     |
| 1       | UG | UG2/ | UG      | UG      | HM                  | HM      | HM      | HM     |
|         | 06 | 3/   | 00      | UG      | 114                 | TH.     | rm.     | LIM    |
| 2       |    | 3/   |         |         |                     |         |         |        |
| 3       |    |      |         |         |                     |         |         |        |
| 4       | UG | UG   | UG      | UG      | UG                  | HM      | HM      | HM     |
| 5       | UG | UG   | UG      | UG      | UG                  | HM      | HM      | HM     |
| 6       | UG | UG   | UG      | UG      | HM                  | HM      | HM      | HM     |
| 7       | UG | UG   | UG      | UG      | UG                  | UG      | HM      | HM     |
| 8       | UG | UG   | UG      | HM      | HM                  | HM      | HM      | HM     |
| 9       | UG | UG   | UG      | HM      | HM                  | HM      | HM      | HM     |
| 10      | UG | UG   | UG      | UG      | HM                  | HM      | HM      | HM     |
| 11      | UG | UG   | UG      | UG      | UG                  | HM      | HM      | HM     |
| 12      | UG | UG   | UG      | UG      | HM                  | HM      | HM      | HM     |
| 13      | UG | UG   | UG      | UG      | UG                  | UG      | HM      | HM     |
| 14      | UG | UG   | UG      | UG      | UG                  | HM      | HM      | HM     |
| 15      |    |      |         |         |                     |         |         |        |
| 16      | UG | UG   | UG      | UG      | HM                  | HM      | HM      | HM     |
| 17      | UG | UG   | UG      | UG      | UG                  | HM      | HM      | HM     |
| 18      | UG | UG   | UG      | UG      | UG                  | HM      | HM      | HM     |
| 19      | UG | UG   | UG      | UG      | UG(1%)              | HM      | HM      | HM     |
| 20      | UG | UG   | UG      | UG      | HM(99%)             | HM      | HM      | HM     |
| 21      | UG | UG   | UG      | UG      | HM                  | HM      | HM      | HM     |
| 22      | UG | UG   | UG      | UG      | UG                  | HM      | HM      | HM     |
| 23      |    |      |         |         |                     |         |         |        |
| 24      |    |      |         |         |                     |         |         |        |
| 25      | UG | UG   | UG      | UG      | UG                  | UG      | HM      | HM     |
| 26      | UG | UG   | UG      | UG      | UG                  | HM      | HM      | HM     |
| 27      | UG | UG   | UG      | UG      | UG                  | UG(65%) | HM      | HM     |
|         |    |      |         |         |                     | HM(35%) |         |        |
| 28      | UG | UG   | UG      | UG      | HM                  | HM      | HM      | HM     |
| 29      | UG | UG   | UG      | UG      | UG                  | UG      | HM      | HM     |
| 30      | HM | HM   | HM      | HM      | HM                  | HM      | HM(80%) | HM(90% |
|         |    |      |         |         |                     |         | CP(20%) | CP(10% |
| 31      | UG | UG   | UG(51%) | UG(87%) | HM                  | HM      | HM      | HM     |
|         |    |      | HM(49%) | HM(23%) |                     |         |         |        |
| 32      | UG | UG   | UG      | UG      | UG                  | HM      | HM      | HM     |

2/ Symbols for application systems are described in Tables VII-2 and VII-3.

3/ No subarea is supplied by canal section.

|                                        |           |           | W         | ater Cost (\$ | /AF)      |           |           |           |
|----------------------------------------|-----------|-----------|-----------|---------------|-----------|-----------|-----------|-----------|
|                                        | 0         | 4.0       | 6.0       | * 8.0         | 10.0      | 12.0      | 16.0      | 20.0      |
| Total system cost (\$)                 | 1,401,690 | 1,605,740 | 1,759,793 | 1,903,026     | 2,020,950 | 2,126,676 | 2,316,983 | 2,504,942 |
| Total system cost +<br>water cost (\$) | 1,401,690 | 1,925,316 | 2,193,461 | 2,440,202     | 2,513,800 | 2,700,952 | 3,060,471 | 3,446,142 |
| Application system cost (\$)           | 1,254,583 | 1,286,164 | 1,326,125 | 1,365,850     | 1,528,100 | 1,552,400 | 1,573,435 | 1,563,742 |
| Conveyance system cost (\$)            | 147,107   | 319,576   | 433,668   | 537,176       | 492,850   | 574,276   | 743,488   | 941,200   |
| Water cost (\$)                        | 0         | 310.576   | 433.668   | 537.176       | 402.95-   | 574.276   | 743,488   | 941,200   |
| and the second second second           |           |           |           |               |           |           |           |           |
| Total system cost (\$/AC)              | 81.6      | 93.5      | 102.5     | 110.8         | 117.7     | 123.8     | 134.9     | 146.4     |
| Total system cost +                    |           |           |           |               |           |           |           |           |
| water cost (\$)                        | 81.6      | 112.1     | 127.7     | 142.1         | 146.3     | 157.2     | 178.2     | 200.6     |
| Application system cost (\$//          | AC) 73.0  | . 74.9    | 77.2      | 79.5          | 89.0      | 90.4      | 91.6      | 91.6      |
| Conveyance system cost (\$/AC          | c) 8.6    | 18.6      | 25.3      | 31.3          | 28.7      | 33.4      | 43.4      | 54.8      |
| Total inflow rate (CFS)                | 632       | 535       | 474       | 436           | 330       | 318       | 285       | 278       |
| Overall system eff. (%)                | 30.5      | 36.1      | 40.7      | 44.3          | 58.5      | 60.6      | 67.6      | 69.3      |
| Volume of D.P. (AF/Year)               | 19,450    | 17,224    | 15,414    | 13,462        | 8,299     | 7,216     | 7,126     | 7,128     |
| Volume of S.R. (AF/Year)               | 32,323    | 25,774    | 19,317    | 15,610        | 3,172     | 980       | 202       | 195       |
| Total volume used (AF/Year)            | 151,971   | 98,208    | 87,098    | 79,956        | 60,529    | 58,400    | 52,421    | 51,112    |
| Total volume used (AF/AC/Yea           | ar) 6.75  | 5.72      | 5.07      | 4.66          | 3.52      | 3.40      | 3.05      | 2.98      |

Table VII-9. Annual system costs and description of optimal irrigation systems configuration for rehabilitation plans at various water costs at farm diversion, Snake River Valley Irrigation District

#### Table VII-9. (continued)

#### Water Cost at Farm Diversion (\$/Acre-Foot)

| SECTION                                        | Optimal Conveyance System Combination        |                                                                              |                                                                       |                                                                              |                                                                      |                                                                    |                                                                         |                                                                            |  |
|------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------|--|
| NO.                                            | 0                                            | 4                                                                            | 6                                                                     | 8                                                                            | 10                                                                   | 12                                                                 | 16                                                                      | 20                                                                         |  |
|                                                | u <u>1</u> /                                 |                                                                              |                                                                       |                                                                              |                                                                      |                                                                    |                                                                         |                                                                            |  |
| A                                              |                                              | U                                                                            | U                                                                     | U                                                                            | U                                                                    | U                                                                  | L                                                                       | L                                                                          |  |
| В                                              | U                                            | L                                                                            | U                                                                     | U                                                                            | U                                                                    | U                                                                  | U                                                                       | U                                                                          |  |
| С                                              | U                                            | L                                                                            | L                                                                     | L                                                                            | L                                                                    | U                                                                  | L                                                                       | L                                                                          |  |
| D                                              | U                                            | U                                                                            | G                                                                     | U                                                                            | U                                                                    | U                                                                  | U                                                                       | L                                                                          |  |
| E                                              | U                                            | U                                                                            | U                                                                     | L                                                                            | U                                                                    | U                                                                  | U                                                                       | U                                                                          |  |
| F                                              | U                                            | U                                                                            | U                                                                     | U                                                                            | U                                                                    | U                                                                  | U                                                                       | G                                                                          |  |
| G                                              | U                                            | U                                                                            | U                                                                     | U                                                                            | U                                                                    | U                                                                  | U                                                                       | G                                                                          |  |
| Н                                              | U                                            | U                                                                            | U                                                                     | L                                                                            | G                                                                    | L                                                                  | G                                                                       | G                                                                          |  |
| 1                                              | U                                            | G                                                                            | U                                                                     | U                                                                            | U                                                                    | U                                                                  | U                                                                       | G                                                                          |  |
| J                                              | Y                                            | Y                                                                            | Y                                                                     | G                                                                            | G                                                                    | G                                                                  | G                                                                       | G                                                                          |  |
| К                                              | U                                            | U                                                                            | U                                                                     | U                                                                            | U                                                                    | G                                                                  | G                                                                       | L                                                                          |  |
| L                                              | U                                            | U                                                                            | U                                                                     | U                                                                            | U                                                                    | G                                                                  | U                                                                       | U                                                                          |  |
| м                                              | U                                            | U                                                                            | U                                                                     | U                                                                            | L                                                                    | U                                                                  | G                                                                       | L                                                                          |  |
| N                                              | U                                            | U                                                                            | U                                                                     | U                                                                            | U                                                                    | G                                                                  | G                                                                       | U                                                                          |  |
| 0                                              | U                                            | U                                                                            | G                                                                     | G                                                                            | G                                                                    | G                                                                  | U                                                                       | G                                                                          |  |
| Р                                              | U                                            | U                                                                            | U                                                                     | G                                                                            | U                                                                    | U                                                                  | U                                                                       | U                                                                          |  |
| Q                                              | U                                            | L                                                                            | U                                                                     | L                                                                            | L                                                                    | L                                                                  | L                                                                       | L                                                                          |  |
| R                                              | U                                            | G                                                                            | U                                                                     | U                                                                            | U                                                                    | U                                                                  | G                                                                       | U                                                                          |  |
| S                                              | U                                            | L                                                                            | U                                                                     | U                                                                            | L                                                                    | U                                                                  | L                                                                       | G                                                                          |  |
|                                                | _3/                                          |                                                                              |                                                                       |                                                                              | on System Co                                                         |                                                                    |                                                                         |                                                                            |  |
| A                                              |                                              |                                                                              |                                                                       |                                                                              |                                                                      |                                                                    |                                                                         |                                                                            |  |
| В                                              | U92/                                         | UG                                                                           | UG                                                                    | HM                                                                           | HM                                                                   | HM                                                                 | HM                                                                      | HM                                                                         |  |
| С                                              | UG                                           | UG                                                                           | UG                                                                    | UG                                                                           | HM                                                                   | HM                                                                 | 1.0.4                                                                   |                                                                            |  |
| D                                              | UG                                           | UG                                                                           | 110                                                                   |                                                                              | 1.84                                                                 |                                                                    | HM                                                                      | HM                                                                         |  |
| E                                              |                                              | 00                                                                           | UG                                                                    | UG                                                                           | HM                                                                   | HM                                                                 | HM                                                                      | HM<br>HM                                                                   |  |
| -                                              |                                              |                                                                              | UG                                                                    | UG                                                                           |                                                                      |                                                                    |                                                                         |                                                                            |  |
| F                                              |                                              |                                                                              |                                                                       |                                                                              | HM<br>                                                               | HM<br>                                                             | HM<br>                                                                  | HM<br>                                                                     |  |
| F                                              | UG                                           | <br>UG                                                                       | <br>UG                                                                | <br>HM                                                                       | HM<br><br>HM                                                         | HM<br><br>HM                                                       | HM                                                                      | НМ<br><br>НМ                                                               |  |
|                                                |                                              |                                                                              | <br>UG<br>HM<br>UG(1≸)                                                |                                                                              | HM<br>                                                               | HM<br>                                                             | HM<br><br>HM                                                            | HM<br>                                                                     |  |
| F<br>G                                         | UG<br>UG<br>UG                               | UG<br>HM<br>UG                                                               | <br>UG<br>HM<br>UG(1≴)<br>HM(99≴)                                     | HM<br>HM<br>HM                                                               | НМ<br>——<br>НМ<br>НМ<br>НМ                                           | нм<br><br>НМ<br>НМ<br>НМ                                           | нм<br><br>НМ<br>НМ<br>НМ                                                | HM<br><br>HM<br>HM<br>HM                                                   |  |
| F<br>G<br>H                                    | UG<br>UG<br>UG<br>UG                         | ug<br>HM<br>Ug<br>Ug                                                         | <br>UG<br>HM<br>UG(1≴)<br>HM(99≴)<br>HM                               | HM<br>HM<br>HM                                                               | HM<br><br>HM<br>HM<br>HM<br>HM                                       | нм<br>—<br>нм<br>нм<br>нм<br>нм                                    | нм<br><br>Нм<br>Нм<br>Нм<br>Нм                                          | HM<br><br>HM<br>HM<br>HM                                                   |  |
| F<br>G                                         | UG<br>UG<br>UG                               | UG<br>HM<br>UG                                                               | <br>UG<br>HM<br>UG(1≴)<br>HM(99≴)                                     | HM<br>HM<br>HM                                                               | HM<br>HM<br>HM<br>HM<br>HM<br>UG(63%)                                | нм<br><br>НМ<br>НМ<br>НМ                                           | нм<br><br>НМ<br>НМ<br>НМ                                                | HM<br><br>HM<br>HM                                                         |  |
| F<br>G<br>H<br>J                               | UG<br>UG<br>UG<br>UG<br>UG                   | ug<br>HM<br>UG<br>UG<br>UG                                                   | <br>UG<br>HM<br>UG(1≴)<br>HM(99≴)<br>HM<br>UG                         | HM<br>HM<br>HM<br>UG<br>UG<br>UG(61%)                                        | HM<br>HM<br>HM<br>HM<br>HM<br>HM                                     | нм<br><br>нм<br>нм<br>нм<br>нм                                     | нм<br><br>нм<br>нм<br>нм<br>нм                                          | HM<br>HM<br>HM<br>HM<br>HM                                                 |  |
| F<br>G<br>H<br>J<br>K<br>L                     | UG<br>UG<br>UG<br>UG<br>UG<br>UG             | ug<br>HM<br>Ug<br>Ug<br>Ug<br>Ug                                             | UG<br>HM<br>UG(1%)<br>HM(99%)<br>HM<br>UG<br>UG<br>UG                 | <br>HM<br>HM<br>UG<br>UG<br>UG(61%)<br>HM(39%)                               | HM<br>HM<br>HM<br>HM<br>HM<br>UG(63%)<br>HM(37%)                     | нм<br><br>нм<br>нм<br>нм<br>нм<br>нм<br>нм                         | нм<br><br>нм<br>нм<br>нм<br>нм<br>нм<br>нм                              | HM<br>HM<br>HM<br>HM<br>HM<br>HM<br>HM                                     |  |
| F<br>G<br>H<br>J<br>K                          | UG<br>UG<br>UG<br>UG<br>UG<br>UG             | ug<br>HM<br>Ug<br>Ug<br>Ug<br>Ug                                             | <br>UG<br>HM<br>UG(1%)<br>HM(99%)<br>HM<br>UG<br>UG<br>UG             | HM<br>HM<br>HM<br>UG<br>UG<br>UG(61%)                                        | HM<br><br>HM<br>HM<br>HM<br>UG(63%)<br>HM(37%)                       | HM<br>HM<br>HM<br>HM<br>HM<br>HM<br>HM<br>HM<br>IG(69%)            | нм<br><br>НМ<br>НМ<br>НМ<br>НМ<br>НМ                                    | HM<br>HM<br>HM<br>HM<br>HM<br>HM                                           |  |
| F<br>G<br>H<br>J<br>K<br>L                     | UG<br>UG<br>UG<br>UG<br>UG<br>UG<br>UG       | UG<br>HM<br>UG<br>UG<br>UG<br>UG<br>UG<br>UG<br>UG(47%)                      | <br>UG<br>HM<br>UG(1%)<br>HM(99%)<br>HM<br>UG<br>UG<br>UG             | <br>HM<br>HM<br>UG<br>UG<br>UG(61%)<br>HM(39%)<br>UG                         | HM<br><br>HM<br>HM<br>HM<br>UG(63%)<br>HM(37%)<br>HM                 | HM<br>HM<br>HM<br>HM<br>HM<br>HM<br>HM<br>HM                       | HM<br>HM<br>HM<br>HM<br>HM<br>HM<br>HM<br>HM                            | HM<br>HM<br>HM<br>HM<br>HM<br>HM<br>HM<br>HM<br>HM                         |  |
| F<br>G<br>H<br>J<br>K<br>L<br>M<br>N           | UG<br>UG<br>UG<br>UG<br>UG<br>UG<br>UG       | UG<br>HM<br>UG<br>UG<br>UG<br>UG<br>UG<br>UG<br>UG                           | <br>UG<br>HM<br>UG(1%)<br>HM(99%)<br>HM<br>UG<br>UG<br>UG<br>UG<br>UG | HM<br>HM<br>HM<br>UG<br>UG<br>UG(61%)<br>HM(39%)<br>UG<br>UG                 | HM<br>HM<br>HM<br>HM<br>UG(63%)<br>HM(37%)<br>HM<br>UG<br>UG<br>UG   | HM<br>HM<br>HM<br>HM<br>HM<br>HM<br>HM<br>IG(69\$)<br>HM(31\$)     | HM<br><br>HM<br>HM<br>HM<br>HM<br>HM<br>HM<br>HM<br>HM<br>HM<br>IG(74%) | НМ<br><br>НМ<br>НМ<br>НМ<br>НМ<br>НМ<br>НМ<br>НМ<br>НМ<br>НМ<br>НМ         |  |
| F<br>G<br>H<br>J<br>K<br>L<br>M<br>N<br>O<br>P | UG<br>UG<br>UG<br>UG<br>UG<br>UG<br>UG<br>UG | <br>UG<br>HM<br>UG<br>UG<br>UG<br>UG<br>UG<br>UG<br>UG(47%)<br>HM(53%)<br>UG | <br>UG<br>HM<br>UG(1%)<br>HM(99%)<br>HM<br>UG<br>UG<br>UG<br>UG<br>HM | <br>HM<br>HM<br>HM<br>UG<br>UG<br>UG(61%)<br>HM(39%)<br>UG<br>UG<br>HM       | HM<br>HM<br>HM<br>HM<br>UG (63%)<br>HM (37%)<br>HM<br>UG<br>UG<br>HM | HM<br>HM<br>HM<br>HM<br>HM<br>HM<br>HM<br>IG(69%)<br>HM(31%)<br>HM | HM<br><br>HM<br>HM<br>HM<br>HM<br>HM<br>HM<br>HM<br>IG(74%)<br>HM(26%)  | НМ<br><br>НМ<br>НМ<br>НМ<br>НМ<br>НМ<br>НМ<br>НМ<br>НМ<br>1G(72;<br>НМ(28; |  |
| F<br>G<br>H<br>J<br>K<br>L<br>M<br>N<br>O      | UG<br>UG<br>UG<br>UG<br>UG<br>UG<br>UG       | <br>UG<br>HM<br>UG<br>UG<br>UG<br>UG<br>UG<br>UG<br>UG(47%)<br>HM(53%)       | <br>UG<br>HM<br>UG(1%)<br>HM(99%)<br>HM<br>UG<br>UG<br>UG<br>UG<br>UG | <br>HM<br>HM<br>HM<br>UG<br>UG<br>UG<br>UG(61%)<br>HM(39%)<br>UG<br>UG<br>HM | HM<br>HM<br>HM<br>HM<br>UG(63%)<br>HM(37%)<br>HM<br>UG<br>UG<br>UG   | HM<br>HM<br>HM<br>HM<br>HM<br>HM<br>HM<br>IG(69%)<br>HM(31%)<br>HM | HM<br><br>HM<br>HM<br>HM<br>HM<br>HM<br>HM<br>HM<br>HM<br>HM<br>IG(74%) | HM<br>HM<br>HM<br>HM<br>HM<br>HM<br>HM<br>HM<br>HM<br>HM<br>HM<br>HM       |  |

1/ Symbols for conveyance system sections are described in Table VII-1.

2/ Symbols for application systems are described in Tables VII-2 and VII-3.

3/ No subarea is supplied by canal section.







Figure VII-6. Results obtained for optimum rehabilitation plans for various water costs charged at farm delivery.

the model to select more efficient distribution systems such as gravity pipe systems to achieve a higher overall system efficiency.

#### CONSOLIDATION PLANS WITH HIGH PRESSURE PIPE SUPPLY SYSTEM

Two types of consolidation plans are considered for the study area. The first plan, Plan A, is to install two river pump stations to supply water to two areas determined on the basis of present irrigation district boundaries. The first river pump is located in about 5 miles south of the present diversion point of the Idaho Irrigation District (IID). This system, called the North District would supply most of the present area of the IID except for the narrow band south of the town of Goshen (Figure VI-2). The second river pump is installed about 3 miles south of the existing diversion point of the Snake River Valley Irrigation District (SRVID). This system, called the South District, would supply the SRVID and the area in the IID not supplied by the North District system. The cost of energy is considered to increase by 12% per year for all pumping costs.

The high pressure pipe systems routing and subarea supplied by the pipe sections are shown in Figures VII-7 and VII-8, respectively. Routes for the high pressure pipe delivery systems are determined by considering present canal system routes, land ownership, and the locations of roads and railroads. The main pipe system of the North District follows the existing main Idaho canal system and the South District's main pipe system follows the East Branch of the Snake River Valley canal system. The purpose of Sand Creek is limited for drainage and flood control in the area. Lateral pipe systems are located almost every mile along east-west county road systems and sublateral pipes are considered for the areas





which are far from the main and lateral systems. Schematic diagrams of the pipe system routes of the two districts are shown in Figure VII-9.

The second plan, Plan B, is to consolidate the entire study area under one pump-supplied system. In this case a pump system located at the site of the North District pump system would supply the entire study area. Most of the high pressure pipe delivery system lay-out is the same as for Plan A except for the transition points which connect the original main systems of the North and South Districts. These connections are shown in Figure VII-10. Sections 33 and 35 of the North District supply sections L and C of the South District, respectively, and sections A and B of the South District are no longer needed for the second consolidation plan.

The data used to analyze these plans are shown in Tables VII-10, VII-11 and VII-12. These data are obtained from the cost estimation programs discussed in Chapter V and are necessary for formulating linear programming models of the consolidation plans. There are no alternative distribution system components to consider. Because of the non-compatibility of the high pressure pipe system with gravity application systems only sprinkler irrigation application systems such as handmove, side-roll and center-pivot systems are considered in this analysis. The system cost of each application system does not include farm pump system costs as the pressure of 75 psi delivered through the pipe system is high enough to meet the pressure requirements of the sprinkler systems.

The optimization results for the each consolidation plan are shown in Table VII-13. Since no conveyance loss occurs in the pipe system, the minimum overall attainable efficiency is 75% for each plan. With this



-----> delivery routes for consolidation plan B

-----> delivery routes for consolidation plan B, Sections A, B and O are not used for consolidation plan B.

Figure VII-9. Schematic diagram of the high pressure pipe system routes for the consolidation plans.



Note; -- Connection between North and South Districts

Figure VII-10. Alternative routes of high pressure pipe supply systems for consolidation plan B.

|        | Variable<br>\$ /cfs | Fixed<br>\$ |
|--------|---------------------|-------------|
| PLAN A |                     |             |
| North  | 455.4               | 973407      |
| South  | 537.5               | 848877      |
| PLAN B | 455.4               | 856806      |

Table VII-10. Annual pump cost for consolidation plans.

Annual Pump Cost = Variable cost X Flow rate + Fixed cost

|         | Subarea | Total Downstream |         | Annua  | al cost 1/ |
|---------|---------|------------------|---------|--------|------------|
| Section | Served  | Area Served      | Length  | a      | b          |
| no.     | (Acres) | (Acres)          | (Miles) | \$/CFS | Fixed (\$  |
|         | 0       | 26 676           | 0 517   |        | 11 701     |
| 1       | 0       | 26,636           | 0.517   | 665.4  | 14,391     |
| 2       | 0       | 25,809           | 2.177   | 653.2  | 210,693    |
| 3       | 0       | 25,339           | 4.731   | 646.7  | 481,096    |
| 4       | 0       | 23,430           | 1.020   | 619.3  | 34,551     |
| 5       | 0       | 19,547           | 1.063   | 562.3  | 21,571     |
| 6       | 0       | 16,905           | 1.048   | 522.9  | 44,164     |
| 7       | 0       | 14,241           | 1.173   | 484.5  | 52,875     |
| 8       | 0       | 10,210           | 0.980   | 393.7  | 38,228     |
| 9       | 0       | 8,098            | 1.037   | 119.8  | 33,931     |
| 10      | 0       | 5,783            | 2.333   | 85.9   | 84,257     |
| 11      | 0       | 4,487            | 1.034   | 66.3   | 10,567     |
| 12      | 827     | 827              | 1.687   | 12.2   | 42,393     |
| 13      | 470     | 470              | 1.337   | 6.5    | 26,619     |
| 14      | 1,016   | 1,016            | 1.728   | 14.3   | 41,470     |
| 15      | 893     | 893              | 2.137   | 13.1   | 52,943     |
| 16      | 857     | 857              | 1.864   | 12.2   | 37,396     |
| 17      | 1,486   | 3,026            | 2.844   | 44.9   | 69,542     |
| 18      | 516     | 516              | 0.939   | 7.8    | 13,718     |
| 19      | 0       | 1,024            | 1.139   | 15.4   | 20,639     |
| 20      | 743     | 743              | 0.735   | 11.0   | 18,374     |
| 21      | 281     | 281              | 2.369   | 4.4    | 24,323     |
| 22      | 794     | 794              | 1.442   | 11.8   | 30,320     |
| 23      | 867     | 1,848            | 1.525   | 27.5   | 27,156     |
| 24      | 981     | 981              | 1.865   | 14.8   | 41,559     |
| 25      | 743     | 743              | 1.551   | 11.1   | 29,787     |
| 26      | 1,093   | 1,921            | 2.559   | 27.4   | 49,031     |
| 27      | 828     | 828              | 1.293   | 12.1   | 32,012     |
|         |         |                  | 0.517   | 29.2   | 2,903      |
| 28      | 0       | 1,959            |         |        |            |
| 29      | 1,320   | 1,320            | 3.008   | 19.4   | 45,710     |
| 30      | 0       | 639              | 0.517   | 9.8    | 2,414      |
| 31      | 639     | 639              | 1.088   | 9.8    | 21,588     |
| 32      | 994     | 2,072            | 2.027   | 61.6   | 47,845     |
| 33      | 1,078   | 1,078            | 1.878   | 47.3   | 39,272     |
| 34      | 924     | 2,112            | 1.973   | 274.0  | 61,144     |
| 35      | 1,188   | 1,188            | 1.945   | 260.8  | 51,983     |
| 36      | 1,278   | 2,315            | 1.932   | 33.9   | 72,016     |
| 37      | 1,037   | 1,037            | 1.905   | 15.2   | 48,242     |
| 38      | 1,296   | 1,296            | 2.286   | 19.6   | 46,596     |
| 39      | 772     | 772              | 0.762   | 11.3   | 28,524     |
| 40      | 1,026   | 3,715            | 1.972   | 55.0   | 55,222     |
| 41      | 1,050   | 1,050            | 2.327   | 15.3   | 45,248     |
| 42      | 907     | 1,639            | 1.864   | 24.9   | 25,269     |
| 43      | 732     | 732              | 1.746   | 11.1   | 44,521     |

## Table VII-11. High pressure pipe conveyance system data and annual cost for consolidation plan

#### Table VII-11. (continued)

|         | Subarea | Total Downstream |         | Ar     | nual cost 1/ |
|---------|---------|------------------|---------|--------|--------------|
| Section | Served  | Area Served      | Length  | а      | b            |
| no.     | (Acres) | (Acres)          | (Miles) | \$/CFS | Fixed (\$    |
| A       | 0       | 19,118           | 0.748   | 274.4  | 39,650       |
| В       | 0       | 16,873           | 1.210   | 243.2  | 76,951       |
| С       | 0       | 16,346           | 0.780   | 235.3  | 48,015       |
| D       | 0       | 13,611           | 1.840   | 194.9  | 80,252       |
| E       | 0       | 12,702           | 1.150   | 181.2  | 47,897       |
| F       | 0       | 11,080           | 1.050   | 158.9  | 30,144       |
| G       | 0       | 9,741            | 0.966   | 140.3  | 39,549       |
| н       | . 0     | 7,205            | 1.877   | 105.1  | 15,811       |
| 1       | 0       | 6,046            | 1.224   | 89.0   | 15,699       |
| J       | 0       | 4,481            | 0.775   | 66.8   | 8,693        |
| к       | 0       | 3,191            | 1.006   | 47.1   | 8,472        |
| L       | 434     | 2,245            | 0.885   | 31.2   | 23,637       |
| м       | 702     | 702              | 0.993   | 10.2   | 26,249       |
| N       | 1,109   | 1,109            | 1.608   | 14.6   | 27,902       |
| 0       | 527     | 527              | 1.306   | 7.9    | 20,816       |
| Р       | 727     | 2,735            | 2.215   | 40.4   | 43,645       |
| 9       | 831     | 831              | 1.360   | 12.2   | 34,260       |
| R       | 1,177   | 1,177            | 4.567   | 17.5   | 67,812       |
| S       | 909     | 909              | 2.122   | 13.6   | 42,061       |
| Т       | 1,622   | 1,622            | 2.612   | 22.4   | 53,443       |
| U       | 1,339   | 1,339            | 3.225   | 18.6 . | 59,560       |
| v       | 1,303   | 2,536            | 1.904   | 35.2   | 68,961       |
| W       | 1,233   | 1,233            | 2.341   | 17.0   | 59,916       |
| X       | 1,159   | 1,159            | 1.219   | 16.2   | 38,142       |
| Y       | 1,565   | 1,565            | 2.571   | 22.1   | 40,170       |
| Z       | 865     | 1,290            | 1.918   | 20.0   | 22,226       |
| Z1      | 425     | 425              | 1.387   | 6.5    | 15,196       |
| Z2      | 763     | 3,191            | 0.939   | 47.1   | 35,750       |
| Z3      | 1,066   | 1,066            | 3.306   | 15.8   | 49,176       |
| Z4      | 918     | 1,362            | 2.000   | 19.9   | 28,432       |
| Z5      | 444     | 444              | 1.334   | 6.3    | 22,288       |

1/ Conveyance System Cost, Cost = ax + b

where, a = Variable cost, \$/CFS b = Fixed cost, \$ x = Design flow rate, CFS

|                | Hand-move Sprinkler (HMS) |          |               | Side-roll Sprinkler (SRS) |         |            | Center-pivot Sprinkler(CPS) |         |         |
|----------------|---------------------------|----------|---------------|---------------------------|---------|------------|-----------------------------|---------|---------|
| SUBAREA<br>NO. | Q max 1/ Cost 2/ DP 3/    |          | Q max Cost    |                           | DP      | Q max Cost |                             | DP      |         |
|                | CFS/Acre                  | \$/Acre  | AF/Acre       | CFS/Acre                  | \$/Acre | AF/Acre    | CFS/Acre                    | \$/Acre | AF/Acre |
| 12             | 0.0147                    | 39       | 0.4154        | 0.0141                    | 52      | 0.3656     | 0.0130                      | 106     | 0.2490  |
| 13             | 0.0138                    | 24       | 0.3867        | 0.0133                    | 45      | 0.3403     | 0.0122                      | 111     | 0.2320  |
| 14             | 0.0141                    | 35       | 0.4021        | 0.0136                    | 48      | 0.3539     | 0.0125                      | 101     | 0.2412  |
| 15             | 0.0147                    | 39       | 0.4156        | 0.0142                    | 49      | 0.3657     | 0.0130                      | 110     | 0.2493  |
| 16             | 0.0142                    | 35       | 0.4000        | 0.0136                    | 50      | 0.3517     | 0.0125                      | 113     | 0.2397  |
| 17             | 0.0146                    | 38       | 0.4137        | 0.0140                    | 50      | 0.3640     | 0.0129                      | 108     | 0.2481  |
| 18             | 0.0151                    | 41       | 0.4254        | 0.0145                    | 51      | 0.3744     | 0.0133                      | 72      | 0.2552  |
| 20             | 0.0148                    | 40       | 0.4237        | 0.0143                    | 53      | 0.3728     | 0.0131                      | 92      | 0.2542  |
| 21             | 0.0156                    | 43       | 0.4444        | 0.0150                    | 53      | 0.3910     | 0.0137                      | 115     | 0.2666  |
| 22             | 0.0149                    | 36       | 0.4123        | 0.0143                    | 48      | 0.3628     | 0.0131                      | 105     | 0.2473  |
| 23             | 0.0149                    | 40       | 0.4125        | 0.0141                    | 54      | 0.3652     | 0.0129                      | 105     | 0.2490  |
|                |                           |          |               | 0.0145                    | 54      | 0.3715     | 0.0133                      | 110     | 0.2532  |
| 24             | 0.0151                    | 39<br>38 | 0.4221 0.4203 | 0.0143                    | 53      | 0.3698     | 0.0133                      | 111     | 0.2521  |
| 25             | 0.0149                    |          |               |                           | 54      | 0.3504     | 0.0124                      | 114     | 0.2389  |
| 26             | 0.0140                    | 39       | 0.3982        | 0.0135                    |         |            | 0.0124                      | 107     | 0.2482  |
| 27             | 0.0146                    | 38       | 0.4138        | 0.0141                    | 52      | 0.3641     |                             | 99      |         |
| 29             | 0.0147                    | 36       | 0.4169        | 0.0141                    | 50      | 0.3669     | 0.0130                      |         | 0.2520  |
| 31             | 0.0153                    | 34       | 0.4290        | 0.0147                    | 50      | 0.3775     | 0.0135                      | 115     |         |
| 32             | 0.0144                    | 35       | 0.4059        | 0.0138                    | 48      | 0.3572     | 0.0127                      | 117     | 0.2435  |
| 33             | 0.0149                    | 43       | 0.4288        | 0.0144                    | 53      | 0.3773     | 0.0132                      | 104     | 0.2573  |
| 34             | 0.0143                    | 39       | 0.4080        | 0.0138                    | 51      | 0.3591     | 0.0126                      | 102     | 0.2443  |
| 35             | 0.0148                    | 40       | 0.4254        | 0.0143                    | 53      | 0.3743     | 0.0131                      | 110     | 0.2551  |
| 36             | 0.0146                    | 34       | 0.4067        | 0.0140                    | 44      | 0.3579     | 0.0128                      | 116     | 0.2440  |
| 37             | 0.0147                    | 40       | 0.4229        | 0.0142                    | 52      | 0.3722     | 0.0130                      | 113     | 0.2537  |
| 38             | 0.0151                    | 38       | 0.4316        | 0.0145                    | 52      | 0.3798     | 0.0133                      | 96      | 0.2589  |
| 39             | 0.0146                    | 38       | 0.4146        | 0.0141                    | 49      | 0.3649     | 0.0129                      | 100     | 0.2487  |
| 40             | 0.0144                    | 39       | 0.4061        | 0.0138                    | 50      | 0.3574     | 0.0127                      | 103     | 0.2436  |
| 41             | 0.0146                    | 37       | 0.4086        | 0.0140                    | 51      | 0.3596     | 0.0129                      | 107     | 0.2451  |
| 42             | 0.0153                    | 35       | 0.4308        | 0.0147                    | 49      | 0.3791     | 0.0135                      | 86      | 0.2585  |
| 43             | 0.0151                    | 36       | 0.4273        | 0.0145                    | 50      | 0.3760     | 0.0133                      | 99      | 0.2563  |
| L              | 0.0148                    | 38       | 0.4235        | 0.0142                    | 49      | 0.3726     | 0.0131                      | 116     | 0.2540  |
| М              | 0.0145                    | 38       | 0.4146        | 0.0140                    | 51      | 0.3649     | 0.0128                      | 122     | 0.2487  |
| N              | 0.0146                    | 38       | 0.4136        | 0.0140                    | 47      | 0.3640     | 0.0128                      | 80      | 0.2481  |
| 0              | 0.0149                    | 44       | 0.4482        | 0.0143                    | 58      | 0.3944     | 0.0131                      | 115     | 0.2561  |
| P              | 0.0147                    | 37       | 0.4145        | 0.0141                    | 50      | 0.3548     | 0.0129                      | 117     | 0.2487  |
| Q              | 0.0147                    | 38       | 0.4190        | 0.0141                    | 52      | 0.3687     | 0.0129                      | 108     | 0.2514  |
| R              | 0.0149                    | 39       | 0.4217        | 0.0144                    | 50      | 0.3711     | 0.0132                      | 110     | 0.2530  |
| S              | 0.0150                    | 35       | 0.4182        | 0.0144                    | 47      | 0.3680     | 0.0132                      | 105     | 0.2509  |
| т              | 0.0147                    | 36       | 0.4160        | 0.0142                    | 49      | 0.3661     | 0.0130                      | 108     | 0.2496  |
| U              | 0.0150                    | 40       | 0.4242        | 0.0144                    | 51      | 0.3733     | 0.0132                      | 109     | 0.2544  |
| v              | 0.0151                    | 39       | 0.4220        | 0.0146                    | 53      | 0.3714     | 0.0134                      | 113     | 0.2533  |
| W              | 0.0150                    | 36       | 0.4211        | 0.0144                    | 46      | 0.3706     | 0.0132                      | 113     | 0.2526  |
| x              | 0.0153                    | 33       | 0.4229        | 0.0147                    | 47      | 0.3721     | 0.0135                      | 95      | 0.2537  |
| Y              | 0.0151                    | 36       | 0.4230        | 0.0145                    | 47      | 0.3725     | 0.0133                      | 82      | 0.2537  |
| Z              | 0.0152                    | 43       | 0.4274        | 0.0147                    | 60      | 0.3761     | 0.0134                      | 112     | 0.2564  |
| ZI             | 0.0154                    | 45       | 0.4375        | 0.0148                    | 59      | 0.3850     | 0.0136                      | 72      | 0.2625  |
| Z2             | 0.0150                    | 35       | 0.4210        | 0.0145                    | 43      | 0.3705     | 0.0133                      | 108     | 0.2525  |
| Z3             | 0.0148                    | 39       | 0.4112        | 0.0142                    | 58      | 0,3618     | 0.0130                      | 82      | 0.2466  |
| Z4             | 0.0148                    | 40       | 0.4204        | 0.0142                    | 49      | 0.3700     | 0.0130                      | 99      | 0.2522  |
| Z5             | 0.0142                    | 38       | 0.4012        | 0.0137                    | 49      | 0.3530     | 0.0125                      | 108     | 0.2387  |

Table VII-12. Sprinkler irrigation application system data and annual cost for consolidation plan of high pressure pipe conveyance system.

1/ maximum flow rate required for subarea with application

efficiencies of

75% for hand-move sprinkler

78% for side-roll sprinkler

85% for center-pivot sprinkler

 $\frac{2}{3}$  no pump cost included  $\frac{3}{3}$  deep percolation loss

|                                  | PLA            | PLAN B         |         |
|----------------------------------|----------------|----------------|---------|
|                                  | North District | South District | R. C.   |
| Total cost (\$)                  | 5060213        | 3397038        | 7857636 |
| Application system cost (\$)     | 1184386        | 845965         | 2000730 |
| Conveyance system cost (\$)      | 3875827        | 2551073        | 5856906 |
| Total cost (\$/AC)               | 186.5          | 182.4          | 171.7   |
| Applicatioan system cost (\$/AC) | 43.6           | 45.4           | 43.7    |
| Conveyance system cost (\$/AC)   | 142.9          | 137.0          | 128.0   |
| Total inflow rate (CFS)          | 391.0          | 274.0          | 665.0   |
| Overall system eff. (%)          | 75.0           | 75.0           | 75.0    |
| Volume of D.P. (AF)              | 11071          | 7740           | 18811   |
| Volume of S.R. (AF)              | 0              | 0              | 0       |
| Total volume used (AF)           | 71747          | 50344          | 122091  |
| Total volume used (AF/AC)        | 2.64           | 2.70           | 2.67    |

### Table VII-13. Total annual system costs and descriptions of optimal irrigation systems for the consolidation plans

efficiency the volumes required are 391 cfs and 274 cfs for the North District and South District of consolidation plan A, and 665 cfs for the total area of consolidation plan B. The annual water volume required for the total area of the consolidation plan B (122,091 acre-feet) is far below the water actually diverted to the area from the Snake River in 1978 irrigation season (439,403 acre-feet).

Hand-move sprinkler systems are selected for the entire area in the optimal plans. The increased costs associated with side-roll and center pivot systems would be greater than the potential savings from reduced pumping costs and smaller distribution systems. From the results of a parametric programming analysis, more than \$30 per acre-foot would have to be charged at the farm diversions to cause the application systems to be changed from hand-move to the other systems with higher efficiencies.

The annual cost of Plan B is about \$13 per acre less than that of Plan A. However, the merits of one large pumping plant and the more complex pipe system of Plan B including operational characteristics would have to be studied more closely in comparison with the smaller systems of Plan A. The costs of the pressure pipe systems and associated sprinkler application systems are quite similar to the costs of a gravity distribution system consisting of gravity pipes supplying sprinkler systems at an overall efficiency of 75% (Tables VII-4 and VII-5).

# CHAPTER VIII SUMMARY AND DISCUSSION

A systems planning method was applied to evaluate a large irrigated agricultural area under existing conveyance system conditions. Also the same method was used to develop a scenario of conveyance and application systems combinations under specific conditions for obtaining optimum planning of rehabilitation and consolidation plans of the area. The methodology used in this study is based upon a methodology first developed by Busch (1974) and updated and revised by Galinato and others (1977) and Allen and others (1978). The methodology is composed of two main procedures, cost estimation and mathematical programming. The cost estimation procedures are computer routines used to determine the operating characteristics and costs of irrigation water distribution systems and pumping plant components, and to compute costs and application efficiencies of on-farm irrigation application systems. On-farm irrigation application systems evaluated by the computer routines include improved and unimproved gravity systems and hand-move, side-roll wheel-line and center-pivot sprinkler systems. The irrigation water application efficienies and costs are estimated for specific soil types, field lengths and slopes, and crops grown by modelling the hydraulics of these systems. The irrigation conveyance systems considered in the computer routines are lined and unlined canals and gravity and high pressure pipe systems. Water conveyance efficiencies and costs are estimated for all components. A routine also estimates the costs of wells, pumping plants, and electric power if water is to be pumped from underground or surface supplies or pressurized for sprinkler system operation.

The second procedure uses linear programming (LP) and mixed integerlinear programming (MIP) techniques to obtain the least cost combination of system components for a specified set of conditions. Lienar programming can be used to evaluate a systemn when only one type of distribution system is under consideration such as existing unlined canal systems or high pressure pipe systems since no alternative distribution systems are considered in either case. Developing rehabilitation plans when alternatives for both conveyance and application systems are considered requires that mixed integer-linear programming be used. In an MIP model constraints can specify that one and only one type of conveyance system is selected for each canal section, and the component cost functions can include both fixed and variable costs.

An MIP computer program package for solving small to medium sized problems was developed as part of this project (Yoo and Busch, 1980). However, it was found that a commercial APEX III MIP package maintained on the CDC CYBER computer of U.S. Department of the Interior Bureau of Reclamation in Denver was necessary to solve large MIP problems used in this study. The package was efficient and easy to use for the irrigation systems planning study.

Figure VIII-1 is a schematic diagram of the methodology for developing optimal system plans as used in this study. The discussion that follows is a summary of the optimal planning procedure as applied to a large irrigated area.

The area analyzed in this study consists of the Idaho Irrigation District (IID) and the Snake River Valley Irrigation District (SRVID) located near Idaho Falls, Idaho. Irrigation water diverted from the



Figure VIII-1. Schematic diagram of the optimal planning procedure of an irrigated agricultural area.

Snake River is presently used to irrigate 46,000 acres of land in the study area of which 29,000 acres are in the IID and 17,000 acres are in the SRVID. The area also receives some excess water from upstream irrigation districts and natural streams. However, this excess water is not a dependable source of irrigation water, and the amount available is minor compared to the total diversion from the Snake River. The total amount of diverted water in the 1978 irrigation season was 440,000 acrefeet or 9.5 acrefeet per acre.

In August 1978, low level aerial infrared pictures were taken over the study area to obtain information on crops, irrigation systems, canals and other necessary physical data. These data were used to adequately inventory the area and to estimate the costs and efficiencies of irrigation water distribution and application system alternatives considered in this study. Soil series in the area and their locations were obtained from Soil Conservation Service soils maps. In addition, field experiments were conducted and irrigation system operating characteristics on each soil type in the study area.

Unit costs of the irrigation systems considered in this study were obtained from the State Agricultural Extension Service Bulletins of Idaho, Washington and Oregon, and irrigation equipment and construction companies of the area. Cost indices from U.S. Department of the Interior Bureau of Reclamation were used for estimating many system components to compensate for differences in construction or operating costs of systems in various geographical regions, or to increase the cost estimates due to inflationary trends.

Optimal system plans were first developed for the existing distribution systems in the IID and SRVID. Since no alternative conveyance

systems were considered the problem could be solved by linear programming. The results showed that if there are no constraints on the availability or cost of water, the overall system efficiency would be about 30% with an application efficiency of about 40%. For this case, all unimproved gravity irrigation application systems are selected as the least cost system configuration. The efficiencies are higher than those of the present irrigation systems and practices in the area. One of the reasons is that system operation losses were not considered when computing efficiencies.

Restricting the water supply and charging for water required some changes in the application systems. The maximum application efficiencies of 78% were obtained by system combinations of side-roll sprinkler irrigation systems supplied by the existing unlined canal systems. A much lower overall system efficiency of 45% was due to the high seepage losses occurred in the existing delivery systems. Therefore, without improvement of the delivery systems for overall system efficiency could not be increased further.

By charging for water diverted at the system headgate the optimal plans developed showed that the area should improve system efficiencies to minimize costs. With a \$15 per acre-foot water cost, the plans showed application system efficiency with overall system efficiency of 75%. It was also found that a water cost between \$6 and \$9 per acre-foot was the most effective water cost which caused the greatest increase in efficiency per unit of water cost, and there was a minimal effect on optimal system plans with charges over \$15 per acre-foot. To achieve the highest attainable efficiency would require more than \$30 per acre-foot to be charged, an unrealistic charge for the agricultural practices of the area.

Rehabilitation and consolidation plans for the irrigation districts in the study area were developed to determine the effects of various factors on overall system efficiency and cost. The initial plans developed using the existing canal systems showed that the low conveyance efficiency resulted in a low overall system efficiency. Mixed integer-linear programming was necessary to obtain the rehabilitation plans since it was required to consider several delivery system alternatives. Three parameters were tested to obtain scenarios of optimal rehabilitation plans. They were: 1) overall system efficiency, 2) water cost charged at the headgate, and 3) water cost charged at subarea diversion points. Each parameter was allowed to vary over a certain range to determine the effects on the total annual system cost and system efficiency, and to obtain the optimal combinations of distribution and application system combinations.

The minimum overall system efficiency obtained with the rehabilitation plan was 31% with no restrictions on water supply or water cost. The optimal systems consisted of unlined canal systems supplying unimproved gravity irrigation application systems. This efficiency is a bit higher than the one obtained under present conveyance system conditions and is due to the changes of canal sizes as the flow rate requirements are decreased. By reducing the available inflow rate to increase overall efficiency, the application systems of each subarea generally change first to more efficient systems followed by changes in distribution system components. The maximum attainable overall system efficiency was 77% and the system configuration consisted of side-roll sprinkler applicaton systems supplied by gravity pipe systems.

Charging for water diverted at the headgate also forces the optimal system plans to consist of more efficient distribution and application systems. The most effective water cost which increased the system efficiency the greatest amount per unit of water cost was between \$5 and \$10 per acre-foot. With a \$30 per acre-foot water cost the optimal overall efficiency was 62% which is 15% lower than the maximum attainable efficiency. Also, the \$30 per acre-foot water cost is not realistic considering the agricultural practices in the area.

Another way of assessing water cost is to charge for the amount of water delivered at farm diversion points from canals. In this way, there is no charge for any water lost in conveyance systems. With this method of charge the optimal system plans would result in a system with an overall efficiency of 65% at a \$20 per acre-foot water cost. The water cost was most effective in increasing system efficiency between \$8 and \$12 per acre-foot. In the mixed integer-linear programming formulation the total conveyance system cost charged thus assuring that the total charge for water delivered would be spent on the conveyance system. This constraint caused the actual system costs (distribution and application system costs only) to be greater for farm diversion charges than for either efficiency constraints or water charges at the headgate.

Two types of consolidation plans were considered for the study area. One plan was to install two river pump stations to supply irrigation water to two separate areas. The second plan was to install one pump station which would supply the entire study area. Since only a high pressure pipe system was considered there were no conveyance losses and the overall system efficiency was always same as the application system efficiency. For both plans, an overall system efficiency of 75% could be

attained with minimum system cost by hand-move sprinkler irrigation systems in all subareas. With this efficiency the area required a maximum flow rate of 665 cfs and an annual diversion of 122,000 acre-feet. This figure is far below the annual volume of water diverted to the area (440,000 acre-feet). With such a system, about 7.0 acre-feet per acre of water could be saved annually and left in the Snake River for other uses. The second plan costs about \$600,000 per year or \$13 per acre per year less than the first plan but would involve more complicated operational practices due to the larger size of the system.

A great deal of information can be obtained from the results of analysis of existing systems and the rehabilitation and consolidation plans. The results of the existing systems analysis show that radical improvement of the application efficiency results in only a moderate increase in overall system efficiency if there is no improvement in distribution system efficiency. Optimal system configurations obtained in the rehabilitation plans required that nearly all application systems be improved along with those sections in the existing distribution systems with high seepage losses to achieve moderate overall system efficiencies. To attain maximum overall system efficiencies required extensive changes in the distribution systems with greatly increased costs. An increase in overall system efficiency for a gravity supply system from 70% to 77% resulted in a cost increase from \$134 per acre to \$207 per acre over the entire study area with a resulting water savings of less than 0.3 acrefeet per acre. Consolidating the existing irrigation districts under a high pressure supply system would be a less costly venture to attain an overall efficiency of 75% as the resulting cost would be \$171 per acre.

The procedures developed for this project made it possible to generate numerous optimal system plans subject to various constraints. By thoroughly inventorying the study area and storing pertinent data as digital data in a computer allowed the large irrigated area to be carefully analyzed. Detailed information for subareas within the study area could be obtained for different configurations of subareas by merely defining their boundaries. This versatility combined with the versatility of the linear programming and mixed integer-linear programming models was very beneficial in developing the various rehabilitation and consolidation plans. The summary of systems evaluation with the existing unlined conveyance system is shown in Table VII-1. Table VII-2 illustrates the summarized scenarios of optimal rehabilitation plans of the study area using three gravity conveyance systems alternatives. Consolidation plans with high pressure pipe delivery system are shown in Table VII-13 in Chapter VII.

The plans developed would allow planners, irrigators and other interested parties to evaluate the effects of various proposed changes to the studied irrigation districts. Decisions could then be made based upon the plans developed considering the many factors involved. For example, if more efficient irrigation systems are used, the value of water remaining in the river for downstream uses resulting from reduced diversion rates may justify the cost of system rehabilitation and consolidation. If necessary additional plans could be generated from the same data base considering different constraints with minimum effort. Results from the optimal plans would also be suitable as input data for more detailed economic studies of various benefits and trade-offs.

|                                         |                                                      |                                               |                                               | Idaho Irriga                            | tion Distr                                 | ict                                    |                                              |                                              | Snake F                                      | River Valley                            | Irrigation                                         | District                               |                                              |
|-----------------------------------------|------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------|--------------------------------------------|----------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|-----------------------------------------|----------------------------------------------------|----------------------------------------|----------------------------------------------|
|                                         |                                                      | Total<br>System<br>Cost<br>(\$/AC)            | Application<br>System<br>Cost<br>(\$/AC)      | Conveyance<br>System<br>Cost<br>(\$/AC) | Inflow<br>Rate<br>Required<br>(CFS)        | Total<br>Volume<br>Diverted<br>(AF/AC) | Overall<br>System<br>Efficiency<br>(%)       | Total<br>System<br>Cost<br>(\$/AC)           | Application<br>System<br>Cost<br>(\$/AC)     | Conveyance<br>System<br>Cost<br>(\$/AC) | Inflow<br>Rate<br>Required<br>(CFS)                | Total<br>Volume<br>Diverted<br>(AF/AC) | Overall<br>System<br>Efficiency<br>(%)       |
| Overall sys.<br>Efficiency (%)          | 27.8 (29.0)*<br>30.0<br>35.0<br>40.0<br>45.0<br>45.5 | 68.6<br>71.3<br>78.6<br>85.2<br>97.0<br>102.0 | 65.6<br>68.5<br>76.2<br>83.1<br>95.2<br>100.2 | 3.0<br>2.8<br>2.4<br>2.1<br>1.8<br>1.8  | 1,123<br>1,043<br>894<br>782<br>696<br>688 | 7.2<br>6.7<br>5.7<br>5.0<br>4.5<br>4.4 | 27.8<br>30.0<br>35.0<br>40.0<br>45.0<br>45.5 | 75.8<br>76.4<br>83.1<br>89.0<br>105.6        | 72.8<br>73.6<br>80.7<br>86.9<br>103.7        | 2.9<br>2.8<br>2.4<br>2.1<br>1.9         | 665.6<br>643.3<br>551.4<br>482.5<br>430.2          | 7.1<br>6.9<br>5.9<br>5.2<br>4.6        | 29.0<br>30.0<br>35.0<br>40.0<br>45.0         |
| Water charge<br>at head<br>gate (\$/AF) | 0.0<br>3.0<br>6.0<br>9.0<br>12.0<br>15.0             | 68.6<br>69.0<br>76.3<br>85.8<br>88.5<br>91.8  | 65.6<br>66.1<br>73.8<br>83.7<br>86.5<br>89.9  | 3.0<br>2.9<br>2.5<br>2.8<br>2.0<br>1.9  | 1,123<br>1,106<br>938<br>773<br>741<br>707 | 7.2<br>7.1<br>6.0<br>5.0<br>4.8<br>4.5 | 27.8<br>28.3<br>33.3<br>40.4<br>42.2<br>44.3 | 75.8<br>76.3<br>79.4<br>90.8<br>95.2<br>95.4 | 72.9<br>73.5<br>76.8<br>88.8<br>93.2<br>93.5 | 2.9<br>2.8<br>2.6<br>2.0<br>2.0<br>1.9  | 665.6<br>644.3<br>597.7<br>464.6<br>444.1<br>442.2 | 7.1<br>6.9<br>6.4<br>5.0<br>4.7<br>4.7 | 29.0<br>30.0<br>32.3<br>41.5<br>43.4<br>43.6 |

| Table VIII-1 | Summary of | systems evaluation with | the existing unlined conveyance |
|--------------|------------|-------------------------|---------------------------------|
|              | systems of | the study area - annual | cost and water use.             |

\*Numbers in parentheses are for Snake Rivery Valley Irrigation District.

|                                              |                                                                              |                                                                    |                                                               | Idaho Irriga                                                          | tion Distr                                           | ict                                                          |                                                              |                                                                     | Snake R                                                       | iver Valley                                                 | Irrigation                                           | District                                                     |                                                              |  |
|----------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--|
|                                              |                                                                              | Total<br>System<br>Cost<br>(\$/AC)                                 | Application<br>System<br>Cost<br>(\$/AC)                      | Conveyance<br>System<br>Cost<br>(\$/AC)                               | Inflow<br>Rate<br>Required<br>(CFS)                  | Total<br>Volume<br>Diverted<br>(AF/AC)                       | Overall<br>System<br>Efficiency<br>(%)                       | Total<br>System<br>Cost<br>(\$/AC)                                  | Application<br>System<br>Cost<br>(\$/AC)                      | Conveyance<br>System<br>Cost<br>(\$/AC)                     | Inflow<br>Rate<br>Required<br>(CFS)                  | Total<br>Volume<br>Diverted<br>(AF/AC)                       | Overall<br>System<br>Efficiency<br>(%)                       |  |
| Overall sys.<br>efficiency<br>(%)            | 31.7 (30.5)*<br>42.0<br>45.0<br>50.0<br>55.0<br>60.0<br>70.0<br>76.6 (78.6)* | 92.0<br>96.5<br>100.0<br>103.2<br>106.5<br>109.6<br>140.0<br>210.8 | 63.0<br>71.3<br>75.7<br>79.6<br>83.0<br>86.6<br>93.5<br>102.4 | 29.0<br>24.3<br>24.3<br>24.3<br>24.3<br>24.3<br>24.3<br>46.5<br>108.4 | 989<br>789<br>701<br>631<br>574<br>526<br>451<br>412 | 6.35<br>5.07<br>4.50<br>4.25<br>3.68<br>3.38<br>2.90<br>2.65 | 31.7<br>40.0<br>45.0<br>50.0<br>55.0<br>60.0<br>70.0<br>76.6 | 81.6<br>87.1<br>90.6<br>93.8<br>96.7<br>101.4<br>124.6<br>201.6     | 78.0<br>78.5<br>82.0<br>85.2<br>88.1<br>90.0<br>97.6<br>118.5 | 8.6<br>8.6<br>8.6<br>8.6<br>11.4<br>27.0<br>83.1            | 632<br>480<br>426<br>384<br>349<br>320<br>274<br>245 | 6.75<br>5.13<br>4.56<br>4.10<br>3.73<br>3.42<br>2.93<br>2.62 | 30.5<br>40.0<br>45.5<br>50.0<br>55.5<br>60.0<br>70.0<br>78.6 |  |
| Water charge at head gate (\$/AF)            | 0.0<br>5.0<br>8.0<br>10.0<br>15.0<br>20.0<br>30.0                            | 92.0<br>100.9<br>102.1<br>107.1<br>110.9<br>111.2<br>111.7         | 63.0<br>75.4<br>78.5<br>83.6<br>87.4<br>87.7<br>88.2          | 29.0<br>25.5<br>23.5<br>23.5<br>23.5<br>23.5<br>23.5<br>23.5          | 989<br>813<br>655<br>565<br>508<br>506<br>503        | 6.35<br>5.22<br>4.21<br>3.63<br>3.26<br>3.25<br>3.23         | 31.7<br>38.5<br>47.8<br>55.4<br>61.6<br>61.8<br>62.2         | 81.5<br>85.1<br>96.1<br>97.4<br>99.8<br>99.8<br>103.1               | 73.0<br>76.5<br>87.5<br>88.8<br>91.2<br>91.2<br>91.3          | 8.5<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>11.8              | 632<br>514<br>356<br>342<br>323<br>323<br>308        | 6.75<br>5.50<br>3.80<br>3.66<br>3.45<br>3.45<br>3.30         | 30.5<br>37.5<br>54.3<br>56.4<br>59.8<br>59.8<br>62.6         |  |
| Water charge at<br>farm diversion<br>(\$/AF) | 0.0<br>4.0<br>6.0<br>8.0<br>10.0<br>12.0<br>16.0<br>20.0                     | 92.0<br>92.0<br>94.2<br>104.7<br>113.0<br>119.6<br>132.1<br>142.4  | 63.0<br>63.0<br>63.1<br>63.9<br>71.7<br>82.4<br>89.1<br>88.6  | 29.0<br>29.0<br>31.1<br>40.8<br>41.3<br>37.2<br>43.0<br>53.8          | 989<br>989<br>978<br>954<br>767<br>574<br>507<br>493 | 6.35<br>6.28<br>6.13<br>4.92<br>3.69<br>3.25<br>3.17         | 31.7<br>31.7<br>32.0<br>32.8<br>40.8<br>54.5<br>61.8<br>63.4 | 81.6<br>112.1<br>127.7<br>142.1<br>146.3<br>157.2<br>178.2<br>200.6 | 73.0<br>74.9<br>77.2<br>79.5<br>89.0<br>90.4<br>91.6<br>91.6  | 8.6<br>18.6<br>25.3<br>31.3<br>28.7<br>33.4<br>43.3<br>54.8 | 632<br>535<br>474<br>436<br>330<br>318<br>285<br>278 | 6.75<br>5.72<br>5.07<br>4.66<br>3.52<br>3.40<br>3.05<br>2.98 | 30.5<br>36.1<br>40.7<br>44.3<br>58.5<br>60.6<br>67.6<br>69.3 |  |

Table VIII-2. Summary of optimal rehabilitation plans using three gravity conveyance systems (unlined, lined, and gravity pipe) of the study area - annual cost and water use.

\*Numbers in parenthesis are for Snake River Valley Irrigation District.

#### LITERATURE CITED

- Allen, R.G., C.E. Brockway and J.R. Busch, 1978. Planning optimal irrigation distribution and application systems: Teton flood damaged lands. Idaho Water Resources Research Institute, University of Idaho, Moscow.
- Allen, R.G. and C.E. Brockway, 1979. Relationships of costs and water efficiency for irrigation projects in Idaho. Idaho Water Reosurces Research Institute, University of Idaho, Moscow.
- American Society of Photogrammetry, 1960. Manual of photographic interpretation, Washington, D.C.
- Balas, Egon and M. Guignard, 1979. Branch-and-bound/implicit enumeration. In: Discrete optimization II - Annals of discrete mathematics 5. Hammer, P.L., E.L. Johnson, and B.H. Korte (eds.), 185-191. North Holland Publishing Company, Amsterdam, p. 453.
- Brockway, C.E. and D.L. Reese, 1973. Operation and maintenance costs on irrigation distribution systems. Final Research Completion Report, College of Engineering, University of Idaho, Moscow.
- Brockway, C.E. and R.G. Allen, 1980. Problems in applying optimal irrigation plans. Journal of the Water Resources Planning and Management Division, ASCE, 106 (WR1): 255-263.
- Busch, J.R., 1974. Methodology for obtaining least cost irrigation specifications. Idaho Water Resources Research Institute, University of Idaho, Moscow.
- Busch, J.R. and K.H. Yoo, 1981. Optimal multistage decisions using dynamic programming. Paper presented at the 1981 Summer Meeting, American Society of Agricultural Engineers, Orlando, Florida. Paper No. 81-5013.
- Control Data Corporation, 1979. APEX-III reference manual, Version 1.2. Control Data Corporation, Publications and Graphics Division. Minneapolis, Minnesota.
- Galinato, G.D., J.R. Busch and C.E. Brockway, 1977. Optimizing irrigation system design. Research Technical Completion Report, Idaho Water Resources Research Institute, University of Idaho, Moscow.
- Geoffrin, A.M. and R.E. Marsten, 1972. Integer programming algorithms: A framework and state-of-the-art survey. Management Science 18:465-491.

#### LITERATURE CITED (continued)

- Gomory, R.E., 1958. Outline of an algorithm for integer solutions to linear programs. Bulletin of American Mathematical Society, 64: 275-278.
- Gomory, R.E., 1963. An algorithm for integer solutions to linear problems. In: R. Granes and P. Wolfe (eds), Recent advances in mathematical programming, 269-302, McGraw-Hill, New York.
- Gossett, D.L. and G.S. Willett, 1976. The cost of owning and operating sprinkler irrigation systems in the Columbia Basin. Farm Business Management Reports, EM 2760, Revised. Cooperative Extension Service, College of Agriculture, Washington State University, Pullman.
- Gray, C.W., 1981. Investment costs for sprinkler systems. Current Information Series No. 577, Cooperative Extension Service, College of Agriculture, University of Idaho, Moscow.
- Gray, C.W., 1981. Investment costs for gravity irrigation systems. Current Information Series No. 578, Cooperative Extension Service, College of Agriculture, University of Idaho, Moscow.
- Gray, C.W., 1981. Investment costs for center-pivot systems. Current Information Series No. 579, Cooperative Extension Srevice, College of Agriculture, University of Idaho, Moscow.
- Hammer, P.L., E.L. Johnson and B.H. Korte, 1979. Discrete optimization II - Annals of discrete mathematics 5; Conclusive remarks. P. 427-453. North Holland Publishing Company, Amsterdam.
- International Business Machines, 1974. Mathematical programming system extended 370 (MPSC/370). Company IBM France, Paris-la-Defence.
- Jeroslaw, R., 1974. The principles of cutting planes theory: Part I GSIA, Carnegie-Mellon University.
- Katopodes, N.D. and T. Strelkoff, 1977. Dimensionless solutions of border-irrigation advance. Journal of Irrigation and Drainage Division, ASCE 96: 25-38.
- Knipling, E.B., 1973. Leaf reflectance and image formation on color infrared film. Chapter 2. In: Estes, J.E. and L.W. Senger (eds.). Remote sensing: Techniques for environmental analysis. Hamilton Publishing Company.
- Land, A.H. and A.G. Doig, 1960. An automatic method for solving discrete programming problems. Econometrika 28: 497-520.

#### LITERATURE CITED (continued)

- Land, A.H. and S. Powell, 1979. Computer codes for problems of integer programming. In: Discrete optimization II - Annals of discrete mathematics 5. Hammer, P.L., E.L. Johnson, and B.H. Korte (eds.), 221-270, North Holland Publishing Company, Amsterdam, p. 453.
- Lindeborg, K.H., L. Conklin and F.L. Smith, 1976. Volume I Crop enterprise budgets for selected areas in Idaho. Miscellaneous Series No. 51, Agricultural Experiment Station, College of Agriculture, University of Idaho, Moscow.
- Lindeborg, K.H., T. Powell and S. Berglund, 1979. Volume II Crop enterprise budgets for selected areas in Idaho. Miscellaneous Series No. 54, Agricultural Experiment Station, College of Agriculture, University of Idaho, Moscow.
- Murty, Katta G., 1976. Linear and combinatorial programming. John Wiley & Sons, Inc., New York, p. 567.
- Netz, K.E., 1980. Evaluation of canal seepage in the Snake River Basin Fan, Bonneville and Bingham Counties, Idaho. Unpublished M.S. thesis, Agricultural Engineering Department, University of Idaho, Moscow.
- Owen, G., 1973. Cutting-planes for program with disjunctive constraints. Journal of Optimization Theory and Applications, 11: 49-55.
- Pair, C.H., W.W. Hinz, C. Reid and K.R. Frost, 1975. Sprinkler Irrigation, Fourth Edition, Sprinkler Irrigation Association, Silver Springs, Maryland.
- Sutter, R.J. and G.L. Corey, 1970. Consumptive irrigation requirements for crops in Idaho. College of Agriculture Bulletin No. 516, University of Idaho, Moscow.
- University of California, Division of Agricultural Sciences, 1977. Irrigation costs. Leaflet No. 2875, Division of Agricultural Sciences, University of California, Revised.
- U.S. Department of Agriculture Soil Conservation Service, 1970. Irrigation guide for southern and southeastern Idaho. U.S. Department of Agriculture Soil Conservation Service, Boise, Idaho.
- U.S. Department of Agriculture Soil Conservation Service, 1979. Furrow Irrigation (draft), National Engineering Handbook, Section15, Chapter 5. Soil Conservation Service, Washington, D.C.

### LITERATURE CITED (continued)

- Willett, G.S., 1976. The financial analysis of leasing versus purchasing a center-pivot sprinkler irrigation system, Farm Business Management Reports EM 4106, Cooperative Extension Service, College of Agriculture, Washington State University, Pullman.
- Yoo, Kyung H. and J.R. Busch, 1980. User's guide to UIMIP and MTRX: Mixed Integer-linear programming and matrix generating program packages. Partial Research Technical Completion Report Project B-041-IDA. Idaho Water Resources Research Institute, University of Idaho, Moscow.
- Yoo, Kyung H. and J.R. Busch, 1981a. Low level aerial infrared images for inventory of an irrigated area. Transactions of American Society of Agricultural Engineering (accepted for publication).
- Yoo, Kyung H. and j.R. Busch, 1981b. Soil water intake rates and surface irrigation system characteristics by soil series in southeastern Idaho. Partial Research Technical Completion Report Project B-041-IDA. Idaho Water Resources Research Institute, University of Idaho, Moscow.
- Yoo, Kyung H. and J.R. Busch, 1981c. Mixed integer-linear programming for agricultural engineering problems. Paper presented at the 1981 Summer Meeting. American Society of Agricultural Engineers, Orlando, Florida, Paper No. 81-5007.

## APPENDIX A

## DESCRIPTIONS OF THE SOIL SERIES IN THE STUDY AREA

- 1. Ammon
- 2. Bannock
- 3. Bock
- 4. Hayeston
- 5. Heiseton
- 6. Paes1
- 7. Sasser
- 8. Stan
- 9. Wapello
- 10. Wolverine

## AMMON SERIES 1/

The Ammon series consists of well drained, nearly level to gently sloping soils that are more than 60 inches deep. These soils formed under bunchgrass and big sagebrush on alluvial fans that consist of outwash from loessal uplands. They are associated with Newdale and Paesl soils.

Elevations range from 4400 to 4800 feet. The annual precipitation is about 11 to 13 inches. The mean annual air temperature is 43° to 45°F, and the frost-free period is 110 to 126 days.

In a representative profile the surface layer is grayish-brown silt loam 10 inches thick. The underlying layers are light brown-gray silt loam that extends to a depth of more than 60 inches. The soils are limy throughout. The permeability is 0.63 to 2.0 inches per hour. The available water holding capacity is 0.19 to 0.21 inches per inch over this soil layer.

Ammon soils are used mainly for irrigated crops.

1/ These descriptions were obtained from "Soil Survey of Bingham Area, Idaho" by Soil Conservation Service, USDA and the Agricultural Experiment Station, University of Idhao, Moscow, 1973.

#### BANNOCK SERIES

The Bannock series consists of well drained, nearly level to moderately sloping soils that are 20 to 40 inches deep to very gravelly sands. These soils formed under big sagebrush and bunchgrass in alluvium on high river terraces. These soils are associated with Bock, Polatis, Hayeston, and Packham soils.

Elevations range from 4200 to 4600 feet. The annual precipitation is 11 to 13 inches. The mean annual air temperature is 42° to 45°F, and the frost-free perod is 110 to 126 days.

In a representative profile the surface layer is grayish-brown loam that is slightly gravelly and 6 inches thick. The subsoil is grayishbrown and light brownish-gray loam that is slightly gravelly and extends to a depth of 16 inches. The substratum, in the upper part, is pale brown and light brownish-gray, strongly calcareous stratified loam, gravelly loam, and very gravelly sandy loam. This is underlain by very gravelly coarse sand at a depth of 36 inches. The profile is limy throughout. The permeability is 0.63 to 2.0 inches per hour. The available water holding capacity is 0.14 to 0.16 inches per inch of top soil and 0.04 to 0.06 inches per inch for subsoil layer.

Bannock soils are used for irrigated hay, pasture, small grains, beets, and potatoes.

#### BOCK SERIES

The Bock series consists of deep, well drained, loamy soils more than 60 inches deep that formed on nearly level to very gently sloping high terraces. The vegetation is mainly big sagebrush and bunchgrass. These soils are associated with Bannock, Packham, Hayeston, and Stan Soils.

Elevations range from 4200 to 4500 feet. The annual precipitaton is 11 to 13 inches. The mean annual air temperature is 42° to 45°F, and the frost-free period is 110 to 126 days.

In a representative profile the surface layer is grayish brown loam about 10 inches thick. The subsoil is brown loam that extends to a depth of 15 inches. The substratum is light brownish-gray and light-gray, stratified alluvium that is mainly loam and fine sandy loam to a depth of 47 inches. Below 47 inches is very gravelly coarse sand. These soils have a limy substratum.

The permeability is 0.63 to 2.0 inches per hour. Available water holding capacity is 0.16 to 0.18 inches per inch of top soil depth and very low (0.03 to 0.06 inches per inch of soil) for subsoil (0.03 to 0.05 inches per inch).

Bock soils are used mainly fo irrigated hay, small grains, pasture, potatoes, and sugarbeets.

#### HAYESTON SERIES

The Hayeston series consists of well drained, nearly level to very gently sloping soils that are less than 40 inche sthick over sand and gravel. These soils formed under big sagebrush and bunchgrass in alluvium. They are on river terraces. Hayeston soils are associated with soils of the Heiseton, Bannock, Blackfoot, and Wardboro series.

Elevations range from 4200 to 4600 feet. The annual precipitation is 11 to 13 inches. The mean annual air temperature is 42° to 45°F, and the frost-free period is 110 to 126 days.

In a representative profile the surface layer is grayish-brown sandy loam that contains a little gravel and is 9 inches thick. The underlying material is light brownish-gray, calcareous sandy loam that extends to a depth of 30 inches. Below this is light brownish-gray very gravelly coarse sand. These soils are limy throughout.

The permeability is 2.0 to 6.3 inches per hour. The available water holding capacity is 0.11 to 0.13 inches per inch of top soil and 0.03 to 0.05 inches per inch of subsoil layer.

Hayeston soils are used primarily for irrigated hay, pasture, small grains, and potatoes.

#### PAESL SERIES

The Paesl series consists of well drained, nearly level soils overlying sand and gravel at depths ranging from 20 to 40 inches. These soils formed in mixed alluvium. They are on flood plains and terraces. Nearly all the areas are cultivated. In uncultivated areas the vegetation is big sagebrush, three-tip sagebrush, and bunchgrass. These soils are associated with Ammon, Stan, and Wapello soils.

Elevations range from 4600 to 4800 feet. The mean annual precipitation ranges from 11 to 13 inches. The mean annual air temperature ranges from 42° to 45°F, and the frost-free season is 110 to 130 days.

In a representative profile the surface layer is grayish-brown silt loam 9 inches thick. The subsoil is brown and light-brown silt loam. The substratum is pinkish-gray loam to a depth of 27 inches. It is underlain by light brownish-gray very gravelly loamy coarse sand that extends to a depth of more than 50 inches. The soil is limy throughout, but is more limy in the lower part of the subsoil and substratum than in the surface layer.

The permeability is 0.63 yo 2.0 inches per hour. The available water holding capacity is 0.19 to 0.21 inches per inch of top soil and 0.04 to 0.06 inches per inch of subsoil.

Paesl soils are used for irrigated potatoes, sugarbeets, small grains, alfalfa, and pasture.

#### SASSER SERIES

The Sasser series consists of well drained, nearly level to gently sloping soils that are about 38 inches deep to sand and gravel. These soils formed under grasses and shrubs in fine sandy alluvium. They are on river terraces. Sasser soils are associated with soils of the Bannock, Bock, and Stan series.

Elevations range from 4200 to 4600 feet. The mean annual precipitation is 11 to 13 inches. The mean annual air temperature is 39° to 45°F, and the frost-free period is 110 to 130 days.

In a representative profile the surface layer is grayish-brown sandy loam 6 inches thick. The subsoil is light brownish-gray and pale-brown fine sandy loam 8 inches thick. The substratum is light-gray find sandy loam that contains as much as 15 percent gravel. It extends to a depth of 38 inches. It is underlain by sand and waterworn gravel. These soils are limy throughout but have lime accumulations in the substratum.

The permeability is 2.0 to 6.3 inches per hour. The available water holding capacity is 0.11 to 0.13 inches per inch of top soil and 0.04 to 0.06 inches per inch of subsoil layer.

Sasser soils are used mainly for irrigated hay, pasture, and small grain.

#### STAN SERIES

The Stan series consists of well drained soils that formed in sandy alluvium on river terraces. The slope is 0-4 percent. These soils are fine sandy loam in texture. The vegetation is mainly big sagebrush and bunchgrass. Stan soils are associated with soils of the Sasser, Bannock, and Paesl series.

Elevations range from 4200 to 5500 feet. The mean annual precipitation is 11 to 13 inches. The mean annual air temperature is 39° to 45°F, and the frost-free period is 110 to 125 days.

In a representative profile, the surface layer is grayish-brown and brown fine sandy loam 16 inches thick. The subsoil is pale-brown fine sandy loam 13 inches thick. The substratum is light gray fine sandy loam to a depth of 50 inches. It is underlain by light-gray, very gravelly light-sandy loam. These soils are limy throughout but are mostly limy in the substratum.

The permeability is 2.0 to 6.3 inches per hour. The available water holding capacity is 0.13 to 0.15 inches per inch of top soil and low in subsoil layer (0.07 to 0.09 inches per inch).

Stan soils are used to irrigated hay, pasture, small grains, and potatoes.

#### WAPELLO SERIES

The Wapello series consists of well drained, nearly level and very gently sloping soils that are 20 to 30 inches deep over silt loam or loam. These soils are fine sandy loam in texture. They formed on stream terraces under big sagebrush and bunchgrass. Wapello soils are associated with Wolverine, Preston, and Firth soils.

Elevations range from 4200 to 4600 feet. The annual precipitation is 11 to 13 inches. The mean annual air temperature is 42° to 45°F, and the frost-free season is 110 to 125 days.

In a representative profile the surface layer is grayish-brown fine sandy loam 8 inches thick. The underlying material is light brownishgray and light-gray fine sandy loam. It is underlain at a depth of 29 inches by stratified layers of light-gray silt loam and loamy alluvium. These soils are limy throughout.

This soil has high permeability for top soil (over 20 inches per hour) and decreased to 2.0 to 6.3 inches per hour of subsoil. Top soil has very low available water holding capacity (0.02 to 0.04 inches per inch) and moderate in subsoil (2.0 to 6.3 inches per inch).

Wapello soils are used mainly for irrigated hay, small grain, and for pasture.

#### WOLVERINE SERIES

The Wolverine series consists of excessively drained, nearly level to moderately steep, sandy soils that formed in colian sands. These soils are on terraces. Roots can penetrate to a depth of 60 inches or more. The vegetation consists mainly of bunchgrass and big sagebrush. Wolverine soils are associated with Weeding, Wapello, Firth, and Presto soils.

Elevations range from 4400 to 4600 feet. The annual precipitation is 11 to 13 inches. The mean annual air temperature is 40° to 45°F, and the frost-free period is 110 to 126 days.

In a representative profile, the soil is limy, light brownish-gray sand to a depth of 60 inches or more.

This soil has very high permeability (over 20 inches per hour) and low available water holding capacity (0.06 to 0.08 inches per inch of soil).

Wolverine soils are used for range.

### APPENDIX B

SEASONAL, MONTHLY AND MAXIMUM DAILY ET REQUIREMENT OF SUBAREAS AND DISTRIBUTION PATTERNS FOR CROPS, APPLICATION SYSTEMS, SOILS AND LAND OWNERSHIPS

- B-1. For existing systems analysis
- B-2. For rehabilitation plans
- B-3. For consolidation plans

| SUBAREA | ET max  | Seasonal ET |         | Monthly ET Distribution (\$)1/ |      |       |       |       |       |  |  |
|---------|---------|-------------|---------|--------------------------------|------|-------|-------|-------|-------|--|--|
| NO.     | _IN/DAY | INCHES      | AF/ACRE | April                          | Мау  | June  | July  | Aug.  | Sept. |  |  |
| 1       | 0.257   | 19.67       | 1.63    | 1.07                           | 5.43 | 23.27 | 37.40 | 25.74 | 7.05  |  |  |
| 4       | 0.265   | 20.62       | 1.71    | 2.38                           | 5.68 | 23.19 | 39.41 | 23.87 | 5.44  |  |  |
| 5       | 0.253   | 19.46       | 1.62    | 1.52                           | 5.86 | 24.26 | 37.91 | 24.33 | 6.09  |  |  |
| 6       | 0.262   | 20.40       | 1.70    | 2.28                           | 5.72 | 23.36 | 39.26 | 23.90 | 5.45  |  |  |
| 7       | 0.272   | 20.78       | 1.73    | 2.36                           | 5.76 | 23.47 | 39.11 | 23.64 | 5.63  |  |  |
| 8       | 0.268   | 20.57       | 1.71    | 2.10                           | 5.78 | 23.70 | 38.59 | 23.84 | 5.97  |  |  |
| 9       | 0.270   | 20.76       | 1.73    | 1.65                           | 5.22 | 22.26 | 38.36 | 25.64 | 6.85  |  |  |
| 10      | 0.267   | 20.60       | 1.71    | 1.87                           | 5.40 | 22.68 | 38.69 | 24.99 | 6.32  |  |  |
| 11      | 0.267   | 21.15       | 1.76    | 1.90                           | 4.55 | 20.04 | 39.87 | 27.09 | 6.51  |  |  |
| 12      | 0.260   | 20.16       | 1.68    | 2.15                           | 5.80 | 23.69 | 38.99 | 23.83 | 5.51  |  |  |
| 13      | 0.264   | 20.55       | 1.71    | 1.93                           | 5.22 | 22.09 | 38.91 | 25.41 | 6.13  |  |  |
| 14      | 0.257   | 19.98       | 1.66    | 2.62                           | 6.30 | 24.91 | 39.38 | 22.19 | 4.57  |  |  |
| 15      | 0.257   | 20.00       | 1.66    | 2.93                           | 6.55 | 25.50 | 39.66 | 21.27 | 4.05  |  |  |
| 17      | 0.267   | 21.15       | 1.76    | 1.90                           | 4.55 | 20.04 | 39.87 | 27.09 | 6.51  |  |  |
| 18      | 0.262   | 20.56       | 1.71    | 2.38                           | 5.49 | 22.60 | 39.78 | 24.38 | 5.35  |  |  |
| 19      | 0.265   | 20.99       | 1.74    | 2.38                           | 5.07 | 21.31 | 40.22 | 25.40 | 5.59  |  |  |
| 20      | 0.266   | 20.89       | 1.74    | 2.12                           | 5.06 | 21.45 | 39.68 | 25.65 | 6.01  |  |  |
| 21      | 0.271   | 20.75       | 1.72    | 1.84                           | 5.55 | 23.18 | 38.24 | 24.61 | 6.56  |  |  |
| 22      | 0.266   | 20.76       | 1.73    | 1.96                           | 5.13 | 21.79 | 39.26 | 25.61 | 6.23  |  |  |
| 25      | 0.242   | 18.73       | 1.56    | 1.48                           | 6.06 | 24.88 | 38.05 | 24.00 | 5.51  |  |  |
| 26      | 0.274   | 20.94       | 1.74    | 1.72                           | 5.36 | 22.66 | 38.17 | 25.17 | 6.89  |  |  |
| 27      | 0.269   | 20.88       | 1.74    | 2.25                           | 5.49 | 22.70 | 39.25 | 24.43 | 5.86  |  |  |
| 28      | 0.270   | 20.94       | 1.74    | 1.23                           | 4.53 | 20.43 | 38.43 | 27.72 | 7.63  |  |  |
| 29      | 0.256   | 20.30       | 1.69    | 3.48                           | 6.38 | 24.59 | 41.07 | 21.24 | 3.22  |  |  |
| 30      | 0.259   | 20.19       | 1.68    | 2.23                           | 5.75 | 23.49 | 39.24 | 23.89 | 5.37  |  |  |
| 31      | 0.257   | 19.90       | 1.65    | 2.19                           | 6.07 | 24.51 | 38.80 | 23.13 | 5.26  |  |  |
| 32      | 0.255   | 19.42       | 1.61    | 1.38                           | 5.98 | 24.75 | 37.38 | 24.12 | 6.35  |  |  |
| C       | 0.260   | 20.64       | 1.72    | 2.33                           | 5.59 | 22.96 | 39.43 | 24.13 | 5.53  |  |  |
| D       | 0.269   | 20.60       | 1.71    | 1.49                           | 5.31 | 22.64 | 37.94 | 25.55 | 7.04  |  |  |
| F       | 0.263   | 20.51       | 1.70    | 2.17                           | 5.54 | 22.90 | 39.24 | 24.42 | 5.70  |  |  |
| G       | 0.272   | 20.92       | 1.74    | 1.66                           | 5.12 | 21.97 | 38.44 | 25.85 | 6.94  |  |  |
| н       | 0.275   | 20.71       | 1.72    | 1.33                           | 5.53 | 23.45 | 37.07 | 25.08 | 7.50  |  |  |
| . 1     | 0.261   | 20.14       | 1.67    | 1.73                           | 5.57 | 23.26 | 38.39 | 24.77 | 6.24  |  |  |
| J       | 0.270   | 20.47       | 1.70    | 1.40                           | 5.53 | 23.38 | 37.44 | 25.07 | 7.15  |  |  |
| к       | 0.268   | 20.75       | 1.72    | 2.25                           | 5.60 | 23.03 | 39.16 | 24.16 | 5.77  |  |  |
| L .     | 0.275   | 21.18       | 1.76    | 1.61                           | 4.98 | 21.58 | 38.40 | 26.20 | 7.20  |  |  |
| м       | 0.259   | 20.44       | 1.70    | 3.34                           | 6.34 | 24.56 | 40.71 | 21.43 | 3.60  |  |  |
| N       | 0.266   | 20.56       | 1.71    | 2.45                           | 5.97 | 24.04 | 39.13 | 23.06 | 5.31  |  |  |
| 0       | 0.270   | 20.57       | 1.71    | 1.87                           | 5.45 | 22.83 | 38.50 | 24.86 | 6.47  |  |  |
| Р       | 0.276   | 20.64       | 1.72    | 1.89                           | 6.28 | 25.40 | 37.16 | 22.69 | 6.55  |  |  |
| Q       | 0.258   | 20.09       | 1.67    | 2.39                           | 6.00 | 24.15 | 39.55 | 23.14 | 5.03  |  |  |
| R       | 0.265   | 20.42       | 1.70    | 2.45                           | 5.65 | 23.02 | 39.79 | 23.94 | 5.12  |  |  |

Table B-1. For existing systems analysis

1/ % of Seasonal ET

| SERVICE |       | Crop  | (\$)2/ |       | Application System (%) <u>2</u> / |       |       |       |      |  |  |
|---------|-------|-------|--------|-------|-----------------------------------|-------|-------|-------|------|--|--|
| AREA    | POT   | GRA   | ALF    | PAS   | BOR                               | FUR   | HMS   | SRS   | CPS  |  |  |
| 1       | 18.38 | 20.41 | 25.83  | 35.38 | 75.83                             | 9.44  | 14.74 | 0     | 0    |  |  |
| 4       | 29.41 | 47.29 | 16.93  | 6.37  | 63.92                             | 25.63 | 10.45 | 0     | 0    |  |  |
| 5       | 12.49 | 28.60 | 22.17  | 36.74 | 75.69                             | 12.49 | 11.82 | 0     | 0    |  |  |
| 6       | 27.02 | 44.82 | 16.39  | 11.77 | 51.82                             | 5.89  | 26.99 | 15.31 | 0    |  |  |
| 7       | 25.84 | 47.28 | 25.45  | 2.43  | 34.07                             | 4.85  | 42.46 | 18.62 | 0    |  |  |
| 8       | 21.14 | 41.58 | 28.88  | 8.40  | 44.06                             | 1.30  | 37.05 | 6.78  | 10.8 |  |  |
| 9       | 32.54 | 32.96 | 26.06  | 8.44  | 45.61                             | 4.41  | 27.19 | 5.87  | 16.9 |  |  |
| 10      | 32.04 | 39.55 | 23.16  | 5.25  | 49.57                             | 22.68 | 27.77 | 0     | 0    |  |  |
| 11      | 41.67 | 40.23 | 9.84   | 8.27  | 42.89                             | 15.39 | 12.79 | 28.93 | 0    |  |  |
| 12      | 22.66 | 41.82 | 17.79  | 17.73 | 64.12                             | 15.59 | 20.30 | 0     | 0    |  |  |
| 13      | 37.46 | 38.30 | 12.36  | 11.88 | 42.88                             | 11.58 | 37.17 | 8.37  | 0    |  |  |
| 14      | 14.23 | 50.43 | 17.38  | 17.96 | 85.77                             | 14.23 | 0     | 0     | 0    |  |  |
| 15      | 10.68 | 56.41 | 17.85  | 15.06 | 65.26                             | 3.54  | 26.17 | 5.04  | 0    |  |  |
| 17      | 65.67 | 33.19 | 0      | 1.14  | 1.14                              | 6.73  | 3.00  | 89.13 | 0    |  |  |
| 18      | 36.69 | 47.08 | 8.35   | 8.48  | 31.48                             | 6.27  | 62.27 | 0     | 0    |  |  |
| 19      | 50.09 | 48.12 | 1.51   | 0.28  | 6.76                              | 4.70  | 70.83 | 17.71 | 0    |  |  |
| 20      | 46.06 | 42.62 | 7.43   | 3.89  | 17.73                             | 6.01  | 53.22 | 23.04 | 0    |  |  |
| 21      | 24.13 | 36.75 | 32.71  | 6.41  | 29.72                             | 2.70  | 34.96 | 32.61 | 0    |  |  |
| 22      | 28.64 | 45.51 | 15.34  | 10.51 | 43.56                             | 11.16 | 40.22 | 5.06  | 0    |  |  |
| 25      | 7.86  | 26.73 | 12.41  | 53.00 | 93.39                             | 6.61  | 0     | 0     | 0    |  |  |
| 26      | 28.50 | 34.78 | 33.43  | 3.29  | 71.51                             | 28.50 | 0     | 0     | 0    |  |  |
| 27      | 33.27 | 45.23 | 19.86  | 1.64  | 62.22                             | 28.53 | 4.51  | 4.74  | 0    |  |  |
| 28      | 48.97 | 24.86 | 17.02  | 9.15  | 45.07                             | 19.95 | 22.60 | 0     | 12.3 |  |  |
| 29      | 25.00 | 68.03 | 1.00   | 5.98  | 27.18                             | 3.60  | 69.23 | 0     | 0    |  |  |
| 30      | 25.57 | 43.39 | 14.18  | 16.86 | 74.43                             | 15.36 | 2.40  | 7.81  | 0    |  |  |
| 31      | 14.86 | 42.08 | 20.51  | 22.55 | 63.87                             | 0.74  | 29.00 | 6.40  | 0    |  |  |
| 32      | 6.21  | 25.86 | 30.03  | 37.90 | 93.80                             | 6.21  | 0     | 0     | 0    |  |  |
| C       | 31.53 | 46.35 | 15.62  | 6.50  | 49.93                             | 10.40 | 30.55 | 9.13  | 0    |  |  |
| D       | 27.13 | 29.67 | 30.72  | 12.48 | 58.89                             | 9.82  | 31.30 | 0     | 0    |  |  |
| F       | 30.96 | 42.97 | 15.46  | 10.62 | 49.36                             | 9.03  | 29.12 | 12.49 | 0    |  |  |
| G       | 35.74 | 33.44 | 25.67  | 5.15  | 41.15                             | 0     | 30.38 | 28.48 | 0    |  |  |
| н       | 16.22 | 26.53 | 47.47  | 9.77  | 70.03                             | 4.88  | 20.99 | 4.11  | 0    |  |  |
| i       | 23.44 | 33.64 | 21.96  | 20.96 | 56.22                             | 3.31  | 29.32 | 11.16 | 0    |  |  |
| j       | 18.33 | 27.74 | 38.89  | 15.04 | 79.04                             | 8.73  | 12.23 | 0     | 0    |  |  |
| ĸ       | 29.81 | 45.07 | 20.90  | 4.22  | 22.91                             | 3.73  | 61.69 | 11.66 | 0    |  |  |
| L       | 39.32 | 32.91 | 27.77  | 0     | 7.93                              | 0     | 92.09 | 0     | 0    |  |  |
| M       | 23.74 | 65.79 | 7.01   | 3.46  | 22.48                             | 0     | 43.79 | 33.74 | 0    |  |  |
| N       | 20.77 | 48.64 | 24.27  | 6.32  | 44.37                             | 3.10  | 5.57  | 46.96 | 0    |  |  |
| 0       | 28.15 | 37.02 | 27.90  | 6.93  | 43.77                             | 9.09  | 36.47 | 0     | 10.6 |  |  |
| P       | 0     | 37.54 | 56.53  | 5.92  | 100.00                            | 0     | 0     | 0     | 0    |  |  |
| Q       | 20.40 | 46.13 | 15.91  | 17.56 | 59.26                             | 4.06  | 26.82 | 0     | 9.8  |  |  |
| R       | 32.32 | 48.31 | 8.64   | 10.73 | 30.12                             | 4.55  | 32.51 | 32.83 | 0    |  |  |

Table 8-1. (continued)

#### Crops

#### POT--potatoes GRA--grain ALF--alfalfa-hay PAS--pasture land

# Irrigation Systems

HMS--hand-move sprinkler SRS--side-roll sprinkler CPS--center-pivot sprinkler

2/ % of irrigated subarea

BOR--border

FUR--- furrow

| SERVICE |       | Soil Series (%) <u>3/</u> |       |        |       |       |       |  |  |  |  |  |  |
|---------|-------|---------------------------|-------|--------|-------|-------|-------|--|--|--|--|--|--|
| AREA    | Am    | Ba                        | Во    | Не     | Pc    | Sa    | Wo    |  |  |  |  |  |  |
| 1       | 0     | 43.20                     | 5.23  | 6.71   | 35.47 | 9.39  | 0     |  |  |  |  |  |  |
| 4       | 0     | 92.30                     | 0     | 1.16   | 0     | 2.49  | 0     |  |  |  |  |  |  |
| 5       | 0     | 90.25                     | 0     | 0      | 3.77  | 1.37  | 2.56  |  |  |  |  |  |  |
| 6       | 27.97 | 0                         | 34.96 | 0      | 11.98 | 25.36 | 0     |  |  |  |  |  |  |
| 7       | 38.28 | 0                         | 18.60 | 0      | 41.04 | 1.77  | 0.31  |  |  |  |  |  |  |
| 8       | 61.74 | 0                         | 0     | 0      | 5.70  | 25.56 | 7.00  |  |  |  |  |  |  |
| 9       | 6.26  | 0                         | 0     | 0      | 0     | 36.37 | 57.37 |  |  |  |  |  |  |
| 10      | 0     | 96.27                     | 0     | 0.09   | 0     | 3.73  | 0     |  |  |  |  |  |  |
| 11      | 0     | 85.72                     | 12.57 | 0      | 0     | 1.71  | 0     |  |  |  |  |  |  |
| 12      | 0     | 73.02                     | 0     | 23.97  | 0.51  | 2.49  | 0     |  |  |  |  |  |  |
| 13      | 0     | 59.42                     | 11.09 | 0      | 2.58  | 23.12 | 3.79  |  |  |  |  |  |  |
| 14      | 0     | 0                         | 0     | 100.00 | 0     | 0     | 0     |  |  |  |  |  |  |
| 15      | 0     | 4.45                      | 0     | 95.55  | 0     | 0     | 0     |  |  |  |  |  |  |
| 17      | 0     | 46.95                     | 44.92 | 8.14   | 0     | 0     | 0     |  |  |  |  |  |  |
| 18      | 0     | 69.61                     | 30.39 | 0      | 0     | 0     | 0     |  |  |  |  |  |  |
| 19      | 0     | 78.94                     | 21.06 | 0      | 0     | 0     | 0     |  |  |  |  |  |  |
| 20      | 0     | 80.99                     | 18.44 | 0      | 0     | 0.57  | 0     |  |  |  |  |  |  |
| 21      | 0     | 0                         | 0     | 100.00 | 0     | 0     | 0     |  |  |  |  |  |  |
| 22      | 0     | 9.11                      | 16.55 | 74.34  | 0     | 0     | 0     |  |  |  |  |  |  |
| 25      | 0     | 17.87                     | 0     | 0      | 81.24 | 0     | 0.89  |  |  |  |  |  |  |
| 26      | 35.29 | 0                         | 0     | 0      | 64.71 | 0     | 0     |  |  |  |  |  |  |
| 27      | 78.73 | 0                         | 19.22 | 0      | 2.05  | 0     | 0     |  |  |  |  |  |  |
| 28      | 98.05 | 0                         | 1.95  | 0      | 0     | 0     | 0     |  |  |  |  |  |  |
| 29      | 0     | 42.29                     | 0     | 0      | 57.71 | 0     | 0     |  |  |  |  |  |  |
| 30      | 5.30  | 3.14                      | 21.90 | 0      | 38.01 | 26.88 | 4.60  |  |  |  |  |  |  |
| 31      | 0     | 1.47                      | 8.76  | 0      | 9.16  | 67.42 | 13.19 |  |  |  |  |  |  |
| 32      | 0     | 41.79                     | 2.57  | 0      | 36.61 | 6.70  | 12.33 |  |  |  |  |  |  |
| С       | 0     | 27.28                     | 36.90 | 35.82  | 0     | 0     | 0     |  |  |  |  |  |  |
| D       | 0     | 8.18                      | 47.82 | 43.30  | 0     | 0.30  | 0.39  |  |  |  |  |  |  |
| F       | 0     | 67.94                     | 15.66 | 0      | 0     | 11.56 | 4.83  |  |  |  |  |  |  |
| G       | 0     | 0                         | 0     | 0      | 0     | 56.89 | 43.02 |  |  |  |  |  |  |
| Н       | 3.66  | 0                         | 0     | . 0    | 45.17 | 29.24 | 21.94 |  |  |  |  |  |  |
| 1       | 0     | 20.37                     | 10.22 | 0      | 0.96  | 53.94 | 14.51 |  |  |  |  |  |  |
| J       | 0     | 0                         | 0     | 0      | 0     | 51.42 | 48.58 |  |  |  |  |  |  |
| К       | 0     | 61.20                     | 38.80 | 0      | 0     | 0     | 0     |  |  |  |  |  |  |
| L       | 0     | 16.05                     | 83.95 | 0      | 0     | 0     | 0     |  |  |  |  |  |  |
| М       | 0     | 90.01                     | 9.99  | 0      | 0     | 0     | 0     |  |  |  |  |  |  |
| N       | 0     | 79.09                     | 11.03 | 0      | 0     | 8.18  | 1.70  |  |  |  |  |  |  |
| 0       | 0     | 18.68                     | 48.40 | 0      | 0     | 24.81 | 8.11  |  |  |  |  |  |  |
| P       | 0     | 48.68                     | 48.39 | 0      | 0     | 2.93  | 0     |  |  |  |  |  |  |
| Q       | 0     | 35.07                     | 0     | 0      | 0     | 30.57 | 34.36 |  |  |  |  |  |  |
| R       | 0     | 53.82                     | 22.55 | 23,63  | 0     | 0     | 0     |  |  |  |  |  |  |

3/ % of total subarea

| Table B-1. (continued) | ued) |
|------------------------|------|
|------------------------|------|

| Service |    | 71 50 | 51-70 | 71 100 | 101 140 | 141.010 | 211 200 |     |
|---------|----|-------|-------|--------|---------|---------|---------|-----|
| area    | 30 | 31-50 | 51-70 | 71-100 | 101-140 | 141-210 | 211-280 | 281 |
| 1       | 0  | 6     | 1     | 9      | 4       | 1       | 0       | 0   |
| 4       | 2  | 3     | 1     | 6      | 3       | 2       | 1       | 0   |
| 5       | 0  | 2     | 1     | 20     | 0       | 3       | 0       | 0   |
| 6       | 3  | 8     | 1     | 13     | 4       | 2       | 1       | 0   |
| 7       | 6  | 2     | 3     | 3      | 3       | 3       | 5       | 1   |
| 8       | 0  | 4     | 0     | 2      | 1       | 6       | 3       | 1   |
| 9       | 0  | 0     | 0     | 1      | 1       | 4       | 4       | 1   |
| 10      | 0  | 1     | 0     | 7      | 1       | 3       | 1       | 0   |
| 11      | 0  | 3     | 0     | 3      | 1       | 0       | 0       | 0   |
| 12      | 0  | 0     | 0     | 13     | 2       | 1       | 0       | 0   |
| 13      | 0  | 5     | 0     | 8      | 2       | 4       | 0       | 0   |
| 14      | 2  | 4     | 0     | 0      | 1       | 0       | 0       | 0   |
| 15      | 0  | 0     | 0     | 9      | 1       | 1       | 1       | 0   |
| 17      | 0  | 2     | 1     | 3      | 1       | 0       | 0       | 0   |
| 18      | 0  | 1     | 0     | 3      | 0       | 0       | 1       | 0   |
| 19      | 2  | 0     | 2     | 7      | 3       | 0       | 0       | 0   |
| 20      | 0  | 3     | 1     | 1      | 2       | 0       | 0       | 0   |
| 21      | 0  | 0     | 0     | 2      | 1 .     | 0       | 1       | 1   |
| 22      | 0  | 1     | 3     | 10     | 6       | 2       | 0       | 0   |
| 25      | 0  | 1     | 0     | 2      | 1       | 0       | 0       | 0   |
| 26      | 0  | 0     | 1     | 5      | 0       | 0       | 0       | . 0 |
| 27      | 0  | 1     | 0     | 6      | 2       | 3       | 0       | 0   |
| 28      | 0  | 1     | 0     | 0      | 4       | 2       | 1       | 0   |
| 29      | 3  | 4     | 0     | 0      | 1       | 0       | 0       | 0   |
| 30      | 0  | 8     | 1     | 7      | 0       | 1       | 1       | 2   |
| 31      | 1  | 7     | 3     | 4      | 3       | 3       | 1       | 0   |
| 32      | 0  | 5     | 1     | 10     | 3       | 2       | 0       | 0   |
| C       | 0  | 1     | 6     | 13     | 3       | 3       | 1       | 0   |
| D       | 1  | 9     | 2     | 5      | 3       | 0       | 0       | 0   |
| F       | 0  | 8     | 0     | 18     | 1       | 2       | 0       | 0   |
| G       | 1  | 3     | 0     | 5      | 2       | 3       | 0       | 0   |
| н       | 0  | 2     | 0     | 10     | 4       | 7       | 0       | 0   |
| 1       | 3  | 9     | 1     | 5      | 2       | 0       | 1       | 1   |
| j       | 0  | 1     | 0     | 4      | 0       | 0       | 0       | 1   |
| K       | 0  | 1     | 1     | 2      | 1       | 1       | 0       | 0   |
| L       | 0  | 0     | 0     | 2      | 0       | 0       | 1       | 1   |
| M       | 0  | 4     | 0     | 6      | 0       | 0       | 0       | 0   |
| N       | 1  | 3     | 1     | 5      | 0       | 0       | 0       | 0   |
| 0       | 0  | 7     | 0     | 8      | 3       | 1       | 2       | 0   |
| P       | 0  | 2     | 0     | 0      | 2       | 0       | 0       | 0   |
| Q       | 1  | 6     | 2     | 2      | 1       | 3       | 2       | 0   |
| R       | 0  | 6     | 0     | 9      | 2       | 3       | 1       | 0   |

| CUDADEA        | ET max | Seas   | onal ET |       | Monthly ET Distribution (%)1/ |       |       |       |       |  |  |
|----------------|--------|--------|---------|-------|-------------------------------|-------|-------|-------|-------|--|--|
| SUBAREA<br>NO. | IN/DAY | INCHES | AF/ACRE | April | Мау                           | June  | July  | Aug.  | Sept. |  |  |
| 1              | 0.257  | 19.67  | 1.63    | 1.07  | 5.43                          | 23.27 | 37.40 | 25.74 | 7.05  |  |  |
| 4              | 0.265  | 20.62  | 1.71    | 2.38  | 5.68                          | 23.19 | 39.41 | 23.87 | 5.44  |  |  |
|                | 0.253  | 19.46  | 1.62    | 1.52  | 5.86                          | 24.26 | 37.91 | 24.33 | 6.09  |  |  |
| 5<br>6         | 0.246  | 19.00  | 1.58    | 2.38  | 6.05                          | 24.33 | 39.06 | 22.97 | 5.17  |  |  |
| 7              | 0.272  | 20.99  | 1.74    | 2.34  | 5.76                          | 23.47 | 39.06 | 23.67 | 5.68  |  |  |
| 8              | 0.268  | 20.57  | 1.71    | 2.10  | 5.78                          | 23.70 | 38.59 | 23.84 | 5.97  |  |  |
| 9              | 0.270  | 20.76  | 1.73    | 1.65  | 5.22                          | 22.26 | 38.36 | 25.64 | 6.85  |  |  |
| 10             | 0.269  | 20.80  | 1.73    | 1.97  | 5.39                          | 22.58 | 38.81 | 24.92 | 6.30  |  |  |
| 11             | 0.264  | 20.00  | 1.72    | 2.01  | 5.14                          | 21.77 | 39.42 | 25.55 | 6.08  |  |  |
| 12             | 0.260  | 20.16  | 1.68    | 2.15  | 5.80                          | 23.69 | 38.99 | 23.83 | 5.51  |  |  |
| 13             | 0.265  | 20.80  | 1.73    | 1.93  | 4.99                          | 21.36 | 39.42 | 25.99 | 6.27  |  |  |
| 14             | 0.257  | 19.98  | 1.66    | 2.62  | 6.30                          | 24.91 | 39.38 | 22.19 | 4.57  |  |  |
| 14             | 0.257  | 20.00  | 1.66    | 2.93  | 6.55                          | 25.50 | 39.66 | 21.27 | 4.05  |  |  |
| 17             | 0.269  | 21.25  | 1.77    | 1.62  | 4.24                          | 19.28 | 39.65 | 28.10 | 7.06  |  |  |
| 18             | 0.264  | 20.70  | 1.72    | 2.36  | 5.47                          | 22.55 | 39.77 | 24.44 | 5.38  |  |  |
| 19             | 0.265  | 20.99  | 1.74    | 2.38  | 5.07                          | 21.31 | 40.22 | 25.40 | 5.59  |  |  |
| 20             | 0.266  | 20.89  | 1.74    | 2.12  | 5.06                          | 21.45 | 39.68 | 25.65 | 6.01  |  |  |
| 20             | 0.271  | 20.75  | 1.72    | 1.84  | 5.55                          | 23.18 | 38.24 | 24.61 | 6.56  |  |  |
| 22             | 0.263  | 20.46  | 1.70    | 2.31  | 5.68                          | 23.23 | 39.36 | 23.96 | 5.44  |  |  |
| 25             | 0.242  | 18.73  | 1.56    | 1.48  | 6.06                          | 24.88 | 38.05 | 24.00 | 5.51  |  |  |
| 25             | 0.242  | 20.81  | 1.73    | 2.59  | 5.62                          | 22.86 | 39.89 | 23.84 | 5.18  |  |  |
| 20 27          | 0.269  | 20.88  | 1.74    | 2.25  | 5.49                          | 22.70 | 39.25 | 24.43 | 5.86  |  |  |
| 28             | 0.270  | 20.94  | 1.74    | 1.23  | 4.53                          | 20.43 | 38.43 | 27.72 | 7.63  |  |  |
| 28             | 0.256  | 20.34  | 1.69    | 3.48  | 6.38                          | 24.59 | 41.07 | 21.24 | 3.22  |  |  |
|                | 0.250  | 20.30  | 1.69    | 1.87  | 5.49                          | 22.95 | 38.73 | 24.83 | 6.11  |  |  |
| 30             | 0.256  | 19.80  | 1.65    | 2.10  | 6.04                          | 24.47 | 38.71 | 23.31 | 5.34  |  |  |
| 31             | 0.255  | 19.53  | 1.62    | 1.59  | 5.97                          | 24.57 | 37.82 | 23.96 | 6.05  |  |  |
| 32             | 0.265  | 20.77  | 1.73    | 1.79  | 4.84                          | 20.99 | 39.36 | 26.51 | 6.49  |  |  |
| В              |        | 20.64  | 1.72    | 2.33  | 5.59                          | 22.96 | 39.43 | 24.13 | 5.53  |  |  |
| C              | 0.265  | 20.64  | 1.71    | 1.34  | 5.28                          | 22.67 | 37.68 | 25.75 | 7.25  |  |  |
| D              | 0.269  | 20.75  | 1.72    | 1.90  | 4.97                          | 21.33 | 39.40 | 26.07 | 6.30  |  |  |
| F              | 0.267  | 20.59  | 1.71    | 1.88  | 5.43                          | 22.77 | 38.67 | 24.91 | 6.31  |  |  |
| G<br>. H       | 0.207  | 20.55  | 1.71    | 1.73  | 5.67                          | 23.62 | 37.90 | 24.41 | 6.64  |  |  |
| 1              | 0.280  | 20.81  | 1.73    | 1.10  | 5.60                          | 23.83 | 36.35 | 25.05 | 8.03  |  |  |
| J              | 0.262  | 20.17  | 1.68    | 2.21  | 6.09                          | 24.56 | 38.61 | 23.02 | 5.48  |  |  |
| ĸ              | 0.268  | 20.75  | 1.72    | 2.25  | 5.60                          | 23.03 | 39.16 | 24.16 | 5.77  |  |  |
| L              | 0.275  | 21.18  | 1.76    | 1.61  | 4.98                          | 21.58 | 38.40 | 26.20 | 7.20  |  |  |
| M              | 0.259  | 20.44  | 1.70    | 3.34  | 6.34                          | 24.56 | 40.71 | 21.43 | 3.60  |  |  |
| N              | 0.266  | 20.56  | 1.71    | 2.45  | 5.97                          | 24.04 | 39.13 | 23.06 | 5.31  |  |  |
| 0              | 0.266  | 20.53  | 1.71    | 1.36  | 4.99                          | 21.73 | 38.23 | 26.51 | 7.15  |  |  |
| P              | 0.276  | 20.64  | 1.72    | 1.89  | 6.28                          | 25.40 | 37.16 | 22.69 | 6.55  |  |  |
| Q              | 0.278  | 20.09  | 1.67    | 2.38  | 5.99                          | 24.11 | 39.27 | 23.17 | 5.05  |  |  |
|                | 0.259  | 20.35  | 1.69    | 2.56  | 5.79                          | 23.39 | 39.84 | 23.50 | 4.89  |  |  |
| RS             | 0.273  | 20.74  | 1.72    | 1.76  | 5.70                          | 23.69 | 37.80 | 24.29 | 6.74  |  |  |

#### Table B-2. For rehabilitation plan

1/ % of Seasonal ET

| SERVICE |       | Crop  | (\$)2/ |       | Application System (\$) <u>2</u> / |       |       |       |       |  |
|---------|-------|-------|--------|-------|------------------------------------|-------|-------|-------|-------|--|
| AREA    | POT   | GRA   | ALF    | PAS   | BOR                                | FUR   | HMS   | SRS   | CPS   |  |
| 1       | 18.38 | 20.41 | 25.83  | 35.38 | 75.83                              | 9.44  | 14.74 | 0     | 0     |  |
| 4       | 29.41 | 47.29 | 16.93  | 6.37  | 63.92                              | 25.63 | 10.45 | 0     | 0     |  |
| 5       | 12.49 | 28.60 | 22.17  | 36.74 | 75.69                              | 12.49 | 11.82 | 0     | 0     |  |
| 6       | 16.69 | 43.68 | 20.17  | 19.46 | 64.98                              | 2.15  | 25.13 | 7.74  | 0     |  |
| 7       | 25.84 | 47.28 | 25.45  | 2.43  | 34.07                              | 4.85  | 42.46 | 18.62 | 0     |  |
| 8       | 21.14 | 41.58 | 28.88  | 8.40  | 44.06                              | 1.30  | 37.50 | 6.78  | 10.8  |  |
| 9       | 32.54 | 32.96 | 26.06  | 8.44  | 45.61                              | 4.41  | 27.19 | 5.87  | 16.9  |  |
| 10      | 32.04 | 39.55 | 23.16  | 5.25  | 49.57                              | 22.68 | 27.77 | 0     | 0     |  |
| 11      | 41.67 | 40.23 | 9.84   | 8.27  | 42.89                              | 15.39 | 12.79 | 28.93 | 0     |  |
| 12      | 22.66 | 41.82 | 17.79  | 17.73 | 64.12                              | 15.59 | 20.30 | 0     | 0     |  |
| 13      | 45.38 | 38.78 | 8.74   | 7.10  | 34.68                              | 10.93 | 43.55 | 10.84 | 0     |  |
| 14      | 14.23 | 50.43 | 17.38  | 17.96 | 85.77                              | 14.23 | 0     | 0     | 0     |  |
| 15      | 10.68 | 56.41 | 17.85  | 15.06 | 65.26                              | 3.54  | 26.17 | 5.04  | 0     |  |
| 17      | 65.67 | 33.19 | 0      | 1.14  | 1.14                               | 6.73  | 3.60  | 89.07 | 0     |  |
| 18      | 36.69 | 47.08 | 8.35   | 8.48  | 31.48                              | 6.27  | 62.27 | 0     | 0     |  |
| 19      | 50.09 | 48.12 | 1.51   | 0.28  | 6.76                               | 4.70  | 70.83 | 17.71 | 0     |  |
| 20      | 46.06 | 42.62 | 7.43   | 3.89  | 17.73                              | 6.01  | 53.22 | 23.04 | 0     |  |
| 21      | 24.13 | 36.75 | 32.71  | 6.41  | 29.72                              | 2.70  | 34.96 | 32.61 | 0     |  |
| 22      | 28.64 | 45.51 | 15.34  | 10.51 | 43.56                              | 11.16 | 40.22 | 5.06  | 0     |  |
| 25      | 7.86  | 26.73 | 12.41  | 53.00 | 93.39                              | 6.61  | 0     | 0     | 0     |  |
| 26      | 34.84 | 51.89 | 12.08  | 1.19  | 65.15                              | 23.17 | 11.68 | 0     | 0     |  |
| 27      | 33.27 | 45.23 | 19.86  | 1.64  | 62.22                              | 28.53 | 4.51  | 4.74  | 0     |  |
| 28      | 48.97 | 24.86 | 17.02  | 9.15  | 45.07                              | 19.95 | 22,60 | 0     | 12.3  |  |
| 29      | 25.00 | 68.03 | 1.00   | 5.98  | 27.18                              | 3.60  | 69.23 | 0     | 0     |  |
| 30      | 27.79 | 36.52 | 18.75  | 16.94 | 51.60                              | 6.98  | 24.66 | 16.77 | 0     |  |
| 31      | 14.67 | 40.11 | 19.68  | 25.54 | 67.91                              | 6.19  | 25.90 | 0     | 0     |  |
| 32      | 9.67  | 30.02 | 26.05  | 34.26 | 90.33                              | 9.40  | 0.27  | 0     | 0     |  |
| в       | 48.21 | 35.82 | 6.79   | 9.18  | 32.30                              | 11.62 | 56.08 | 0     | 0     |  |
| С       | 31.53 | 46.35 | 15.62  | 6.50  | 49.93                              | 10.40 | 30.55 | 9.13  | 0     |  |
| D       | 25.51 | 26.55 | 32.69  | 15.25 | 64.52                              | 11.87 | 23.61 | 0     | 0     |  |
| F       | 45.39 | 38.01 | 8.22   | 8.38  | 32.47                              | 9.45  | 37.61 | 20.47 | 0     |  |
| G       | 29.44 | 37.37 | 22.76  | 10.43 | 43.40                              | 0.53  | 36.75 | 19.32 | 0     |  |
| н       | 18.58 | 34.30 | 36.31  | 10.81 | 63.48                              | 3.13  | 28.16 | 5.23  | 0     |  |
| 1       | 9.60  | 22.20 | 59.74  | 8.46  | 77.01                              | 9,60  | 13.39 | 0     | 0     |  |
| J.      | 13.71 | 42.97 | 27.21  | 16.11 | 73.34                              | 8.38  | 9.85  | 8.43  | 0     |  |
| K       | 29.81 | 45.07 | 20.90  | 4.22  | 22.91                              | 3.73  | 61.69 | 11.66 | 0     |  |
| L       | 39.32 | 32.91 | 27.77  | 0     | 7.93                               | 0     | 92.09 | 0     | 0     |  |
| м       | 23.74 | 65.79 | 7.01   | 3.46  | 22.48                              | 0     | 43.79 | 33.74 | 0     |  |
| N       | 20.77 | 48.64 | 24.27  | 6.32  | 44.37                              | 3.10  | 5.57  | 46.96 | 0     |  |
| 0       | 36.08 | 26.98 | 15.96  | 50.83 | 5.30                               | 38.79 | 5.08  | 0     | 10.68 |  |
| Ρ       | 0     | 37.54 | 56.53  | 5.92  | 100.00                             | 0     | 0     | 0     | 0     |  |
| Q       | 20.40 | 46.13 | 15.91  | 17.56 | 59.26                              | 4.06  | 26.82 | 0     | 9.80  |  |
| R       | 29.35 | 50.15 | 9.09   | 11.41 | 30.75                              | 3.37  | 27.23 | 38.65 | 0     |  |
| S       | 17.70 | 35.18 | 40.72  | 6.40  | 55.63                              | 8.10  | 20.34 | 0     | 15.9  |  |

Table B-2. (continued)

Crops

4

0

Irrigation Systems

POT--potatoes GRA--grain ALF--alfalfa-hay

BOR--border FUR--furrow

HMS--hand-move sprinkler SRS--side-roll sprinkler CPS--center-pivot sprinkler

PAS--pasture land

2/ % of irrigated subarea

| SUBAREA |       | Soil Series (\$)1/ |        |       |            |       |       |  |  |  |  |  |  |
|---------|-------|--------------------|--------|-------|------------|-------|-------|--|--|--|--|--|--|
| NO.     | AM    | BA                 | BO     | HE    | PE         | SA    | WO    |  |  |  |  |  |  |
| 1       | 0     | 43.20              | 5.23   | 6.71  | 35.47      | 9.39  | 0     |  |  |  |  |  |  |
| 4       | 0     | 92.30              | 0      | 1.16  | 0          | 2.49  | 0     |  |  |  |  |  |  |
| 5       | 0     | 90.25              | 0      | 0     | 3.77       | 1.37  | 2.56  |  |  |  |  |  |  |
| 6       | 14.63 | 0                  | 40.62  | 0     | 13.88      | 29.51 | 1.36  |  |  |  |  |  |  |
| 7       | 38.28 | 0                  | 18.60  | 0     | 41.04      | 1.77  | 0.31  |  |  |  |  |  |  |
| 8       | 61.74 | 0                  | 0      | 0     | 5.70       | 25.56 | 7.0   |  |  |  |  |  |  |
| 9       | 6.26  | 0                  | 0      | 0     | 0          | 36.37 | 57.37 |  |  |  |  |  |  |
| 10      | 0     | 96.28              | 0      | 0.09  | 0          | 3.73  | 0     |  |  |  |  |  |  |
| 11      | 0     | 85.72              | 12.57  | 0     | 0          | 1.71  | 0     |  |  |  |  |  |  |
| 12      | 0     | 73.03              | 0      | 23.97 | 0.51       | 2.49  | 0     |  |  |  |  |  |  |
| 13      | 0     | 67.13              | 11.89  | 0     | 4.22       | 16.65 | 0.11  |  |  |  |  |  |  |
| 14      | 0     | 0                  | 0      | 100.0 | 0          | 0     | 0     |  |  |  |  |  |  |
| 15      | 0     | 4.45               | 0      | 95.55 | 0          | 0     | 0     |  |  |  |  |  |  |
| 17      | 0     | 46.95              | 44.91  | 8.14  | 0          | 0     | 0     |  |  |  |  |  |  |
| 18      | 0     | 69.61              | 30.39  | 0     | 0          | 0     | 0     |  |  |  |  |  |  |
| 19      | 0     | 78.94              | 21.06  | 0     | 0          | 0     | 0     |  |  |  |  |  |  |
| 20      | 0     | 80.99              | 18.44  | 0     | 0          | 0.57  | 0     |  |  |  |  |  |  |
| 21      | 0     | 0                  | 0      | 100.0 | 0          | 0     | 0     |  |  |  |  |  |  |
| 22      | 0     | 9.11               | 16.55  | 74.34 | 0          | 0     | 0     |  |  |  |  |  |  |
| 25      | 0     | 17.87              | 0      | 0     | 81.24      | 0     | 0.89  |  |  |  |  |  |  |
| 25      | 21.43 | 3.86               | 8.53   | 0     | 65.52      | 0.35  | 0     |  |  |  |  |  |  |
| 20      | 78.73 | 0                  | 19.22  | 0     | 2.05       | 0     | 0     |  |  |  |  |  |  |
| 28      | 98.05 | 0                  | 1.95   | 0     | 0          | 0     | 0     |  |  |  |  |  |  |
| 20      | 0     | 42.29              | 0      | 0     | 57.71      | 0     | 0     |  |  |  |  |  |  |
| 30      | 18.23 | 42.29              | 14.32  | 0     | 6.51       | 52.78 | 8.16  |  |  |  |  |  |  |
| 31      | 0     | 18.31              | 4.71   | 0     | 3.23       | 59.89 | 13.86 |  |  |  |  |  |  |
| 32      |       | 32.47              | 2.39   | 0     | 38.48      | 14.36 | 12.28 |  |  |  |  |  |  |
| B       | 0     | 84.82              | 15.18  | 0     | 0          | 0     | 0     |  |  |  |  |  |  |
| C       | 0     | 27.28              | 36.90  | 35.82 | 0          | 0     | 0     |  |  |  |  |  |  |
| D       | 0     | 9.82               | 42.50  | 45.71 | 0          | 1.51  | 0.46  |  |  |  |  |  |  |
| G       | 0     | 5.61               | 42.50  | 45.71 | 0          | 56.57 | 37.82 |  |  |  |  |  |  |
| н       | 4.57  | 0                  | 0      | 0     | 43.54      | 31.53 | 20.36 |  |  |  |  |  |  |
|         |       |                    |        |       |            | 37.65 | 39.05 |  |  |  |  |  |  |
| J       | 0     | 0<br>60.47         | 0 4.04 | 0     | 23.30<br>0 | 34.76 | 0.73  |  |  |  |  |  |  |
| ĸ       | 0     | 61.20              | 38.80  | 0     | 0          | 0     | 0     |  |  |  |  |  |  |
| Ĺ       | 0     |                    |        | 0     | 0          | 0     | 0     |  |  |  |  |  |  |
| M       | 0     | 16.05              | 83.95  |       |            | 0     |       |  |  |  |  |  |  |
| N       | 0     | 90.01              | 9.99   | 0     | 0          |       | 0     |  |  |  |  |  |  |
|         |       | 79.09              | 11.03  |       |            | 8.18  | 1.70  |  |  |  |  |  |  |
| 0       | 0     | 17.03              | 46.78  | 0     | 0          | 28.92 | 7.28  |  |  |  |  |  |  |
| P       | 0     | 48.68              | 48.39  | 0     | 0          | 2.93  | 0     |  |  |  |  |  |  |
| Q       | 0     | 35.07              | 0      | 0     | 0          | 30.57 | 34.36 |  |  |  |  |  |  |
| R       | 0     | 48.70              | 23.14  | 28.16 | 0          | 0     | 0     |  |  |  |  |  |  |
| S       | 0     | 10.36              | 7.97   | 0     | 0          | 56.81 | 24.86 |  |  |  |  |  |  |

Table B-2. (continued)

1/% of total subarea

| SUBAREA     |     | 71           | E1        | 71-                                  | 101              | 141         | 211-   | -           |
|-------------|-----|--------------|-----------|--------------------------------------|------------------|-------------|--------|-------------|
| No.         | <30 | 31-<br>50    | 51-<br>70 | 100                                  | 101-<br>140      | 141-<br>210 | 211-   | >28         |
| 1           | 0   | 6            | 1         | 9                                    | 4                | 1           | 0      | 0           |
| 4           | 2   | 3            | 1         | 6                                    | 3                | 2           | 0      | 0           |
| 5           | 0   | 2            | 1         | 20                                   | 0                | 2           | 0      | 0           |
| 6           | 2   | 12           | 1         | 13                                   | 2                | 2           | 1      | 0           |
| 7           | 6   | 2            | 3         | 3                                    | 3                | 3           | 5      | 1           |
| 8           | 0   | 4            | 0         | 2                                    | 1                | 6           | 3      | 1           |
| 9           | 0   | 0            | 0         | 1                                    | 1                | 4           | 4      | -1          |
| 10          | 0   | 1            | 0         | 7                                    | 1                | 3           | 1      | 0           |
| 11          | 0   | 3            | 0         | 3                                    | 1                | 0           | 0      | 0           |
| 12          | 0   | 0            | 0         | 13                                   | 2                | 1           | 0      | 0           |
| 13          | 0   | 4            | 0         | 8                                    | 1                | 1           | 0      | 0           |
| 14          | 2   | 4            | 0         | 0                                    | 1                | 0           | 0      | 0           |
| 15          | 0   | 0            | 0         | 9                                    | 1                | 1           | 1      | 0           |
| 17          | 0   | 2            | 1         | 3                                    | 1                | 0           | 0      | 0           |
| 18          | 0   | 1            | 0         | 3                                    | 0                | 0           | 1      | 0           |
| 19          | 2   | 0            | 2         | 7                                    | 3                | 0           | 0      | 0           |
| 20          | 0   | 3            | 1         | 1                                    | 2                | 0           | 0      | 0           |
| 21          | 0   | 0            | 0         | 2                                    | 1                | 0           | 1      | 1           |
| 22          | 0   | 1            | 3         | 10                                   | 6                | 2           | 0      | 0           |
| 25          | 0   | 1            | 0         | 2                                    | 1                | 0           | 0      | 0           |
| 26          | 0   | 0            | 1         | 7                                    | 1                | 0           | 0      | 1           |
| 27          | 0   | 1            | 0         | 6                                    | 2                | 3           | 0      | 0           |
| 28          | 0   | 1            | 0         | 0                                    | 4                | 2           | 1      | 0           |
| 29          | 3   | 4            | 0         | 0                                    | 1                | 0           | 0      | 0           |
| 30          | 0   | 5            | 0         | 8                                    | 2                | 3           | 1      | 0           |
| 31          | 0   | 2            | 3         | 0                                    | 3                | 2           | 0      | 0           |
| 32          | 0   | 6            | 2         | 5                                    | 0                | 0           | 0      | 0           |
| в           | 0   | 2            | 0         | 4                                    | 0                | 0           | 0      | 0           |
| С           | 0   | 1            | 6         | 13                                   | 3                | 3           | 1.     | 0           |
| D           | 1   | 8            | 2         | 2                                    | 3                | 1           | 1      | 0           |
| F           | 0   | 7            | 0         | 14                                   | 1                | 0           | 0      | 0           |
| G           | 2   | 3            | 0         | 9                                    | 1                | 3           | 0      | 0           |
| н           | 2   | 0            | 0         | 11                                   | 2                | 5           | 0      | 0           |
| 1           | 0   | 2            | 0         | 11<br>3                              |                  | 4           | 0      | 1           |
| J           | 0   | 0            | 0         | 4                                    | 2                | 3           | 0      | 0           |
| К           | 0   | 1            | 1         | 2                                    | 1                | 1           | 0      | 0           |
| L           |     | 0            | 0         | 2                                    | 0                |             | 1      | 1           |
| М           | 0   | 4            | 0         | 6                                    | 0                | 0           | 0      |             |
| N           | 1   | 3            | 1         | 5                                    | 0                | 0           | 0      | 0<br>0<br>1 |
| 0           | 4   | 16           | 0         | 9                                    | 3                | 0<br>1<br>0 | 0<br>2 | 1           |
| Р           | 0   | 2            | 0         | 0                                    | 2                | 0           | 0      | 0           |
|             | 1   | 16<br>2<br>6 | 2         | 2                                    | 0<br>3<br>2<br>0 | 3           | 2      | 0           |
| Q<br>R<br>S | 0   | 4            | 0         | 2<br>2<br>6<br>5<br>9<br>0<br>2<br>5 | 2                | 3<br>2      | 1      | 0           |
| S           | 0   | 3            | 0         | 4                                    | 0                | 1           | 1      | 1           |

Table B-2. (continued)

| SUBAREA<br>NO. | ET max<br>IN/DAY | Seasonal ET |         | Monthly ET Distribution (\$)1/ |      |       |       |        |      |
|----------------|------------------|-------------|---------|--------------------------------|------|-------|-------|--------|------|
|                |                  | INCHES      | AF/ACRE | April                          | Мау  | June  | July  | Aug.   | Sept |
| 12             | 0.263            | 20.12       | 1.67    | 0.99                           | 5.08 | 22.24 | 37.49 | 26.64  | 7.52 |
| 13             | 0.246            | 18.79       | 1.56    | 1.24                           | 6.18 | 25.43 | 37.21 | 23.85  | 6.06 |
| 14             | 0.253            | 19.83       | 1.65    | 2.69                           | 6.18 | 24.50 | 39.86 | 22.46  | 4.27 |
| 15             | 0.264            | 20.47       | 1.70    | 2.55                           | 5.98 | 24.01 | 39.41 | 22.97  | 5.05 |
| 16             | 0.254            | 19.58       | 1.63    | 2.04                           | 6.13 | 24.78 | 38.58 | 23.16  | 5.28 |
| 17             | 0.261            | 20.39       | 1.69    | 2.67                           | 5.95 | 23.83 | 39.79 | 22.97  | 4.76 |
| 18             | 0.270            | 20.84       | 1.73    | 2.04                           | 5.50 | 22.88 | 38.76 | 24.56  | 6.22 |
| 20             | 0.265            | 20.77       | 1.73    | 2.08                           | 5.16 | 21.77 | 39.51 | 25.45  | 6.00 |
| 21             | 0.278            | 21.37       | 1.78    | 0.19                           | 3.62 | 18.34 | 37.23 | 30.84  | 9.75 |
| 22             | 0.266            | 20.05       | 1.67    | 1.33                           | 5.80 | 24.27 | 37.07 | 24.49  | 7.00 |
| 23             | 0.262            | 20.22       | 1.68    | 1.49                           | 5.26 | 22.48 | 38.29 | 25.75  | 6.70 |
| 24             | 0.269            | 20.54       | 1.71    | 1.36                           | 5.29 | 22.66 | 37.71 | 25.72  | 7.23 |
| 25             | 0.267            | 20.56       | 1.71    | 1.91                           | 5.52 | 23.01 | 38.60 | 24.68  | 6.25 |
| 26             | 0.251            | 19.38       | 1.61    | 1.38                           | 5.62 | 23.64 | 38.03 | 25.06  | 6.24 |
| 27             | 0.261            | 20.32       | 1.69    | 2.26                           | 5.77 | 23.53 | 39.19 | 23.80  | 5.43 |
| 29             | 0.263            | 20.71       | 1.72    | 2.70                           | 5.59 | 22.69 | 40.28 | 23.84  | 4.88 |
| 31             | 0.273            | 21.00       | 1.75    | 1.95                           | 5.41 | 22.68 | 38.58 | 24.84  | 6.52 |
| 32             | 0.257            | 19.86       | 1.65    | 1.91                           | 5.82 | 23.90 | 38.59 | 24.04  | 5.71 |
| 33             | 0.267            | 21.02       | 1.75    | 2.09                           | 4.92 | 21.04 | 39.77 | 26.02  | 6.14 |
| 34             | 0.256            | 19.86       | 1.65    | 1.60                           | 5.48 | 23.06 | 38.45 | 25.17  | 6.22 |
| 35             | 0.265            | 20.85       | 1.73    | 2.12                           | 5.05 | 21.41 | 39.74 | 25.68  | 5.97 |
| 36             | 0.260            | 20.06       | 1.67    | 2.69                           | 6.53 | 25.59 | 39.09 | 21.51  | 4.56 |
| 37             | 0.264            | 20.73       | 1.72    | 2.09                           | 5.09 | 21.55 | 39.67 | 25.63  | 5.95 |
| 38             | 0.270            | 21.02       | 1.75    | 1.48                           | 4.66 | 20.67 | 38,75 | 27.16  | 7.25 |
| 39             | 0.262            | 20.35       | 1.69    | 2.22                           | 5.71 | 23.39 | 39.16 | 23.97  | 5.52 |
| 40             | 0.257            | 19.97       | 1.66    | 2.38                           | 6.06 | 24.34 | 39.23 | 23.00  | 4.95 |
| 41             | 0.261            | 20.23       | 1.68    | 3.04                           | 6.60 | 25.58 | 39.67 | 21.02  | 4.06 |
| 42             | 0.274            | 20,98       | 1.74    | 1.47                           | 5.05 | 21.87 | 38.07 | 26.17  | 7.33 |
| 43             | 0.270            | 20.93       | 1.74    | 2.05                           | 5.29 | 22.21 | 39.10 | 25.09  | 6.23 |
| L              | 0.265            | 20.85       | 1.73    | 2.55                           | 5.43 | 22.32 | 40.09 | 24.34  | 5.25 |
| м              | 0.259            | 20.47       | 1.70    | 2.79                           | 5.81 | 23.29 | 40.30 | 23.24  | 4.54 |
| N              | 0.260            | 20.31       | 1.69    | 2.29                           | 5.67 | 23.22 | 39.42 | 24.02  | 5.35 |
| 0              | 0.266            | 20.78       | 1.73    | 1.41                           | 4.55 | 20.34 | 38.94 | 27.57  | 7.16 |
| P              | 0.262            | 20.43       | 1.70    | 2.62                           | 5.97 | 23.92 | 39.61 | 22.96  | 4.89 |
| Q              | 0.263            | 20.63       | 1.71    | 2.55                           | 5.68 | 23.07 | 39.81 | 23.74  | 5.12 |
| R              | 0.267            | 20.63       | 1.71    | 1.89                           | 5.40 | 22.65 | 38.72 | 25.00  | 6.32 |
| S              | 0.267            | 20.62       | 1.71    | 2.68                           | 6.21 | 24.64 | 39.20 | 22.24  | 5.00 |
| Т              | 0.263            | 20.46       | 1.70    | 2.39                           | 5.81 | 23.58 | 39.32 | 23.56  | 5.31 |
| U              | 0.267            | 20.79       | 1.73    | 2.09                           | 5.36 | 22.41 | 39.16 | 24.90  | 6.05 |
| ۷              | 0.271            | 20.58       | 1.71    | 1.55                           | 5.55 | 23.36 | 37.67 | 24.88  | 6.97 |
| W              | 0.269            | 20.47       | 1.70    | 1.27                           | 5.27 | 22.68 | 37.56 | 25.85  | 7.34 |
| х              | 0.273            | 20.66       | 1.72    | 1.77                           | 5.85 | 24.14 | 37.61 | 23.9 1 | 6.69 |
| Y              | 0.270            | 20.66       | 1.72    | 1.73                           | 5.56 | 23.26 | 38.04 | 24.69  | 6.68 |
| Z              | 0.273            | 20.72       | 1.72    | 1.03                           | 4.98 | 21.94 | 37.32 | 26.76  | 7.95 |
| Z1             | 0.275            | 21.25       | 1.77    | 1.17                           | 4.45 | 20.22 | 38.22 | 27.94  | 7.97 |
| Z2             | 0.269            | 20.54       | 1.71    | 1.65                           | 5.54 | 23.25 | 37.95 | 24.83  | 6.74 |
| Z3             | 0.264            | 20.21       | 1.68    | 2.34                           | 6.36 | 25.31 | 38.44 | 22.20  | 5,31 |
| Z4             | 0.265            | 20.58       | 1.71    | 1.97                           | 5.32 | 22.36 | 39.08 | 25.14  | 6.10 |
| Z5             | 0.254            | 19.74       | 1.64    | 2.83                           | 6.64 | 25.83 | 39.47 | 21.17  | 4.02 |

Table 8-3. For Consolidation Plan

1/ % of seasonal ET

| SUBAREA | Crop (\$) <u>2</u> / |       |       |       |  |  |
|---------|----------------------|-------|-------|-------|--|--|
| NO.     | POT                  | GRA   | ALF   | PAS   |  |  |
| 12      | 27 72                | 19.34 | 26 12 | 26.01 |  |  |
| 12      | 27.73                |       | 26.12 | 26.81 |  |  |
|         | 0.00                 | 22.52 | 25.25 | 52.23 |  |  |
| 14      | 19.67                | 51.43 | 7.41  | 21.49 |  |  |
| 15      | 22.32                | 50.37 | 19.39 | 7.92  |  |  |
| 16      | 11.36                | 38.54 | 19.60 | 30.50 |  |  |
| 17      | 25.50                | 52.40 | 12.83 | 9.27  |  |  |
| 18      | 29.29                | 41.06 | 26.11 | 3.54  |  |  |
| 20      | 42.20                | 41.63 | 9.60  | 6.57  |  |  |
| 21      | 62.47                | 4.02  | 25.34 | 8.17  |  |  |
| 22      | 8.93                 | 25.67 | 41.28 | 24.12 |  |  |
| 23      | 29.57                | 29.05 | 19.76 | 21.62 |  |  |
| 24      | 25.76                | 26.98 | 32.58 | 14.66 |  |  |
| 25      | 27.05                | 37.83 | 24.51 | 10.61 |  |  |
| 26      | 17.90                | 25.78 | 16.29 | 40.03 |  |  |
| 27      | 25.17                | 44.26 | 16.86 | 13.71 |  |  |
| 29      | 37.94                | 53.85 | 5.14  | 3.07  |  |  |
| 31      | 30.36                | 39.44 | 29.50 | 0.70  |  |  |
| 32      | 18.80                | 36.54 | 18.87 | 25.79 |  |  |
| 33      | 50.37                | 42.32 | 5.74  | 1.57  |  |  |
| 34      | 215.05               | 30.63 | 15.83 | 28.49 |  |  |
| 35      | 46.65                | 42.71 | 5.96  | 4.68  |  |  |
| 36      | 7.32                 | 52.01 | 25.83 | 14.84 |  |  |
| 37      | 44.75                | 41.69 | 5.95  | 7.61  |  |  |
| 38      | 48.60                | 30.06 | 15.90 | 5.44  |  |  |
| 39      | 26.23                | 43.46 | 16.89 | 13.42 |  |  |
| 40 .    | 18.24                | 45.88 |       |       |  |  |
| 40      |                      |       | 15.72 | 20.16 |  |  |
|         | 10.19                | 59.19 | 21.67 | 8.95  |  |  |
| 42      | 34.89                | 29.75 | 30.53 | 4.83  |  |  |
| 43      | 36.77                | 41.48 | 19.62 | 2.13  |  |  |
| L       | 40.49                | 51.19 | 7.19  | 1.13  |  |  |
| М       | 32.54                | 55.11 | 4.89  | 7.46  |  |  |
| N       | 28.82                | 44.79 | 12.40 | 13,99 |  |  |
| 0       | 51.77                | 28.25 | 8.13  | 11.84 |  |  |
| Р       | 23.97                | 51.49 | 15.92 | 8.62  |  |  |
| Q       | 32.35                | 50.67 | 11.71 | 5.27  |  |  |
| R       | 30.77                | 37.54 | 22.04 | 9.65  |  |  |
| S       | 16.12                | 53.21 | 27.88 | 2.78  |  |  |
| T       | 25.47                | 47.07 | 17.79 | 9.67  |  |  |
| U       | 35.17                | 41.89 | 17.81 | 5.14  |  |  |
| ۷       | 19.72                | 30.72 | 37.76 | 11.80 |  |  |
| W       | 24.82                | 25.06 | 33.31 | 16.81 |  |  |
| Х       | 12.87                | 35.18 | 44.17 | 7.78  |  |  |
| Y       | 22.37                | 34.55 | 33.98 | 9.10  |  |  |
| Z       | 30.32                | 20.64 | 35.85 | 13,19 |  |  |
| Z1      | 50.47                | 23,96 | 22.83 | 2.74  |  |  |
| Z2      | 21.91                | 32.65 | 33.17 | 12.27 |  |  |
| Z3      | 6.65                 | 45.66 | 34.09 | 13.60 |  |  |
| Z4      | 34.89                | 39.13 | 15.41 | 10.57 |  |  |
| Z5      | 7.03                 | 53.88 | 17.79 | 21.30 |  |  |

Table B-3. (continued)

2/ % of irrigated subarea

| SUBAREA |       |        | Soil Series | (\$)1/ |       |       |       |
|---------|-------|--------|-------------|--------|-------|-------|-------|
| NO.     | Am    | Ba     | Во          | He     | Pe    | Sa    | Wo    |
| 12      | 0     | 46.71  | 7.95        | 10.21  | 25.01 | 10.12 | 0     |
| 13      | 0     | 36.62  | 0           | 0      | 55.53 | 7.85  | 0     |
| 14      | 0     | 45.89  | 0           | 0      | 53.66 | 0.45  | 0     |
| 15      | 0     | 65.47  | 0           | 33.20  | 0     | 1.33  | 0     |
| 16      | 0     | 46.90  | 0           | 0      | 50.76 | 1.84  | 0.50  |
| 17      | 0     | 57.19  | 0           | 39.18  | 0     | 3,63  | 0     |
| 18      | 0     | 0      | 0           | 100.00 | 0     | 0     | 0     |
| 20      | 0     | 2.30   | 15.25       | 82.45  | 0     | 0     | 0     |
| 21      | 0     | 5.65   | 37.44       | 56.91  | 0     | 0     | 0     |
| 22      | 0     | 65.21  | 0           | 0      | 15.02 | 1.09  | 18.68 |
| 23      | 0     | 100.00 | 0           | 0      | 0     | 0     | 0     |
| 24      | 0     | 28.55  | 0           | 71.45  | 0     | 0     | 0     |
| 25      | 15.72 | 27.32  | 0.29        | 0      | 51.79 | 0     | 4.87  |
| 26      | 0     | 93.67  | 0           | 0      | 0     | 2.57  | 3.75  |
| 27      | 0     | 30.77  | 43.83       | 25.40  | 0     | 0     | 0     |
| 29      | 41.29 | 3.50   | 24.73       | 0      | 28.15 | 1.60  | 0     |
| 31      | 82.66 | 0      | 13.92       | 0      | 3.42  | 0     | 0     |
| 32      | 0     | 54.11  | 16.48       | 0      | 14.24 | 15.00 | 0.16  |
| 33      | 0     | 82.63  | 17.37       | 0      | 0     | 0     | 0     |
| 34      | 0     | 20.91  | 21.20       | 0      | 12.12 | 39.07 | 6.90  |
| 35      | 0     | 82.23  | 15.37       | 0      | 0.93  | 1.48  | 0     |
| 36      | 8.11  | 0      | 30.17       | 0      | 17.39 | 41.66 | 2.67  |
| 37      | 0     | 61.53  | 12.99       | 0      | 1.50  | 23.47 | 0.51  |
| 38      | 43.59 | 0      | 27.86       | 0      | 8.06  | 20.48 | 0     |
| 39      | 0     | 50.47  | 6.52        | 0      | 4.73  | 23.23 | 15.06 |
| 40      | 0     | 7.51   | 16.29       | 0      | 2.81  | 62.98 | 10.41 |
| 41      | 15.31 | 0      | 6.93        | 0      | 43.05 | 22.48 | 12.22 |
| 42      | 69.17 | 0      | 2.26        | 0      | 28.57 | 0     | 0     |
| 43      | 88.64 | 0      | 0           | 0      | 11.36 | 0     | 0     |
| L       | 0     | 70.47  | 29.53       | 0      | 0     | 0     | 0     |
| M       | 0     | 58.61  | 41.39       | 0      | 0     | 0     | 0     |
| N       | 0     | 40.48  | 11.78       | 47.73  | 0     | 0     | 0     |
| 0       | 0     | 98.51  | 6.49        | 0      | 0     | 0     | 0     |
| P       | 0     | 48.25  | 45.03       | 0      | 0     | 0     | 6.71  |
| Q       | 0     | 35.56  | 21.90       | 42.54  | 0     | 0     | 0     |
| R       | 0     | 12.20  | 40.50       | 47.30  | 0     | 0     | 0     |
| S       | 0     | 71.41  | 27.84       | 0      | 0     | 0.75  | 0     |
| T       | 0     | 42.66  | 38.78       | 1.99   | 0     | 16.36 | 0.20  |
| U       | 0     | 33.31  | 20.67       | 0      | 0.54  | 29.08 | 16.41 |
| V       | 0.38  | 3.50   | 0           | 0      | 29.21 | 41.03 | 25.83 |
| W       | 0     | 19.04  | 53.10       | 6.07   | 0     | 19.37 | 2.42  |
| x       | 38.48 | 0      | 0           | 0      | 54.53 | 5.06  | 1.93  |
| Y       | 27.56 | 0      | 0           | 0      | 3.46  | 44.18 | 24.88 |
| z       | 0     | 4.08   | 0           | 0      | 0     | 55.56 | 40.37 |
| ZI      | 8.97  | 0      | 0           | 0      | 0     | 32.44 |       |
| Z2      | 0     | 20,93  | 29.70       | 16.14  | 0     |       | 58.59 |
| Z3      | 0     | 0      | 0           | 0      | . 0   | 28.19 | 5.04  |
| Z4      | 0     | 60.82  | 8.05        | 0      | 0     | 34.32 | 65.68 |
|         |       |        |             |        |       | 16.80 | 14.32 |
| Z5      | 0     | 11.83  | 0           | 0      | 0     | 39.46 | 49.09 |

Table B-3. (continued)

1/ \$ of total subarea

| NO.  | 30 | 31-50  | 51-70 | 71-100 | 101-140 | 141-210 | 211-280 | 28 |
|------|----|--------|-------|--------|---------|---------|---------|----|
| 140. |    | 51-50  | 51-70 | 11-100 | 101-140 | 141-210 | 211-200 | 20 |
| 12   | 0  | 2<br>2 | 1     | 6      | 4       | 0       | 0       | 0  |
| 13   | 0  | 2      | 3     | 2      | 1       | 1       | 0       | 0  |
| 14   | 0  | 3      | 0     | 4      | 2       | 2       | 1       | 0  |
| 15   | 4  | 5      | 1     | 3      | 2       | 2       | 1       | 0  |
| 16   | 0  | 2      | 0     | 8      | 0       | 2       | 0       | 0  |
| 17   | 0  | 4      | 0     | 9      | 2       | 3       | 0       | 0  |
| 18   | 0  | 0      | 0     | 0      | 1       | 0       | 1       | 1  |
| 20   | 0  | 0      | 0     | 2      | 1       | 2       | 0       | 0  |
| 21   | 0  | 2      | 3     | 1      | 1       | 0       | 0       | 0  |
| 22   | 0  | 2      | 0     | 4      | 1       | 2       | 0       | 0  |
| 23   | 0  | 0      | 0     | 6      | 1       | 1       | 1       | 0  |
| 24   | 0  | 0      | 0     | 10     | 0       | 2       | 1       | 0  |
| 25   | 0  | 2      | 3     | 1      | 1       | 0       | 0       | 0  |
| 26   | 0  | 1      | 0     | 14     | 1       | 2       | 0       | 0  |
| 27   | 0  | 0      | 1     | 6      | 2       | 1       | 0       | 0  |
| 29   | 0  | 1      | 0     | 5      | 2       | 1       | 0       | 2  |
| 31   | 0  | 1      | 0     | 5      | 0       | 1       | 0       | 0  |
| 32   | 0  | 4      | 0     | 5      | 0       | 1       | 0       | 0  |
| 33   | 2  | 1      | 1     | 3      | 2       | 1       | 1       | 0  |
| 34   | 1  | 1      | 1     | 3      | 2       | 1       | 1       | 0  |
| 35   | 0  | 4      | 1     | 8      | 3       | 1       | 0       | 0  |
| 36   | 2  | 14     | 2     | 6      | 1       | 2       | 0       | 0  |
| 37   | 0  | 5      | 1     | 7      | 3       | 0       | 0       | 0  |
| 38   | 1  | 0      | 1     | 6      | 4       | 4       | 1       | 0  |
| 39   | 0  | 2      | 0     | 3      | 1       | 3       | 0       | 0  |
| 40   | 1  | 2      | 1     | 4      | 2       | 0       | 3       | 0  |
| 41   | 3  | 1      | 0     | 5      | 1       | 2       | 1       | 0  |
| 42   | 0  | 1      | 0     | 1      | 1       | 1       | 2       | 1  |
| 43   | 2  | 2      | 0     | 3      | 2       | 3       | 1       | 0  |
| L    | 0  | 3      | 1     | 3      | 0       | 0       | 1       | 0  |
| M    | 0  | 3      | 0     | 7      | 0       | 0       | 0       | 0  |
| N    | 0  | 1      | 0     | 0      | 2       | 2       | 1       | 0  |
| 0    | 0  | 2      | 0     | 4      | 1       | 0       | 0       | 0  |
| P    | 0  | 3      | 1     | 6      | i       | 0       | 0       | 0  |
| Q    | 0  | 0      | 1     | 7      | 0       | 3       | 0       | 0  |
| R    | 0  | 4      | 5     | 8      | 4       | 0       | 1       | 0  |
| S    | 0  | 2      | 0     | 6      | 1       | 3       | 0       | 0  |
| T    | 0  | 4      | 0     | 9      | 2       | 2       | 0       | 1  |
| U    | 2  | 7      | 1     | 5      | 3       | 2<br>2  | 0       | 0  |
| v    | 1  | 3      | 0     | 14     | 1       | 3       | 0       | 0  |
| W    | 2  | 10     | 1     | 5      | 3       | 0       | í       | 0  |
| x    | 0  | 2      | 0     | 3      | 3       | 2       | 1       | 0  |
| Y    | 0  | 2      | 0     | 0      | 2       | 4       | 2       | 0  |
| z    | 1  | 3      | 0     | 4      | 0       | 0       | 0       | 2  |
| Z1   | 0  | 3<br>0 | 0     | 0      | 0       | 2       | 0       | 1  |
| Z2   | 0  | 7      | 0     | 1      | 1       | 1       | 1       |    |
| Z3   |    | 0      | 0     | 2      | 1       | 1       |         | 0  |
| Z4   | 1  | 4      | 0     | 1      | 2       | 1       | 4       | 2  |
| Z5   | 0  |        | 2     | 2      | 0       | 2       | 2       | 0  |

Table B-3. (continued)

# APPENDIX C

INPUT PARAMETERS AND FORMATS OF THE COST ESTIMATION COMPUTER PROGRAMS

- C-1. Gravity irrigation application system
- C-2. Sprinkler irrigation application system
- C-3. Canal conveyance system
- C-4. Pipe conveyance system
- C-5. Pump system Farm pump
- C-6. Pump system River pump

C-1. INPUT DATA FOR PROGRAM APSYS (GRAVITY IRRIGATION SYSTEM) Card No. 1 Number of soil types or land class to be processed Card No. 2 Farm and soil data 1 - Average farm size, acres 2 - Average field slope, ft/ft 3 - Intake family, SCS classification Card No. 3 Total number of crops to be processed Card No. 4i; i = 1 - - n, n = number of cropsName of crop number i Card No. 5i; i = 1 - - n, n = number of cropsInformation for Crop number i 1 - Water holding capacity, in/ft 2 - Root zone depth, ft 3 - Percent readly available moisture to total available moisture 4 - Total annual ET requirement, inches 5 - Maximum daily ET requirement in/day 6 - Percentage of crop grown Card No. 6i; i = 1 - - n, n = number of cropsManning's surface roughness coefficient SCS values are as follows: 0.04 --- bare earth 0.10 --- small grain-drilled 0.15 --- alfalfa, small grain-broadcast 0.25 --- dense sod, small grain-drilled across border 0.0 --- may be used if border irrigation is not considered for this crop \*Note: Cards No. 4, 5 and 6 are repeated up to the total number of crops considered. Card No. 7 Irrigation system code Input one of the following codes 'GRAVITY' --- furrow or border irrigation 'HAND MOVE' --- hand move sprinkler system 'SIDE ROLL' --- wheel move sprinkler system 'CENTER PIVOT' --- center pivot sprinkler system 'SOLID SET' --- solid set sprinkler system If a sprinkler system is selected data entries are discussed on the following section, "Input Data per Sprinkler System".

Care No. 8

Average field lengths for furrow and border fields as pair, Enter as many pairs of run lengths as desired for computation of efficiency (i.e. 1300.0, 1300.0, 1000.0, 800.0, 800.0, 600.0 . . .) Card No. 9 Information on gravity system for each crop 1 - Gravity system code '1.0' --- furrow irrigation '2.0' --- border irrigation 2 - Average inflow rate, GPM for furrow and CFS for border; If not known enter '0.0'. 3 - Furrow spacing (inches) or border width (feet). 4 - Average time of inflow, minutes, If not known type '0.0'. \*Note: Enter '0.0' for both of inflow rate and time of inflow in order finding maximum efficiency of furrow irrigation \*Note: Card No. 9 is repeated up to the total number of crops considered Card No. 10 Labor rate 1 - Irrigation labor for furrow hr/irrig/acre/1000 ft run 2 - Irrigation labor for border hr/irrig/acre/1000 ft run 3 - Additional labor for furrow if any, hr/irrig/acre 4 - Additional labor for border if any, hr/irrig/acre 5 - Rate of labor, \$/hr Card No. 11 Irrigation cost data 1 - Cost of constructing open ditch and drain \$/ft 2 - Cost of lining farm ditches, \$/ft 3 - Cost of irrigation structure for furrow, \$/acre 4 - Cost of irrigation structure for border, \$/acre 5 - Cost of miscellaneous irrigation equipment for furrow, \$/acre 6 - Cost of miscellaneous irrigation equipment for border, \$/acre 7 - Cost of leveling, smoothing, or grading for furrow fields, \$/acre 8 - Cost of leveling, smoothing, or grading for border fields, \$/acre Card No. 12 Amortizaton Data 1 - Life of irrigation equiment for furrow, years 2 - Life of irrigation equipment for border, years 3 - Salvage value, percent of total capital cost 4 - Rat of interest, percent Card No. 13

Land cost data

1 - Cost of annual land preparation (planning), \$/acre

2 - Value of land lost to production, \$/acre

Operation and maintenance cost data

 Annual operation and maintenance costs, percent of total investment 2 - Annual tax and insurance, percent of average investment

Card No. 15

Value of Water

1 - Value of water lost to surface runoff, \$/acre-feet

2 - Value of water lost to deep percolation, \$/acre-feet

If no water value is considered at this point, enter '0.0' for \*Note: both of them. These values can be entered later in the optimization procedure.

Card No. 16

Sub-surface drainage code

If sub-surface drainage is considered, enter 'YES'.

If not, enter 'NO'.

\*\*If 'YES' has been entered on Card No. 16, enter data card Nos. 16a, 16b and 16c, otherwise skip these cards.

Card No. 16a

Sub-surface drainage data

1 - Drain depth, ft

2 - Distance between drain and barrier, ft

3 - Permeability, between drain and barrier, ft/day

4 - Maximum permissible water table height above drain, ft

5 - Slope of lateral drain, ft/ft

Card No. 16b

Cost and laying of drain pipe for the following pipe sizes

1 - 4 inch pipe, \$/ft 2 - 6 inch pipe, \$/ft 3 - 8 inch pipe, \$/ft

Card No. 16c

Cost of earthwork

1 - Unit cost of excavation \$/CY

2 - Unit cost of backfill, \$/CY

3 - Unit cost of gravel envelope, \$/CY

4 - Percent contingency cost, pipe trench

Card No. 17

Code for border irrigation

If advance and recesion and intake rate curves are available for border irrigation enter 'YES'. If not, enter 'NO'.

\*\*If 'YES' has been entered in Card No. 17, enter Card No. 17a, otherwise skip this card.

### Card No. 17a

Curve coefficients of the general equations of advance, recession and intake rate curves

1 - Multiplier and exponent of intake rate

2 - Multiplier and exponent of advance

3 - Multiplier and exponent of recession

### Card No. 18

Options for efficiency calculation for border

Enter

'1.0' --- If the flow rate and set length are to be adjusted to increase efficiency

'2.0' --- If only the set length is to be adjusted

'3.0' --- If neither flow rate nor set length are to be adjusted

Card No. 19

Border irrigation data

1 - Lag time for graded border irrigation (Table 4-6, Reference 1)

2 - Assumed graded irrigation efficiency (Table 4-12, Reference 1)

\*Note: The referenced tables are in Appendix E.

\*Note: If more than one run length are to be processed repeat Cards No. 9 and 17 (and 17a if necessary) after Card No. 19.

\*Note: If application time is greater than 0.0 then skip this card.

Card No. 20

End of data code

Enter one of the following codes

| If, | there is an add | tional system to be processed                                                                                                          |
|-----|-----------------|----------------------------------------------------------------------------------------------------------------------------------------|
|     | 'GRAVITY'       | furrow or border irrigation                                                                                                            |
|     | 'HAND MOVE'     | hand move sprinkler system                                                                                                             |
|     | 'SIDE ROLL'     | wheel move sprinkler system                                                                                                            |
|     | 'CENTER PIVOT'  | center pivot sprinkler system                                                                                                          |
|     | 'SOLID SET'     | solid set sprinkler system                                                                                                             |
|     | 'REWORK'        | If there are no more irrigation systems to<br>be processed but data on another soil type<br>or land class are considered; Data entries |
|     | 'END DATA'      | are then repeated starting with Card No. 2<br>If it is the end of a job.                                                               |

If 'GRAVITY' system is selected, data entries are repeated starting with Card No. 8

If a sprinkler system is selected, data entries are discussed on the following section, Input Data for Sprinkler System.

C-2. INPUT DATA FOR PROGRAM APSYS (SPRINKLER IRRIGATION SYSTEM) Cards No. 1-7

Same as for Gravity Irrigation System

Card No. 8

Lateral line data

1 - Length of lateral, ft

For a center pivot with a corner system, enter radius

- 2 Lateral spacing, Enter '0.0' for center pivot sprinkler system
- 3 No. of corner systems irrigated for center pivot, 0.0 for other systems

Card No. 9

Lateral setting

- 1 Time required to move lateral, min.
- 2 Time allowed for set length, hrs: up to 11 values: i.e., 8.0, 12.0, 24.0, 36.0. This value must include the required moving and down time.

Card No. 10

Efficiency data

- 1 Overall efficiency of system, percent
- 2 Other losses, percent (losses to evaporation and leaks, etc.)
- Card No. 11

Maximum allowable intake rate of soil, inches/hour

Card No. 12

Lateral line cost and expenses

- 1 Original cost of one lateral, \$ (cost includes pipe, sprinkler heads, riser, etc.)
- 2 Life of system, years
- 3 Interest rate, percent
- 4 Tax and insurance expenses, percent of average investment
- 5 Salvage value, percent of original investment
- 6 Maintenance cost, percent of total investment
- 7 Contingency cost, percent

Card No. 13

Labor data

- 1 Labor rate for moving lateral lines, \$/hr
- 2 Transport time between irrigation, hour

Card No. 14

Value of water lost to deep percolation, \$/acre

Card No. 15 Mainline Data 1 - Pipe size, inches 2 - Length of pipe with this size on entire field 3 - Cost of mainline (pipe and accessory) \$/ft \*Note: Enter as many sizes as needed. Card No. 16 Mainline code If mainline is buried --- 'YES'. If not --- 'NO'. If 'YES' on Card No. 16, enter the following on Card No. 16a Card No. 16a Unit costs of following 1 - Mainline excavation, \$/CY 2 - Mainline backfill \$/CY Card No. 17 Mainline amortization and expenses 1 - Life of equipment, years 2 - Interest rate, percent 3 - Salvage value, percent of original investment 4 - Annual tax and insurance, percent of average investment 5 - Annual maintenance cost, percent of original investment Card No. 18 Value of land lost to production, \$/acre Card No. 19 End of data code, See Card No. 20 on Gravity Irrigation System Section

C-3. INPUT DATA FOR PROGRAM XCANAL (CANAL CONVEYANCE SYSTEM) Card No. 1 - 3

Unite prices for each of the following items

1 - Excavation, common, canal, \$/CY 2 - Excavation, common, structures, \$/CY 3 - Excavation, common, siphons, \$/CY 4 - Excavation, common, pipe trenches, \$/CY 5 - Excavation, rock, canals, \$/CY 6 - Excavation, rock, structures \$/CY 7 - Excavation, rock, siphons, \$/CY 8 - Excavation, rock, pipe trenches, \$/CY

1 - Backfill, canal, \$/CY 2 - Backfill, structures \$/CY 3 - Backfill, siphons, \$/CY 4 - Backfill, pipe trenches, \$/CY 5 - Bed preparation, canal lining, \$/CY 6 - Compacting embankment, \$/CY 7 - Compacting backfill, \$/CY 8 - Overhaul, \$/YD-MI

1 - Concrete in canal lining, \$/CY
2 - Concrete in structures, \$/CY
3 - Concrete in siphons, \$/CY
4 - Steel, \$/LB
5 - Cement, \$/CWT

Card No. 4

Hourly Wages and indices

Hourly wage rate for pipe layers, \$/HR
 Equipment index, base year is 1976
 Area factor index
 Haul distance of pipe for up to 150 ft head class, ft
 Haul distance of pipe over 150 ft head class, ft
 Hourly wage rate for miner, \$/HR
 Structural steel index, base year is 1976
 Cement index, base year is 1976
 Card No. 5

Rehabilitation code

Enter '1.0' --- If the program is to estimate costs of rehabilitating an existing channel

'0.0' --- To estimate costs of excavating a channel on natural terrain

#2

#1

#3

System code

```
'READ---LINED CANAL', then reach identifier if the reach being
Enter
                processed is a lined canal or
        'READ---UNLINED CANAL', then reach identifier if the reach being
                processed is an unlined canal
Card No. 7
    Contingencies, lining materials
1 - Percent contingency cost, canal or lateral structures
2 - Percent contingency cost, earthwork
3 - Percent contingency cost, right-of-way (R-O-W)
4 - Percent contingency cost, canal lining
5 - Canal structures cost index, base year is 1976
6 - Code for canal lining (5 options): Enter one of the following codes
    '0.0' --- no lining
    '1.0' --- unreinforced portland cement
    '2.0' --- reinforced portland cement
    '3.0' --- asphaltic concrete
    '4.0' --- shortcrete
Card No. 8
    Design channel properties
1 - Design side slope of canal
2 - Side slope of outside of new, design canal
3 - Manning's roughness coefficient
4 - Minimum allowable velocity, ft/sec
5 - Maximum allowable velocity, ft/sec
6 - Minimum channel depth, ft
Card No. 9
    Bridge data
1 - Width of county bridge, ft
2 - Unit cost for county bridge, $/sq ft
3 - Width of farm bridge, ft
4 - Unit cost for farm bridge, $/sq ft
Card No. 10
    Amortization
1 - Life of project, years
2 - Annual interest rate, percent
```

3 - Salvage value as a percent of original cost

Card No. 11

Water losses

- 1 Value of water lost from canal reach, \$/AF
- 2 Number of days canal is operating 75 percent of peak flow
- 3 Other operational losses as a percent of flow rate, Q

Seepage coefficient and right-of-way

1 - Seepage coefficient, Moritz equation, cu ft/sq ft/day

2 - Present right-of-way (ROW), ft

3 - Value of ROW, \$/acre

4 - Area for severance, acre

5 - Unit costs for sevrance pay, \$/acre

6 - Distance to borrow area (common), miles

Card No. 13

Canal length and elevation

1 - Length of reach, ft

2 - Elevation of canal bottom at outlet, ft

3 - Elevation of canal bottom at inlet, ft

4 - Required minimum water elevation at outlet for turnout operation, ft

Card No. 14

Farm turnout

1 - Number of farm turnouts

2 - Size of farm turnouts, cfs

\*Note: If there are more than one size of farm turnouts, the entries are repeated on the same card. If no turnout, enter '0.0, 0.0'

Card No. 15

Drainage crossings

1 - Number of crossings

2 - Diameter of crossings, inches

3 - Approximate capacity, cfs

\*Note: If no drainage, enter '0.0, 0.0, 0.0'.

Card No. 16

Number of structures to be included in reach

- 1 Rectangular inclined drop.
- 2 concrete check without apron
- 3 Modified Parshall flume
- 4 County bridge
- 5 Farm bridge
- 6 Siphon
- 7 Tunnel

If siphon is present enter the following Card No. 16a, otherwise, skip it

Card No. 16a

Siphon data

1 - Head loss desired in pipe or barrel, ft/1,000 ft

2 - Maximum velocity in pipe, fps

- 3 Length of pipe, upstream slope, ft
- 4 Length of pipe, bottom slope, ft
- 5 Length of pipe, downstream slope, ft

6 - Transition loss coefficient in inlet

7 - Pipe slope, upstream, vertical/horizontal, ft/ft

8 - Pipe slope, bottom, ft/ft

9 - Pipe slope, downstream ft/ft

10 - Width of R-O-W, ft

If Tunnel is present enter the following Card No. 16b, otherwise, skip it

No. 16b

Tunnel data

- 1 Head loss desired, ft/1,000 ft
- 2 Desired velocity in tunnel, fps
- 3 Elevation of tunnel, ft
- 4 Length of tunnel, ft
- 5 Number of headings to be used

```
Card No. 17
```

Prism data of old canal

Base width of old channel, ft
 Side slope (average) of inside of old channel
 Average relative height of berms above old channel bottom, ft
 Average top width of old berm on left side (facing upstream)

5 - Average top width of old berm on right side of channel

- 6 Side slope of outside face of left channel berm
- 7 Side slope of outside face of right channel berm
- 8 Elevation of natural terrain to left of channel at inlet
- 9 Elevation of natural terrain to right of channel at inlet
- 10 Elevation of natural terrain to left of channel at outlet
- 11 Elevation of natural terrain to right of channel at outlet

Card No. 18

Flow rate data

1 - Minimum Q, cfs

2 - Maximum Q, cfs

3 - Q interval, cfs

\*Note: There must be a minimum of three steps

Card No. 19

End of data code

Enter

'END DATA'--- If end of data

- 'SKIP---LINED CHANNEL'--- If there is another reach of lined canal to be processed
- 'SKIP---UNLINED CHANNEL'--- If there is another reach of unlined canal to be processed

\*Note: For more run of lined or unlined canal reach the data entries are repeated starting with Card No. 12.

C-4. INPUT DATA FOR PROGRAM XPIPE (PIPE CONVEYANCE SYSTEM) Card No. 1

System planning code

Enter

'0.0' --- If pipe is to be placed in natural, undisturbed terrain '1.0' --- If pipe is to replace an existing unlined channel (i.e.) pipe will be placed directly in old channel, along with the required excavation and backfill.

Card No. 2

Unit cost of excavation

1 - Common, canal, \$/CY

2 - Common, structure, \$/CY

- 3 Common, siphon, \$/CY
- 4 Pipe trench, \$/CY
- 5 Rock, canal, \$/CY
- 6 Rock, structure, \$/CY
- 7 Rock, siphon, \$/CY
- 8 Rock, pipe trench, \$/CY

Card No. 3

Backfill and compaction

 Backfill, canal (compacted bottom fill for rehabilitation of canal to pipe system), \$/CY

- 2 Backfill, structure, \$/CY
- 3 Backfill, siphon, \$/CY

```
4 - Backfill, pipe trench, $/CY
```

- 5 Bed preparation, canal lining, \$/CY
- 6 Compacting embankment, \$/CY
- 7 Compacting backfill, \$/CY
- 8 Overhaul, \$/YD-MI

Card No. 4

Concrete and steel cost

1 - Concrete in canal lining, \$/CY

2 - Concrete in structure, \$/CY

```
3 - Concrete in siphon, $/CY
```

```
4 - Steel, $/#
```

Card No. 5

System code

Enter one of the following codes 'READ---GRAVITY PIPE', then reach identifier or 'READ---HIGH PRESSURE PIPE', then reach identifier

Hourly wages and indices

```
1 - Wage rate for pipe layer
 2 - Equipment index, base is 1976
 3 - Area factor
 4 - Haul distance of pipe for up to 150 ft head
 5 - Haul distance of pipe over 150 ft head
 6 - Code for type of cover
        '1.0' --- A cover (5 ft)
        '2.0' --- B cover (10 ft)
        '3.0' --- C cover (15 ft)
'4.0' --- D cover (20 ft)
 7 - Cost index for pipe system
 8 - Depth of backfill over top of pipe, ft
 9 - Head class (ft) of concrete pipe
Card No. 7
    Contingency cost
 1 - Contingency cost for earthwork, percent
 2 - Contingency cost for steel reservoir, percent
 3 - Contingency cost for R.O.W., percent
 4 - Concrete pipe contingency cost for pipes valves, etc., percent
 5 - PVC pipe contingency cost for pipes, valves, etc. percent
 7 - Head class desired for PVC pipe, enter one of the following codes
        '1.0' --- for 63 psi bell end
        '2.0' --- for 125 psi bell end
        '3.0' --- for 160 psi end
Card No. 8
    Amortization
 1 - Type of project, years
 2 - Interest rate, percent of total investment
 3 - Salvage value, percent of initial investment
```

Card No. 9

Elevated tank

1 - Tower height, ft

2 - Minimum flow rate to tank, cfs

3 - Maximum flow rate to tank, cfs

4 - Flow rate interval

\*Note: There must be a minimum three steps. If no tank is desired, enter 0.0, 0.0, 0.0.

Length and elevation

1 - Length of reach

```
2 - Hydraulic grade line elevation at pipe outlet, ft
```

3 - Elevation of pipe outlet, ft

```
4 - Hydraulic grade line elevation at pipe inlet, ft
```

```
5 - Elevation of pipe inlet, ft
```

Card No. 11

Type of pipe for this reach

1.0 - for concrete 2.0 - for steel (AWWA tar coat) 3.0 - for PVC (4 to 14 inches diameter) 4.0 - Program will select the least cost ppe type (1, 2, or 3)

Card No. 12

Water Hammer Factor for Head Class Selection

Enter

'1.0' --- when no head class increase is desired '2.0' --- when 50 percent head class increase is desired '3.0' --- when 100 percent head class increase is desired

Card No. 13

Easement excavation

1 - Width of easement, ft

2 - Value of easement for cropped land \$/acre

- 3 Value of easement for other land, \$/acre
- 4 Length of easement for other purposes, percent of total length
- 5 Rock excavation, percent of total excavation

6 - Distance to borrow area (common), miles

Card No. 14

Farm turnout code and misc. cost

1 - Enter one of the following codes

'0.0' --- If no pressure regulating valves for turnouts are desired

'1.0' --- If pressure regulating valves are desired

2 - Miscellaneous cost for additional turnout items

Card No. 15

Farm turnouts

- 1 Number of farm turnouts
- 2 Size of farm turnouts, inches
- \*Note: If there are more than one size of farm turnouts the entries are repeated on the same card, if no turnout enter, 0.0, 0.0.

Type data for old channel prism

Data are to be representative of the entire reach: 1 - Base width of old channel 2 - Inside side slope (ave) of old channel 3 - Average relative height of berms above old channel bottom 4 - Average top width of berm on left side of channel (facing upstream) 5 - Average top width of berm on right side of channel 6 - Average sideslope of outside of left side berm 7 - Average sideslope of outside of right side berm 8 - Elev of natural terrain to left of reach inlet 9 - Elev of natural terrain to right of reach inlet 10 - Elev of natural terrain to left of reach outlet 11 - Elev of natural terrain to right of reach outlet 12 - Width of present right of way 13 - Elev of old channel bottom at inlet 14 - Elev of old channel bottom at outlet Card No. 17 Flow rate 1 - Minimum flow rate, cfs 2 - Maximum flow rate, cfs 3 - Flow rate interval, cfs Card No. 18 End of data code Enter one of the following codes 'END DATA' --- If end of data 'SKIP---GRAVITY'

```
'SKIP---GRAVITY'

'SKIP---HIGH PRESSURE PIPE' --- If there is another reach of

processed

'SKIP---HIGH PRESSURE PIPE' --- If there is another reach of

high pressure pipe system to be

processed
```

C-5 INPUT DATA FOR PROGRAM XPUMP (FARM PUMP)

Card No. 1

Type of pump to process

Enter one of the following codes

'READ---RIVER PUMP', if river pump or relift pumps is desired 'READ---FARM PUMP', if on-farm pump (centrifugal or turbine for deep well) is desired

Card No. 2

Farm pump data

1 - Total dynamic head, ft

2 - Cost index for pump facilities, base year is 1976

3 - Code for the type of pumping unit Enter one of the following codes '1.0' --- for centrifugal

'2.0' --- for vertical turbine

4 - Efficiency of pumping unit, percent

5 - Miscellaneous costs (sump, discharge lines, etc.), percent

6 - Contingency cost, percent of field cost

7 - Indirect engineering costs, percent of field costs.

Card No. 3

Amortization

- 1 Service life of pumping unit, years
- 2 Interest rate, percent
- 3 Salvage value, percent of original investment
- 4 Other expenses, percent of original investment
- 5 Average escalation of energy, percent per year
- 6 Percent of time pump is operated during peak month (normally 100%)

Card No. 4

Water requirement

 Energy monthly irrigation requirement for the season as percent of total annual requirement

\*Note: Enter as many months as necessary.

Card No. 5

Operation and maintenance and insurance data

- 1 Annual 0 & M cost, percent of total investment
- 2 Taxes and insurance, percent of average investment

## Card No. 6

Deep well data

- 1 Life of well, years
- 2 Interest rate, percent

3 - Salvage value of well, percent of original investment 4 - Type of well Enter '1.0' --- well in alluvium '2.0' --- well in hard rock 5 - Miscellaneous costs (discharge lines, housing, etc), percent of pumping unit cost 6 - Contingency cost, percent of field cost 7 - Depth of well, ft \*Note: If deep well is not used enter, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0. Card No. 7 Number of pump units and type 1 - Number of pump units in station 2 - Type of pump Enter one of the following information a) Horsepower size of smallest pumping unit proposed b) Ratio of size of smallest pumping unit relative to total HP of plant (decimal) Enter 0.0 for default Default is cfs No. units range <1.0 1 1.0 2 3.0 3.0 -6.0 3 6.0 - 20.0 4 >20.0 5 Default ratio of size of smallest unit relative to total HP of plant is 1.0/(Q + 2.0)Q < 8.0 cfs and 1.0/10.0 Q >=8.0 cfs \*Note: Number of units and smallest size are necessary to estimate monthly power demands and changes for private utility. Card No. 8 Flow rate data 1 - Minimum flow rate, gpm 2 - Maximum flow rate, gpm 3 - Flow rae interval, gpm \*Note: There must be a minimum of three steps. Card No. 9 Code for demand rate Enter 'YES'--- if demand is based on flat rate for certain range of HP, i.e. for HP 0-3, \$5.00/KW/month 'NO'--- otherwise

Demand rate schedule

If the monthly demand charge is based on HP, enter data with the following format:

xxx.x \$/KW, FIRST xxx.x KW xxx.x \$/KW, SECOND xxx.x KW

(i.e., 2.53,100.0, 1.66, 101.0)

Card No. 11

Energy rate schedule

Enter data with the following format,

xx.x CENT, FIRST xx.x KWH, CODE xx.x CENT, SECOND xx.x KWH, CODE

> Code used '1.0' --- When energy rate is per KW '2.0' --- When energy rate is not based on KW

Card No. 12

Fixed charge for energy cost - if no fixed charge enter 0.0. Card No. 13

End of data code

Enter

'END OF DATA' --- if end of data 'READ---RIVER PUMP' --- if river pump is to be processed 'READ---FARM PUMP' --- if on-farm pump is to be processed

C-6. INPUT DATA FOR PROGRAM XPUMP (RIVER PUMP) Card No. 1 Same as Card No. 1 in Farm Pump Card No. 2 River Pump data 1 - Type of pumping units Enter, '1.0' --- for vertical pump '2.0' --- for horizontal pump 2 - Total dynamic head, ft 3 - Month of estimate, enter number of month, e.c., February 2.0 4 - Year of estimate, enter last two numbers, i.e., 78.0 Card No. 3 Miscellaneous pumping plant data 1 - Contingency cost for pumping plant, percent 2 - Code for structures, improvements and waterways Enter 1.0 --- no major difficulty 2.0 --- major difficulty 3.0 --- booster pump 3 - Cost of power, cents per KWH 4 - General cost index, base year is 1976 5 - Code for type of pumping plant (according to Gyer) Enter '1.0' --- unattended plant '2.0' --- semi-attended plant '3.0' --- attended plant 6 - Sediment code - for water allowance computation Enter '1.0' --- clear water '2.0' --- light sediment load '3.0' --- medium sediment load '4.0' --- heavy sediment load 7 - Average efficiency of pumping station (wire to water) express as percent 8 - Indirect engineering costs above normal engineering costs (already included in cost equations) Card No. 4 Same as Card No. 7 of Farm Pump Card No. 5 Transmission line data and cost indices 1 - Actual length of transmission line, miles 2 - Code for terrain condition Enter '0.0' --- flat terrain '1.0' --- swampy or mountainous terrain 3 - Code for foundation Enter '0.0' --- average condition '1.0' --- swampy or rock foundation

4 - Contingency cost for transmission line, percent5 - Cost index, transmission line, base is 1976

6 - Cost index, irrigation 0 & M, base is 1976

Card No. 6

Switching bay data

1 - Contingency cost for switching bay

2 - Cost index, switching bay, base is 1976

Card No. 7

Amortization data, transmission line

1 - Service life of transmission line and switching bay, years

2 - Salvage value, percent of initial investment

Card No. 8

Amortization data, pumping unit

1 - Life of pumping unit, years

2 - Interest rate, percent

3 - Salvage value of the unit, percent of original investment

4 - Average escalation of energy, percent per year

Card No. 9

Water requirement

Enter monthly irrigation requirement for the season --- percent of annual total requirement for each month.

Card No. 10

O&M Data for pump

- 1 Length of operating season, weeks
- 2 Hourly wage rate for mechanic
- 3 Hourly wage rate for pumping plant operator
- 4 Percent of time station is operated during peak month (normally 100%) --- (assumed at full discharge)

Card No. 11

Flow rate data

- 1 Minimum flow rate, cfs
- 2 Maximum flow rate, cfs
- 3 Flow rate interval, cfs

Card No. 12

Code for demand rate

Same as Card No. 9 of Farm Pump

Demand rate schedule Same as Card No. 10 of Farm Pump Card No. 14

Energy rate schedule Same as Card No. 11 of Farm Pump Card No. 15

Same as Card No. 12 of Farm Pump Card No. 16

End of data code Same as Card No. 13 of Farm Pump

# APPENDIX D

# SAMPLE OUTPUTS OF THE COST ESTIMATION COMPUTER PROGRAMS

# D-1. ON-FARM IRRIGATION APPLICATION SYSTEMS SUBPROGRAMS

- a. Unimproved gravity irrigation application system
- b. Improved gravity irrigation application system
- c. Hand-move sprinkler irrigation application system
- d. Side-roll wheel line sprinkler irrigation application system
- e. Center-pivot sprinkler irrigation application system.

# D-2. CONVEYANCE SYSTEMS SUBPROGRAMS

- a. Unlined canal system
- b. Lined canal system
- c. Gravity pipe system
- d. High pressure pipe system

## D-3. PUMP SYSTEMS SUBPROGRAMS

- a. Farm pump system
- b. River pump system

| ANNUAL COST OF IRR IGATIONGRAVITY<br>SOIL TYPE NUMBER 1<br>ALFALFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SYSTEM TUNIMPROVEDI AMMON                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALFALFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a second the second                                                                                              | GRAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FIELD LENGTH, FT       1300.         LABOR REQUIRED, HR/AC/IRR       0.50         ADDITIONAL LABOR. HR/AC/IRR       0.20         LABOR RATE, \$/HR       4.50         COST OF CONST. FARM DITCH. \$/FT       0.45         COST OF FARM DITCH LINING. \$/FT       0.45         COST OF FARM DITCH LINING. \$/FT       0.0         COST OF FARM DITCH LINING. \$/AC       5.00         COST OF FARM DITCH LINING. \$/AC       0.0         COST OF FARM DITCH LINING. \$/AC       0.0         COST OF LEVELING. \$RADING. \$/AC       0.0         COST OF LEVELING. GRADING. \$/AC       0.0         COST OF LEVELING. TO PRODUCTION. \$/AC       10.00         COST OF LAND LOST TO PRODUCTION. \$/AC       250.00 |                                                                                                                  | GRAIN<br>FIELD LENGTH, FT 1300,<br>ADDITIONAL LABOR, HR/AC/IRR 0.20<br>COST OF CONSTHE ARM DITCH, S/FT 0.45<br>COST OF FARM GDITCH, LINING, S/FT 0.45<br>COST OF FARM GDITCH, LINING, S/FT 0.45<br>COST OF FARM GDITCH, LINING, S/AC 100.00<br>COST OF HIRICALION, STACL, 100.00<br>COST OF LAND DOST TO PRODUCTION, S/AC 100.00<br>COST OF LAND DENSTHER PRODUCTION, S/AC 250.00<br>NUMBER OF IRRIG./SEASON 63.100N, S/AC 250.00<br>NUMBER OF IRRIG./SEASON 64.11<br>FARM SIZE, ACRE 50<br>FIELD SIZE FOR THIS CROP, AC 200<br>TOTAL INVESTMENT, S/AC 200<br>OWNERSHIP COST (S/AC)<br>OWNERSHIP COST (S/AC)<br>COST OF LAND DENST (S/AC)<br>OFFRECIATION AND MAINTENANCE COST (S/AC)<br>LABOR COST OF LAND EXPLANATION S/AC 200<br>TOTAL INVESTMENT, S/AC 200<br>TOTAL INVESTMENT, S/AC 200<br>COST OF LAND COST (S/AC)<br>COST OF LAND COST (S/AC)<br>CONTRESS ON INITIAL INVESTMENT 14.41<br>OFFRATION AND MAINTENANCE COST (S/AC)<br>LABOR COST OF LAND LOST TO PRODUCTION 5.777<br>COST OF LAND LOST TO PRODUCTION 5.777<br>COST OF SUB-SURFACE DRAIN (S/AC) 0.0<br>TOTAL ANNUAL COST (S/AC/YR) 43.91<br>BORDER IRRIGATION EFFICIENCY ESTIMATES<br>LENGTH OF JIRIGATION NUM FILELON HEAD, IN |
| NUMBER OF IRRIG./SEASON<br>DEPLETED RAM BETWEEN IRRIGATIONS, INCHES 6.05<br>FREQUENCY OF IRRIGATION AT PEAK USE, DAYS 20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | and the second have                                                                                              | NUMBER OF IRRIG./SEASON<br>DEPLETED RAM BETWEEN IRRIGATIONS, INCHES 4.41<br>FREQUENCY OF IRRIGATION AT PEAK USE-DAYS 17.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| FARM SIZE, ACRE<br>FIELD SIZE FOR THIS CROP, AC 20.<br>TOTAL INVESTMENT, \$/AC 120.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | استنصبوا سمتم أرتي ووجاهدت                                                                                       | FARM SIZE, ACRE<br>FIELD SIZE FOR THIS CROP, AC 20.<br>TOTAL INVESTMENT, \$/AC 120-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| OWNERSHIP COST (\$/AC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | the Walter a surface                                                                                             | OWNERSHIP COST (\$/AC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DEPRECIATION (SINKING FUND) 0.28<br>INTEREST ON INITIAL INVESTMENT 14.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and the second | CEPRECIATION (SINKING FUND) 0.28<br>INTEREST ON INITIAL INVESTMENT 14.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DPERATION AND MAINTENANCE COST (\$/AC)<br>LABOR COST<br>MAINTENANCE AND REPAIR<br>TAXES AND INSURANCE<br>0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                  | DPERATION AND MAINTENANCE COST (\$/AC)<br>LABOR COST<br>MAINTENANCE AND REPAIR<br>TAXES AND INSURANCE<br>0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| COST OF LAND LOST TO PRODUCTION 5.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | in a militar in the second second                                                                                | COST OF LAND LOST TO PRODUCTION 5.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| COST OF WATER LOST<br>COST OF SUB-SURFACE DRAIN (\$/AC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  | COST OF WATER LOST<br>COST OF SUB-SURFACE DRAIN (\$/AC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| TOTAL ANNUAL COST (\$/AC/YR) 41.28<br>BORDER IRRIGATION EFFICIENCY ESTIMATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  | TOTAL ANNUAL COST (\$/AC/YR) 43.91<br>BORDER IRRIGATION EFFICIENCY ESTIMATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| LENGTH OF IRRIGATION RUN, FT<br>DEPTH OF WATER APPLIED AT FIELD HEAD, IN<br>OBTH OF WATER APPLIED AT FIELD END, IN<br>UNIT STREAM SIZE, CFS/FT<br>BORDER WIDTH, FT<br>FIELD SLOPE, FT/FT<br>TIME OF APPLICATION, MIN<br>APPLICATION EFFICIENCY, PERCENT<br>DISTRIBUTION EFFICIENCY, PERCENT<br>VOLUME OF RUNOFF, AC-FT/AC/YR                                                                                                                                                                                                                                                                                                                                                                                     | 1300.<br>8.13<br>7.42<br>0.0270<br>50.0027<br>867.<br>45.<br>94.<br>0.68<br>1.69                                 | BORDER IRRIGATION EFFICIENCY ESTIMATES<br>LENGTH OF IRRIGATION RUN, FT<br>DEPTH OF WATER APPLIED AT FIELD HEAD, IN<br>DEPTH OF WATER APPLIED AT FIELD END , IN<br>UNIT STREAM SIZE, CFS/FT<br>BORDER WIDTH, FT<br>FIELD SLOPE, FT/FT<br>TIME OF APPLICATION, MIN<br>APPLICATION EFFICIENCY, PERCENT<br>OISTRIBUTION EFFICIENCY, PERCENT<br>OISTRIBUTION EFFICIENCY, PERCENT<br>VOLUME OF DEEP PERC, AC-FT/AC/YR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

1300

0.0308 50. 0.002

Table D-1. On-farm irrigation application systems subprograms

| PASTURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LABOR REQUIRED, HR/AC/IRR 0.70<br>ADDITIONAL LABOR, HR/AC/IRR 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ANNUAL COST OF IRRIGATIONGRAVITY SYSTEM (UNIMPROVED) AMMON<br>SOIL TYPE NUMBER 1<br>PASTURE<br>FIELD LENGTH, FT 1300.<br>LABOR REQUIRED, HR/AC/IRR 0.50<br>ADDITIONAL LABOR, HR/AC/IRR 0.20<br>COST OF CONST. FARM DITCH, S/FT 0.45<br>COST OF FARM DITCH LINING, S/FT 0.0<br>COST OF FARM DITCH LINING, S/FT 0.0<br>COST OF MISC. EQUIPT., \$/AC. 0.0<br>COST OF MISC. EQUIPT., \$/AC. 0.0<br>COST OF LAND NETRUC. \$/AC 100.00<br>COST OF LAND PREPARATION, \$/AC 100.00<br>COST OF LAND DREPARATION, \$/AC 50.00<br>COST OF LAND LOST TO PRODUCTION, \$/AC 250.00<br>NUMBER CF IRRIGA/SEASON<br>CEPLETED RAM BETWEEN IRRIGATIONS, INCHES 3.15<br>FREQUENCY OF IRRIGATION AT PEAK USE, DAYS 14.<br>FARM SIZE, ACRE 80. | LABOR RATE, \$/HR<br>COST OF CONST. FARM DITCH, \$/FT<br>COST OF CONST. FARM DITCH, \$/FT<br>COST OF FARM DITCH LINING, \$/FT<br>COST OF TRRIGATION.STRUC., \$/AC<br>COST OF LEVELING, GRADING, \$/AC<br>COST OF LEVELING, GRADING, \$/AC<br>COST OF LAND PREPARATION, \$/AC<br>COST OF LAND PREPARATION, \$/AC<br>COST OF LAND LOST TO PRODUCTION, \$/AC<br>COST OF LAND LOST OF LAND LOST TO PRODUCTION, \$/AC<br>COST OF LAND LOST OF LAND LOST OF LAND PRODUCTION, \$/AC<br>COST OF LAND LOST OF LAND LOST OF LAND LOST OF LAND PRODUCTION, \$/AC<br>COST OF LAND LOST OF LAND PRODUCTION, \$/AC<br>COST OF LAND PRODUCTION AT PRODUCTION AT PRODUCTION AT PRODUCTION AT PRODUCTION AT PRODUCTION AT PRO |
| CEPLETED RAM BETWEEN IRRIGATIONS, INCHES 3.15<br>FREQUENCY OF IRRIGATION AT PEAK USE, DAYS 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FIELD SIZE FOR THIS CROP, AC 20.<br>TOTAL INVESTMENT, \$/AC 125.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| FIELD SIZE FOR THIS CROP, AC 20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and the obst termes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CWNERSHIP COST (\$/AC)     120-       CWNERSHIP COST (\$/AC)     0-28       DEPRECIATION_(SINKING_FUND)     0-28       INTEREST ON INITIAL INVESTMENT     14.41       OPERATION AND MAINTENANCE COST (\$/AC)     15.78       ABOR COST     15.78       MAINTENANCE AND REPAIR     10.10       TAXES AND INSURANCE     0.20       SUB TOTAL     5.77       COST OF LAND LOST TO PRODUCTION     5.77       COST OF WATER LOST     0.0                                                                                                                                                                                                                                                                                      | LABOR COST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| LABOR COST 15.78<br>MAINTENANCE AND REPAIR 10.10<br>TAXES AND INSURANCE 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | COST OF LAND LOST TO PRODUCTION 55.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| COST OF LAND LOST TO PRODUCTION 5.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | COST OF WATER LOST<br>COST OF SUB-SURFACE DRAIN (\$/AC) 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| COST OF WATER LOST       O.O         COST OF WATER LOST       O.O         COST OF SUB-SURFACE ORAIN (\$/AC)       O.O         TOTAL ANNUAL COST (\$/AC/YR) 46.54         BORDER IRRIGATION EFFICIENCY_ESTIMATES         LENGTH OF IRRIGATION RUN, FT       1300.         DEPTH OF WATER APPLIED AT FIELD HEAD. IN       4.47         OEPTH OF WATER APPLIED AT FIELD END. IN       4.29         UNIT STREAM SIZE, CFS/FT       O.0396         BORDER, FT/FT       O.0027         TINE OF APPLICATION, MIN       372.         TINE OF APPLICATION, MIN       372.         OLOTATION FFICIENCY, PERCENT       98.         VOLUME OF DEEP PERC, AC-FT/AC/YR       0.68                                                      | TOTAL ANNUAL COST (\$/AC/YR) 61.41<br>LENGTH OF IRRIGATION RUN.FT 1300<br>TOTAL DEPTH OF WATER APPLIED, IN 8<br>DEPTH OF WATER APPLIED AT FIELD HEAD 4<br>DEPTH OF WATER APPLIED AT FIELD END 3<br>FURROW STREAM SIZE.GPM 25<br>FURROW STREAM SIZE.GPM 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DEPTH OF WATER APPLIED AT FIELD HEAD, IN 4.47<br>DEPTH OF WATER APPLIED AT FIELD END, IN 4.29<br>UNIT STREAM SIZE, CFS/FT 0.0396<br>BORDER WIDTH, FT 50,<br>FIELD SLOPE, FT/FT 0.0027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A CORE=0.0471 B CORE=0.7475 C CORE=0.2750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| APPL ICATION EFFICIENCY, PERCENT 37.<br>0ISTRIBUTION EFFICIENCY, PERCENT 98.<br>VOLUME OF DEEP PERC, AC-FT/AC/YR 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VOLUME OF RUNOFF, AC-FT/AC/YR 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

SOIL TYPE NUMBER----- 1

| WEIGHTE | COST FOR THIS SOIL TYPE AND IRRIGAT TION SYSTEM ALTERNATIVE>>>                                                   | 10 10  | The Local and The second |
|---------|------------------------------------------------------------------------------------------------------------------|--------|--------------------------|
| WEIGHTE | WATER APPLICATION EFFICIENCY                                                                                     | 40.29  | DULLARS PER ACRE         |
|         |                                                                                                                  | 39.09  | PERCENT                  |
|         | TOLORE OF DEEP PERCULATION                                                                                       | 0.7725 | AC-FT PER AC PER YR      |
| WEIGHTE | YULUME OF SIREAFE PUNDEE                                                                                         |        |                          |
|         | a sea a serie and the second | 2.1459 | AC-FT PER AC PER YR      |

A. F. .....

14 12

45.4

190

-

|    | ALFALFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                   | GEAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                               |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|    | FIELD LENGTH, FT       1300.         LABOR PEQUIRED, HR/AC/IRR       0.35         ADDITICNAL LABOR, HK/AC/IRR       0.0         LABOR PATE.       \$/HR         COST CF CENST.       FARM DITCH, \$/FT         COST CF FARM DITCH, \$/FT       2.80         COST OF FARM DITCH, \$/FT       2.80         COST OF FARM DITCH, \$/AC.       10.00         COST OF FARM DITCH, \$/AC.       5.00         COST OF FARM DITCH, \$/AC.       5.00         COST OF FARM DITCH, \$/AC.       5.00         COST OF FARM DITCH, \$/AC.       15.00         COST OF LAND PREPARATION, \$/AC       150.00         COST OF LAND PLOST TU PRODUCTION, \$/AC       150.00 |                                                                                   | FIELD LENGTH, FT       1300.         LABOR REQUIRED, HR/AC/IRR       0.35         ADDITICNAL LABOR, HK/AC/IRR       0.0         LABOR RATE, \$/HR       0.0         LABOR RATE, \$/HR       0.45         COST CF CONST. FARM DITCH. \$/FI       0.45         COST OF FARM CITCH LINING. \$/FI       2.80'         COST OF FARM CITCH STRUC., \$/AC       10.00         COST OF HISC. EQUIPT. \$/AC.       5.00         COST OF LEVELING, GRADING, \$/AC       150.00         COST OF LAND PREPARATICN, \$/AC       150.00         COST OF LAND PREPARATICN \$/AC       150.00 |                                                                               |
|    | NUMBER OF IRRIG./SEASON<br>DEPLETED RAM BETWEEN IRRIGATIONS, INCHES 6.05<br>FREQUENCY OF IRRIGATION AT PEAK USE.DAYS 20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                 | NUMBER OF IRRIG./SEASON<br>CEPLETED RAM BETWEEN IFRIGATIONS, INCHES 4.41<br>FREQUENCY OF IRRIGATION AT PEAK USE.DAYS 17.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                               |
|    | FARM SIZE, ACRE<br>FIELD SIZE FOR THIS CROP, AC 20.<br>TOTAL INVESTMENT, S/AC 274.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                   | FARM SIZE, ACRE<br>FIELD SIZE FOR THIS CRCP, AC 20.<br>TOTAL INVESTMENT, S/AC 274.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sec. 1                                                                        |
|    | CWNERSHIP COST (\$/AC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                   | - GWNERSHIP COST (\$/AC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                               |
|    | DEPRECIATION (SINKING FUND) 1.72<br>INTEREST ON INITIAL INVESTMENT 32.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                   | CEPRECIATION (SINKING FUND) 1.72<br>INTEREST ON INITIAL INVESTMENT 32.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                               |
| 19 | OPERATION AND MAINTENANCE COST (\$/AC)<br>LABCR COST<br>MAINTENANCE AND REPAIR<br>TAXES AND INSURANCE<br>1.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                   | OPERATION AND MAINTENANCE COST (\$/AC)<br>LABOR COST<br>MAINTENANCE AND REPAIR 15.62<br>TAXES AND INSURANCE 1.24                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |
|    | COST OF LAND LOST TO PRODUCTION 3.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                   | COST OF LAND LOST TO PRODUCTION 3.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                               |
|    | COST OF WATER LOST<br>COST OF SUB-SURFACE DRAIN (\$/AC) 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                   | COST OF WATER LOST<br>COST OF SUB-SURFACE DRAIN (S/AC) 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                             |
|    | TOTAL ANNUAL COST (\$/AC/YR) 59.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                   | TOTAL ANNUAL COST (\$/AC/YR) 60.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                               |
|    | BORDER IRRIGATION EFFICIENCY ESTIMATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                   | BORDER IRRIGATION EFFICIENCY ESTIMATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                               |
|    | DEPTH OF WATER APPLIED AT FIELD HEAD, IN<br>DEPTH OF WATER APPLIED AT FIELD END, IN<br>UNIT STREAM SIZE, CFS/FT<br>BOPDER WIDTH, FT<br>FIELD SLOPE, FT/FT<br>TIME OF APPLICATION, MIN<br>APPLICATION EFFICIENCY, PERCENT<br>DISTRIBUTION EFFICIENCY, PERCENT                                                                                                                                                                                                                                                                                                                                                                                               | 800.<br>6.05<br>5.20<br>0.0270<br>50.0027<br>0.0027<br>67.<br>90.<br>0.95<br>0.95 | LENGTH OF IRRIGATION GUN, FT<br>DEPTH OF WATER APPLIED AT FIELD HEAD, IN<br>DEPTH OF WATER APPLIED AT FIELD END, IN<br>UNIT STREAM SIZE, CFS/FT<br>BORDER WIOTH, FT<br>FIELD SLOPE, FT/FT<br>TIME OF APPLICATION, MIN<br>APPLICATION EFFICIENCY, PERCENT<br>DISTRIBUTION EFFICIENCY, PERCENT<br>VOLUME OF DEEP PERC, AC-FT/AC/YR<br>VOLUME OF RUNDEF, AC-FT/AC/YR                                                                                                                                                                                                             | 1300.<br>4.41<br>3.83<br>0.0308<br>50.<br>0.0027<br>369<br>67.<br>90.<br>0.86 |

# ANNUAL COST OF IRRIGATION------GRAVITY SYSTEM (IMPROVED) AMMON SOIL TYPE NUMBER----- 1

# ANNUAL COST OF IRRIGATION------GRAVITY SYSTEM (IMPROVED) AMMON SOIL TYPE NUMBER-----

6

| PASTURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | POTATCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FIELD LENGTH, FT       1300.         LABOR REQUIRED, HR/AC/IRR       0.35         ADDITIONAL LABOR, HR/AC/IRR       0.0         LABOR RATE, \$/HR       0.0         COST CF CENST. FARM DITCH, \$/FT       0.45         COST OF FARM DITCH LINING, \$/FT       2.80         COST OF FARM DITCH JINING, \$/AC       10.00         COST OF MISC. EQUIPT., \$/AC,       5.00         COST OF LAND PREPARATION, \$/AC       150.00         COST OF LAND PREPARATICN, \$/AC       15.000         COST OF LAND LOST TC PRCOUCTION, \$/AC       150.00 | FIELD LENGTH, FT 1300.<br>LABOR REQUIRED, HEVAC/IPF 0.0<br>ADDITICNAL LABOR, HEVAC/IPF 0.0<br>LABOR FAIT, S/HR 4.50<br>COST OF CCNST. FARN DITCH, S/FT 0.45<br>COST OF FARM DITCH LINING, S/FT 2.80<br>COST OF FARM DITCH LINING, S/FT 2.80<br>COST OF IRPIGATION, SIAC, 20.00<br>COST OF IRPIGATION, S/AC 100.00<br>COST OF LEVELING, SKADING, S/AC 100.00<br>COST OF LAND PREPARATION, S/AC 150.00<br>COST OF LAND PREPARATION, S/AC 150.00                                                      |
| NUMBER CF IRRIG./SEASON<br>CEPLETED RAM BETWEEN IRRIGATIONS, INCHES 3.15<br>FREQUENCY OF IRRIGATION AT PEAK USE, DAYS 14.                                                                                                                                                                                                                                                                                                                                                                                                                       | NUMBER OF LARGE/SEASCN<br>DEPLETED RAM BETWEEN IRFIGATIONS, INCHES 2.52<br>FREQUENCY OF IRRIGATION AT PEAK USE, DAYS 9.                                                                                                                                                                                                                                                                                                                                                                            |
| FARM SIZE, ACRE<br>FIELD SIZE FOR THIS CROP, AC 20-<br>TOTAL INVESTMENT, S/AC 274                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FARM SIZE, ACRE<br>FIELD SIZE FOR THIS CRUP, AC 20.<br>TOTAL INVESTMENT, \$/AC 239.                                                                                                                                                                                                                                                                                                                                                                                                                |
| CWNERSHIP COST (\$/AC)  CEPRECIATION (SINKING FUND)  INTEREST ON INITIAL INVESTMENT  CPERATION AND MAINTENANCE COST (\$/AC)                                                                                                                                                                                                                                                                                                                                                                                                                     | CWNERSHIP COST (\$/AC) DEPRECIATION (SINKING FUND) INTEREST ON INITIAL INVESTMENT 28.67 OREPATION AND MANUAL DEPE                                                                                                                                                                                                                                                                                                                                                                                  |
| COST OF LAND LOST TO PRODUCTION 3.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TAXES AND INSURANCE 1.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| COST OF LAND LOST TO PRODUCTION 3.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | COST OF LAND LOST TC PRODUCTION 3.46<br>COST OF WATER LOST<br>COST OF SUB-SURFACE DRAIN (\$/AC) 0.0                                                                                                                                                                                                                                                                                                                                                                                                |
| N TOTAL ANNUAL COST (\$/AC/YR) 62.18<br>BORDER LERIGATION EFFICIENCY ESTIMATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TOTAL ANNUAL COST (\$/AC/YR) 66.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LENGTH OF IRRIGATION RUN, FT 1300.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LENGTH OF IRRIGATION RUN.FT       1300.         IOTAL DEPTH OF WATER APPLIED, IN       7.16         OPPTH OF WATER APPLIED AT FIELD HEAD       3.47         DEPTH OF WATER APPLIED AT FIELD END       2.52         FURROW SIREAM SIZE.GPM       25         FURROW SPACING, IN       36.         FIELD SLOPE, FI/FT       .00270         INTAKE FAMILY BASED ON SCS       2.53         A COEFF-0.3471       8. COEFF-0.7475       C COEFF-0.2750         APPLICATION, EFLICIENCY, PERCENT       35. |
| VOLUME DE RUNDEF, AC-ET/AC/YR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A COEF=0.0471 B COEF=0.7475 C COEF=0.2750<br>APPLICATION EFFICIENCY, PERCENT 35.<br>VOLUME OF DEEP PERC, AC-FT/AC/YR 0.50<br>VOLUME OF RUPOFF, AC-FT/AC/YR 3.00                                                                                                                                                                                                                                                                                                                                    |

SOIL TYPE NUMBER----- 1

| WEIGHTED COST FOP THIS SUL TYPE AND IRRIGAT TION SYSTEM | ALTERNATIVE>>> 62.40 | DELLAPS PER ACRE    |
|---------------------------------------------------------|----------------------|---------------------|
| WEIGHTED WATER APPLICATION EFFICIENCY                   | 56.61                | PERCENT             |
| WEIGHTED VULUME OF DEEP PERCOLATION                     | .0.1353              | AC-FT PER AC PER YR |
| WEIGHTED VOLUME OF SURFACE RUNOFF                       | 1.4825               | AC-FT PER AC PER YR |

| ANNUAL COST OF IPRIGATIONHAND                                                                                                                | NEVE LANDONI 40 ACRES               | GRAIN                                                                                                                                  |                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| SOIL TYPE NUMBER 2                                                                                                                           | O TOVE TANFORT TO ACKES             | FARM DATA:                                                                                                                             |                                         |
| ALFALFA .                                                                                                                                    |                                     | FIELD LENGTH, ET<br>FARM SIZE, ACRES<br>NO. OF IRRIGATION<br>FREQUENCY OF IRRIGATION, DAYS                                             | 1300                                    |
| FIELD LENGTH, FT 1300<br>FARM SIZE, ACRES 400<br>ND. OF IRRIGATION 440<br>FREQUENCY OF IRRIGATION, DAYS 200<br>FM/LATERAL 474                |                                     | LABOR RATE, S/HR                                                                                                                       |                                         |
| ABOR RATE, S/HR 4.50                                                                                                                         | ō                                   | NUMBER OF LATERALS / FARM<br>LENGTH CF LATERAL, FEET<br>LATERAL SPACING, FEET<br>TIME TO MOVE LATERAL, MIN/SET<br>TIME OF SETTING, HRS | 1300.                                   |
| WMBER OF LATERALS / FARM 0.<br>ENGTH OF LATERAL, FEET 1300<br>ATERAL SPACING, FEET 50<br>IME TO MOVE LATERAL, MIN/SET 30                     |                                     | TIME OF SETTING, HRS<br>TRANSPORT TIME PER ROTATION, HRS<br>AREA COVERED BY EACH LATERAL, ACRE                                         | s 75.92                                 |
| IIME TO MOVE LATERAL, MIN/SET 30<br>IIME OF SETTING, HRS 12<br>RANSPORT TIME PEK ROTATION,HRS 1<br>IREA COVERED BY EACH LATERAL, ACRES 59.54 |                                     | COST PER LATERAL LINE: \$<br>ALLOWABLE INTAKE RATE, IN/HR.<br>TOTAL LABOR, HR/AC/YR                                                    | 1980.<br>                               |
| CCST PER LATERAL LINE, \$ 1980<br>ALLOWABLE INTAKE RATE, IN/HR 0.6<br>TOTAL LABOR, HR/AC/YR 1                                                | 0                                   | SEEL PERCONATION ALENCE PERCENT                                                                                                        | 073942                                  |
| DEEP PERCOLATION, AF/ACRE<br>APPLICATION EFFICIENCY, PERCENT 75.00<br>MAINLINE DATA:                                                         | 5                                   | MAINLINE DATA:<br>TOTAL AREA SERVED BY MAINLINE, ACR<br>TOTAL LENGTH OF MAINLINE, FEET                                                 | ES 1300.                                |
| OTAL AREA SERVED BY MAINLINE, ACRES 40<br>OTAL LENGTH CF MAINLINE, FEET 1300                                                                 | ter all all and a set of a set of a | DIAMETER(IN) LENGTH(PT).                                                                                                               | COST (\$/FT)<br>2.65                    |
| DIAMETER(IN) LENGTH(FT) COST (\$/F<br>1300. 2.65                                                                                             | T)                                  | TOTAL COST OF MAINLINE, \$                                                                                                             | 3789.                                   |
| OTAL COST OF MAINLINE, \$ 3789<br>OTAL INVESTMENT (\$/AC) 128                                                                                |                                     | ANNUAL COST:<br>CEPRECIATION                                                                                                           | \$/AC                                   |
| ANNUAL COST:                                                                                                                                 | \$/AC .                             | LATERAL<br>MAINLINE<br>INTEREST ON INVESTMENT                                                                                          | 0.63<br>1.20                            |
| EPRECIATION<br>LATERAL                                                                                                                       | 0.80                                |                                                                                                                                        | r11:137                                 |
| MAINLINE<br>NTEREST ON INVESTMENT                                                                                                            | 1.20                                | LABOR COST<br>MAINTENANCE COST<br>TAXES AND INSURANCE                                                                                  | 7.85<br>3.62<br>1.32                    |
| MAINLINE<br>ABOR COST<br>AINTENANCE COST<br>AXES_AND INSURANCE                                                                               | 11.37<br>6.35<br>3.84<br>1.40       | TOTAL<br>NOTE: TOTAL ANNUAL COST DEES NOT                                                                                              | 29.12<br>INCLUDE PUMP UNIT AND RESERVOI |
|                                                                                                                                              | 28.94                               | · · · · · · · · · · · · · · · · · · ·                                                                                                  |                                         |
| NOTE: TOTAL ANNUAL COST DOES NOT INCLUDE PU                                                                                                  | MP UNIT AND RESERVOIRS              |                                                                                                                                        |                                         |

.

4 4 4

ANNUAL COST OF IPFIGATION-----HAND MOVE (AMMEN) 40 ACRES

| PASTURE                                                                                                                                                                                                                                                                                                                 | POTATOES                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FARM DATA:<br>FIELD LENGTH, FT 1300.<br>FARM SIZE, ACCES 40.<br>NO. OF IRRIGATION, DAYS 6.<br>FREQUENCY OF IRRIGATION, DAYS 14.<br>GPM/LATERAL 516.<br>LABOR RATE, \$/HR 4.50                                                                                                                                           | FARM DATA:<br>FIELD LENGTH, FT<br>FARM SIZE, ACRES<br>NO. OF IRRIGATION, DAYS<br>GPWLATEPAL<br>LABOR RATE, S/HR                                                                                                                                                                                                    |
| NUMBER OF LATERALS / FARM       0.5         LENGTH CF LATERAL, FEET       1300.         LATERAL SPACING, FEET       50.         TIME TO MOVE LATERAL, MIN/SET       30.         TIME OF SETTING, HRS       6.         TRANSPORT TIME PER KOTATION, HRS       1.         AREA COVERED BY EACH LATERAL, ACRES       83.31 | NUMBER OF LATERALS / FARM       0.7         LENGTH OF LATERAL, FEET       1300         LATERAL SPACING, FEET       50         TIME TO MOVE LATERAL, MIN/SET       30         TIME OF SETTING, HRS       6         TRANSPORT TIME PER ROTATION, HRS       6         AREA COVERED BY EACH LATERAL, ACRES       53.47 |
| COST PER LATEPAL LINE, \$ 1980.<br>ALLOWABLE INIAKE RATE, IN/HR 0.60<br>TOTAL LABOR, HR/AC/YR 2.                                                                                                                                                                                                                        | COST PER LATERAL LINE, \$ 1980.<br>ALLOWABLE INTAKE RATE, IN/HR 0.60<br>TOTAL LABOR, HR/AC/YR 3.                                                                                                                                                                                                                   |
| DEEP PERCOLATION, AF/ACRE<br>APPLICATION EFFICIENCY, PERCENT 75.00<br>MAINLINE DATA:                                                                                                                                                                                                                                    | DEEP PERCOLATION AF/ACRE<br>APPLICATION EFFICIENCY, PERCENT 75.00<br>MAINLINE DATA:                                                                                                                                                                                                                                |
| TOTAL AREA SERVED BY MAINLINE, ACRES 40.<br>TOTAL LENGTH OF MAINLINE, FEET 1300.                                                                                                                                                                                                                                        | TOTAL AREA SERVED BY MAINLINE, ACRES 40.<br>TOTAL LENGTH OF MAINLINE, FEET 1300.                                                                                                                                                                                                                                   |
| DIAMETERSIN) LENGTH(FT) COSJ_(\$/FT)                                                                                                                                                                                                                                                                                    | DIAMETERIINI LENGTHIFTI COST (S/FT)                                                                                                                                                                                                                                                                                |
| TOTAL COST OF MAINLINE, \$ 3789.                                                                                                                                                                                                                                                                                        | TOTAL COST OF MAINLINE, \$ 3789.<br>TOTAL INVESTMENT (\$/AC) 132.                                                                                                                                                                                                                                                  |
| ANNUAL COST: \$/AC                                                                                                                                                                                                                                                                                                      | ANNUAL COST: \$/AC                                                                                                                                                                                                                                                                                                 |
| CEPRECIATION<br>LATERAL<br>MAINLINE<br>INTEREST ON INVESTMENT<br>LATERAL<br>LATERAL<br>2,85                                                                                                                                                                                                                             | DEPRECIATION<br>LATERAL<br>MAINLINE<br>INTEREST ON INVESTMENT<br>INTEREST ON INVESTMENT                                                                                                                                                                                                                            |
| LATERAL<br>MAINLINE 11.37<br>LABOR CCST 9.40<br>MAINTENANCE COST 3.56<br>TAXES AND INSURANCE 1.29                                                                                                                                                                                                                       | LATERAL<br>4.44<br>4.44<br>1.37<br>LABOR COST<br>MAINTENANCE COST<br>TAXES AND INSURANCE<br>1.44                                                                                                                                                                                                                   |
| TOTAL 30.24                                                                                                                                                                                                                                                                                                             | TOTAL 37.69                                                                                                                                                                                                                                                                                                        |

SQIL TYPE NUMBER----- 2

| WEIGHTED COST FOR THIS SOIL TYPE AND IRRIGAT TION SYSTEM ALTERNATIVE>>> | 31.50  | DCLLARS PER ACRE    |
|-------------------------------------------------------------------------|--------|---------------------|
| WEIGHTED WATER APPLICATION EFFICIENCY                                   | 75.00  | PERCENT             |
| WEIGHTED VOLUME OF DEEP PERCOLATION                                     | 0.4135 | AC-FT PER AC PER YR |
| WEIGHTED VOLUME OF SURFACE RUNDEF                                       | 0.0    | AC-FT PER AC PER YR |
|                                                                         |        |                     |

1

194

.....

----

- as an and -

| ALFALFA                                                                                                                                                                   |                                     | GRAIN                                                                                                                                                                                                              | the second s |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| FARM DATA:                                                                                                                                                                |                                     | FARM DATA:                                                                                                                                                                                                         |                                                                                                                |
| FIELD LENGTH, ET<br>FARM SIZE, ACRES<br>NO. OF IERIGATION, DAYS<br>GREQUENCY OF IRRIGATION, DAYS<br>GPM/LATERAL<br>LABOR PATE, S/HR                                       | 1300.<br>40.<br>20.<br>446.<br>6.50 | FIELD LENGTH, FT<br>FARM SIZE, ACRES<br>NO. OF IRRIGATION<br>FREQUENCY OF IRRIGATION, DAYS<br>GPM/LATERAL<br>LABOR RATE, \$/HR                                                                                     | 1300.<br>40.<br>5.<br>17.<br>493.<br>6.50                                                                      |
| NUMBER OF LATERALS / FARM<br>LENGTH OF LATERAL, FEET<br>LATERAL SPACING, FEET<br>TIME TO MOVE LATERAL, MIN/SET<br>TIME OF SETTING, HRS<br>TRANSPORT TIME PER KOTATION.HRS | 1300.<br>15:<br>15:                 | NUMBER OF LATERALS / FARM<br>LENGTH OF LATERAL, FEET.<br>LATERAL SPACING, FEET<br>TIME TO MOVE LATERAL, MIN/SET<br>TIME OF SETTING, HAS<br>TRANSPORT TIME PER ROTATION, HAS<br>AREA COVERED BY EACH LATERAL, ACRES | 1300-5<br>500-<br>15-<br>8-                                                                                    |
| AREA COVERED BY EACH LATERAL, ACRES                                                                                                                                       | 59.63                               | AREA COVERED BY EACH LATERAL. ACRES                                                                                                                                                                                | 76.81                                                                                                          |
| COST PER LATERAL LINE, S<br>ALLOWABLE INTAKE RATE, IN/HR<br>TOTAL LABOR, HR/AC/YR                                                                                         | 6600.<br>0.60<br>1.                 | COST PER LATERAL LINE, \$<br>ALLOWABLE_INIAKE_RATE, IN/HR<br>TOTAL LABOR, HR/AC/YR                                                                                                                                 | 6600.<br>0.60<br>1.                                                                                            |
| DEEP PEPCOLATION, AF/ACRE<br>APPLICATION EFFICIENCY, PERCENT<br>MAINLINE DATA:                                                                                            | 0.3938<br>78.00                     | DEEP PEFCOLATION AF/ACRE<br>APPLICATION EFFICIENCY, PERCENT<br>MAINLINE DATA:                                                                                                                                      | 0,3469                                                                                                         |
| TOTAL AREA SERVED BY MAINLINE, ACRES                                                                                                                                      | 1300:                               | TOTAL AREA SERVED BY MAINLINE, ACRES.<br>TOTAL LENGTH OF MAINLINE, FEET                                                                                                                                            | 1.140.                                                                                                         |
| DIAMETER(IN) LENGTH(FT) COS                                                                                                                                               |                                     |                                                                                                                                                                                                                    | 1300.<br>I_(\$/FI)<br>2.65                                                                                     |
| TOTAL COST OF MAINLINE, \$                                                                                                                                                | 3789.                               | TOTAL COST OF MAINLINE, S                                                                                                                                                                                          | 3789.                                                                                                          |
| ANNUAL COST:                                                                                                                                                              | - \$/AC                             | ANNUAL COST:                                                                                                                                                                                                       | 182                                                                                                            |
| DEPRECIATION                                                                                                                                                              |                                     | DEPRECIATION                                                                                                                                                                                                       | \$/AC                                                                                                          |
| LATERAL<br>MAINLINE<br>INTEREST CN INVESTMENT                                                                                                                             | 2.67<br>1.20                        | INTEREST CN INVESTMENT                                                                                                                                                                                             | 2.10<br>1.20                                                                                                   |
| LATERAL<br>MAINLINE<br>ABOR COST<br>AINTENANCE COST<br>AXES AND INSURANCE                                                                                                 | 13-27<br>14-58<br>6-16<br>2-25      | LATERAL<br>MAINEINE<br>LABOR COST<br>MAINTENANCE COST<br>TAXES AND INSURANCE                                                                                                                                       | 10.42<br>11.37<br>5.67<br>5.45                                                                                 |
| TOTAL'                                                                                                                                                                    | 41.51                               | TOTAL                                                                                                                                                                                                              | 1.99                                                                                                           |
| TOTE: TOTAL ANNUAL COST DEES NOT INCL                                                                                                                                     |                                     | NOTE: TOTAL ANNUAL COST DOES NOT INCL                                                                                                                                                                              | 38.18                                                                                                          |

.

ANNUAL COST OF IRRIGATION-SIDE ROLL TANMONT 40 ACRES

1.4

-------

57 14

-

ANNUAL COST OF IFFIGATION-----SIDE ROLL (AMMON) 40 ACRES

| PASTURE                                                                                                                                                                                                                                                                                                                                                               | PUTATOES                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FARM DATA:                                                                                                                                                                                                                                                                                                                                                            | FARM DATA:                                                                                                                                                                                                                                                                                                                                                            |
| FIELD LENGTH, ET 1300.<br>FARM SIZE, ACRES 40.<br>ND. OF IRRIGATION, DAYS 14.<br>GRMULATERAL 474.<br>LABOD FATE, S/HR 6.50                                                                                                                                                                                                                                            | FIELD LENGTH, FT 1300.<br>FARM SIZE, ACRES 40.<br>NO. OF IRRIGATION, DAYS 9.<br>FREQUENCY OF IRRIGATION, DAYS 9.<br>GPW/LATERAL 379.<br>LABOR RATE, \$/HR 6.50                                                                                                                                                                                                        |
| NUMBER CF LATERALS / FAPM       0.5         LENGTH OF LATERAL, FEET       1300.         LATERAL SPACING, FEET       50.         TIME TC MOVE LATERAL, MIN/SET       15.         TIME OF SETTING, HRS       6.         TRANSPORT TIME PER ROTATION, HRS       0.         AREA COVERED BY EACH LATERAL, ACKES       83.44         COST PER LATERAL LINE, \$       6600. | NUMBER DF LATERALS / FARM       0.7         LENGTH CF LATERAL, FEET       1300.         LATERAL SPACING, FEET       50.         TIME TO MOVE LATERAL, NIN/SET       15.         TIME OF SETTING, HKS       6.         TRANSPORT TIME PER KOTATION, HRS       0.         AREA COVERED BY EACH LATERAL, ACRES       53.59         COST PER LATERAL LINE, \$       6600. |
| COST PER LATERAL LINE, S 6600.<br>ALLOWAPLE INTAKE RATE, IN/HR 0.60.<br>TOTAL LABOR, HR/AC/YR 1.                                                                                                                                                                                                                                                                      | TOTAL LABOR, HR/AC/YR                                                                                                                                                                                                                                                                                                                                                 |
| DEEP PERCOLATION, AF/ACPE<br>APPLICATION EFFICIENCY, PERCENT 78.00<br>MAINLINE DATA:                                                                                                                                                                                                                                                                                  | APPLICATION AFACRE PERCENT 78.00                                                                                                                                                                                                                                                                                                                                      |
| TOTAL AREA SERVED BY MAINLINE, ACRES '40.<br>TOTAL LENGTH OF MAINLINE, FEET 1300.                                                                                                                                                                                                                                                                                     | TOTAL AREA SERVED BY MAINLINE, ACRES 40.<br>TOTAL LENGTH OF MAINLINE, FEET 1300.                                                                                                                                                                                                                                                                                      |
| DIAMETER(IN) LENGTH(FT) COST (\$/ET)                                                                                                                                                                                                                                                                                                                                  | DIAMETER(IN) LENGTH(FT) COST (1/57)                                                                                                                                                                                                                                                                                                                                   |
| TOTAL COST OF MAINLINE, \$ 3789.<br>TOTAL INVESTMENT (\$/AC) 174.                                                                                                                                                                                                                                                                                                     | TOTAL COST OF MAINLINE, \$ 3789.<br>TOTAL INVESTMENT (\$/AC) 218.                                                                                                                                                                                                                                                                                                     |
| ANNUAL COST: \$/AC                                                                                                                                                                                                                                                                                                                                                    | ANNUAL COST: \$/AC                                                                                                                                                                                                                                                                                                                                                    |
| CEPRECIATION<br>LATERAL<br>MAINLINE<br>INTEREST CN INVESTMENT<br>LATERAL<br>9,49                                                                                                                                                                                                                                                                                      | DEPRECIATION<br>LATERAL<br>MAINLINE<br>INTEREST ON INVESTMENT<br>1.20                                                                                                                                                                                                                                                                                                 |
| AAINLINE 11.37<br>LABOR COST 6.78<br>MAINTENANCE COST 5.22<br>TAXES AND INSURANCE 1.90                                                                                                                                                                                                                                                                                | LATERAL<br>MAINLINE<br>LABOR COST<br>MAINTENANCE COST<br>TAXES AND INSURANCE<br>2.39                                                                                                                                                                                                                                                                                  |
| T O T A L 37.86                                                                                                                                                                                                                                                                                                                                                       | TUTAL 49.61                                                                                                                                                                                                                                                                                                                                                           |
| NOTE: TOTAL ANNUAL COST DOES NOT INCLUDE PUMP UNIT AND RESERVO                                                                                                                                                                                                                                                                                                        | IRS NOTE: TOTAL ANNUAL COST_DOES NOT INCLUDE PUMP UNIT AND RESERVOIRS                                                                                                                                                                                                                                                                                                 |

SOIL TYPE NUMBER----- 2

 WEIGHTED CCST FOR THIS SOIL TYPE AND IRRIGAT TION SYSTEM ALTERNATIVE---->>> 41.79 DOLLARS PER ACRE

 WEIGHTED WATER APPLICATION EFFICIENCY---- 

 WEIGHTED VOLUME OF DEEP PERCOLATION ----- 

 WEIGHTED VOLUME OF SUKFACE RUNOFF ------ 

 0.3639

 AC-FT PER AC PER YR

 0.0

 AC-FT PER AC PER YR

| ANNUAL COST OF IRRIGAT | IONCENTER | PIVOT | (AMMON) | 40.0 ACRES |
|------------------------|-----------|-------|---------|------------|
| SOIL TYPE NUMBER       | 2         |       |         |            |

2.

| ALFALFA                                                                                                                                                                                                                                                                                                                  | GRAIN                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FARM DATA:                                                                                                                                                                                                                                                                                                               | FARM DATA:                                                                                                                                                                                                                                                                                                           |
| FIELD LENGTH, FT 650.<br>FARM SIZE, ACRES 40.<br>NO. OF IRRIGATION 44.<br>FREQUENCY OF IRRIGATION, DAYS 20.<br>GPM/LATERAL 4/HR 7.50.                                                                                                                                                                                    | FIELC LENGTH, FT 650.<br>FARM SIZE, ACRES 40.<br>NO. CF IRRIGATION, DAYS 17.<br>GPM/LATERAL 223.<br>LABOR FATE, \$7HR 7.50                                                                                                                                                                                           |
| NUMBER OF LATERALS / FARM       1.0         LENGTH OF LATERAL, FEET       650.         LATERAL SPACING, FEET       0.0         TIME TO MOVE LATERAL, MIN/SET       0.0         TIME OF SETTING, HRS       0.0         TRANSPORT TIME PER ROTATION, HRS       0.0         AREA COVERED BY EACH LATERAL, ACRES       38.81 | NUMBER OF LATERALS / FARM       1.0         LENGTH OF LATERAL, FEET       650.         LATERAL SPACING, FEET       0.         TIME TO MOVE LATERAL, MIN/SET       0.         TIME OF SETTING, HRS       6.         TRANSPORT TIME PER ROTATION, HRS       0.         AREA COVERED BY EACH LATERAL, ACRES       38.81 |
| COST PER LATERAL LINE, SALLOWABLE INTAKE RATE, INTHR 22000.<br>ALLOWABLE INTAKE RATE, INTHR 200.00<br>TOTAL LABOR, HR/AC/YR                                                                                                                                                                                              | COST PEP LATERAL LINE, \$ 22000.<br>ALLOWABLE INTAKE RATE, IN/HR 0.60<br>TOTAL LABOR, HR/AC/YR 2.                                                                                                                                                                                                                    |
| APPER LEATION AFFACRE PERCENT 083685                                                                                                                                                                                                                                                                                     | DEEP PERCOLATION.AF/ACRE 0.2365<br>APPLICATION EFFICIENCY,PERCENT 05.00<br>MAINLINE DATA:                                                                                                                                                                                                                            |
| TOTAL AREA SERVED BY MAINLINE, ACRES 40.                                                                                                                                                                                                                                                                                 | TOTAL AREA SERVED BY MAINLINE, ACRES 40.<br>TOTAL LENGTH OF MAINLINE, FEET 650.                                                                                                                                                                                                                                      |
| DIAMETER(IN) LENGTHIFT) COST 14/671                                                                                                                                                                                                                                                                                      | DIAMETER(IN) LENGTH(FT) COST (\$/FT)                                                                                                                                                                                                                                                                                 |
| TOTAL COST OF MAINLINE, S 1895.<br>TOTAL INVESTMENT (S/AC) 614.                                                                                                                                                                                                                                                          | TOTAL CCST OF MAINLINE, S' 1895.<br>TOTAL INVESTMENT (3/AC) 614.                                                                                                                                                                                                                                                     |
| ANNUAL COST: \$/AC                                                                                                                                                                                                                                                                                                       | ANNUAL COST: \$/AC                                                                                                                                                                                                                                                                                                   |
| CEPRECIATION<br>LATERAL<br>MAINLINE<br>INTEREST ON INVESTMENT<br>0.66                                                                                                                                                                                                                                                    | DEPRECIATION<br>LATERAL 29.07<br>MAINLINE 0.66<br>INTEREST ON INVESTMENT                                                                                                                                                                                                                                             |
| LATERAL<br>MAINITNE<br>LABOR COST<br>MAINTENANCE COST<br>MAINTENANCE COST<br>TAXES AND INSURANCE<br>6.71                                                                                                                                                                                                                 | LATERAL 68.02<br>MAINLINE 5.68<br>LABOP COST 0.0<br>MAINTENANCE COST 11.81<br>TAXES AND INSURANCE 6.71                                                                                                                                                                                                               |
| T'O T A L 121.95                                                                                                                                                                                                                                                                                                         | TOTAL 121.95                                                                                                                                                                                                                                                                                                         |
| NOTE: TOTAL ANNUAL COST DOES NOT INCLUDE PUMP UNIT AND RESERVOIRS                                                                                                                                                                                                                                                        | NOTE: TOTAL ANNUAL COST DOES NOT INCLUDE PUMP UNIT AND RESERVOIRS                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                      |

| <br>ANNUAL COST OF IRRIGATIONCENTER PIVOT (AMMON) 40.0 ACRES<br>SOIL TYPE NUMBER 2 |
|------------------------------------------------------------------------------------|
| <br>PASTURE                                                                        |

| PASTURE                                                                                                                                                                                                                                     | PUTATOES                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FARM DATA:                                                                                                                                                                                                                                  | FARM DATA:                                                                                                                                                                                                                                                                                                           |
| FIELD LENGTH, FT 650.<br>FARM SIZE, ACRES 40.<br>NC. CF IRRIGATION, DAYS 6.<br>FREQUENCY CF IRRIGATION, DAYS 14.<br>GPM/LATERAL 194.<br>LABCR RATE, S/HR 7.50                                                                               | FIELD LENGTH, FT 650.<br>FARM SIZE, ACRES 60.<br>NC. OF IRRIGATION, DAYS 9.<br>FREQUENCY OF IRRIGATION, DAYS 9.<br>GPM/LATERAL 241.<br>LABOR RATE, \$/HR 7.50                                                                                                                                                        |
| NUMBER OF LATERALS / FARM 1.0<br>LENGTH OF LATERAL, FEET 650.<br>LATERAL SPACING, FEET 0.<br>TIME TO MOVE LATERAL, MIN/SET 0.<br>TIME OF SETTING, HRS 6.<br>TRANSPORT TIME PER ROTATION,HRS 0.<br>AREA COVERED BY EACH LATERAL, ACRES 38.81 | NUMBER OF LATERALS / FARM       1.0         LENGTH OF LATERAL, FEET       650.         LATERAL SPACING, FEET       0.         TIME TO MOVE LATERAL, MIN/SET       0.         TIME OF SETTING, HRS       0.         TRANSPORT TIME PER ROTATION, HKS       0.         AREA COVERED BY EACH LATERAL, ACRES       38.81 |
| COST PER LATERAL LINE, \$ 22000.<br>ALLOWABLE INTAKE RATE, IN/HR 0.60<br>TOTAL LABOR, HR/AC/YR 2.                                                                                                                                           | COST PER LATERAL LINE, \$ 22000.<br>ALLOWABLE INTAKE RATE, IN/HR 0.60<br>TOTAL LABOR, HR7AC7YR 2.                                                                                                                                                                                                                    |
| DEEP PERCOLATION, AF/ACRE 0.2125<br>APPLICATION EFFICIENCY, PERCENT 85.00<br>MAINLINE DATA:                                                                                                                                                 | DEEP PERCOLATION, AF/ACRE 0.2749<br>APPLICATION EFFICIENCY, PERCENT 85.00<br>MAINLINE DATA:                                                                                                                                                                                                                          |
| TOTAL AREA SERVED BY MAINLINE, ALKES 40.<br>TOTAL LENGTH OF MAINLINE, FEET 650.<br>DIAMETER(IN) LENGTH(FT) COST (\$/FT)<br>5. 50. 2.65                                                                                                      | TOTAL AREA SERVED BY MAINLINE, ACRES 40.<br>TOTAL LENGTH OF MAINLINE, FEET 650.<br>DIAMETER(IN) LENGTH(FT) COST (\$/FT)<br>5. 650. 2.65                                                                                                                                                                              |
| TOTAL COST OF MAINLINE, \$ 1895.<br>TOTAL INVESTMENT (\$/AC) 614.                                                                                                                                                                           | TOTAL CCST OF MAINLINE, \$ 1895.<br>TOTAL INVESTMENT (\$/AC) 614.                                                                                                                                                                                                                                                    |
| ANNUAL COST: \$/AC<br>DEPRECIATION<br>LATERAL 29.07                                                                                                                                                                                         | ANNUAL COST: \$/AC                                                                                                                                                                                                                                                                                                   |
| INTEREST CN INVESTMENT 0.66<br>LATERAL 68.02                                                                                                                                                                                                | INTERAL 29.07<br>MAINLINE 0.66<br>INTEREST ON INVESTMENT 0.66                                                                                                                                                                                                                                                        |
| MAINLINE 5.68<br>LABOR COST 0.0<br>MAINTENANCE COST 11.81<br>TAXES AND INSURANCE 6.71                                                                                                                                                       | MATKITNE     68.02       LABOR COST     5.68       MAINTENANCE COST     0.0       TAXES AND INSURANCE     6.71                                                                                                                                                                                                       |
| - TOTAL 121.95                                                                                                                                                                                                                              | TOTAL 121.95<br>NOTE: TOTAL ANNUAL COST DOES NOT INCLUDE PUMP UNIT AND RESE                                                                                                                                                                                                                                          |

SOIL TYPE NUMBER----- 2

| 17 | WEIGHTED COST FOR THIS SOIL TYPE AND IRPIGAT, TIDN SYSTEM ALTERNATIVE>>>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.05 | DOLLARS DES TERE    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------|
|    | WEIGHTED WATER APPLICATION EFFICIENCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                     |
|    | WEIGHTED VOLUME OF OFFE PERCULATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | PERCENT             |
|    | WEIGHTED VOLUME OF SURFACE RUNOFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00   | AC-FT PER AC PER YR |
|    | the state of the s | 0.0    | AC-FT PER AC PER YR |

-

-

198

Table D-2. Conveyance systems subprograms

|                                                               |                                  | BER ID24                                                                               |                      | 1 1 1 1                                                                                |                                                                    |                                                                                                                                                                                                                                                                 |                                                                      |
|---------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| (CFS) STRUC                                                   |                                  | ST OF COST                                                                             | OF RIGHT             | TOFWAY TOTAL                                                                           | CONST. ANNUA                                                       | AL EQUI VEL                                                                                                                                                                                                                                                     | CONV<br>EFF.                                                         |
| 40.<br>48.<br>56.<br>64.<br>72.<br>88.<br>96.<br>104.<br>112. | 0.<br>0.<br>0.<br>0.<br>0.<br>0. | 18185.<br>25535.<br>25865.<br>28224.<br>31344.<br>33021.<br>35403.<br>37191.<br>38546. | 0.<br>0.<br>0.<br>0. | 2180.<br>2480.<br>2488.<br>2572.<br>2626.<br>2682.<br>2734.<br>2792.<br>2841.<br>2884. | 28014.<br>28354.<br>30756.<br>32368.<br>34026.<br>35755.<br>40032. | 2528.       1.5         3478.       1.8         3520.       1.8         3623.       1.9         4018.       1.9         4224.       1.9         4224.       1.9         4239.       2.0         5970.       2.0         5970.       2.0         5143.       2.1 | 95.8<br>96.5<br>96.7<br>96.9<br>97.0<br>97.1<br>97.2<br>97.3<br>97.4 |

UNLINED CANAL----REACH NUMBER 1024

>>>>> EARTHWORK COMPUTATION FOR THIS REACH <<<<<<

### Q = 120

| STATION | SLOPE | CUT  | ROCK  | STA-STA     | EXCAV | STA-STA | ACCUMUL | STA-STA | EMBANK .<br>ACCUMUL | STA-STA | BANK  | STA-STA | ACCUMUL | ROW  |
|---------|-------|------|-------|-------------|-------|---------|---------|---------|---------------------|---------|-------|---------|---------|------|
|         | 99.99 | 1000 | 0.0   | C.<br>4387. | 0.    | 0.      | . 0.    | 0.      | 0.                  | 0.      | 0.    | 0.      | 0.      | 50.8 |
|         | 59.99 |      | . 0.0 | 4415.       | 4387. | 0.      | 0.      | 0.      | 0.                  | 4025.   | 4025. | -242.   | -242.   | 50.8 |
| 50+16   | 99.99 | 3.1  | 0.0   | 4413.       | 8802. |         | 0.      | 0.      | 0.                  | 4051.   | 8075. | -243.   | -485.   | 50.8 |

>>>> SUMMARY OF EARTHWORK FOR THIS REACH <<<<<

Q = 120 CFS

| COMMON EXCAVATION TOTAL   | 8802.                                 | CU | YD         |  |
|---------------------------|---------------------------------------|----|------------|--|
| ROCK EXCAVATION TOTAL     | 0.                                    | CU | YD         |  |
| BACKFILL TOTAL            | 8075.                                 | CU | YD         |  |
| CCMPACTING BACKFILL TOTAL | · · · · · · · · · · · · · · · · · · · | cu | YD         |  |
| AVERAGE R-D-W             | 51.                                   | FT | 6 (6)<br>1 |  |

UNLINED CANAL---REACH NUMBER ID24

|            | ESTIM   | ATED COST OF STRUCTURES |    |
|------------|---------|-------------------------|----|
| 1          |         | Q = 120 CFS             | •  |
| ESTIMATED  | COST (  | DF SIPHON               | 0. |
| ESTIMATED  | COST (  | OF TUNNEL               | 0. |
| ESTIMATED  | COST (  | OF DROPS                | 0. |
| ESTIMATED  | COST (  | OF CONCRETE CHECKS      | 0. |
| ESTIMATED  | COST I  | CF MCDIFIED P. FLUNE    | 0. |
| ESTIMATED  | COST (  | OF TURNOUTS             | 0. |
| ESTIMATED  | COST (  | OF COUNTY BRIDGE        | 0  |
| ESTIMATED  | COST (  | OF FARM BRIDGE          | 0. |
| ESTIMATED  | COST (  | CF DRAINAGE CROSSINGS   | 0. |
|            | CONTIN  | IGENCIES ( 10 )         | 0. |
| TOTAL COST | T OF ST | RUCTURES FOR THIS REACH | 0. |
|            |         |                         |    |

#### COST SUMMARY FOR THIS #Q#

| (CFS) | COST OF<br>STRUCTURE | COST OF<br>EARTHWORK | COST OF | COST OF<br>RIGHT OF /WAY | TOTAL CONST. | ANNUAL EQUI | VEL<br>F.PS | CONV<br>EFF. |
|-------|----------------------|----------------------|---------|--------------------------|--------------|-------------|-------------|--------------|
| 120.  | 0.                   | 39804.               | 0.      | 2923.                    | 42728.       | 5304.       | 2.1         | 97.4         |

INLET ELEV, FT4720.0 DUILET ELEV, FT4718.0 ORIGINAL DUTLET ELEV, FT4718.0

CONVEYANCE EFFICIENCY = 97.4 AVERAGE CANAL SEEPAGE (AF-FT/CFS OF FLOW) = 6.3189

1731. 30.9 0.978 A = = = =

LINEC CANAL---REACH NUMBER SAVE

|          | esi sti           | ST CF                       | CUST OF<br>EARTHWCRK                           | LOST OF                                        | COST OF<br>BIGHT DFZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TOTAL COST                 | ONST.                | ANNUAL ECUI                             | CCNVEYAN<br>EFFICIEN         |
|----------|-------------------|-----------------------------|------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------|-----------------------------------------|------------------------------|
|          | 50.               | 5402.<br>5402.<br>5402.     | 53400.<br>54871.<br>56247.                     | 20289.<br>21601.<br>22784.                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81                         | 092.<br>874.<br>433. | 9818.7<br>10164.1<br>10481.8<br>10777.5 | 98-8<br>98-9<br>98-9         |
|          | 30.<br>90.        | 5402.<br>5402.              | 54871.<br>56247.<br>57547.<br>58783.<br>59565. | 21601.<br>22784.<br>23866.<br>24867.<br>25802. | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 89                       | 169                  | 11055.3                                 | 98.9<br>98.9<br>98.9         |
|          | 20.               | 5402.                       | 61927.<br>62707.                               | 26681 -<br>27511 -<br>28300 -                  | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 93                         | 840.<br>409.         | 11555.2                                 | 98.9<br>98.9<br>98.9<br>98.9 |
| 14       | 30.<br>50.        | 5402.<br>5402.<br>5402.     | 63443.                                         | 29052.                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 97<br>99                   | 857.<br>306.         | 12153.2<br>12328.2<br>12495.1           | 98.9<br>98.9<br>98.9<br>98.9 |
| 10       | 50.               | 5402.                       | 64787.                                         | 30462.                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ABILATATION OF             |                      |                                         | 70.7                         |
|          | and the second    |                             | <b>, , , , , , , , , , , , , , , , </b>        | Q =                                            | 170 CFS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | THIS BLAC            |                                         |                              |
| •        |                   |                             | ATIEN TOTAL                                    | 100                                            | 22034.CU YD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                          | ,                    |                                         |                              |
|          |                   |                             | ACTED BACKFIL                                  |                                                | 7533.CU YD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                      |                                         |                              |
|          |                   |                             | BANKMENT ICTA                                  |                                                | 13268-CU YD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                      |                                         |                              |
|          |                   | VERHALL                     | JACENT EXCAVA                                  | TION                                           | 0.CU YD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                      |                                         |                              |
|          |                   | North States and States and | MUM RIGHT OF                                   | WAY                                            | 7.FEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                      |                                         |                              |
|          | C C               | LD INLET ANDESIGN INLET     | D OUTLET ELEV                                  | LEV                                            | 4635.0<br>4635.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4633.0 FEET<br>4633.0 FEET |                      |                                         |                              |
|          |                   | FSIGN DEPTH                 |                                                |                                                | 5.2 FEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                      |                                         |                              |
| *        |                   | ENGTH OF RE                 |                                                | 1.                                             | 2640. FEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                      |                                         |                              |
|          |                   |                             |                                                |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                      |                                         |                              |
|          |                   |                             |                                                |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                      |                                         |                              |
| LINEL    | LANALRE           | ACH NUMBER                  |                                                |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •••••••                    | -                    |                                         | · · · · ·                    |
|          |                   | E 2                         | TIMATED COST C                                 | $= \cdot 170 \text{ CFS}$                      | Col Star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                      |                                         |                              |
|          | E                 | STIMATED CO.                | ST OF SIPHON                                   |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 0.                   |                                         |                              |
|          | F                 | STIMATED CO                 | ST OF TUNNEL                                   |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 0.                   |                                         |                              |
|          |                   |                             | ST CF DRUPS                                    | a characteria a series                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 0                    | Compilie 100                            |                              |
|          |                   |                             | ST OF CONCRETE                                 |                                                | and the second section.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | 0.                   |                                         | •                            |
|          |                   |                             | ST OF MEDIFIED                                 |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 4911.                |                                         |                              |
|          |                   |                             | ST CE COUNTY B                                 |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 0.                   |                                         |                              |
|          |                   |                             | ST OF FARM BRI                                 | converse understation of the                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                          | 0.                   |                                         |                              |
|          | E                 |                             | ST CF. DRAINAGE                                |                                                | Construction of the state of th | in <del></del>             | 491.                 |                                         |                              |
|          | I                 |                             | E SIRUCIURES F                                 |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 5402-                |                                         |                              |
|          |                   | cos                         | ST SUMMARY FOR                                 | THIS MON                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                      | · · · · · · · · · · · · · · · · · · ·   |                              |
| e<br>FSJ |                   | E. EARTH                    | OF CO                                          | ST CF C                                        | OST OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TOTAL CONST.               | ANNUA                | L EQUI C                                | ONVEYANCE                    |
| 70.      | 54                | 02.                         | 55409.                                         | 31126.                                         | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 101937.                    | 126                  | 54.8                                    | 98.9                         |
|          |                   | EFFICIENCY                  |                                                |                                                | · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                      |                                         |                              |
|          | AVERAGE _CA       | VAL SEEPACE                 | LAE-ET/CES DE                                  | FLOW) = _0.                                    | 2992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                      |                                         |                              |
|          | A =<br>B =<br>R = | 8860.<br>23.3<br>0.992      |                                                |                                                | Section of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | ······               | ·····                                   |                              |
|          |                   |                             |                                                |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                      |                                         |                              |
|          |                   |                             |                                                |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                      |                                         |                              |

#### GRAVITY PIPE---REACH NUMBER SRVB

| ICFS)                                                     | CIAMETER<br>(IN)                               | LENGTH                                                                                          | PIPE COST 1/                                                                                    | TURNOUTS 2/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RIGHT OF WAY                                                                                     | EARTHWORK 3/                                                                                                                    | TOTAL COST                                                                                                            | ANNUAL COST                                                                                      | PIPE TYPE                                                                                                                                                            |
|-----------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 50.<br>60.<br>90.<br>100.<br>120.<br>130.<br>140.<br>150. | 50.<br>54.<br>560.<br>68.<br>72.<br>74.<br>78. | 2640.<br>2640.<br>2640.<br>2640.<br>2640.<br>2640.<br>2640.<br>2640.<br>2640.<br>2640.<br>2640. | 114048.<br>123552.<br>136224.<br>145728.<br>171072.<br>183744.<br>196416.<br>224928.<br>224928. | 14792 -<br>14792 - | 1061 -<br>1061 -<br>1061 -<br>1061 -<br>1061 -<br>1061 -<br>1061 -<br>1061 -<br>1061 -<br>1061 - | 54578.<br>54619.<br>54656.<br>54656.<br>54656.<br>546451.<br>54640.<br>54640.<br>54694.<br>54590.<br>54594.<br>54590.<br>54592. | 184478.<br>194024.<br>206711.<br>216233.<br>224908.<br>241575.<br>254239.<br>266882.<br>295374.<br>295350.<br>295322. | 22875.<br>24058.<br>25631.<br>26811.<br>28382.<br>31521.<br>33090.<br>33088.<br>36616.<br>36613. | CONCRETE<br>CONCRETE<br>CONCRETE<br>CONCRETE<br>CONCRETE<br>CONCRETE<br>CONCRETE<br>CONCRETE<br>CONCRETE<br>CONCRETE<br>CONCRETE<br>CONCRETE<br>CONCRETE<br>CONCRETE |

1.24

and the day

NOTE: 1/PIPE COST INCLUDES COST OF PIPE,LAYING OF PIPE,COST OF FITTINGS,VALVES,BLOCKING,ETC. 2/TURNOUT COST INCLUDES GATE VALVELINE METER, PRESSURE REDUCING VALVE,CONCRETE PIPE,STEEL PIPE DELIVERY,ETC 3/EARTHWORK COST INCLUDES TRENCHING, BACKFILLING AND COMPACTING BACKFILL

52

1

PIPE EARTHWORK FOR THE ABOVE REACH OF INFLOW Q = 170 CFS P I P E V C L U M E REHABILITATION PLAN---LAYING PIPE IN CLD CHANNEL

4 . T. A.

| TOTAL | EXCAVATION =               | 586. CUBIC YARDS     |    |
|-------|----------------------------|----------------------|----|
| TOTAL | CEMPACTEE BACKFILL=        | 1436. CUBIC YARDS    | ۰. |
| TOTAL | BACKFILL (OLD CHAN)=       | O.CUBIC YARDS        |    |
| TOTAL | OVERHAUL =                 | O.CUBIC YARDS        |    |
| SUBST | ITUTE EXCAVATION FROM AREA | ADJACENT TO PIPELINE | -  |

ALJACENT EXCAVATION = 41831. CUBIC YARDS TOTAL BACKFILL = 2708. CUBIC YARDS

| (CFS) | CLAMETER LENGTH | PIPE COST 1/                                                             | TURNOUTS 2/ | RIGHT OF WAY         | EARTHWORK 3/                                                                                                    | TOTAL COST | ANNUAL COST          | PIPE TYPE  |
|-------|-----------------|--------------------------------------------------------------------------|-------------|----------------------|-----------------------------------------------------------------------------------------------------------------|------------|----------------------|------------|
| 170.  | 80. 2640.       | 256608.                                                                  | 14792.      | 1061.                | 54510.                                                                                                          | 326971.    | 40535.               | CONCRETE - |
|       | ***** SUMMAR    | Y FOR THIS REACH                                                         | *****       | · · · ·              | and the state of the                                                                                            |            | 2                    | 1          |
|       | LENGTH OF REA   | R PIPE SYSTEM(B=1<br>CH IN FEET<br>PIPE CUTLET, FEET<br>PIPE INIET, FEET | = 2640.     | and and the state of | and and the second s | *****      | ngi ta na ikar na na |            |

- ----

4638.

500.

ELEVATION OF PIPE INLET, FEET = +.G.L. REQ. AT PIPE OULET.FEET = H.G.L. REQ. AT PIPE OULET.FEET = WIDTH OF EASEMENT, FEET = VALUE OF EASEMENT FCR CRCPPED LAND= VALUE OF EASEMENT FCR OTHER LAND = PERCENT LENGTH OF OTHER EASEMENT = NUMBER OF TURNOUTS:

NUMBER= 6. SIZE (IN)= 12.

| CAPA<br>CIAM<br>AVER<br>TYPE | K DATA FORC =<br>CITY.CFS<br>ETER.INCHES (ROUNDED)<br>AGE HEAD CLASS, FEET<br>DF COVER<br>CCST, \$/FT<br>COST, (DOLLARS) | 170. | CFS<br>170.<br>80.<br>25.<br>81.00<br>0.0 |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------|
| A =                          | 15824.                                                                                                                   |      |                                           |

B = 139.9R = 0.991

|                                      | AMETER LENGTH                                                          |                                                                                       |                                  |                                      | EARTHWORK 3/                                                 | (\$)                                                           | ANNUAL COST                              |                                  |
|--------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------|--------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------|----------------------------------|
| 20C.<br>207.<br>214.<br>221.         | 44. 6389.<br>46. 6389.<br>46. 6389.                                    | 324260.<br>339230.<br>339230.<br>339230.                                              | 0.                               | 220C -<br>2200 -<br>22CO -<br>22CC - | 544859.<br>545906.<br>545906.<br>545906.                     | 871318.<br>887336.<br>887336.<br>887336.<br>887336.<br>887336. | 104914.<br>106843.<br>106843.<br>106843. | STEEL<br>STEEL<br>STEEL<br>STEEL |
| 228.<br>235.<br>242.<br>256.<br>263. | 46. 6389.<br>48. 6389.<br>48. 6389.                                    | 33923C.<br>253946.<br>353546.<br>253546.                                              | 0:                               | 22000                                | 545906.<br>546937.<br>546937.<br>546937.                     | 903083.<br>903083.<br>903083.                                  | 106843.<br>108739.<br>108739.<br>108739. | STEEL<br>STEEL<br>STEEL          |
| 263:                                 | 48: 6389.<br>50: 6389.                                                 | 414007:                                                                               | 8:                               | 2200.                                | 546937.<br>527284.                                           | 903083<br>943491.                                              | 108739:                                  | STEEL<br>CONCRETE                |
|                                      | ACTE:<br>1/PIPE COST 1                                                 | NCLUCES COST OF                                                                       | PIPE, LAYING OF                  | PIPE.CCST OF F                       | ITTINGS.VALVES.BL                                            | OCKING.ETC.                                                    | ale time                                 |                                  |
|                                      | 2/TÜRNGUT CUS<br>3/EARTHWORK C                                         | T INCLUCES GATE<br>OST INCLUCES TRE                                                   | VALVE, LINE MET NCHING, BACKFI   | ER, PRESSURE RED                     | ITTINGS, VALVES, BL<br>DUCING VALVE, CONCR<br>CTING BACKFILL | ETE PIPE, STEE                                                 | L PIPE DELIVE                            | RY,ETC                           |
|                                      |                                                                        |                                                                                       |                                  |                                      | 1.116                                                        |                                                                |                                          |                                  |
| TOE FADTLE                           | LOOK FED THE MOUL                                                      |                                                                                       | 0                                |                                      |                                                              |                                                                |                                          |                                  |
|                                      | WCRK FOR THE ABOVE<br>P I P E                                          | V C L U M E                                                                           |                                  | 5                                    |                                                              |                                                                |                                          |                                  |
| EHABIL ITA                           | TICN FLANLAYING                                                        |                                                                                       |                                  |                                      |                                                              |                                                                |                                          |                                  |
| ICTAL EXCA                           | VATION =<br>ACTED BACKFILL=                                            | 0. CUE<br>26282. CUE                                                                  |                                  |                                      |                                                              |                                                                |                                          |                                  |
|                                      | FILL (CLD CHAN)=                                                       | _ 0.CUB                                                                               |                                  |                                      |                                                              |                                                                |                                          |                                  |
| ICTAL OVERI                          | HAUL =<br>EXCAVATION FROM A                                            |                                                                                       | PIPELINE                         |                                      |                                                              |                                                                |                                          |                                  |
| N PLACE O                            | FOVERHAUL FROM OU<br>XCAVATION =                                       | TSIDE AREA.<br>200974. CUE                                                            |                                  |                                      |                                                              |                                                                | The second second                        |                                  |
| Q C                                  | FILL =<br>IAMETER LENGTH                                               | 58469. CUE                                                                            | TURNCUTS 2/                      | RIGHT OF MAY                         | EARTHWORK 3/                                                 | TOTAL COST                                                     | ANNUAL COST                              | PIPE TYPE                        |
| 270.                                 | (IN) (FT)<br>52. 6389.                                                 | (\$)<br>452341.                                                                       | (\$)<br>0.                       | (\$) 2200.                           | (\$)<br>527344.                                              | (\$)<br>981865.                                                | ANNUAL COST<br>(\$)<br>118226.           | CONCRETE                         |
|                                      |                                                                        | FOR THIS REACH,                                                                       |                                  |                                      | to the second second second                                  |                                                                | · ·····                                  |                                  |
|                                      | LENGTH OF REACH                                                        | PIPE SYSTEM(B=19<br>IN FEET<br>PE CLILET, FEET<br>PE INLEI, FEET<br>PIPE UNILET, FEET | = 6389.<br>= 4640.               |                                      |                                                              |                                                                |                                          | •                                |
|                                      | H.G.L. REC. AT                                                         | PIPE UUTLET, FEET                                                                     | = 4648.<br>= 4780.<br>T = 4907.  |                                      |                                                              |                                                                |                                          |                                  |
|                                      | VALUE OF EASEAU<br>VALUE OF EASEAU                                     | NT, FEET<br>NT, FEET<br>NT FCK CROPPED I<br>NT FCR CTFER LA                           | = 30.<br>LAND= 500.<br>ND = 100. |                                      | and an and the second second                                 |                                                                | nia antita                               |                                  |
|                                      | NUMBER OF TURNO                                                        | UTS:                                                                                  | VI = 0.                          |                                      |                                                              |                                                                |                                          |                                  |
|                                      | NUMBER= (                                                              |                                                                                       | • 0 •                            |                                      |                                                              |                                                                |                                          |                                  |
|                                      | CHECK CATA FUR<br>CAPACITY, CFS<br>CIAMETER, INCHES<br>AVERAGE HEAD CI | Q = 270.<br>S (RCUNDED) =                                                             | CFS<br>270.<br>52.               |                                      |                                                              |                                                                | 1.1                                      |                                  |
|                                      | AVERAGE FEAD CL                                                        | ASS, FEET =                                                                           | 300.                             |                                      |                                                              | territoria de la composición de                                |                                          |                                  |
|                                      | PIPE CCST, S/FT<br>MISC CCST, IDDI                                     |                                                                                       | 59.00                            |                                      |                                                              |                                                                |                                          |                                  |

## Table D-3. Pump systems subprograms.

FARP PJMP---CANAL TO SPRINKLER FUR 1578, 175 FEET TOH 1 UNIT

| GFM)                                                                 | DESIGN<br>MCTCR<br>HP<br>1/                                                                                                                        | MAXIMJM<br>ENERGY<br>DEMAND<br>(Kw) 2/                                                                                      | SEASCHAL<br>ENERGY<br>USE<br>(MHH) 3/                                          | CAPITAL<br>COST<br>(\$) 4/                                                         | ANNUAL<br>CAPITAL<br>COST<br>(\$/YR)                               | ANNUAL<br>C G P<br>COST<br>(\$/YR) 5/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ANNUAL<br>TAXES<br>& INS<br>(\$/YR)                                        | ANNUAL<br>PEWER<br>COST<br>(\$/YR) &/                                                | KELL<br>CCST<br>(\$) 7/.             | ANNLAL<br>WELL<br>CEST<br>(\$/YR)    | TOTAL<br>ANNUAL<br>CCSI<br>(\$/YR) 8/                                                            |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------|
| 100.<br>140.<br>180.<br>220.<br>260.<br>300.<br>340.<br>380.<br>420. | 10                                                                                                                                                 | 5.<br>7.<br>30.<br>12.<br>14.<br>16.<br>18.<br>20.                                                                          | 72223556811-<br>10356881476                                                    | 3328 •<br>375005 •<br>44674 82 •<br>55344 29 •<br>55344 29 •<br>55345 29 •<br>5588 | 4699.<br>5781.<br>6594.<br>6594.<br>775827<br>7788                 | 100<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>11/23/0<br>1/23/0<br>1/23/0<br>1/23/0<br>1/23/0<br>1/20/0<br>1/20/0<br>1/20/0<br>1 | 55<br>668<br>777<br>858<br>91.                                             | 640.<br>827.<br>1013.<br>1200.<br>1386.<br>1573.<br>1759.<br>1546.<br>2132.          | 0                                    | 0                                    | 1264 •<br>1530 •<br>1782 •<br>2026 •<br>2263 •<br>2495 •<br>2724 •<br>2949 •<br>3172 •<br>3392 • |
| 460.<br>540.<br>540.<br>580.<br>660.<br>740.<br>780.<br>820.         | 005550055500556<br>005550055500556                                                                                                                 | 20.<br>224.<br>24.<br>25.<br>27.<br>24.<br>31.<br>33.<br>35.<br>35.<br>37.                                                  |                                                                                | 6060.<br>6216.<br>6365.<br>6508.<br>6646.<br>6778.<br>6906.                        | 807<br>832<br>877<br>898<br>918<br>937<br>956<br>974<br>974<br>974 | 166.<br>172.<br>182.<br>191.<br>195.<br>203.<br>201.<br>211.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94.<br>57.<br>100.<br>103.<br>105.<br>107.<br>110.<br>112.<br>114.<br>116. | 2132<br>2319<br>2505<br>2692<br>2878<br>3065<br>3251<br>3438<br>3624<br>3811<br>3997 | 0<br>00<br>00<br>00<br>00            | d<br>cc<br>cc<br>cc<br>cc            | 3611 -<br>3828 -<br>4044 -<br>4259 -<br>4472 -<br>4684 -<br>4896 -<br>5106 -<br>5316 -           |
| 86C.<br>900.<br>540.<br>580.                                         | 55.<br>60.<br>65.                                                                                                                                  | 42.                                                                                                                         | 66524.<br>1144C.                                                               | 7150.<br>7267.<br>7380.<br>7490.                                                   | 1009.<br>1025.<br>1041.<br>1056.                                   | 2037.<br>22115.<br>22126.<br>2225.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 112.<br>114.<br>114.<br>116.<br>118.<br>120.<br>122.<br>124.               | 4184.<br>4370.<br>4557.<br>4743.                                                     | 0.                                   | с:<br>с:                             | 5525.<br>5733.<br>5941.<br>6148.                                                                 |
|                                                                      | 4/ PUP 5<br>5/ PCW 6<br>6/ PCW 6<br>7/ WELL<br>8/ ANNU                                                                                             | CALCULATED<br>CEST INCL<br>M INCLUDES<br>R COST IS<br>CEST INCL<br>AL PUMPING                                               | ASSUMING I<br>UCES HOUSIN<br>FINOR REP<br>ESCALATED<br>UCES DRILL<br>CCST INCL | PUMP OPERA<br>NG, DISCHAR<br>LACEMENT<br>VALUE COM<br>ING, CASIN<br>UDES AMORI     | ATES FACILII                                                       | AN EQLIVALE<br>G, SCREEN AS<br>F PUMP UNIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ELEC. CO                                                                   | FACTOR FOR E                                                                         | NIRING, AN<br>SCALATION<br>ES & INS. | OF **** F<br>AND ESCAL               | NTAKE INSTALLED<br>PERCENT<br>ATED POWER COST                                                    |
|                                                                      |                                                                                                                                                    |                                                                                                                             |                                                                                |                                                                                    |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            |                                                                                      | NIRING, AN<br>Scalaticn<br>ES & INS. | ND SHCRT I<br>OF ++++ F<br>AND ESCAL | INTAKE INSTALLED<br>PERCENT<br>ATED POWER COST                                                   |
| HILD TAND                                                            | CIAL ANNUAL<br>CTAL ANNUAL<br>CIAL ANNUAL<br>OTAL ANNUAL<br>VER PROJECT                                                                            | DEMAND CL<br>ENERGY CJ<br>POWER CJ<br>FCWER CL<br>L IEL                                                                     | AL PRESS                                                                       | ENI PRICE<br>ENI PRICE<br>ENI PRICE<br>GY INFLAT                                   |                                                                    | F 100.<br>1100.<br>2641.<br>100.<br>4743.<br>175.<br>10.<br>16.<br>16.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DURING PERCENT                                                             |                                                                                      | NIRING, AN                           | ND SHCRT I<br>GF **** F<br>AND ESCAL | INTAKE INSTALLED<br>PERCENT<br>ATED POWER COST                                                   |
| TRAZO                                                                |                                                                                                                                                    | DEMANU CL<br>ENERGY CU<br>POWER CU<br>LIFE<br>C HEAD, FE<br>FF, PERCE<br>DF PUMPIN<br>ITS                                   | SI AL PRESS<br>SI AT PRESS<br>SI AT PRESS<br>SI AT PRESS<br>EL                 | ENI PRICE<br>ENI PRICE<br>GY INFLAT                                                |                                                                    | 1:41.<br>1:00.<br>2:41.<br>F 10:00<br>4743.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D PERCENT                                                                  |                                                                                      | NIRING, AN                           | ND SHCRT I<br>GF **** F<br>AND ESCAL | INTAKE INSTALLED<br>PERCENT<br>ATED POWER COST                                                   |
| TRANSTU                                                              | CIAL ANNUAL<br>CIAL ANNUAL<br>GIAL ANNUAL<br>DIAL ANNUAL<br>VER PROJECT<br>CIAL DYNAMI<br>UNP-MOTCR E<br>ENVICE LIFE<br>UMBER CF UN<br>EMAND OF SN | DEMANU CL<br>ENERGY CU<br>POWER CU<br>LIFE<br>C HEAD, FE<br>FF, PERCEN<br>ITS<br>ALLEST UNPIN<br>ALLEST UNPIN<br>BASE=1976. | SI AL PRESS<br>SI AT PRESS<br>SI AT ENER<br>G UNIT                             | ENI PRICE<br>ENI PRICE<br>ENI PRICE<br>GY INFLAT                                   | S<br>ION RATE OI                                                   | 1:41.<br>1100.<br>2:41.<br>F 10.00<br>4743.<br>175.<br>10.<br>16.<br>16.<br>12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D PERCENT                                                                  |                                                                                      | NIRING, AN                           | ND SHCRT I                           | INTAKE INSTALLED<br>PERCENT<br>LATED POWER COST                                                  |

RAVER PUMP--- IDAHO CANAL ID

| 103. 46681. 0.90E 07 5645. 549567. 66953. 22428. 149618/ 744912. 850894.<br>105. 46666. 0.90E 07 615. 572001. 66953. 22428. 149618/ 811363. 923975.<br>115. 5330. 0.90E 07 6153. 596011. 72220. 22536. 178568/ 811363. 923975.<br>115. 5330. 0.11E 038 6710. 642079. 77003. 22634. 15906. 1980. E84534. 1001477.<br>125. 57554. 0.11E 038 6710. 642079. 77033. 22634. 15906. 1980. E84534. 1001477.<br>125. 57554. 0.11E 038 6710. 642079. 77033. 22634. 15906. 1980. E84534. 1001477.<br>125. 57554. 0.11E 038 7707. 687538. 80567. 26680. 16263. 2011. 891495. 1011456.<br>145. 66286. 0.12E 033 7277. 687538. 80567. 26680. 16263. 2011. 891495. 1011456.<br>145. 66286. 0.12E 033 7277. 687538. 80476. 27728. 16661. 2011. 891495. 1011456.<br>145. 66286. 0.13E 033 7830. 717254. 94182. 22849. 17620. 2766. 891495. 1023659.<br>145. 66721. 0.13E 038 8330. 777254. 94182. 22849. 17620. 2766. 891495. 1023659.<br>145. 66721. 0.14E 038 9494. 81377. 12042. 88674. 22025. 18266. 2500. 891495. 1023659.<br>145. 66721. 0.14E 038 9494. 81377. 12042. 28849. 17945. 243. 891495. 1023659.<br>145. 6953. 0.13E 038 8330. 777254. 94182. 228649. 17620. 2500. 891495. 1023675.<br>145. 6953. 0.13E 038 93267. 102101. 22027. 18260. 2500. 891495. 1023675.<br>145. 6953. 0.13E 038 93267. 102101. 22037. 18260. 2500. 891495. 1023682.<br>145. 6953. 0.13E 038 93267. 10211. 22037. 18830. 255. 891495. 1023682.<br>145. 8577. 0.11E 038 93263. 843173. 102171. 22037. 18830. 255. 891495. 1023682.<br>145. 8577. 0.11E 038 93263. 843173. 102171. 22037. 18930. 255. 891495. 1033820.<br>145. 8577. 0.11E 038 93263. 843173. 102171. 22037. 19802. 275. 891495. 1043712.<br>140. 88340. 0.166 03 93263. 843173. 102171. 22037. 2365. 891495. 1043712.<br>140. 88340. 0.166 03 93263. 843173. 102171. 22037. 2365. 891495. 1043712.<br>140. 88340. 0.166 03 93263. 843173. 102471. 22037. 2365. 891495. 1043712.<br>140. 88340. 0.166 03 93263. 843173. 102640. 23169. 20389. 300. 891495. 104375.<br>140. 88340. 0.166 03 94055. 1044675.<br>140. 88340. 0.166 03 94055. 94086. 1026. 20389. 300. 891495. 1044765.<br>140. 88340. 0.166 03 94055. 94086.<br>140. | (CFS)                                                                                            | 1 AX IMUM<br>ENERGY<br>DEMAND<br>(KW) 2/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SEASO JAL<br>ENER SY<br>USE<br>(KWH) 3/                                                                                                                                          | DESIGN<br>MCTOR<br>HP<br>4/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E STIMATED<br>CAPTIAL<br>COST<br>(\$)                                                                                                                                                                         | ANNUAL<br>EQUIVALENI<br>COST<br>(\$/YR) 5/                                                                                                                        | ANNUAL<br>OPERATION<br>CEST<br>(\$/YR)                                                                                                                                            | ANNUAL<br>MAINT.<br>CCST<br>(\$/YR)                                                                                                                                    | ANNUAL<br>REPLACEMENT<br>COST<br>(\$/YR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ANNUAL<br>FOWER<br>COST<br>(\$/YR) 6/                                                                                                                                                                      | TOTAL<br>ANNUAL PUMPING<br>COST<br>(\$/YR) 7/                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre>1/ WEAR ALLOWANCE WAS INCLUDED FOR SEDIMENT-LADEN WAPER.<br/>2/ MAXIMUM DEMAND OF SERVICE LINE (KW) = (PEAK Q * (1.+ % WEAR)) * TDH/(EFF*8.8)*0.746<br/>3/ CALCULATED AITH ADJUSTED EFFICIENCIES FOR NONPEAK MCATHS<br/>AND CALCULATED A.SUMING PLANT OPERATES 100. % OF THE PEAK USE MONTH<br/>4/ DESIGN HORSED A.SUMING PLANT OPERATES 100. % OF THE PEAK USE MONTH<br/>5/ INCLUDES CONTINGENCIES /<br/>6/ POWER COST IS EXALATED VALUE COMPUTED WITH AN ECJIVALENT COST FACTOR FOR ESCALATION OF **** PERCENT<br/>INCLUDES TRANSMISSION LINE AND SWITCHING BAY COST IF APPLICABLE (PRIVATE LINE)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 105.<br>11205.<br>1225.<br>1225.<br>1350.<br>14405.<br>1550.<br>1665.<br>1705.<br>1885.<br>1885. | 4868.<br>50330.<br>555613.<br>60255.<br>60255.<br>60255.<br>60255.<br>60255.<br>60255.<br>60255.<br>60255.<br>71415.<br>76466.<br>78145.<br>76466.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>78145.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7815.<br>7 | 0.94F 07<br>0.98F 07<br>0.10F 08<br>0.11F 08<br>0.12F 08<br>0.12F 08<br>0.12F 08<br>0.13F 08<br>0.13F 08<br>0.14F 08<br>0.14F 08<br>0.15F 08<br>0.16F 08<br>0.17E 08<br>0.17F 08 | 51500<br>64500<br>75500<br>75500<br>75500<br>75500<br>75500<br>8136455<br>8136455<br>955705<br>8136455<br>955705<br>100855<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>1008405<br>10 | 572901.<br>596011.<br>619120.<br>642079.<br>664889.<br>687548.<br>710132.<br>735642.<br>775254.<br>777254.<br>821354.<br>821354.<br>843179.<br>864929.<br>886604.<br>938054.<br>939579.<br>950804.<br>972029. | 69420.<br>75021.<br>75021.<br>80567.<br>80567.<br>88776.<br>94182.<br>94182.<br>96854.<br>99526.<br>102171.<br>10486.<br>107433.<br>110032.<br>112640.<br>115212. | 22483.<br>22536.<br>22586.<br>22680.<br>22725.<br>22768.<br>22768.<br>22809.<br>22849.<br>22889.<br>229825.<br>22997.<br>22997.<br>23065.<br>23097.<br>23067.<br>23129.<br>23160. | 17413.<br>17856.<br>15547.<br>15547.<br>16263.<br>16611.<br>17289.<br>17645.<br>18266.<br>18893.<br>18893.<br>19503.<br>19503.<br>19503.<br>19503.<br>19503.<br>19503. | 8/<br>8/<br>191.<br>198.<br>206.<br>213.<br>228.<br>236.<br>243.<br>258.<br>265.<br>279.<br>286.<br>279.<br>286.<br>279.<br>286.<br>300.<br>300.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 774577.<br>811314345.<br>811314345.<br>8914955.<br>89149955.<br>89149955.<br>89149955.<br>89149955.<br>89149955.<br>89149955.<br>89149955.<br>89149955.<br>89149955.<br>89149955.<br>89149955.<br>8914995. | 883894.<br>923975.<br>961492.<br>1001477.<br>1011210.<br>1014356.<br>1020558.<br>1020558.<br>10226753.<br>1022753.<br>1022753.<br>1023822.<br>1035820.<br>1035820.<br>1035820.<br>1035820.<br>1035824.<br>1041774.<br>10447712.<br>1047654.<br>1050554. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N                                                                                                | L/ WE AR<br>2/ MAXIM<br>3/ CALCU<br>AND C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UM DEMAND (<br>LATED JITH<br>ALCULATED J<br>N HORSEPOJE                                                                                                                          | DE SERVICE<br>AUJUSTED<br>AJSUMING P<br>EK DE MOTO<br>GENCIES<br>SALATED N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LINE (KW) =<br>EFFICIENCIES<br>PLANT OPERATES<br>DR. ROUNDED TO<br>ALUE COMPUTED                                                                                                                              | PEAK Q * [1.<br>FOR NONPEAK ]<br>100. TOF<br>NEAREST 5 HI<br>WITH AN ECJ                                                                                          | A Z LEAR )) *<br>MCNTHS<br>THE PEAK USE<br>P. ASSUMED                                                                                                                             | MONTH<br>MOTOR EFF                                                                                                                                                     | $\frac{1}{0} \frac{1}{0} \frac{1}$ | )<br>CF **** PL                                                                                                                                                                                            | RCENT                                                                                                                                                                                                                                                   |

|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                    | and the second se |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SUMMARY OF PUMPING PLANT DATA:                                                                                                                                                                                                                                                                                                                                         |                                                                                    | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TYPE OF PJMPING UNIT VERTICAL PUMP<br>DATE OF ESTIMATE<br>INTEREST RATE, PERCENT<br>ESTIMATED SYSTEM LIFE, YEARS                                                                                                                                                                                                                                                       | 6/78<br>12.0<br>40.                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| COST SUMMARY FOR THE LAST 'Q' CONSIDERE                                                                                                                                                                                                                                                                                                                                | D:                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PLANT CAPACITY, CFS<br>TOTAL DYNAMIC HEAD, FEET<br>NUMBER OF PUMPING UNITS.<br>DEMAND OF SMALLEST UNIT, KW<br>EFFICIENCY (WIRE TO WATER)-PERCENT<br>WEAR ALLOWANCE FOR SEDIMENT, PERCENT<br>SIRUCTURES, IMPROVEMENTS AND WATERWAYS<br>PLMPS AND MOTORS<br>ELECTRICAL ACCESSORIES AND SWITCHGEAR<br>INTAKE AND DISCHARGE LINES (MANIFOLDS)<br>SUBTOTAL OF PUMPING PLANT | 200<br>350<br>927<br>65                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| WEAR ALLOFANCE FOR SEDIMENT, PERCENT<br>STRUCTURES, IMPROVEMENTS AND WATERWAYS<br>PLMPS AND MOTORS<br>ELECTRICAL ACCESSORIES AND SWITCHGEAR<br>INTAKE AND DISCHARGE LINES (MANIFOLDS)                                                                                                                                                                                  | 126881.<br>468944.<br>149194.<br>82444.<br>827462.                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SUBTOTAL OF PUMPING PLANT                                                                                                                                                                                                                                                                                                                                              | 827462.                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CCNTINGENCY COST (20.0 %)<br>EXTRA INDIRECT COSTS( 0.0 %)<br>SALVAGE COSTS (10.0 %)                                                                                                                                                                                                                                                                                    | 99295.                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ANNUAL EQUIVALENT PLANT COSTS                                                                                                                                                                                                                                                                                                                                          | 128313:                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TRANSMISSION LINE COST<br>ACD 50 PERCENT FOR MOUNTAINOUS TERRAIN<br>ADD 50 PERCENT FOR ROCKY/SWAMPY, FOUND,<br>ADD 100 PERCENT FOR LINE UNDER 5 MILES<br>ADD 50 PERCENT FOR LINE 5 TO 20 MILES                                                                                                                                                                         | 187849.<br>0.<br>187849.                                                           | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ADD 50 PERCENT FOR LINE 5 TO 20 MILES<br>SUBTOTAL<br>SWITCHING BAY COST<br>CENTINGENCIES (TL AND SB)<br>TOTAL FIELD COSTS<br>INDIRECT COST<br>SERVICE LIFE OF TRANS. LINE & SW BAY<br>SERVICE LIFE OF TRANS. LINE & SW BAY<br>SERVICE LIFE OF TRANS. LINE & SW BAY<br>TCTAL POWER LINE CONSTRUCTION COSIS                                                              | 375698.<br>721847.<br>109754.                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| IDTAL FIELD COSTS<br>INDIRECT COST<br>SERVICE LIFE OF TRANS, LINE & SW BAY                                                                                                                                                                                                                                                                                             | 1207299<br>382581<br>317976                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SALVAGE VALUE OF LINE AND BAY ( 20.3)<br>TCTAL POWER LINE CONSTRUCTION COSIS                                                                                                                                                                                                                                                                                           | 317976.<br>1589880.                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SEASCNAL DEMAND CHARGE FOR PRVT UTILITY<br>SEASCNAL ENERGY CHARGE FOR PRVT UTILITY<br>TCT. POWER COST, PRVT UTILITY, CURRT RA                                                                                                                                                                                                                                          | 221794 -<br>251596 -                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ANNUAL POWER COSTOPT 1 F.RATE, OWN LI<br>ANNUAL POWER COSTOPT 2 WHEELING CHAR<br>ANNUAL POWER COSTOPT 3 PRIVATE UTILI                                                                                                                                                                                                                                                  | CURRENT RATE ESCALA<br>NE 661974. 2062164<br>GE 286178. 89149<br>TY 473390. 147469 | TED RATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                        | ·                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| RIVER PUMP IDAHO CANAL ID                                                                                                                                                                                                                                                                                                                                              |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                  |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

### APPENDIX E

CONTROL PROGRAMS, INPUT DATA AND MATRIX PICTURES OF THE MATHEMATICAL PROGRAMMING PROBLEMS

- E-1. Mixed integer-linear programming (MIP) problem for Rehabilitation plan with gravity supply systems
- E-2. Linear programming (LP) problem for Consolidation plan with high pressure pipe system

Figure E-1. Mixed integer-linear programming (MIP) problem for rehabilitation plan with gravity supply systems

Control program for mixed integer-linear programming of APEX III (Reference: Control Data Corporation, 1979).

> MIP, CM100000, T30. USER(PNLSNGI,A) CHARGE, 103000,0019. ATTACH(APEX=APEXIII/UN=LIBRARY) GET, TAPE1=OIDAHO. PURGE, TAPE5/NA. PURGE, TAPE 12/NA. DEFINE, TAPE5. DEFINE, TAPE12. RFL,700C). REDUCE, -. APEX(SOLVE, MIN, MIP, SV, RANGE) GOTO, IA. EXIT. IA., RETURN, TAPE12. RETURN, TAPE5. REWIND, OUTPUT. COPYEI, OUTPUT, WIDAH05. REWIND, OUTPUT. DAYFILE, WIDAH05. PACK, WIDAH05. REPLACE, WIDAH05.

E SEEP E RUNOFF

|   |                    | E WCOST              |             |           |                                       |          |
|---|--------------------|----------------------|-------------|-----------|---------------------------------------|----------|
|   | NAME SRVSYS3       | E WCOST<br>L SYSCOST |             |           |                                       |          |
|   | ROWS               | N UHJ                |             |           | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |          |
|   | G SRVK             | · COLUMNS            |             |           |                                       |          |
|   | G SRVL             | UGK                  | OHJ         | 61.00000  | SHVK                                  | 1.00000  |
|   | G SRVM             | UGK                  | SYSK        | 0.02970   | DEPERC                                | -1.24100 |
|   | G SHVN             | UGK                  | RUNOFF      | -1.90000  | DEFENC                                | -1.24100 |
|   | G SAVO             | UGK                  | WCUST       | -5.44     |                                       |          |
|   | G SRVP             | IGK                  | OBJ         | 85.00000  | SHVK                                  | 1.00000  |
|   | G SRVO             | IGK                  | SYSK        | 0.01930   | DEPERC                                |          |
|   | G SRVS             | IGK                  | RUNOFF      | -1.16500  | DEFERC                                | -0.24800 |
|   | L SYSA             | IGK                  | WCOST       | -3.53     |                                       |          |
|   | L SYSE             | НМК                  | OHJ         | 90.00000  | SRVK                                  | 1.00000  |
|   | L SYSK             | НМК                  | SYSK        | 0.01500   | DEPERC                                | -0.42270 |
|   | L SYSL             | НМК                  | WCOST       | -2.75     | DETENC                                | 0.42270  |
|   | L SYSM             | SHK                  | OBJ         | 97.00000  | SHVK                                  | 1.00000  |
|   | L SYSN             | SRK                  | SYSK        | 0.01440   | DEPERC                                | -0.37900 |
|   | L SYSO             | SRK                  | WCOST       | -2.64     | our une                               | -0.31900 |
|   | L SYSP             | UGL                  | OBJ         | 57.00000  | SRVL                                  | 1.00000  |
|   | L SYSO             | UGL                  | SYSL        | 0.03230   | DEPERC                                | -1.51600 |
|   | L SYSS             | UGL                  | RUNOFF      | -2.02900  |                                       | 1.51000  |
|   | E BETAA            | UGL                  | WCOST       | -5.91     |                                       |          |
|   | E BETAE            | IGC                  | 0HJ         | 83.00000  | SHVL                                  | 1.00000  |
|   | E BETAK            | IGL                  | SYSL        | 0.02010   | DEPERC                                | -0.26600 |
|   | E BETAL            | IGL                  | RUNOFF      | -1.23400  |                                       | 0020000  |
|   | E BETAM            | IGL                  | WCOST       | -3.68     |                                       |          |
|   | E BETAN            | HML                  | ORJ         | 83.00000  | SRVL                                  | 1.00000  |
|   | Ε ΒΕΤΑΟ<br>Ε ΒΕΤΔΡ | HML                  | SYSL        | 0.01540   | DEPERC                                | -0.43410 |
|   | E BETAP<br>E BETAQ | HML                  | WCOST       | -2.82     |                                       |          |
|   | E BETAS            | SRL                  | OBJ         | 93.00000  | SHVL                                  | 1.00000  |
|   | L ALPHAA1          | SRL                  | SYSL        | 0.01480   | DEPERC                                | -0.38200 |
|   | L ALPHAAI          | SRL                  | WCOST       | -2.71     |                                       |          |
|   | L ALPHAE1          | UGM                  | 0PJ         | 62.00000  | SKVM                                  | 1.00000  |
|   | E ALPHAEZ          | UGM                  | SYSM        | 0.02690   | DEPERC                                | -1.03600 |
|   | L ALPHAK1          | UGM                  | RUNOFF      | -1.67600  |                                       |          |
|   | L ALPHAK2          | UGM                  | WCOST       | -4.92     |                                       |          |
|   | L ALPHAK3          | IGM                  | OBJ         | 85.00000  | SHVM                                  | 1.00000  |
|   | L ALPHAL1          | IGM                  | SYSM        | 0.01800   | DEPERC                                | -0.21400 |
|   | L ALPHAL2          | IGM                  | RUNOFF      | -1.03600  |                                       |          |
|   | L ALPHAL3          | IGM                  | WCOST       | -3.29     |                                       |          |
|   | L ALPHAM1          | НММ                  | 0RJ         | 94.00000  | SRVM                                  | 1.00000  |
|   | L ALPHAM2          | НММ                  | SYSM        | 0.01450   | DEPERC                                | -0.41170 |
|   | L ALPHAM3          | SRM                  | WCOST       | -2.65     |                                       |          |
|   | L ALPHANI          | SRM                  | ORJ<br>SYSM | 103.00000 | SRVM                                  | 1.00000  |
|   | L ALPHAN2          | SRM                  |             | 0.01400   | DEPERC                                | -0.36230 |
|   | L ALPHAN3          | UGN                  | WCOST       | -2.56     |                                       |          |
|   | L ALPHAUI          | UGN                  | SYSN        | 63.00000  | SRVN                                  | 1.00000  |
|   | L ALPHAOZ          | UGN                  | RUNOFF      | 0.02870   | DEPERC                                | -1.04700 |
|   | L ALPHA03          | UGN                  | WCOST       | -1.84000  |                                       |          |
|   | L ALPHAP1          | IGN                  | OBJ         |           | SRVN                                  |          |
|   | L ALPHAP2          | IGN                  | SYSN        | 87.00000  | DEPERC                                | 1.00000  |
|   | L ALPHAP3          | IGN                  | RUNOFF      | 0.01890   | DEPERC                                | -0.19800 |
|   | L ALPHAQ1          | IGN                  | WCOST       | -1:12500  |                                       |          |
|   | L ALPHAQ2          | HMN                  | OBJ         | 97.00000  | SRVN                                  | 1 00000  |
|   | L ALPHAQ3          | HMN                  | SYSN        |           |                                       | 1.00000  |
|   | L ALPHASI          | HMN                  | WCOST       | 0.01490   | DEPERC                                | -0.41780 |
|   | L ALPHAS2          | SRN                  | ORJ         |           | SUNN                                  | 1 00000  |
| - | L ALPHAS3          | SRN                  | SYSN        | 104.00000 | SRVN                                  | 1.00000  |
|   | E SYSOP            | SRN                  | WCOST       | -2.62     | DEPERC                                | -0.36770 |
|   | E SYSCL            | UGO                  | OBJ         | 81.00000  | SRVO                                  | 1 00000  |
|   | L WION             | UGO                  | SYSO        | 0.03200   | DEPERC                                | 1.00000  |
|   | E VOLON            | UGO                  | RUNOFF      | -2.13400  | DEPERL                                | -1.34800 |
|   | E DEPERC           | UGO                  | WCOST       | -5.86     |                                       |          |
|   |                    |                      |             | 0.00      |                                       |          |

| 160                                                  | ORJ                                    | 103.00000                                   | SRVO             | 1.00000                                                                                                        | SAX                      | LHO                       | 135.6                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|------------------------------------------------------|----------------------------------------|---------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| IGO                                                  | SYSO                                   | 0.05050                                     | DEPERC           | -0.27000                                                                                                       | YA2                      | SYSCOST                   | -83516.00000                          | BETAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00000                                 |
| IGO                                                  | RUNOFF                                 | -1.31000                                    |                  |                                                                                                                | YA2                      | ALPHAA2                   | -650.00000                            | SYSOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -3.24000                                |
| 160                                                  | WCOST                                  | -3.70                                       |                  |                                                                                                                | YA2                      | OBJ                       | 83516.0                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| нмо                                                  | OBJ                                    | 94.00000                                    | SRVO             | 1.00000                                                                                                        | XE1                      | SYSA                      | 1.00000                               | SYSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.96100                                |
| НМО                                                  | SYSO                                   | 0.01490                                     | DEPERC           | -0.42200                                                                                                       | XE1                      | ALPHAE1                   | 1.00000                               | SEEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -8.53000                                |
| HMO                                                  | WCOST                                  | -2.73                                       |                  |                                                                                                                | YEI                      | BETAE                     | 1.00000                               | ALPHAE1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -420.00000                              |
| SRO                                                  | OBJ                                    | 101.00000                                   | SRVO             | 1.00000                                                                                                        | YE1                      | SYSOP                     | -1.68000                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 420.00000                               |
| SRO                                                  | SY50                                   | 0.01430                                     | DEPERC           | -0.37140                                                                                                       | XE2                      | SYSCOST                   | -96.70000                             | SYSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 00000                                 |
| SRO                                                  | WCOST                                  | -2.62                                       | iner en e        | 0.51140                                                                                                        | XE2                      | SYSE                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00000                                 |
| UGP                                                  | ORJ                                    | 46.00000                                    | SHVP             | 1 00000                                                                                                        |                          |                           | -0.98800                              | ALPHAE2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00000                                 |
| UGP                                                  | SYSP                                   |                                             |                  | 1.00000                                                                                                        | XE 2                     | SEEP                      | -0.70050                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| UGP                                                  |                                        | 0.02920.0                                   | DEPEPC           | -0.80800                                                                                                       | XE 2                     | OBJ                       | 96.7                                  | and the second s |                                         |
|                                                      | RUNOFF                                 | =1.94800                                    |                  |                                                                                                                | YES.                     | SYSCOST                   | -38300.00000                          | BETAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00000                                 |
| UGP                                                  | WCOST                                  | -5.34                                       |                  |                                                                                                                | YE2                      | ALPHAE2                   | -420.00000                            | SYSOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1.68000                                |
| IGP                                                  | OBJ                                    | 76.00000                                    | SRVP             | 1.00000                                                                                                        | YE2                      | OBJ                       | 36300.0                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| IGP                                                  | SYSP                                   | 0.01830                                     | DEPERC           | -0.02700                                                                                                       | XK1                      | SYSE                      | 1.00000                               | SYSK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.96500                                |
| IGP                                                  | RUNOFF                                 | -1.02300                                    |                  |                                                                                                                | XK1                      | ALPHAK1                   | 1.00000                               | SEEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -7.39000                                |
| IGP                                                  | WCOST                                  | -3.34                                       |                  |                                                                                                                | YK1                      | SYSCOST                   | -3684.39990                           | RETAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00000                                 |
| HMP                                                  | DEJ                                    | 86.00000                                    | SRVP             | 1.00000                                                                                                        |                          |                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| HMP                                                  | SYSP                                   |                                             |                  |                                                                                                                |                          | ALPHAK1                   | -230.00000                            | SYSOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -2.30000                                |
| HMP                                                  | WCOST                                  | 0.01550                                     | DEPERC           | -0.42190                                                                                                       | YK1                      | OBJ                       | 3684.4                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
| SRP                                                  |                                        | -2.84                                       |                  |                                                                                                                | XK2                      | SYSCOST                   | -168.29999                            | SYSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00000                                 |
|                                                      | OBJ                                    | 91.00000                                    | SRVP             | 1.00000                                                                                                        | XK2                      | SYSK                      | -0.98700                              | ALPHAK2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00000                                 |
| SRP                                                  | SYSP                                   | 0.01490                                     | DEPERC           | -0.37120                                                                                                       | XK2                      | SEEP                      | -1.45330                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 10 1                                 |
| SRP                                                  | WCOST                                  | -2.73                                       |                  |                                                                                                                | XK2                      | OBJ                       | 168.3                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 060                                                  | ORJ                                    | 89.00000                                    | SRVQ             | 1.00000                                                                                                        | YK2                      | SYSCOST                   | -34195.00000                          | BETAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00000                                 |
| UGQ                                                  | SYSQ                                   | 0.02940                                     | DEPERC           | -1.07400                                                                                                       | YK2                      | ALPHAK2                   | -230.00000                            | SYSOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -2.30000                                |
| UGQ                                                  | RUNOFF                                 | -2.16000                                    | N'ADTARCEAR T    |                                                                                                                | YK2                      | OBJ                       | 34195.0                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| UGQ                                                  | WCOST                                  | -5.38                                       |                  |                                                                                                                | XK3                      | SYSCOST                   | -697.09985                            | SYSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 00000                                 |
| IGQ                                                  | ORJ                                    | 109.00000                                   | SRVQ             | 1.00000                                                                                                        |                          |                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00000                                 |
| 160                                                  | SYSQ                                   |                                             |                  |                                                                                                                | XK3                      | SYSK                      | -1.00000                              | ALPHAK3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00000                                 |
| IGO                                                  | RUNOFF                                 | 0.01920                                     | DEPERC           | -0.22400                                                                                                       | ХК 3                     | OHJ                       | 697.1                                 | - Harrison and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and the second second                   |
|                                                      |                                        | -1.31700                                    |                  |                                                                                                                | YK3                      | SYSCOST                   | -79630.00000                          | BETAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00000                                 |
| 160                                                  | WCOST                                  | -3.51                                       |                  |                                                                                                                | YK3                      | ALPHAK3                   | -230.00000                            | SYSCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -2.30000                                |
| нмо                                                  | OBJ                                    | 95.00000                                    | SRVQ             | 1.00000                                                                                                        | YK3                      | OBJ                       | 79630.0                               | a consta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |
| нма                                                  | SYSQ                                   | 0.01450                                     | DEPERC           | -0.40860                                                                                                       | XL1                      | SYSK                      | 1.00000                               | SYSL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.93700                                |
| HMQ                                                  | WCOST                                  | -2.65                                       |                  | the second s | XL1                      | ALPHAL 1                  | 1.00000                               | SEEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -15.87000                               |
| SRQ                                                  | OBJ                                    | 98.00000                                    | SRVQ             | 1.00000                                                                                                        | YLI                      | SYSCOST                   | -1292.39990                           | BETAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00000                                 |
| SRQ                                                  | SYSO                                   | 0:01390                                     | DEPERC           | -0.35960                                                                                                       | YLI                      | ALPHAL1                   | -25.00000                             | SYSOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 |
| SRQ                                                  | WCOST                                  | -2.54                                       | DE. E.I.C        | 0.00,000                                                                                                       | YLI                      |                           |                                       | STOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -2.08000                                |
| CPO                                                  | OPJ                                    | 153.59999                                   | SRVQ             | 1.00000                                                                                                        |                          | OBJ                       | 1292.4                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| CPQ                                                  | SYSQ                                   | 0.01279                                     | DEPERC           |                                                                                                                | XL2                      | SYSCOST                   | -103.29999                            | SYSK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00000                                 |
| CPQ                                                  | WCOST                                  |                                             | DEPERC           | -0.24520                                                                                                       | XL2                      | SYSL                      | -0.98100                              | ALPHAL2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00000                                 |
| UGS                                                  |                                        | -2:34                                       |                  |                                                                                                                | XL2                      | SEEP                      | -4.01560                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|                                                      | OBJ                                    | 85.00000                                    | SHVS             | 1.00000                                                                                                        | XL2                      | OBJ                       | 103.3                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| UGS                                                  | SYSS                                   | 0.02880                                     | DEPERC           | -0.97700                                                                                                       | YL2                      | SYSCOST                   | -9605.00000                           | BETAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00000                                 |
| UGS                                                  | RUNOFF                                 | -1.80300                                    |                  |                                                                                                                | YLZ                      | ALPHAL2                   | -25.00000                             | SYSUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -2.08000                                |
| UGS                                                  | WCOST                                  | -5.27                                       |                  |                                                                                                                | YLZ                      | OBJ                       | 9605.0                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| IGS                                                  | OHJ                                    | 109.00000                                   | SRVS             | 1.00000                                                                                                        | XL3                      | SYSCOST                   | -1032.89990                           | SYSK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00000                                 |
| IGS                                                  | SYSS                                   | 0.01880                                     | DEPERC           | -0.14000                                                                                                       | XL3                      | SYSL                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 165                                                  | HUNOFF                                 | -1.02500                                    | UL. LIL          | 0.14000                                                                                                        | XL3                      |                           | -1.00000                              | ALPHAL 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.00000                                 |
| IGS                                                  | WCOST                                  | -3.44                                       |                  |                                                                                                                |                          | OBJ                       | 1032.9                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
| HMS                                                  | OBJ                                    |                                             | COME             | 1                                                                                                              | YL3                      | SYSCOST                   | -20724.00000                          | BETAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00000                                 |
| HMS                                                  |                                        | 91.00000                                    | SHVS             | 1.00000                                                                                                        | YL3                      | ALPHAL 3                  | -25.00000                             | SYSCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -2.08000                                |
|                                                      | SYSS                                   | 0.01530                                     | DEPERC           | -0.42460                                                                                                       | YL3                      | OBJ                       | 20724.0                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 - 4 1 m 1 m                           |
| HMS                                                  | WCOST                                  | -2.80                                       |                  |                                                                                                                | XM]                      | SYSK                      | 1.00000                               | SYSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.97900                                |
| SRS                                                  | 0PJ                                    | 99.00000                                    | SRVS             | 1.00000                                                                                                        | XM1                      | ALPHAM1                   | 1.00000                               | SEEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -3.20000                                |
| SRS                                                  | SYSS                                   | 0.01470                                     | DEPEPC           | -0.37360                                                                                                       | YM1                      | SYSCOST                   | -1388.59985                           | BETAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00000                                 |
| SRS                                                  | WCOST                                  | -2.69                                       |                  |                                                                                                                | YMI                      | ALPHAM1                   | -180.00000                            | SYSOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1.24000                                |
|                                                      | UBJ                                    | 156.79999                                   | SRVS             | 1.00000                                                                                                        | YM1                      | ORJ                       | 1388.6                                | 51501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1.24000                                |
| CPS                                                  | SYSS                                   | 0.01353                                     | DEPERC           | -0.25470                                                                                                       |                          |                           |                                       | EVEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                       |
| CPS<br>CPS                                           |                                        | -2.47                                       | and the for      |                                                                                                                | XM2                      | SYSCOST                   | -48.49998                             | SYSK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00000                                 |
|                                                      | WCOST                                  |                                             | ALPHAA1          | 1 00000                                                                                                        | XM2                      | SYSM                      | -0.98800                              | ALPHAM2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00000                                 |
| CPS<br>CPS                                           | WCOST                                  | -0 05000                                    | AL PRIAN         | 1.00000                                                                                                        | XM2                      | SEEP                      | -0.64910                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the second second                       |
| CPS<br>CPS<br>XA1                                    | SYSA                                   | -0.95000                                    |                  |                                                                                                                |                          | OBJ                       | 48.5                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| CPS<br>CPS<br>XA1<br>XA1                             | SYSA<br>WTON                           | 1.00000                                     | VULON            | -1.00000                                                                                                       | XM2                      |                           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| CPS<br>CPS<br>XA1<br>XA1<br>XA1                      | SYSA<br>WION<br>SEEP                   | 1.00000<br>-11.76000                        | VULON            |                                                                                                                | YMZ                      | SYSCOST                   | -16855.00000                          | BETAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00000                                 |
| CPS<br>CPS<br>XA1<br>XA1<br>XA1<br>YA1               | SYSA<br>WTON<br>SEEP<br>BETAA          | 1.00000<br>-11.76000<br>1.00000             |                  | -1.00000                                                                                                       |                          |                           | -16855.00000                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| CPS<br>CPS<br>XA1<br>XA1<br>XA1<br>YA1<br>YA1<br>YA1 | SYSA<br>WTON<br>SEEP<br>BETAA<br>SYSOP | 1.00000<br>-11.76000<br>1.00000<br>-3.24000 | VULON            |                                                                                                                | YM2<br>YM2               | SYSCOST<br>ALPHAM2        | -16855.00000<br>-180.00000            | BETAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00000<br>-1.24000                     |
| CPS<br>CPS<br>XA1<br>XA1<br>XA1<br>YA1<br>YA1<br>XA2 | SYSA<br>WTON<br>SEEP<br>BETAA          | 1.00000<br>-11.76000<br>1.00000             | VULON            | -650.00000                                                                                                     | YM2<br>YM2<br>YM2<br>YM2 | SYSCOST<br>ALPHAM2<br>OBJ | -16855.00000<br>-180.00000<br>16855.0 | SYSUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1.24000                                |
| CPS<br>CPS<br>XA1<br>XA1<br>XA1<br>YA1<br>YA1<br>YA1 | SYSA<br>WTON<br>SEEP<br>BETAA<br>SYSOP | 1.00000<br>-11.76000<br>1.00000<br>-3.24000 | VULON<br>ALPHAA1 |                                                                                                                | YM2<br>YM2               | SYSCOST<br>ALPHAM2        | -16855.00000<br>-180.00000            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |

|            | ENCORT             |              |         |            |             |           |              |                     |                                                                                                                |
|------------|--------------------|--------------|---------|------------|-------------|-----------|--------------|---------------------|----------------------------------------------------------------------------------------------------------------|
| YM3<br>YM3 | SYSCOST<br>ALPHAM3 | -31823.00000 | BETAM   | 1.00000    | 105         | SYSCOST   | -13087.00000 | RETAQ               | 1.00000                                                                                                        |
| EMY        | OBJ OBJ            | -180.00000   | SYSCL   | -1.24000   | Y02         | ALPHAQE   | -55.00000    | SYSOP               | -3.33000                                                                                                       |
| XNI        | SYSM               |              | SYSN    | -0.95300   | ¥02         | ORJ       | 13087.0      |                     |                                                                                                                |
| XN1        | ALPHAN1            | 1.00000      | SEEP    | -10.91000  | X03<br>X03  | SYSCOST . | -1089.09985  | SYSU                | -1.00000                                                                                                       |
| YN1        | SYSCOST            | -1035.79980  | BETAN   | 1.00000    | ×03         | SYSS      | 1.00000      | ALPHAQ3             | 1.00000                                                                                                        |
| TNI        | ALPHAN1            | -20.00000    | SYSOP   | -1.10000   |             | SYSCOST   | 1089.1       | BPTIS               |                                                                                                                |
| YN1        | OBJ                | 1035.8       | 31306   | -1.10000   | YQ3         | ALPHAQ3   |              | BETAO               | 1.00000                                                                                                        |
| XN2        | SYSCOST            | -43.09999    | SYSM    | 1.00000    | Y03         | ORJ       | -55.00000    | SYSCL               | -3.33000                                                                                                       |
| XN2        | SYSN               | -0.98400     | ALPHAN2 | 1.00000    | XSI         | SYSO      | 53453.0      | SYSS                | 0.07200                                                                                                        |
| XN2        | SEEP               | -2.52290     |         |            | XSI         | ALPHASI   | 1.00000      | SEEP                | -0.97200                                                                                                       |
| XN2        | OPJ                | 43.1         |         |            | YSI         | SYSCOST   | -6603.00000  | BETAS               | -5.26000                                                                                                       |
| YN2        | SYSCOST            | -9164.00000  | BETAN   | 1.00000    | YSI         | ALPHASI   | -90.00000    | SYSOP               | -1.50000                                                                                                       |
| YNZ        | ALPHAN2            | -20.00000    | SYSOP   | -1.10000   | YS1         | OBJ       | 6603.0       | 31.30P              | -1.50000                                                                                                       |
| YN2        | ORJ                | 9164.0       |         |            | XS2         | SYSCOST   | -113.39999   | SYSO                | 1.00000                                                                                                        |
| XN3        | SYSCOST            | -537.00000   | SYSM    | 1.00000    | X52         | SYSS      | -0.98900     | ALPHASZ             | 1.00000                                                                                                        |
| ENX        | SYSN               | -1.00000     | ALPHAN3 | 1.00000    | XSZ         | SEEP      | -0.36080     | -LI MADE            | 1.00000                                                                                                        |
| ENX        | OPJ                | 537.0        |         |            | XS2         | OHJ       | 113.4        |                     |                                                                                                                |
| ENY        | SYSCOST            | -16691.00000 | BETAN   | 1.00000    | ¥52         | SYSCOST   | -1326.00000  | PETAS               | 1.00000                                                                                                        |
| ENY        | ALPHAN3            | -20.00000    | SYSCL   | -1.10000   | Y52         | ALPHASS   | -90.00000    | SYSUP               | -1.50000                                                                                                       |
| YN3        | ORJ                | 16691.0      |         |            | Y52         | 08J       | 1326.0       |                     |                                                                                                                |
| X01        | SYSM               | 1.00000      | SYSO    | -0.96100   | X53         | SYSCOST   | -381.19995   | SYSO                | . 1.00000                                                                                                      |
| X01        | ALPHA01            | 1.00000      | SEEP    | -8.55000   | XS3         | SYSS      | -1.00000     | ALPHAS3             | 1.00000                                                                                                        |
| Y01        | BETAO              | 1.00000      | ALPHAU1 | -140.00000 | X53         | ORJ       | 381.2        | The second          |                                                                                                                |
| 401        | SYSOP              | -3.01000     | 100     |            | Y53         | SYSCOST   | -32336.00000 | BETAS               | 1.00000                                                                                                        |
| Y01        | SYSCOST            | -3434.00000  | 08J     | 3434.0     | Y53         | ALPHAS3   | -90.00000    | SYSCL               | -1.50000                                                                                                       |
| X02        | SYSCOST            | -126.89999   | SYSM    | 1.00000    | Y53         | OBJ       | 32336.0      |                     | 2.40%7/6/5/91                                                                                                  |
| X02        | SYSO               | -0.98500     | ALPHAUZ | 1.00000    | СОМО        | SYSCOST   | -2123.00000  | SYSOP               | 1.00000                                                                                                        |
| X02        | SEEP               | -2.04140     |         |            | СОМО        | ORJ       | 2123.0       |                     |                                                                                                                |
| X02        | OBJ                | 126.9        | -       |            | СОМС        | SYSCOST   | -887.00000   | SYSCL               | 1.00000                                                                                                        |
| 501        | SYSCOST            | -21927.00000 | HETAO   | 1.00000    | Сомс        | OFJ       | 887.0        |                     |                                                                                                                |
| Y02        | ALPHA02            | -140.00000   | SYSOP   | -3.01000   | VON         | VOLON     | 0.00545      |                     |                                                                                                                |
| X03        | SYSCOST            | 21927.0      | SYSM    | 1 00000    | VDP         | DEPERC    | 1.00000      |                     |                                                                                                                |
| XU3        | 5150051            | -639.39990   | ALPHA03 | 1.00000    | VSEEP       | SEEP      | 1.00000      |                     |                                                                                                                |
| X03        | OBJ                | -1.00000     | ALPHAUS | 1.00000    | VSR         | RUNOFF    | 1.00000      | and an other second |                                                                                                                |
| - Y03      | SYSCOST            | =70362:00000 | BETAD   | 1.00000    | RHS         | WCOST     | 1.0          | SYSCOST             | 1.0                                                                                                            |
| YU3        | ALPHA03            | -140.00000   | SYSCL   | -3.01000   | RHS         | SRVK      |              |                     |                                                                                                                |
| YO3        | OBJ                | 70362.0      | 51504   | 5.01000    | RHS         | SRVM      | 522.00000    | SRVL                | 541.00000                                                                                                      |
| XP1        | SYSP               | -0.74000     | SYSS    | 1.00000    | RHS         | SRVO      | 553.00000    | SRVN                | 599.00000                                                                                                      |
| XP1        | ALPHAP1            | 1.00000      | SEEP    | -74.37997  | RHS         | SRVQ      | 1477.00000   | SRVP                | 265.00000                                                                                                      |
| YPI        | SYSCOST            | -984.49976   | RETAP   | 1.00000    | RHS         | SRVS      | 816.00000    | BETAA               | 1.0                                                                                                            |
| YPI        | ALPHAP1            | -15:00000    | SYSOP   | -2.22000   | RHS         | RETAE     |              | BETAA               | 1.0                                                                                                            |
| YP1        | OHJ                | 984.5        | 31301   |            | RHS         | BETAK     | 1.0          |                     |                                                                                                                |
| XPZ        | SYSCOST            | -242.89999   | SYSP    | -0.97300   | RHS         | BETAL     | 1.0          | BETAM               | 1.0                                                                                                            |
| XP2        | SYSS               | 1.00000      | ALPHAP2 | 1.00000    | RHS         | BETAN     | 1.0          | BETAO               |                                                                                                                |
| XPZ        | SEEP               | -7.71040     |         |            | RHS         | BETAP     | 1.0          | BETAO               | 1.0                                                                                                            |
| XP2        | ORJ                | 242.9        |         |            | RHS         | BETAS     | 1.0          | DETHN               | 1.0                                                                                                            |
| YPZ        | SYSCOST            | =10275:00000 | BETAP   | 1.00000    | RHS         | WTON      | 94.60        |                     | e the second a                                                                                                 |
| YP2        | ALPHAP2            | -15.00000    | SYSOP   | -2.22000   | BOUNDS      | 10000     |              |                     |                                                                                                                |
| YP2        | OBJ                | 10276.0      |         |            | BV BINARY   | YA1       |              |                     |                                                                                                                |
| XP3        | SYSCOST            | -1831.39990  | SYSP    | -1.00000   | BV BINARY   | YEI       |              |                     |                                                                                                                |
| XP3        | SYSS               | 1.00000      | ALPHAP3 | 1.00000    | BV BINARY   | YKI       |              |                     |                                                                                                                |
| XP3        | OBJ                | 1831.4       |         |            | BV BINARY   | YKZ       |              |                     |                                                                                                                |
| YP3        | SYSCOST            | =55385:00000 | BETAP   | 1:00000    | BV BINARY   | YL1       | 1 H          |                     | The second s |
| YP3        | ALPHAP3            | -15.00000    | SYSCL   | -5*55000   | EV BINARY   | YL2       |              |                     |                                                                                                                |
| YP3        | OHJ                | 55395.0      |         |            | BV BINARY   | YM1       |              |                     |                                                                                                                |
| XQ1        | SYSO               | -0.95500     | SYSS    | 1.00000    | , BV BINARY | YM2       |              |                     |                                                                                                                |
| XQI        | ALPHAD1            | 1.00000      | SEEP    | -10.41000  | EV BINARY   | YN1       |              |                     |                                                                                                                |
| Y01        | SYSCOST            | -1875-59985  | RETAQ   | 1.00000    | BV BINARY   | YN2       |              |                     |                                                                                                                |
| 401        | ALPHAOI            | -55.00000    | SYSOP   | -3.33000   | BV BINARY   | Y01       |              |                     |                                                                                                                |
| YUI        | ORJ                | 1875.6       |         |            | BV BINARY   | X05       |              |                     |                                                                                                                |
| X05        | SYSCOST            | -302.49976   | 5750    | -0.98200   | BV BINARY   | YP1       |              |                     |                                                                                                                |
| XQ2        | SYSS               | 1.00000      | ALPHAUS | 1.00000    | BV BINARY   | YPS       |              |                     |                                                                                                                |
|            | SEEP               | -3.67220     |         |            | BV BINARY   | YQ1       |              |                     |                                                                                                                |
| XQ2        |                    | 200 5        |         |            | BV BINARY   | YQ2       |              |                     |                                                                                                                |
|            | OHJ                | 302.5        |         |            | CT GATTAILT |           |              |                     |                                                                                                                |
| XQ2        | OHJ                | 302+5        |         |            | BV BINARY   | YSI       |              |                     |                                                                                                                |
| XQ2        | ОНЈ                | 302+5        |         |            |             |           |              |                     |                                                                                                                |



Figure E-2. Linear programming (LP) problem for consolidation plan with high pressure pipe system

Control of IBM MPS/360

PROGRAM INITIALZ MOVE(XDATA, 'HPSRV')
MOVE(XPBNAME, 'OLDSYS') MOVE(XOBJ,'OBJ') MOVE(XRHS,'RHSA') CONVERT('SUMMARY') BODOUT SETUP('MIN') PICTURE PRIMAL SOLUTION MOVE(XOBJ, 'OBJ') XPARAM=0.0 XPARMAX=15.0 XPARDELT=3.0 MOVE(XCHROW, 'CHVON') PARAOBJ('CONT') SOLUTION EXIT PEND

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HPSRV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| G AREAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,                                          | - Contraction of the second                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <br>              |
| G APEAN<br>G AREAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | State of the second                        |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
| G AREAP<br>G AREAC<br>C AREAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
| G AREAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <br>              |
| C AREAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
| C APEAX<br>G AREAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
| C (GE(71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <br>              |
| G AREAZZ<br>G AREAZZ<br>G AREAZZ<br>G AREAZZ<br>G AREAZS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
| E SYSSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                                                                                                                                                                                                                                                | 31.2.1.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a dial -          |
| E SYSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <br>              |
| E SYSE<br>E SYSE<br>E SYSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
| E SYST<br>E SYST<br>E SYSK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sec. Proceeding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
| E SYSK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <br>              |
| E SYSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ******                                     |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
| E SYSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            | And the second second                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
| LUN WX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
| E SYSY<br>E SYSZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1. · · · · · · · · · · · · · · · · · · ·   |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <br>in the second |
| E SYSZ1<br>E SYSZ2<br>E SYSZ3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
| E SYSZ3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
| E SYSZ4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
| E SYS25<br>E CLNST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EXECUTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . MPS/360 V                                | 2-M10                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <br>              |
| E SYSCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . MPS/360 V                                | 2-M10                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
| E SYSCL<br>E SYSCL<br>L WICK<br>E VELSA<br>E CEPECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . MPS/360 V                                | 2-M10                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
| E SYSCL<br>E SYSCL<br>E VCLEPC<br>E CEPESP<br>E CEPESP<br>E CEPSEP<br>N CEVCN<br>N CEVCN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P. MPS/360 V                               | 2-M10                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
| E SYSCL<br>E SYSCL<br>L WICK<br>E CEPECE<br>E CEPECE<br>E CEPECE<br>E CENJ<br>N CHUCK<br>CHUK<br>N CHUCK<br>CLUMNS<br>HML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AREAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            | 2-M10<br>SYSL<br>DEPERC                                                                                                                                                                                                                        | :01480<br>:42340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| E SYSCL<br>E SYSCL<br>L WICK<br>E CEPECE<br>CEPECE<br>CEPECEN<br>CEVE<br>CEVE<br>CEVE<br>CEVE<br>CEVE<br>CEVE<br>CEVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AREAL<br>WCCST<br>CEJ<br>AREAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.CC000<br>2.7100C<br>33.CCC0C<br>33.CCC0C | SY SL<br>DE PERC<br>SY SL                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
| E SYSCL<br>E SYSCL<br>E SYSCL<br>L VCLPCCPC<br>E CCPCCPC<br>E CCPCCSL<br>E CCPCCSL<br>E CCPCCSL<br>E CCPCCSL<br>E CCPCCSL<br>E CCPCCSL<br>E CCPCCSL<br>E STRL<br>SRL<br>SRL<br>SRL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AREAL<br>WCEST<br>CEJ<br>AREAL<br>WCEST<br>CEJ<br>AREAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.CC000<br>2.7100C<br>33.CCC0C<br>33.CCC0C | SY SL<br>DE PERC<br>SY SL<br>DE PERC                                                                                                                                                                                                           | • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |
| E LLKST<br>E SYSCL<br>SYSCL<br>L WCLPCCA<br>E VCLPCCA<br>E VCLPCCA<br>E CCAJ<br>CL FAD<br>CL FAD<br>CL FAD<br>CL FAD<br>CL FAD<br>CL FAD<br>CL FAD<br>CASE<br>CASE<br>CASE<br>CASE<br>CASE<br>CASE<br>CASE<br>CASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AREAL<br>WCEST<br>CEJ<br>AREAL<br>WCEST<br>CEJ<br>AREAL<br>WCCST<br>CRJ<br>AREAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.CC000<br>2.7100C<br>33.CCC0C<br>33.CC00C | SY SL<br>DE PERC<br>SY SL<br>DE PERC<br>SY SL<br>DE PERC<br>SY SM                                                                                                                                                                              | 01420<br>.37260<br>.01310<br>.25400<br>.01450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| E SUSSI<br>E S                                                                                                                                                                                                                                   | AREAL<br>WCCST<br>CEJ<br>AREST<br>CEJ<br>AREAL<br>WCCST<br>CRJ<br>AREAM<br>CSJ<br>AREAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.CC000<br>2.7100C<br>33.CCC0C<br>33.CC00C | SY SL<br>DE PERC<br>SY SL<br>DE PERC<br>SY SL<br>DE PERC<br>SY SM<br>DE PERC                                                                                                                                                                   | 01420<br>.37260<br>.01310<br>.25400<br>.01450<br>.41460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
| E LLNST<br>E SSST<br>SCOLLECCN<br>SCOLLECCN<br>SCOLLECCN<br>CLESSE<br>CLESSE<br>CLESSE<br>CLESSE<br>CLESSE<br>CLESSE<br>CLESSE<br>CLESSE<br>CLESSE<br>CLESSE<br>CLESSE<br>SSST<br>CLESSE<br>SSST<br>CLESSE<br>SSST<br>CLESSE<br>SSST<br>CLESSE<br>SSST<br>CLESSE<br>SSST<br>CLESSE<br>SSST<br>CLESSE<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST                   | AREAL<br>WCCST<br>CRJ<br>AREAL<br>WCCST<br>CREAL<br>WCCST<br>AREAM<br>WCCST<br>CREAM<br>CCST<br>CREAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.CC000<br>2.7100C<br>33.CCC0C<br>33.CC00C | SYSL<br>DEPERC<br>SYSL<br>DEPERC<br>SYSL<br>DEPERC<br>SYSM<br>DEPERC<br>SYSM<br>UEPERC                                                                                                                                                         | 01420<br>.37260<br>.01310<br>.25400<br>.01450<br>.41460<br>.01400<br>.36480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |
| E LLKST<br>E SCI<br>SCI<br>SCI<br>SCI<br>SCI<br>SCI<br>SCI<br>SCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AREAL<br>WCCST<br>CBJ<br>AREAL<br>WCCST<br>CBJ<br>AREAL<br>WCCST<br>CRJ<br>AREAM<br>CCST<br>CRJ<br>AREAM<br>WCCST<br>CRJ<br>AREAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.CC000<br>2.7100C<br>33.CCC0C<br>33.CC00C | SY SL<br>DE PERC<br>SY SL<br>DE PERC<br>SY SH<br>DE PERC<br>SY SM<br>DE PERC<br>SY SM<br>DE PERC                                                                                                                                               | 01420<br>.37260<br>.01310<br>.25400<br>.01450<br>.41460<br>.01400<br>.36480<br>.01280<br>.24870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
| E LLNST<br>E SCI<br>SCI<br>SCI<br>SCI<br>SCI<br>SCI<br>SCI<br>SCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AREAL<br>WCEST<br>CELAL<br>WCEST<br>CAREAL<br>WCEST<br>CAREAST<br>CAREAST<br>CAREAST<br>CAREAST<br>CAREAM<br>WCEJ<br>ARCEST<br>CAREAM<br>WCEJ<br>ARCEST<br>CAREAN<br>WCEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.CC000<br>2.7100C<br>33.CCC0C<br>33.CC00C | SYSL<br>DEPERC<br>SYSL<br>DEPERC<br>SYSL<br>DEPERC<br>SYSM<br>DEPERC<br>SYSM                                                                                                                                                                   | 01420<br>.37260<br>.01310<br>.25400<br>.01450<br>.41460<br>.01400<br>.36480<br>.01280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |
| E LLKST<br>E SUSSAL<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERCK<br>SCALERC                                                                                                                                                                                                                                                                                 | AREAL<br>WCEST<br>CAREST<br>CAREST<br>CAREST<br>ARCEST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.CC000<br>2.7100C<br>33.CCC0C<br>33.CCC0C | SYSL<br>DEPERC<br>SYSL<br>DEPERC<br>SYSL<br>DEPERC<br>SYSM<br>DEPERC<br>SYSM<br>UEPERC<br>SYSN                                                                                                                                                 | 01420<br>.37260<br>.01310<br>.25400<br>.01450<br>.41460<br>.01400<br>.36480<br>.01280<br>.24670<br>.01460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
| E LLNST<br>E SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>SCIL<br>S | AREAL<br>WCCST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CAREST<br>CARE | 1.CC000<br>2.7100C<br>33.CCC0C<br>33.CCC0C | SY SL<br>DEPERC<br>SY SL<br>DEPERC<br>SY SL<br>DEPERC<br>SY SM<br>DEPERC<br>SY SM<br>DEPERC<br>SY SN<br>DEPERC<br>SY SN<br>DEPERC<br>SY SN<br>DEPERC<br>SY SN                                                                                  | 01420<br>.37260<br>.01310<br>.25400<br>.01450<br>.41460<br>.01400<br>.36480<br>.01280<br>.24670<br>.24670<br>.41350<br>.01400<br>.36390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
| E LLKST<br>E STORT<br>SCILLS CL<br>SCILLS CL<br>SCIL                                                                                                                                                                                                                                                                                                                     | AREAL<br>WCCST<br>CAREAL<br>WCCST<br>CAREAL<br>WCCJ<br>ARCCST<br>CAREAM<br>CCJ<br>ARCCST<br>CAREAM<br>WCCJ<br>ARCCST<br>CAREAM<br>WCCST<br>CAREAN<br>WCCST<br>CAREAN<br>WCCST<br>CAREAN<br>WCCST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.CC000<br>2.7100C<br>33.CCC0C<br>33.CCC0C | SY SL<br>DE PERC<br>SY SL<br>DE PERC<br>SY SH<br>DE PERC<br>SY SM<br>DE PERC<br>SY SM<br>DE PERC<br>SY SN<br>DE PERC<br>SY SN<br>DE PERC<br>SY SN<br>DE PERC<br>SY SN<br>DE PERC                                                               | 01420<br>.37260<br>.01310<br>.25400<br>.01450<br>.41460<br>.01400<br>.36480<br>.01400<br>.24870<br>.01460<br>.41350<br>.01460<br>.36390<br>.01280<br>.24810<br>.01450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |
| E LLKST<br>E SYSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST<br>SSST    | AREAL<br>WCCST<br>CREJ AL<br>WCCST<br>CREJ AL<br>WCCST<br>CREAL<br>WCCJ<br>AREAT<br>CREAM<br>WCCJ<br>ARECST<br>CREJ AM<br>WCCJ<br>ARCCST<br>CREJ AN<br>WCCJ<br>AREAN<br>WCCST<br>CREAN<br>WCCST<br>CREAN<br>WCCST<br>CREAN<br>WCCST<br>CREAN<br>WCCST<br>CREAN<br>WCCST<br>CREAN<br>WCCST<br>CREAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.CC000<br>2.7100C<br>33.CCC0C<br>33.CCC0C | SYSL<br>DEPERC<br>SYSL<br>DEPERC<br>SYSL<br>DEPERC<br>SYSM<br>DEPERC<br>SYSM<br>DEPERC<br>SYSN<br>DEPERC<br>SYSN<br>DEPERC<br>SYSN<br>DEPERC<br>SYSN<br>DEPERC<br>SYSN<br>DEPERC<br>SYSN<br>DEPERC<br>SYSC                                     | · .01420<br>.37260<br>.01310<br>.25400<br>.01450<br>.41460<br>.01400<br>.36480<br>.01280<br>.24870<br>.01460<br>.41350<br>.01460<br>.41350<br>.01460<br>.36390<br>.01280<br>.24810<br>.01490<br>.01490<br>.44810<br>.01490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
| E LLKST<br>E STORT<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND<br>SCILLAND                                                                                                                                                                                                                                                                                 | AREAL<br>WCCST<br>CBCST<br>CBCST<br>CBCST<br>CBCST<br>CBCST<br>CAREAT<br>CCST<br>CAREAT<br>CCST<br>CAREAT<br>CCST<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CARTATATATATATATATATATATATATATATATATATAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.CC000<br>2.7100C<br>33.CCC0C<br>33.CCC0C | SYSL<br>DEPERC<br>SYSL<br>DEPERC<br>SYSL<br>DEPERC<br>SYSM<br>DEPERC<br>SYSM<br>DEPERC<br>SYSN<br>DEPERC<br>SYSN<br>DEPERC<br>SYSN<br>DEPERC<br>SYSC<br>DEPERC<br>SYSC<br>DEPERC                                                               | - 01420<br>- 37260<br>- 01310<br>- 25400<br>- 01450<br>- 41460<br>- 01400<br>- 36480<br>- 01280<br>- 24870<br>- 01460<br>- 01460<br>- 01460<br>- 01460<br>- 01480<br>- 01280<br>- 01280<br>- 01280<br>- 01280<br>- 01490<br>- 01490<br>- 01490<br>- 01490<br>- 01490<br>- 01490<br>- 01280<br>- 01440<br>- 01440<br>- 01440<br>- 01440<br>- 01280<br>- 014480<br>- 01480<br>-                                                                  |                   |
| E LLKST<br>E STATE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCITCE<br>SCIT                                                                                                                                                                           | AREAL<br>WCCST<br>CEJ<br>AREAL<br>WCCST<br>CBJAL<br>WCCST<br>CBJAL<br>WCCST<br>CRIAM<br>WCCST<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CARTATATATATATATATATATATATATATATATATATAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.CC000<br>2.7100C<br>33.CCC0C<br>33.CC00C | SY SL<br>DE PERC<br>SY SL<br>DE PERC<br>SY SL<br>DE PERC<br>SY SM<br>DE PERC<br>SY SM<br>DE PERC<br>SY SN<br>DE PERC<br>SY SN<br>DE PERC<br>SY SN<br>DE PERC<br>SY SC<br>DE PERC<br>SY SC<br>DE PERC<br>SY SC<br>DE PERC                       | - 01420<br>- 37260<br>- 01310<br>- 25400<br>- 01450<br>- 41460<br>- 01400<br>- 36480<br>- 01280<br>- 24870<br>- 01460<br>- 36390<br>- 01460<br>- 36390<br>- 01280<br>- 24810<br>- 01490<br>- 24810<br>- 01490<br>- 24810<br>- 01490<br>- 01410<br>- 01410<br>- 01400<br>- 01450<br>- 01310<br>- 25610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
| E LLKST<br>E STATE<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCALEPSCH<br>SCAL                                                                                                                                                                                                                                                                                                                     | AREAL<br>WCEST<br>CAREAL<br>WCEST<br>CAREAL<br>WCEST<br>CAREAL<br>WCCST<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.CC000<br>2.7100C<br>33.CCC0C<br>33.CC00C | SYSL<br>DEPERC<br>SYSL<br>DEPERC<br>SYSL<br>DEPERC<br>SYSM<br>DEPERC<br>SYSM<br>DEPERC<br>SYSN<br>DEPERC<br>SYSN<br>DEPERC<br>SYSN<br>DEPERC<br>SYSC<br>DEPERC<br>SYSC<br>DEPERC                                                               | - 01420<br>.37260<br>01310<br>.25400<br>.01450<br>.41460<br>.01400<br>.36480<br>.01280<br>.24870<br>.01460<br>.01460<br>.24870<br>.014C0<br>.36390<br>.01280<br>.24810<br>.01280<br>.24810<br>.01450<br>.24810<br>.01450<br>.01450<br>.01420<br>.01410<br>.01420<br>.01410<br>.01410<br>.01410<br>.01410<br>.01410<br>.01410<br>.01410<br>.01410<br>.01410<br>.01410<br>.01410<br>.01410<br>.01410<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450<br>.01450 |                   |
| E LLKST<br>E STOR CONTRACTOR CONTRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AREAL<br>WCCST<br>CEJ<br>AREAL<br>WCCST<br>CBJAL<br>WCCST<br>CBJAL<br>WCCST<br>CRIAM<br>WCCST<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CAREAT<br>CARTATATATATATATATATATATATATATATATATATAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            | SYSL<br>DEPERC<br>SYSL<br>DEPERC<br>SYSL<br>DEPERC<br>SYSM<br>DEPERC<br>SYSM<br>DEPERC<br>SYSM<br>DEPERC<br>SYSN<br>DEPERC<br>SYSN<br>DEPERC<br>SYSN<br>DEPERC<br>SYSC<br>DEPERC<br>SYSC<br>DEPERC<br>SYSC<br>DEPERC<br>SYSC<br>DEPERC<br>SYSP | - 01420<br>- 37260<br>- 01310<br>- 25400<br>- 01450<br>- 41460<br>- 01400<br>- 36480<br>- 01280<br>- 24870<br>- 01460<br>- 36390<br>- 01460<br>- 36390<br>- 01280<br>- 24810<br>- 01490<br>- 24810<br>- 01490<br>- 24810<br>- 01490<br>- 01410<br>- 01410<br>- 01400<br>- 01450<br>- 01310<br>- 25610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |

| CPP          | WCCST -        | 117.39000                       | JEPERC                                                                                                           | .24970                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
|--------------|----------------|---------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| FNO          | AREAC          | 1.CCCOC<br>2.6900C<br>33.CCCOC  | SYSC                                                                                                             | .01470                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| HMG<br>HMG   | CGST           | 2.69000                         | DÉPÉRC                                                                                                           | .41900                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| SRC          | AREAG-         | 1.00000                         | SY SC<br>CEPERC                                                                                                  | .01420                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| SRO          | CBJ            | 1.0000<br>2.59000<br>52.0000    | CEPERC                                                                                                           | .36870                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| C.PQ         | APEAC          | 1                               | SY SC<br>DEPERC                                                                                                  | .01300                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| CPQ<br>CPQ   | ACEST          | 2.38000                         | DEPERC                                                                                                           | .25140                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| HME          | AREAR          | 2.3800C<br>108.25595<br>1.CCC0C | SYSR                                                                                                             | .01450                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16.                   |
| HMR          | WCEST          | 2.73000                         | GEPERC                                                                                                           | .42170                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| - HMR        | CBJ<br>AREAR   | 2.7360C<br>39.CCCOC<br>1.CCO20  | SY SR                                                                                                            | .01440                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| SRR          | <b>WCOST</b>   | 2.63000                         | DEPERC                                                                                                           | .37110                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| SRR          | CBJ            | 2.63000<br>50.00000<br>1.0000   | SYSR                                                                                                             | .01320                    | and the second sec | The second second     |
| CPR          | WCCST          | 2.5800C<br>11J.59999            | DEPERC                                                                                                           | .25300                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| C F R<br>HMS | CBJ            | 113.55995                       | CVCC                                                                                                             | .01500                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| FMS          | hCCST          | 2.75000                         | DEPERC                                                                                                           | .41820                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| +MS          | CBJ<br>APEAS   | 35.0000                         | SYSS                                                                                                             | .01440                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| SRS          | ACCST          | 2.64000                         | DEPERC                                                                                                           | .36800                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| CDC          | CBJ            | 47.CC00C                        | CVCC                                                                                                             | 01320                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| CFS          | APEAS          | 2.42000                         | SYSS                                                                                                             | ·01320<br>·25050          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| CFS          | CSJ            | 2.4200C<br>105.29995<br>1.0000  | SYST                                                                                                             | .01470                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| FNT          | AREAT<br>WCCST | 2.65000                         | DEPERC                                                                                                           | .41600                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| +MT          | CEJ            | 35-00000                        |                                                                                                                  | 01/20                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| SRT          | AREAT<br>WCLST | 1.0000                          | DEPERC                                                                                                           | .C1420<br>.36610          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| SRT          | 6.0.1          | 49.0000                         | and the second |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| CPT          | AREAT          | 2.38000                         | DEPERC                                                                                                           | .013C0<br>.24960          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| CFI          | 6.8.4          | 108.05995                       |                                                                                                                  | Come of the second second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| HMU<br>HMU   | AREAU          | 1.00000                         | SYSU                                                                                                             | .01500                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| HNU          | CBJ            | 2.73000                         |                                                                                                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| SRU          | AREAU          | 1.0000                          | DEPERC                                                                                                           | .37320                    | the second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 122 - 14 - 12         |
| SRU          | CBJ            | 2.6300C<br>51.0000C             |                                                                                                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| SRU<br>CPU   | AREAU          | 1.0000                          | SYSU                                                                                                             | -01320<br>-25440          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| CPU          | CEJ            | 109.45598                       |                                                                                                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| HMV          | CEJ            | 1.00000                         | SYSV                                                                                                             | .01510<br>.42190          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| HAV<br>HAV   | CBJ            | 2.76000                         | Linn Stormoster                                                                                                  | and the second second     | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| SRV          | AREAV          | 1-0000.                         | SYSV                                                                                                             | .01460<br>.37130          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| SRV          | WCCST<br>CBJ   | 2.65000<br>53.00000<br>1.00000  | DEPERC                                                                                                           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| CEV          | AREAV          | 1.0000                          | SYSV                                                                                                             | .01340                    | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and the second second |
|              |                |                                 |                                                                                                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
|              |                |                                 |                                                                                                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
|              |                |                                 |                                                                                                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |

|                      | EXECUTOR.    | MPS/360 V                      | 2-M10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------|--------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CPV<br>CPV           | WCCST<br>CEJ | 2.43000                        | DEPERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .25330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HMW                  | AREAW        | 1.0000                         | SYSm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .01500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HMW.                 | WCCST        | 1.0000                         | DEPERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .42100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FFW                  | ALLSI        | 2                              | DEPERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .42100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F F W                | CBJ          | 36.0000                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SRW                  | AREAW        | 1.0000                         | SYSA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .01440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and the second s |
| SPW                  | WCCST        | 2.64000                        | DEPERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .37050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SRW                  | CeJ          | 46.CCCOC                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CPW                  | AREAW        | 1.00000                        | SYSW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .01320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CPW                  | WEEST        | 2.42000                        | DEPERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -25260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CPW                  | AREAX        | 112.89999                      | and the second sec |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HPX                  | ARFAX        | 1.0000                         | SYSX<br>DEPERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -01530<br>-42280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HMX                  | ACC ST       | 2.80000                        | DEPERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FMX.                 | CBJ          | 33.00000                       | 021210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SRX                  | AREAX        | 1.00000                        | SYSX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .01470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ŠRX                  | HCC ST       | 2 66000                        | DEPERC 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .37210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SPX                  | CPI          | 2.69000                        | DEFERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ČFX.                 | CBJ          | 1.00000                        | SYSX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .01350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | AREAA        | 1.0000                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .25370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C P X<br>C F X       | ACCST        | 2.47C00<br>94.7CC0C            | DEPERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .23370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CFX                  | CBJ          | 94.70000                       | C14 C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FMY                  | AREAY        | 1.0000                         | SYSY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .01510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HPY                  | hCEST        | 2-16000                        | DEPERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .42300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FMY                  | CBJ          | 2.76COC<br>36.0COOC<br>1.0COOC |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and the second se |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SRY                  | ARFAY        | 1.00000                        | SYSY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .01450<br>.37250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SRY                  | ACCST        | 2.65000                        | DEPERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .37250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SRY                  | CCJ          | 47.0000                        | 10.170.170.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CFY                  | AREAY        | 1.00000                        | SYSY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .01330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CFY                  | WCOST        | 2-43000                        | DEPERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .25380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CPY                  | CBJ          | 1.00000<br>2.43000<br>82.0000  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EMZ                  | AREAZ        | 1.0000                         | SYSZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .01520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HN7                  | ACCST        | 2 78000                        | DEPERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .42740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HNZ                  | CBJ          | 2.7800C<br>43.CC00C            | DEFERG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .42140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SRZ                  | AREAZ        | 43.00000                       | CVC7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 01/70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 262                  | PREFL        | 1.0000                         | SYSZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .01470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SRZ                  | ACCST        | 2.67000                        | CEPERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .37610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SHZ                  | CEJ          | 60.CC00C                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CFZ                  | AREAZ        | 1.0000                         | SYSZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .01340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CPZ                  | WCCST        | 2.4500C                        | DEPERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .25640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CFZ<br>CFZ<br>CPZ    | CBJ          | 1.0000<br>2.45000<br>112.0000  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FMZ1<br>HMZ1         | AREAZI       | 1.0000                         | SYSZ1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .01540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HMZ1                 | WCC ST .     | 2.82000                        | DEPERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .43750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HMZ1                 | CBJ          | 45.0000                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SRZ.L                | AREAZI       | 1.00000                        | SY SZ1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .01480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · SRZ1               | ACCST        | 2.7100C                        | DEPERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .38500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ŠRŽI                 | CEJ          | 59.00000                       | DEFENC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6671                 | AREAZI       | 1.0000                         | CV C 7 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .01360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CFZ1<br>CPZ1         | ACCSI        | 2.45000                        | SY SZ1<br>DEPERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -26250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CFZ1                 | - ALLSI      | 73 66000                       | UEPERL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6721                 | CEJ          | 72.0000                        | 5× 5 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HNZ2<br>HNZ2<br>HNZ2 | AREAZZ       | 1.0000                         | SYSZZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .01500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FM22                 | WCCST        | 2.75000                        | DEPERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .42090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F.M.Z.2              | CBJ          | 1.0000<br>2.75000<br>35.0000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SRZ2                 | AREAZZ       | 1.0000                         | SYSZ2<br>DEPERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .01450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SRZ2                 | WCCST        | 2.64000                        | DEPERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .37040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SRZZ<br>CPZZ         | CBJ          | 4J.CC00C                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6070                 | AREAZ2       | 1.00000                        | SYSZ2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .01320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EXECUTOR                                                                                                                                                                                |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CES                                                                                                                                                                                     | 2.42000<br>103.25995<br>1.00000<br>2.71000<br>3.00000<br>1.00000<br>1.00000                                                                                      | DEPERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .25250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HMZ 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AREAZ3<br>WCCST                                                                                                                                                                         | 1.0000                                                                                                                                                           | SYSZ3<br>DEPERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .01480<br>.41110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HMZ3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CBJ<br>AREAZ3                                                                                                                                                                           | 37.00000                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SPZ3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WCCST                                                                                                                                                                                   | 2.61000<br>53.CCC0C<br>1.CC00C                                                                                                                                   | ST PERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .36120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CPZ3<br>CPZ3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | APEAZ3                                                                                                                                                                                  | 1.00000                                                                                                                                                          | SYSZ3<br>DEPERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .01300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CFZ3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CEST                                                                                                                                                                                    | \$2.CCCOC<br>1.CCCOC<br>2.71COC                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HNZ4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AREAZ4<br>WCCST                                                                                                                                                                         | 2.71000                                                                                                                                                          | SY SZ4<br>DEPERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .01480<br>.42040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SRZ4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CBJ<br>AREAZ4<br>WCCST                                                                                                                                                                  | 40.0000<br>1.00000<br>2.61000                                                                                                                                    | SY SZ4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .01420<br>.36990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SRZ4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WCC ST<br>CRJ                                                                                                                                                                           | 2.61000<br>49.00000                                                                                                                                              | DEPERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CFZ4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AREAZ4                                                                                                                                                                                  | 49.0000<br>1.0000<br>2.40000                                                                                                                                     | SYS24<br>DEPERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -C13C0<br>-25220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CPZ4<br>CPZ4<br>FMZ5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CAJ<br>APEAZ5                                                                                                                                                                           | 2.4000<br>99.20000<br>1.00000                                                                                                                                    | SY SZ5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .01420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HMZ5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ACCSI                                                                                                                                                                                   | 33.CCC0C<br>2.5C00C<br>2.5C00C<br>49.CC00C                                                                                                                       | DEPERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .40110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SRZ5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AREAZ5                                                                                                                                                                                  | 1.0000                                                                                                                                                           | SY SZ5<br>DEPERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .01370<br>.35300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SRZ5<br>SRZ5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CBJ                                                                                                                                                                                     | 49.0000                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CFZ5<br>CPZ5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AREAZ5<br>WCCST                                                                                                                                                                         | 2.25000                                                                                                                                                          | SYSZ5<br>DEPERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :01250<br>:23970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CPZ5<br>SYSA4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SYSA                                                                                                                                                                                    | 1.0000<br>2.25000<br>107.70000                                                                                                                                   | SYSCOST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100.89959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Man and a state of the state of |
| SYSA4<br>SYSR4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CENEMP                                                                                                                                                                                  | 1.00000                                                                                                                                                          | CB J<br>SY SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 1.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SYS84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SYSCOST                                                                                                                                                                                 | 135.35999                                                                                                                                                        | CHJ<br>SYSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 136.39999 .<br>- 1.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SYSC4<br>SYSC4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SYSE<br>SYSC ST                                                                                                                                                                         | 119.35995<br>1.0000                                                                                                                                              | CB J<br>SY SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 119.39999<br>- 1.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SY504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SYSCCST                                                                                                                                                                                 | 132.70000                                                                                                                                                        | SYSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 132.73000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SYSE4<br>SYSE4<br>SYSE4<br>SYSE4<br>SYSE4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SYSCEST *                                                                                                                                                                               | 93.2C00C<br>1.CC000<br>164.CC00C<br>96.49998                                                                                                                     | CB J<br>SY SF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 93.20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SYSF4<br>SYSF4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SYSE                                                                                                                                                                                    | 164.0000                                                                                                                                                         | CBJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 1.00000<br>164.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SYSG4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SYSE                                                                                                                                                                                    | 96.49998                                                                                                                                                         | CBJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 1.00000<br>96.49958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SYSH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SYSCEST                                                                                                                                                                                 | 1.0000                                                                                                                                                           | SY SH<br>CB J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 1.00000<br>382.09585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5Y514<br>5Y514<br>5Y5J4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CVCH .                                                                                                                                                                                  | 1.0000<br>382.09985<br>1.0000<br>106.89999                                                                                                                       | SY 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and the same state of the same |
| SYSJ4<br>SYSJ4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SYSCEST                                                                                                                                                                                 |                                                                                                                                                                  | CB J<br>SY SJ<br>CB J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 1.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CYCKL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SYSCOST<br>SYSJ<br>SYSCEST                                                                                                                                                              | 87.2CCOC<br>1.CCOOC<br>173.CCOOC                                                                                                                                 | SYSK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 87.20000<br>- 1.00000<br>173.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SYSK4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SYSA                                                                                                                                                                                    |                                                                                                                                                                  | SY SL .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 1.00000<br>226.79559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CYSL4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SYSCEST                                                                                                                                                                                 | 223.75999                                                                                                                                                        | SYSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 1.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EXECUTOR                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·                                                                                                                            | and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SYSM4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SYSCOST                                                                                                                                                                                 | 223.05995                                                                                                                                                        | SYSN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 225.09959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SYSN4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SYSCOST                                                                                                                                                                                 | 313-CC00C<br>1-CC00C<br>551-CC00C<br>38C-75980                                                                                                                   | SYSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 1.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SYSC4<br>SYSP4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SYSCOST                                                                                                                                                                                 | 551.0000                                                                                                                                                         | CBJ<br>SYSP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 551.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 54504<br>54504<br>54504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SYSCEST                                                                                                                                                                                 | 380-75980                                                                                                                                                        | CB J<br>SY SQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 380.79580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SYSC4<br>SYSR4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SYSCOST                                                                                                                                                                                 | 308.29980                                                                                                                                                        | 0BJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 308.29580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CYCCCCT                                                                                                                                                                                 | 1633-45576                                                                                                                                                       | CB J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SYSR4<br>SYSS4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SYSD                                                                                                                                                                                    | 1.00000                                                                                                                                                          | SYSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 1635.49976<br>- 1.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SYSS4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SYSD                                                                                                                                                                                    | 1.0000<br>302-29980<br>1633-45576<br>1.0000<br>419-65995                                                                                                         | SY SS<br>CBJ<br>SY ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 1.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1. 14 Ter 18 4 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 24444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SYSCCST<br>SYSD<br>SYSCCST<br>SYSCCST<br>SYSCCST                                                                                                                                        | 1.0000<br>419.65995<br>1.0000<br>935.25980                                                                                                                       | SY SS<br>CBJ<br>SY ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 1.00000<br>419.69995<br>- 1.00000<br>935.29980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55554<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>555556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>555656<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>55556<br>5555 | SYSCEST                                                                                                                                                                                 | 935.2998C<br>1.CC000<br>1154.8599C                                                                                                                               | SYSS<br>CBJ<br>SYST<br>CBJ<br>SYSU,<br>CBJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ \begin{array}{r} - & 1.00000 \\ 419.69995 \\ - & 1.00000 \\ 935.29980 \\ - & 1.00000 \\ 1154.89950 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24444444444444444444444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SYSCEST<br>SYSE<br>SYSECT                                                                                                                                                               | 935.2998C<br>1.CC000<br>1154.8599C                                                                                                                               | SYSS<br>CBJ<br>CBJ<br>CBJ<br>SYSU<br>CBJ<br>SYSV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{r} - & 1.00000 \\ 419.69995 \\ - & 1.00000 \\ 935.29980 \\ - & 1.00000 \\ 1154.89950 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24444444444444444444444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SYSCEST<br>SYSE<br>SYSE<br>SYSE<br>SYSE<br>SYSE                                                                                                                                         | 935.2998C<br>1.CC000<br>1154.8599C                                                                                                                               | SYSS<br>CBJ<br>CBJ<br>CBJ<br>CBJ<br>SYSV<br>CBJ<br>SYSW<br>CBJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 1.00000<br>- 119.69795<br>- 1.00000<br>- 1.00000<br>1154.89990<br>- 1.00000<br>- 1.00000<br>- 327.29580<br>- 327.29580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24444444444444444444444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SYSCUST<br>SYSCUST<br>SYSCUST<br>SYSCUST<br>SYSCUST<br>SYSCUST                                                                                                                          | 935.2998C<br>1.CC000<br>1154.8599C                                                                                                                               | SYSS<br>CBJ<br>SYST<br>CBJ<br>SYSU<br>CBJV<br>CBJV<br>SYSV<br>CBJ<br>SYSW<br>CBJ<br>SYSX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 1.00000<br>- 119.69795<br>- 1.00000<br>- 1.00000<br>1154.89990<br>- 1.00000<br>- 1.00000<br>- 327.29580<br>- 1.00000<br>- 38.25580<br>- 1.00000<br>- 241.09999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24444444444444444444444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SYSCUST<br>SYSCUST<br>SYSCUST<br>SYSCUST<br>SYSCUST<br>SYSCUST                                                                                                                          | 935.2998C<br>1.5C300<br>1154.8599C<br>1.5C400C<br>327.2593C<br>1.5C600C<br>835.2598C<br>1.5C600C<br>241.05595<br>241.05595                                       | SYSS<br>CBJ<br>CBJ<br>CBJ<br>CBJ<br>CBJ<br>CBJ<br>CBJ<br>CBJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{r} - & 1.00000 \\ - & 119.69795 \\ - & 10.0000 \\ 935.29980 \\ - & 1.00000 \\ 1154.89950 \\ - & 1.00000 \\ 327.29580 \\ - & 1.00000 \\ - & 1.00000 \\ - & 338.25550 \\ - & 1.00000 \\ - & 241.09959 \\ - & 1.00000 \\ - & 920.69955 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24444444444444444444444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SYSCUST<br>SYSCUST<br>SYSCUST<br>SYSCUST<br>SYSCUST<br>SYSCUST                                                                                                                          | 935.2998C<br>1.5C300<br>1154.8599C<br>1.5C400C<br>327.2593C<br>1.5C600C<br>835.2598C<br>1.5C600C<br>241.05595<br>241.05595                                       | SYSS<br>CBJ<br>CBJ<br>CBJ<br>CBJ<br>CBJ<br>CBJ<br>CBJ<br>CBJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{r} - & 1.00000 \\ - & 119.69795 \\ - & 10.0000 \\ 935.29980 \\ - & 1.00000 \\ 1154.89950 \\ - & 1.00000 \\ 327.29580 \\ - & 1.00000 \\ - & 1.00000 \\ - & 338.25550 \\ - & 1.00000 \\ - & 241.09959 \\ - & 1.00000 \\ - & 920.69955 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24444444444444444444444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SYSCEST<br>SYSCEST<br>SYSCEST<br>SYSCEST<br>SYSCEST<br>SYSCEST<br>SYSCEST<br>SYSE<br>SYSE<br>SYSE<br>SYSE<br>SYSE<br>SYSE<br>SYSE<br>S                                                  | 935.2998C<br>1.5C300<br>1154.8599C<br>3.27.2593C<br>CC00C<br>835.2598C<br>241.05595<br>1.5C00C<br>92.3.65995<br>1.5C00C<br>92.3.65995<br>1.5C00C<br>1058.65995   | SYSS<br>CBJ<br>CBJ<br>CBJ<br>CBJ<br>SYSC<br>CBJ<br>SYSW<br>CBJ<br>SYSX<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} - & 1.00000\\ +19.69595\\ - & 1.00000\\ 935.29980\\ - & 1.00000\\ 1154.89950\\ - & 1.00000\\ 327.29580\\ - & 1.00000\\ 338.25570\\ - & 1.00000\\ 938.25570\\ - & 1.00000\\ 920.69595\\ - & 1.00000\\ 920.69595\\ - & 1.0058.69555\\ - & 1.058.69555\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24444444444444444444444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SYSCEST<br>SYSCEST<br>SYSCEST<br>SYSCEST<br>SYSCEST<br>SYSCEST<br>SYSCEST<br>SYSE<br>SYSE<br>SYSE<br>SYSE<br>SYSE<br>SYSE<br>SYSE<br>S                                                  | 935.2998C<br>1.5C300<br>1154.8599C<br>1.5C00C<br>327.2593C<br><br>838.2598C<br>241.05995<br>1.5C00C<br>923.65995<br>1.5C00C<br>923.65995<br>1.5C00C<br>585.15295 | SYSS<br>CBJ<br>SYSI<br>CBJ<br>SYSL<br>CBJ<br>SYSV<br>CBJ<br>SYSX<br>CBJ<br>SYSX<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSS<br>CBJ<br>SYSS<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ | $\begin{array}{c} - & 1.00000\\ +19.69595\\ - & 1.00000\\ 935.29980\\ - & 1.00000\\ 1154.89950\\ - & 1.00000\\ 327.29580\\ - & 1.00000\\ 338.25570\\ - & 1.00000\\ 938.25570\\ - & 1.00000\\ 920.69595\\ - & 1.00000\\ 920.69595\\ - & 1.0058.69555\\ - & 1.058.69555\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24444444444444444444444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SYSCEST<br>SYSCEST<br>SYSCEST<br>SYSCEST<br>SYSCEST<br>SYSCEST<br>SYSCEST<br>SYSE<br>SYSE<br>SYSE<br>SYSE<br>SYSE<br>SYSE<br>SYSE<br>S                                                  | 935.2998C<br>1.5C300<br>1154.8599C<br>1.5C00C<br>327.2593C<br><br>838.2598C<br>241.05995<br>1.5C00C<br>923.65995<br>1.5C00C<br>923.65995<br>1.5C00C<br>585.15295 | SYSS<br>CBJ<br>SYSI<br>CBJ<br>SYSL<br>CBJ<br>SYSV<br>CBJ<br>SYSX<br>CBJ<br>SYSX<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSS<br>CBJ<br>SYSS<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ | $\begin{array}{c} - & 1.00000\\ - & 119.69795\\ - & 11.60000\\ - & 1.00000\\ 1154.89950\\ - & 1.00000\\ 1154.89950\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.0000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.0000\\ - & 1.00000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.000\\ - & 1.0$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24444444444444444444444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SYSCEST<br>SYSCEST<br>SYSCEST<br>SYSCEST<br>SYSCEST<br>SYSCEST<br>SYSEST<br>SYSEST<br>SYSEST<br>SYSEST<br>SYSEST<br>SYSEST<br>SYSEST<br>SYSEST                                          | 935.2998C<br>1.5C300<br>1154.8599C<br>1.5C00C<br>327.2593C<br><br>838.2598C<br>241.05995<br>1.5C00C<br>923.65995<br>1.5C00C<br>923.65995<br>1.5C00C<br>585.15295 | SYSS<br>CBJ<br>SYSL<br>CBJ<br>CBJ<br>SYSL<br>CBJ<br>SYSK<br>CBJ<br>SYSK<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ2<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} - & 1.00000\\ + 19.69795\\ - & 1.00000\\ 935.29980\\ - & 1.00000\\ 1154.89990\\ - & 1.00000\\ 327.29580\\ - & 1.00000\\ 338.25580\\ - & 1.00000\\ 920.69995\\ - & 1.00000\\ 920.69955\\ - & 1.00000\\ 1058.69955\\ - & 1.00000\\ 585.19955\\ - & 1.00000\\ 585.19958\\ - & 1.00000\\ 585.19958\\ - & 1.00000\\ 585.19958\\ - & 1.00000\\ 585.19958\\ - & 1.00000\\ 585.19958\\ - & 1.00000\\ 585.89990\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14444444444444444444444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SYSCEST<br>SYSCEST<br>SYSCEST<br>SYSCEST<br>SYSCEST<br>SYSCEST<br>SYSCEST<br>SYSEEST<br>SYSEEST<br>SYSEEST<br>SYSEEST<br>SYSEEST<br>SYSEEST<br>SYSEEST<br>SYSEEST<br>SYSEEST<br>SYSEEST | 935.2998C<br>1.5C300<br>1154.8599C<br>1.5C00C<br>327.2593C<br><br>838.2598C<br>241.05995<br>1.5C00C<br>923.65995<br>1.5C00C<br>923.65995<br>1.5C00C<br>585.15295 | SYSS<br>CBJ<br>SYSL<br>CBJ<br>CBJ<br>SYSL<br>CBJ<br>SYSK<br>CBJ<br>SYSK<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ2<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ<br>CBJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} - & 1.00000\\ - & 119.69795\\ - & 10.00000\\ 935.29980\\ - & 1.000000\\ 1154.89950\\ - & 1.00000\\ 327.29580\\ - & 1.00000\\ - & 1.00000\\ - & 338.25570\\ - & 1.00000\\ - & 241.09959\\ - & 1.00000\\ 920.69595\\ - & 1.00000\\ 585.19955\\ - & 1.00000\\ 585.19955\\ - & 1.00000\\ 585.19955\\ - & 1.00000\\ - & 53.89990\\ - & 1.00000\\ - & 53.89990\\ - & 1.00000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - &$    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SYSCEST<br>SYSCEST<br>SYSCEST<br>SYSCEST<br>SYSCEST<br>SYSCEST<br>SYSCEST<br>SYSEEST<br>SYSEEST<br>SYSEEST<br>SYSEEST<br>SYSEEST<br>SYSEEST<br>SYSEEST<br>SYSEEST<br>SYSEEST<br>SYSEEST | 935.2998C<br>1.5C300<br>1154.8599C<br>1.5C00C<br>327.2593C<br><br>838.2598C<br>241.05995<br>1.5C00C<br>923.65995<br>1.5C00C<br>923.65995<br>1.5C00C<br>585.15295 | SYSS<br>GBJ<br>SYSC<br>CBJ<br>SYSC<br>CBJ<br>SYSC<br>CBJ<br>SYSK<br>CBJ<br>SYSK<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ2<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ4<br>CBJ<br>SYSZ4<br>CBJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} - & 1.00000\\ - & 119.69795\\ - & 10.00000\\ - & 1.00000\\ 1154.89950\\ - & 1.00000\\ 1154.89950\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.00000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & 1.0000\\ - & $                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>517554<br>5175554<br>5175554<br>5175554<br>5175554<br>5175554<br>5175554<br>5175554<br>51755554<br>51755554<br>51755554<br>5175555555555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SYSCEST<br>SYSCEST<br>SYSCEST<br>SYSCEST<br>SYSCEST<br>SYSCEST<br>SYSEST<br>SYSEST<br>SYSEST<br>SYSEST<br>SYSEST<br>SYSEST<br>SYSEST<br>SYSEST                                          | 935.2998C<br>1.5C300<br>1154.8599C<br>3.27.2593C<br>CC00C<br>835.2598C<br>241.05595<br>1.5C00C<br>92.3.65995<br>1.5C00C<br>92.3.65995<br>1.5C00C<br>1058.65995   | SYSS<br>CBJ<br>CBJ<br>CBJ<br>CBJ<br>SYSC<br>CBJ<br>SYSV<br>CBJ<br>SYSY<br>CBJ<br>SYSZ<br>CBJ<br>SYSZ2<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ3<br>CBJ<br>SYSZ4<br>CBJ<br>SYSZ5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} - & 1.00000\\ - & 119.69795\\ - & 10.00000\\ 935.29980\\ - & 1.000000\\ 1154.89950\\ - & 1.00000\\ 327.29580\\ - & 1.00000\\ - & 1.00000\\ - & 338.25570\\ - & 1.00000\\ - & 241.09959\\ - & 1.00000\\ 920.69595\\ - & 1.00000\\ 585.19955\\ - & 1.00000\\ 585.19955\\ - & 1.00000\\ 585.19955\\ - & 1.00000\\ - & 53.89990\\ - & 1.00000\\ - & 53.89990\\ - & 1.00000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 100000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - & 10000\\ - &$    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

 SYS257
 SYS254
 1:00000
 SYS257
 1:00000

 FIX
 CCAST
 1:00000
 SYSCCST
 2039652.000

 FIX
 CBJ
 2035652.000
 SYSCCST
 2039652.000

 CCMC
 SYSCL
 1:00000
 SYSCCST
 44032.00000

 CCMC
 CEJ
 44032.00000
 SYSCCST
 44032.00000

 VCN
 VCLCN
 1:00000
 SYSCCST

 VCN
 VCLCN
 0:0000

 VDP
 CHDP
 1:00000
 CEPERC
 1:00000

 FMP
 HTCN
 1:00000
 CEPERC
 1:00000

 FMP
 CCNPMP
 1:00000
 CEJ

 RHSA
 AREAL
 43+:CCC00C
 AR EAM
 702:00000
 <td

.



.



|     |      | EXECUTCI      | R     | M621300 45-410 |      |       |                                   |       |   |   |        |
|-----|------|---------------|-------|----------------|------|-------|-----------------------------------|-------|---|---|--------|
|     |      | SLPPARY (     | TAR 4 | RIX            |      |       |                                   |       |   |   |        |
| SY  | MECL |               | RANGE | 100 Mar 1997   | 105  | COUNT | (INCL.RHS)                        | <br>1 |   |   | 1.2.15 |
|     | 2    | LESS          | THA.4 | .0000          | 100  |       |                                   |       |   |   |        |
| 1   | Y    | .000001       | THRJ  | .0303          | 107  |       |                                   | <br>  |   |   |        |
| 3   | x    | .00010        |       | .0000          | . 99 |       |                                   |       |   |   |        |
| -   |      | .001000       | 15    | .0009          | 999  | -     | and the second                    | <br>- |   |   |        |
|     | v    | .001000       |       | .0099          | 999  | 1     |                                   | 1/3   |   |   |        |
| 1   | 6    | .010000       |       | .0999          | 999  | 60    |                                   | <br>  |   |   |        |
|     | T    | .10000        |       | .9999          | 999  | 60    |                                   |       | - |   |        |
| R   | ι    | 1.00000       |       | 1.0300         | 000  | 136   | Contraction of the local distance | <br>  | - |   |        |
| - 0 | A    | 1.00001       |       | 10.0000        | 000  | 60    |                                   |       |   |   |        |
| 1   | 8    | 10.00001      |       | 100.0000       | 000  | 52    |                                   |       |   | - |        |
|     | C    | 100.000001    |       | 1.000.0000     | 000  | 76    |                                   |       |   |   |        |
| 1   | D    | 1,000.000001  | -     | 10,000.0000    | 000  | . 16  |                                   | H-H-H |   | 1 |        |
| 1   | E    | 10.000.000001 |       | 100,000.0000   | 000  | z     |                                   |       |   |   |        |
| 1   | F    | 100,000.00001 |       | 1.000.000.000  | 000  |       | 1                                 | <br>  | 1 |   | 1      |
|     | G    | CREATER       | THAN  | 1,000,000.0000 | 000  | 2     |                                   |       |   |   |        |

#### APPENDIX F

SUMMARIES OF RELATED STUDIES UNDER THIS PROJECT, PROJECT NO. B-041-IDA

- Soil water intake rates and surface irrigation system characteristics by soil series in Southeastern Idaho, by Kyung H. Yoo and J.R. Busch, 1981.
- Evaluation of canal seepage in the Snake River Fan, Bonneville and Bingham Counties, Idaho, by Kenneth E. Netz, 1980.
- 3. Methodology for optimization of an irrigation system with storage reservoirs, by Mohammad J. Khanjani, 1980.
- Analyzing and predicting irrigation diversions in Southeastern Idaho, by Sung Kim, 1981.

 SOIL WATER INTAKE RATES AND SURFACE IRRIGATION SYSTEM CHARACTERISTICS BY SOIL SERIES IN SOUTHEASTERN IDAHO, By Kyung H. Yoo and J.R. Busch, 1981.

Seven major soil series found in the study area (shown in Figure IV-2) were evaluated to obtain soil wtaer intake rates. They range in texture from silt loam to gravelly loam. Three crop fields (hay, grain and potatoes) were selected for this study. Soil survey maps from local Soil Conservation Service were used to locate each soil series of the area. It was difficult to select representative sampling sites in any field. Therefore, it was necessary to test several different sites to obtain average results.

The infiltrometer ring test method was used for border irrigated fields, and the inflow-outflow method for furrow fields. There were different intake rates for fields of different crops on the same soil. Generally potato fields had lower intake rates than the other crops when tested by the ring method. There were also differences between the intake rates obtained by the ring test and the inflow-outflow method for furrow irrigated potato fields. The inflow-outflow method has been known as the most dependable method of obtaining furrow intake rate. However, under some conditions, the ring test is simpler and easier than the inflow-outflow method. The coefficients used in a water intake rate formula I =  $at^b$  (where, I = intake rate, t = intake opportunity time and a and b are coefficients) were found different from soil types and crop fields. Figure F-1 shows the relationships of these coefficients to crop fields and the relationships to soil types are shown in Figure F-2. All three soils shown have the largest intercept value (coefficient a for



Figure F-1. Graphical comparison of coefficients of intake rate equations among soils (potato fields tested by infiltrometer ring).



Figure F-2. Graphical comparison of coefficients of intake rate equations among crops (potato fields tested by infiltrometer ring).

hay, intermediate for grain and lowest for potatoes except for Bannock soil. For the exponents (coefficient b) Bock and Hayeston soils have almost constant values while that of Bannock shows a decreasing value in the order of hay, grain and potatoes. Generally, hay has the highest intake rate and potatoes have the lowest among the three crops. From Figure 2, the intercept values for the alfalfa field increase from silt loam (Ammon) to gravelly loam (Bannock) and the exponents decrease slightly in same order. for the same order, the exponents are nearly constant, but the wide variation in intercept values are shown. For these two tests the number of data were not enough to statistically test and find any relationships between the two methods in this study, which would be useful for field application.

The irrigation practices on two furrow fields were evaluated usign the data obtained in this study. The results showed that improved water management practices are needed to obtain higher application efficiencies on both fields. One field had excess irrigation with high runoff loss and the other field had a lack of irrigation with high runoff loss. The irrigators could increase the efficiency by using a cut back stream and/or a return flow recovery system.

### Publication:

Yoo, Kyung H. and J.R. Busch, 1981. Soil water intake rates and surface irrigation system characteristics by soil series in southeastern Idaho, Resarch Technical Partial Completion Report, Idaho Water Resources Research Institute, University of Idaho, Moscow.

 EVALUATION OF CANAL SEEPAGE IN THE SNAKE RIVER FAN, BONNEVILLE AND BINGHAM COUNTIES, IDAHO, By Kenneth E. Netz, 1980.

The canal networks of the irrigation projects of the study area (Figure IV-1) are a means of water management that supply water for agricultural use in the area. The effectiveness of these canals for this use is of concern to the farmers and community. Efficient delivery of water for irrigation is a special concern during drought year. Thus, the canal companies must be able to deliver water to the farmer in a way that allows the most effective application of water to crops. Canal seepage is of concern because it represents a loss in water that could otherwise be available to the crops.

The study showed that rates of seepage ranged from 0.5 to 3.7 cubic feet per square foot per day on two major projects. High loss areas were usually located in the large canals that were distributing large amounts of water.

The inflow-outflow method used in determining the seepage from a canal showed that very accurate water measurements were needed to measure seepage rates in canals. Statistical Analysis Procedures used to evaluate the loss rates showed that the inflow-outflow method was ineffective during mid-season, high flow periods. This was undoubtedly due to the inherent errors of measuring water in an open channel. Measurements made at very low flows during the very early spring and late fall, before and after farmers were diverting water for crop use, provided to the acceptable seepage loss measurements.

The General Linear models Procedure indicated that the variation in seepage measured at individual stations was too great even during the

spring and fall to attribute the seepage to the soil type or canal bottom type. Based on the measurements taken using the inflow-outflow method a prediction cannot be made with adequate accuracy on prospective new canals using soil type and canal bottom type as indicators.

The procedure showed that actual measurements made at low flows do indeed indicate that some canals have higher loss rates than others. The results from this study are shown in Table F-1. The table contains the seepage rate, total loss rate for a canal and conveyance efficiency of each canal. Canals with high losses were Main Snake River Valley Canal, Main Idaho Canal, Cedar Point Canal, Sand Creek, and Butte Arm Canal. Canals with a medium loss were East Branch of Snake River Valley Canal and West Branch of Snake River Valley Canal. Low loss rates were found in the lower end of the Main Idaho Canal, Highline Canal, and Little Sand Creek and Kearney Canal.

In summary, the study was successful in estimating seepage loss and determining where high and low losses could be expected. The study has been shown to benefit the planner who wishes to preserve water and put Idaho's water to its most beneficial use.

#### Publication:

Netz, Kenneth E., 1980. Evaluation of canal seepage in the Snake River Fan, Bonneville and Bingham Counties, Idaho, Unpublished M.S. Thesis, Department of Agricultural Engineering, University of Idaho, Moscow, Idaho.

| Canal Name              | Wetted<br>Perimeter<br>ft | Seepage<br>Rate, ft/day | Water Loss<br>Rate, cfs | Conveyance<br>Efficient, % |
|-------------------------|---------------------------|-------------------------|-------------------------|----------------------------|
| Idaho Main              | 75.5                      | 2.68                    | 102.0                   | 93.1                       |
| Butte Arm               | 17.1                      | 2.31                    | 19.9                    | 96.1                       |
| Little Sand Creek       | 31.4                      | 0.62                    | 9.8                     | 90.2                       |
| Sand Creek              | 19.2                      | 2.40                    | 23.2                    | 89.6                       |
| Highline Creek          | 3.5                       | 0.60                    | 1.0                     | 98.7                       |
| Snake River Valley Main | 20.0                      | 3.61                    | 36.2                    | 95.6                       |
| Cedar Point             | 18.5                      | 3.74                    | 34.8                    | 91.5                       |
| West Branch SRV         | 29.8                      | 1.31                    | 19.7                    | 92.1                       |
| East Branch SRV         | 18.8                      | 1.48                    | 14.0                    | 94.2                       |

# Table F-1. Canal seepage rates and conveyance efficiency of the study area

 METHODOLOGY FOR OPTIMIZATION OF AN IRRIGATION SYSTEM WITH STORAGE RESERVOIRS, By Mohammad J. Khanjani, 1980.

The main objective of this study was to utilize probability analysis and mathematical progamming in planning the least cost design and operation of an irrigation system with a chain of farm service reservoirs. The purposes of these reservoirs are to minimize water shortage during peak water use periods and to make water available on demand. By having water available on demand, an irrigator can irrigate more efficiently and surface runoff can be collected in farm service reservoirs for reuse in downstream.

To achieve the objective, an area of approximately 1,965 ha in the Snake River Valley Irrigation District was selected as a study area for application of the proposed model. The study area was divided into 24 farm units. Cropping pattern, soil type, quantity and quality of irrigation water and existing irrigation application systems were considered and necessary data collected.

Daily evapotranspiration values for 25 years (1952-1976) were estimated, and frequency distribution of evapotranspiration for 1 to 30 days and seasonal duration were estimated. A log-normal probability distribution was found to best fit the data. Daily actual evapotranspiration of pasture, wheat, alfalfa and potatoes were computed. Frequency distributions of these crops for 1 to 30 days and for seasonal use were estimated. A log-normal probability distribution was again found to best fit the estimated actual evapotranspiration of the four crops. Mathematical probability equations for the prediction of actual evapotranspiration for different duration were developed. Figure F-3 shows the log-normal



Figure F-3. Log-normal probability distribution of actual evapotranspiration of potatoes for different durations in the study area.

distribution of actual ET for a crop of the study area in different durations.

All possible irrigation intervals for different probabilities of occurrence were computed utilizing the mathematical probability equations of actual evapotranspiration and allowable soil moisture depletion data. By incorporating irrigation application subsystem characteristics, corresponding recurrence intervals were estimated. Costs and benefits of various irrigation systems were determined.

Annual costs of irrigation application subsystems for each soil type and crop, for different amounts of applied water, were estimated. Annual costs were also estimated for canal rehabilitation and farm service reservoirs. Benefits of various levels of irrigation for each crop were estimated by dimensionless crop yield-water use functions and unit prices of crops, and by incorporating the level of risk in satisfying actual evapotranspiration requirements. The relationships of benefit and cost to applied irrigation water for a crop and irrigation application system are shown in Figure F-4. By estimating the annual costs of irrigation application subsystems and benefits from different amounts of applied water, and by using a marginal cost-benefit analysis, the most economical irrigation interval for each crop on a particular soil was computed for a particular irrigation application subsystem. The peak actually water required for each different crop-soil-irrigation application system were then determined. The time of occurrence of maximum actual evapotranspiration for each crop in the study area follows a log-normal distribution, and the mathematical probability equations were defined.

The peak water requirement of each farm unit was computed as a function of cropping pattern, soil type, and irrigation application subsystem.



Figure F-4. Cost and benefit of wheat irrigation on Bannock soil by different irrigation application subsystems.

It was found that although there were a variety of cropping patterns, soil types, and irrigation application subsystems, the peak water requirement of all farm units occurred in July.

The retention duration time of water in all farm service reservoirs was assumed to be 12 hours. Locations of possible farm service reservoirs and associated service area were determined, and it was assumed that all of the reservoirs and canal sections were unlined. Design capacities of farm service reservoirs and canal sections were first computed by assuming that all of the possible farm service reservoirs would be used. Annual costs of farm service reservoirs and canal rehabilitation were obtained at \$58 per hectare. By increasing the capacities of some farm service reservoirs and conveying water from one farm service reservoir to other farm units and/or farm service reservoirs many different alternative system configurations are possible and optimization procedures were used to find least cost farm service reservoir and canal system configurations.

A mixed integer-linear (MIP) programming technique was used to determine the best possible locations of farm service reservoirs in two canal branches in the study area. After using MIP to determine the best possible farm service reservoir sites, linear programming model was used for postoptimal analyses. The linear programming model was used to optimize the capacities of farm service reservoirs and canal sections subject to various constraints. The annual cost of farm service reservoirs and canal rehabilitation were \$39.27 per hectare, almost 32.4\$ less than the first computed cost.

The effect of water cost on system configuration was examined by parametric programming for different water costs (\$0-\$12.15/1,000 m<sup>3</sup>).

By increasing the cost of inflow water to \$.81/1,000 m<sup>3</sup> it was found that it would be better to collect and reuse all the runoff water from fields. Further cost increases showed no effect on the configuration of the system without the specified range.

Publication:

- Khanjani, M.J., 1980. Methodology for optimization of an irrigation system with storage reservoirs. Unpublished Ph.D. Dissertation, Department of Agricultural Enginereing, University of Idaho, Moscow.
- Khanjani, M.J. and J.R. Busch, 1982. Optimal irrigation water use from probability cost-benefit analysis. TRANSACTIONS of the American Society of Agricultural Engineers. (accepted for publication).
- Khanjani, M.J. and J.R. Busch, 1982. Optimal irrigation distribution systems with internal storage. TRANSACTIONS of the American Society of Agricultural Engineers. (submitted for publication).

 ANALYZING AND PREDICTING IRRIGATION DIVERSINS IN SOUTHEASTERN IDAHO, By Sung Kim, 1981.

The daily water flow data and crop consumptive water use data for the 1978, 1979, and 1980 irrigation seasons were analyzed to determine the relationships among them for the Idaho Irrigation District (IID) and the Snake River Valley Irrigation District (SRVID). A methodology for predicting daily water diversions was developed for an irrigation district and was applied to the two irrigation districts.

Seasonal irrigation water uses were different from year to year for the districts, but the seasonal water use patterns were similar among the districts. Approximately 90 and 80 percent of total inflows were directly diverted from the Snake River with additional water received from upper irrigation district(s) as wastewater. Total outflows were about 20 to 27 percent of the total inflows for the IID and SRVID, respectively.

Statistical analyses using linear correlation were used to determine relationships among inflow, outflow, evapotranspiration and precipitation. The results showed that outflow fluctuated more frequently than inflow did. A slight change of evapotranspiration resulted in a rather large change of inflow, and inflow was also highly related to precipitation. Generally, negative correlations existed between inflow and outflow, and between outflow and evapotranspiration on the same day. As expected, a positive correlation existed between inflow and evapotranspiration on the same day.

Autocorrelation methods were used to determine frequencies within the inflow and outflow of the irrigation water from the districts studied. Weekly cycles were found within outflows, but not found within

inflows. This trend could illustrate that present irrigation schedules of diversions for the IID and SRVID can be adjusted to more precisely meet demand with weekly cycles. Figure F-5 shows the autocorrelation of the inflow and outflow in the IID. Most of the points (correlation coefficients of event time inflows) are between the upper and lower confidence limits for autocorrelogram of the inflow. This result illustrates that they are not different and no particular frequencies exist. Points in the outflow diagram for 7 day and 14 day intervals are located outside of the confidence limits. This means that on a weekly cycle the outflows are different from those of other days.

Relationships between diversion times and requirements were established. Based on the time effects, proper consumptive irrigation requirements were estimated at the district level for each district. Multiple linear regression equations were also developed to estimate total water losses due to management, seepage, and deep percolation.

A computer program was developed for predicting water diversions for the districts. Figure F-6 is a schematic flow chart of the program to determine irrigation diversion requirement. The predicted values appeared to be more closely related to the consumptive irrigation requirements than did the actual inflows. It must be noted that the predicted values are not necessarily close to the measured inflow of the districts. The predicted inflow is the one which the district should divert to meet its requirement effectively sould the prediction be reasonable. However, the measured inflow is that the district actually diverted, which may or may not be based on actual requirements.

Publication:

Kim, S., 1981. Analyzing and predicting irrigation diversions in southeastern Idaho. Unpublished M.S. Thesis, Department of Agricultural Engineering, University of Idaho, Moscow, Idaho.





Figure F-5. Autocorrelograms of inflow and outflow in the Idaho Irrigation District. (a) inflow, (b) outflow.



Figure F-6. Flow chart for determining diversion requirements.

|   | SELECTED WATER<br>RESOURCES ABSTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            | 1. Report No.                                                                  | 2.                                                          | 3. Accession No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|   | Input Transaction Form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            |                                                                                |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|   | • 4. Title<br>OPTIMAL PLANNING OF<br>SYSTEMS FOR A LARGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            | TION AND APPLICAT                                                              | ION                                                         | <ol> <li>5. Report Date</li> <li>6. June 17, 1982</li> <li>9. Do Good Control Contro Control Control Control Control Control Control Control Contr</li></ol> |  |  |  |  |  |
|   | 7. Author(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                                                                | 8. Performing Organization<br>Report No.<br>10. Project No. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|   | Kyung H. You, J.R. E<br>9. Organization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Kyung H. Yoo, J.R. Busch and C.E. Brockway |                                                                                |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|   | Idahu Water and Ener                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            | B-041-IDA<br>1. Contract/Grant No.<br>14-34-0001-8079<br>3. Type of Report and |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|   | 12. Sponsoring Organizat<br>OWRT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ion                                        |                                                                                |                                                             | Period Covered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|   | 15. Supplementary Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            |                                                                                |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|   | <ul> <li>16.Abstract The purpose of the research was to develop and apply techniques to obtain optimal solutions for multi-objective planning of a large irrigated area. Techniques were developed to effectively inventory a large area, determine the costs and operating characteristics of irrigation system components and obtain optimal system plans using mathematical programming. These techniques were applied to a large irrigated area located near Idaho Falls, Idaho. All sources of data pertinent to irrigation in the study area were collected, and low level infrared pictures were taken over the area. Files of data from all sources were stored in a digit al computer so that they could be easily accessed to obtain information about irrigation practice and systems located in any small subarea within the study area. These data files were also used to obtain detailed computer-drawm maps of the area. Using the procedures developed, optimal irrigation system plans were obtained for the study area. These plans were based upon different specified constraints such as overall system efficiency, cost of water delivered to the system at the project headgate and the cost of water diverted to the distribution system to on-farm application systems. The results obtained were useful in determining the costs and configurations necessary to meet specified efficiency levels. When charging for water, it was found that the variation of water cost over a rather narrow range was effective in increasing overall efficiency to a point, and additional charges had little effect. Consolidation plans for the two irrigation districts</li> <li>17a. Descriptors</li> <li>Planning of Large Irrigated Areas</li> <li>Consolidation plans for irrigation districts</li> </ul> |                                            |                                                                                |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| 1 | 17c. COWRR Field & Group<br>03 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                                                |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|   | 18. Availability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19. Security Class<br>(Report)             | Pages 252                                                                      | Send to:                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| 0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20. Security Class<br>(Page)               | . 22. Price                                                                    |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |                                                                                |                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |

|  | Abstractor | IWERRI |  |
|--|------------|--------|--|
|--|------------|--------|--|

Institution

IWERRI