USE OF MULTIVARIATE MODELING TO ESTIMATE IMPACTS OF GROUNDWATER WITHDRAWALS ON STREAMFLOW FOR THE CAMAS CREEK BASIN

by

Dennis Horn
Sangman Jeong

Civil Engineering

May, 1989

The research on which this report is based was financed in part by the United States Department of the Interior as authorized by the Water Research and Development Act of 1978 (P.L. 95-467).

Contents of this publication do not necessarily reflect the views and policies of the United States Department of the Interior nor does mention of trade names or commercial products constitute their endorsement by the U.S. Government.

Research Technical Completion Report

14-08-0001-G1419-08

USE OF MULTIVARIATE MODELING TO ESTIMATE IMPACTS OF GROUNDWATER WITHDRAWALS ON STREAMFLOW FOR THE CAMAS CREEK BASIN

by
Dennis Horn
Sangman Jeong

Civil Engineering

Submitted to
U.S. Geological Survey
United States Department of the Interior Washington, D.C. 20242
Idaho Water Resources Research Institute
University of Idaho
Moscow, Idaho 83843

May, 1989

TABLE OF CONTENTS

LIST OF TABLES v
LIST OF FIGURES xi
ABSTRACT XV
CHAPTER 1: INTRODUCTION 1

1. Background 1
2. Nature and Scope of Research Project. 2
3. Specific Research Objectives 3
CHAPTER 2: STUDY STREAM SELECTION AND INITIAL DATA ANALYSIS 5
4. Selection of Streamflow Records 5
5. Initial Data Analysis 9
CHAPTER 3: DATA AUGMENTATION 10
6. Big Wood Slough (13.1395 .10) 10
7. Goose Creek (13.0825 .00) 11
8. Big Lost River (13.1205 .00) 12
9. Camas Creek (13.1415 .00) 26
CHAPTER 4: MULTIVARIATE MODEL DEVELOPMENT 29
10. Introduction to the Previous Modeling Approaches 29
11. Multivariate Models and Model Selection 36
12. Preliminary Analysis 39
13. Estimation of Parameters 40
14. Data Generation 41
CHAPTER 5: MODEL APPLICATION 49
15. Introduction 49
16. Adjustment of the Simple Statistics for the Wet Period 49
17. Model Application 52
CHAPTER 6: COMPARISONS OF OBSERVED AND SYNTHETIC RECORDS 60
18. Introduction 60
19. Statistical Analysis 60
20. Seasonal Characteristics 62
21. Trends in Streamflow Change 70
CHAPTER 7: CONJUNCTIVE USE RELATIONSHIPS 89
22. Introduction 89
23. Conjunctive Use Relationships 89
24. Conclusions 99
CHAPTER 8: FUTURE IMPACTS AND RECOMMENDED RESEARCH 101
25. Future Impacts 101
26. Recommended Research 101
APPENDIX A: CANDIDATE STATIONS 104
APPENDIX B: HISTORICAL STREAMFLOW LISTINGS 106
APPENDIX C: PARAMETERS FOR SIMPLE
LINEAR REGRESSION 111
APPENDIX D: AUGMENTED STREAMFLOW LISTINGS AND STATISTICS 113
APPENDIX E: PAIRING INFORMATION 122
APPENDIX F: COMPARISONS OF SIMPLE STATISTICS. 124
APPENDIX G: THE SIMPLE STATISTICS AND THE RESULTS COMPARISONS 129
APPENDIX H: COMPARISONS OF CORRELATION COEFFICIENTS. 136
APPENDIX I: COMPARISONS OF PARAMETER ESTIMATES BETWEEN SIMPLE REGRESSION AND QUADRATIC REGRESSION 138
APPENDIX J: TEST FOR NORMALITY FOR KEY STATION AND SUBORDINATE STATIONS 141
APPENDIX K: CORRELATION COEFFICIENTS BETWEEN MONTHLY FLOWS 143
APPENDIX L: SIMPLE STATISTICS FOR DATA GENERATION 156
APPENDIX M: COMPARISONS OF MONTHLY FLOW STATISTICS BETWEEN DRY AND WET PERIODS 174
APPENDIX N: COMPARISONS BETWEEN HISTORICAL FLOWS AND GENERATED FLOWS 180
APPENDIX O: COEFFICIENTS OF SKEW FOR HISTORICAL AND GENERATED MONTHLY FLOWS 207
APPENDIX P: DIFFERENCES BETWEEN HISTORICAL FLOWS AND GENERATED FLOWS 209
APPENDIX Q: LOGS OF IRRIGATION WELLS IN THE STUDY AREA 235
REFERENCES 239

LIST OF TABLES

page
2.1 Streamflow Records 6
4.1 Hypothesis Tests using F- and Paired Difference t-statistics 43
4.2 Hypothesis Test for Equality of Variances between Two Monthly Series 47
4.3 Hypothesis Test of Paired Mean Differences between Two monthly Series 48
5.1 Hypothesis Tests F- and t-statistics 50
5.2 Hypothesis Test for Equality of Variances between Dry and Wet Periods Streamflows for Big Wood Slough 53
5.3 Hypothesis Test for Equality of Means between Dry and Wet Periods Streamflows for Big Wood Slough 54
5.4 Hypothesis Test for Equality of Variances between Dry and Wet Periods Streamflows for Big Lost River 55
5.5 Hypothesis Test for Equality of Means between Dry and Wet Periods Streamflows for Big Lost River 56
5.6 Hypothesis Test for Equality of Variances between Dry and Wet Periods Streamflows for Goose Creek 57
5.7 Hypothesis Test for Equality of Means between Dry and Wet Periods Streamflows for Goose Creek 58
6.1 Hypothesis Test for Equality of Variances between Two Monthly Series 61
6.2 Hypothesis Test of Paired Mean Difference between Two Monthly Series 63
6.3 Seasonal Distinction for Monthly Data 64
6.4 Hypothesis Test for Equality of Variances between Two Seasonal Series 69
6.5 Hypothesis Test for Paired Mean Difference between Two Seasonal Series 69
6.6 Estimates for the Simple Linear Regression between Difference and Water Year 82
7.1 Depth of the Irrigation Wells. 91
7.2 Summary of Tests and Comparisons 100
A. 1 Candidate Stations with at Least 40 years Record, Little Pumping and/or Regulation, and of at Least " Fair " Quality 105
B. 1 Station: Combination Big Wood River and Slough at Hailey ID (13.1395.10) 107
B. 2 Station: Big Lost River at Howell Ranch nr Chilly ID (13.1205.00) 108
B. 3 Station: Goose Creek above Trapper Creek near Okley ID (13.0825.00) 109
B. 4 Station: Camas Creek near Blaine ID (13.1415.00) 110
C. 1 Statistics for Simple Linear Regression between 13.1395.10 \& 13.1395.00 112
D. 1 Station: Combination Big Wood River and Slough at Hailey ID (13.1395.10) 114
D. 2 Station: Big Lost River at Howell Ranch near Chilly ID (13.1205.00) 115
D. 3 Station: Goose Creek above Trapper Creek near Okley ID (13.0825.00) 116
D. 4 Station: Camas Creek near Blaine ID (13.1415.00) 117
D. 5 Summary of the Monthly Statistics for Big Wood Slough station (13.1395.10) 118
D. 6 Summary of the Monthly Statistics for Big Lost River station (13.1205.00) 119
D. 7 Summary of the Monthly Statistics for Goose Creek station (13.0825.00) 120
D. 8 Summary of the Monthly Statistics for Camas Creek station (13.1415.00) 121
E. 1 Pairing Information between 13.1395 .10 \& 13.1205 .00 123
F. 1 Test for Normality for Station 13.1395.10 125
F. 2 Test for Normality for Station 13.1205.00 126
F. 3 Test for Normality for the Common Period between 13.1395.10 \& 13.1205.00 127
F. 4 Simple Statistics between Original and Filled-in Stream Flows for Station 13.1205.00 128
G. 1 Coefficients of Skew for Transformed and Untransformed Monthly Streamflow 130
G. 2 Statistics of Untransformed/Transformed Values as Calculated from Moment Relationships 131
G. 3 Correlation Coefficients between Monthly and Annual Values 132
G. 4 Parameters for Lane's Disaggregation Model 133
G. 5 Difference between Annual Flows Generated by Multivariate AR(1) Modeling and Generated or Actual Monthly Sum Flows by Disaggregation Model Approach 134
G. 6 Difference between Annual Flows Generated by Multivariate AR(1) Modeling and Generated or Actual Monthly Sum Flows by Multivariate AR(1) Modeling 135
H. 1 Comparisons of Correlation Coefficients with Camas Creek Station (13.1415.00) 137
I. 1 Coefficients of Determinations for Simple Regression and Quadratic Regression between 13.1415 .00 and 13.1395.10 for 1925-1952 Water Years 139
I. 2 Parameters for Polynomial (quadratic) Regression between 13.1395.10 \& 13.1415.00 140
J. 1 Tests for Normality for Key Station and Subordinate Stations 142
K. 1 Correlation Coefficients between Monthly Flows(October) 144
K. 2 Correlation Coefficients between Monthly Flows(November) 145
K. 3 Correlation Coefficients between Monthly Flows(December) 146
K. 4 Correlation Coefficients between Monthly Flows(January) 147
K. 5 Correlation Coefficients between Monthly Flows(February) 148
K. 6 Correlation Coefficients between Monthly Flows(March) 149
K. 7 Correlation Coefficients between Monthly Flows(April) 150
K. 8 Correlation Coefficients between Monthly Flows(May) 151
K. 9 Correlation Coefficients between Monthly Flows(June) 152
K. 10 Correlation Coefficients between Monthly Flows(July) 153
K. 11 Correlation Coefficients between Monthly Flows(August). 154
K. 12 Correlation Coefficients between Monthly Flows(September) 155
L. 1 Means and Standard Deviations for Transformed Months (by Raw Data) 157
L. 2 Mean and Standard Deviation for Transformed Months (by Chow's Equations) 158
L. 3 Coefficients of Skew for Historical and Generated Monthly Streamflows 159
L. 4 Correlation Coefficients between Historical Monthly Flows and Generated Monthly Flows for Camas Creek 160
M. 1 Ratios of Monthly Statistics between Dry and Wet period Flows (13.1395.10) 175
M. 2 Ratios of Monthly Statistics between
Dry and Wet period Flows (13.1205.00) 176
M. 3 Ratios of Monthly Statistics between Dry and Wet period Flows (13.0825.00) 177
M. 4 Process to Estimate " Natural " Monthly Mean of October on Camas Creek Station 178
M. 5 Estimation of Monthly Statistics for
Wet period Using Weighted Average Ratios (13.1415) 179
N. 1 Historical Monthly Flows of the Key Station and Three Subordinate Stations vs. Generated Monthly Flows of the Key Station (October) 181
N. 2 Historical Monthly Flows of the Key Station and Three Subordinate Stations vs. Generated Monthly Flows of the Key Station (November) 182
N. 3 Historical Monthly Flows of the Key Station and Three Subordinate Stations vs. Generated Monthly Flows of the Key Station (December) 183
N. 4 Historical Monthly Flows of the Key Station and Three Subordinate Stations vs. Generated Monthly Flows of the Key Station (January) 184
N. 5 Historical Monthly Flows of the Key Station and Three Subordinate Stations vs. Generated Monthly Flows of the Key Station (February) 185
N. 6 Historical Monthly Flows of the Key Station and Three Subordinate Stations vs. Generated Monthly Flows of the Key Station (March) 186
N. 7 Historical Monthly Flows of the Key Station and Three Subordinate Stations vs. Generated Monthly Flows of the Key Station (April) 187
N. 8 Historical Monthly Flows of the Key Station and Three Subordinate Stations vs. Generated Monthly Flows of the Key Station (May) 188
N. 9 Historical Monthly Flows of the Key Station and Three Subordinate Stations vs. Generated Monthly Flows of the Key Station (June) 189
N. 10 Historical Monthly Flows of the Key Station and Three Subordinate Stations vs. Generated Monthly Flows of the Key Station (July) 190
N. 11 Historical Monthly Flows of the Key Station and Three Subordinate Stations vs. Generated Monthly Flows of the Key Station (August) 191
N. 12 Historical Monthly Flows of the Key Station and Three Subordinate Stations vs. Generated Monthly Flows of the Key Station (September) 192
N. 13 Historical Monthly Flows of the Key Station and Three Subordinate Stations vs. Generated Monthly Flows of the Key Station (Annual) 193
O. 1 Coefficients of Skewness for Historical and Generated Monthly Streamflows 208
P. 1 Ratios Between Historical and Generated Flows (October) 210
P. 2 Ratios Between Historical and Generated Flows (November) 211
P. 3 Ratios Between Historical and Generated Flows (December) 212
P. 4 Ratios Between Historical and Generated Flows (January) 213
P. 5 Ratios Between Historical and Generated Flows (February) 214
P. 6 Ratios Between Historical and Generated Flows (March) 215
P. 7 Ratios Between Historical and Generated Flows (April) 216
P. 8 Ratios Between Historical and Generated Flows (May) 217
P. 9 Ratios Between Historical and Generated Flows (June) 218
P. 10 Ratios Between Historical and Generated Flows (July) 219
P. 11 Ratios Between Historical and Generated Flows (August) 220
P. 12 Ratios Between Historical and Generated Flows (September) 221
P. 13 Ratios Between Historical and Generated Flows (Annual) 222
Q. 1 Logs of Irrigation Wells in the Study Area 236
Q. 2 Irrigation Well Development History in the Study Area 238

LIST OF FIGURES

page
2.1 Location of Streamflow Stations 7
2.2 Camas Creek Basin 8
4.1 Camas Creek May Streamflows for 1925-1952 (Observed vs. Generated) 45
4.2 Camas Creek Annual Streamflows for 1925-1952 (Observed vs. Generated) 46
5.1 Camas Creek Annual Streamflows for 1953-1985 (Observed vs. Generated) 59
6.1 Camas Creek Spring Season Streamflows for 1953-1985 (Observed vs. Generated) 65
6.2 Camas Creek Summer Season Streamflows for 1953-1985 (Observed vs. Generated) 66
6.3 Camas Creek Fall Season Streamflows for 1953-1985 (Observed vs. Generated) 67
6.4 Camas Creek Winter Season Streamflows for 1953-1985 (Observed vs. Generated) 68
6.5 Ratios of Spring Streamflows (Observed/Synthetic) 71
6.6 Ratios of Summer Streamflows (Observed/Synthetic) 72
6.7 Ratios of Fall Streamflows (Observed/Synthetic) 73
6.8 Ratios of Winter Streamflows (Observed/Synthetic) 74
6.9 Ratios of Annual Streamflows (Observed/Synthetic) 75
6.10 Differences of Spring Streamflows (Observed-Synthetic) 77
6.11 Differences of Summer Streamflows (Observed-Synthetic) 78
6.12 Differences of Fall Streamflows (Observed-Synthetic) 79
6.13 Differences of Winter Streamflows (Observed-Synthetic) 80
6.14 Differences of Annual Streamflows (Observed-Synthetic) 81
6.15 Cumulative Differences of Spring Streamflows (Observed-Synthetic) 84
6.16 Cumulative Differences of Summer Streamflows (Observed-Synthetic) 85
6.17 Cumulative Differences of Fall Streamflows (Observed-Synthetic) 86
6.18 Cumulative Differences of Winter Streamflows (Observed-Synthetic) 87
6.19 Cumulative Differences of Annual Streamflows (Observed-Synthetic) 88
7.1 Irrigation Well Development History (Camas Creek Basin) 90
7.2 Observed Flows and Annual Differences 93
7.3 Cumulative Differences and Total Number of Wells (Spring Season) 94
7.4 Cumulative Differences and Total Number of Wells (Summer Season) 95
7.5 Cumulative Differences and Total Number of Wells (Fall Season) 96
7.6 Cumulative Differences and Total Number of Wells (Winter Season) 97
7.7 Cumulative Differences and Total Number of Wells (Cumulative Annual Defferences and Total Wells) 98
8.1 Location Map Showing Camas Creek Basin, Mountain Home Area, and Raft River Valley, Idaho 103
L. 1 Camas Creek October Streamflows for 1925-1952 (Observed vs. Generated) 161
L. 2 Camas Creek November Streamflows for 1925-1952 (Observed vs. Generated) 162
L. 3 Camas Creek December Streamflows for 1925-1952 (Observed vs. Generated) 163
L. 4 Camas Creek January Streamflows for 1925-1952 (Observed vs. Generated) 164
L. 5 Camas Creek February Streamflows for 1925-1952 (Observed vs. Generated) 165
L. 6 Camas Creek March Streamflows for 1925-1952 (Observed vs. Generated) 166
L. 7 Camas Creek April Streamflows for 1925-1952 (Observed vs. Generated) 167
L. 8 Camas Creek May Streamflows for 1925-1952 (Observed vs. Generated) 168
L. 9 Camas Creek June Streamflows for 1925-1952 (Observed vs. Generated) 169
L. 10 Camas Creek July Streamflows for 1925-1952 (Observed vs. Generated) 170
L. 11 Camas Creek August Streamflows for 1925-1952 (Observed vs. Generated) 171
L. 12 Camas Creek September Streamflows for 1925-1952 (Observed vs. Generated) 172
L. 13 Camas Creek Annual Streamflows for 1925-1952 (Observed vs. Generated) 173
N. 1 Camas Creek October Streamflows for 1953-1985 (Observed vs. Generated) 194
N. 2 Camas Creek November Streamflows for 1953-1985 (Observed vs. Generated) 195
N. 3 Camas Creek December Streamflows for 1953-1985 (Observed vs. Generated) 196
N. 4 Camas Creek January Streamflows for 1953-1985 (Observed vs. Generated) 197
N. 5 Camas Creek February Streamflows for 1953-1985 (Observed vs. Generated) 198
N. 6 Camas Creek March Streamflows for 1953-1985 (Observed vs. Generated) 199
N. 7 Camas Creek April Streamflows for 1953-1985 (Observed vs. Generated) 200
N. 8 Camas Creek May Streamflows for 1953-1985 (Observed vs. Generated) 201
N. 9 Camas Creek June Streamflows for 1953-1985 (Observed vs. Generated) 202
N. 10 Camas Creek July Streamflows for 1953-1985 (Observed vs. Generated) 203
N. 11 Camas Creek August Streamflows for 1953-1985 (Observed vs. Generated) 204
N. 12 Camas Creek September Streamflows for 1953-1985 (Observed vs. Generated) 205
N. 13 Camas Creek Annual Streamflows for 1953-1985 (Observed vs. Generated) 206
P. 1 Differences of October Streamflows (Observed-Synthetic), 223
P. 2 Differences of November Streamflows (Observed-Synthetic) 224
P. 3 Differences of December Streamflows (Observed-Synthetic) 225
P. 4 Differences of January Streamflows (Observed-Synthetic) 226
P. 5 Differences of February Streamflows (Observed-Synthetic) 227
P. 6 Differences of March Streamflows (Observed-Synthetic) 228
P. 7 Differences of April Streamflows (Observed-Synthetic) 229
P. 8 Differences of May Streamflows (Observed-Synthetic) 230
P. 9 Differences of June Streamflows (Observed-Synthetic) 231
P. 10 Differences of July Streamflows (Observed-Synthetic) 232
P. 11 Differences of August Streamflows (Observed-Synthetic) 233
P. 12 Differences of September Streamflows (Observed-Synthetic) 234

Abstract

The conjunctive use of surface and groundwater has been recognized as posing significant water rights issues in many of the Idaho river basins. Increases in groundwater pumping rates, primarily for irrigation, have led to changes in surface streamflow, affecting previously allocated surface water rights. However, the magnitude of this effect and its variability over time remain difficult to estimate.

The primary objective of this study was to develop a multivariate monthly flow model for Camas Creek, based on stream flows in neighboring basins, and to test whether such a model is sensitive enough to detect, at some statistical level of significance, any streamflow changes that may have resulted from groundwater withdrawals.

Monthly streamflow records from Camas Creek and three similar neighboring basins were used to develop a multivariate monthly streamflow model of Camas Creek. Model parameters were based on the recorded statistics for the record period common to groundwater development within the Camas Creek basin. The model was developed and tested for its ability to adequately reproduce the historic pre-irrigation time series for Camas Creek. Then the model was applied to the time period in which significant groundwater withdrawals occurred. A comparison of the modeled streamflow with the actual flows for this period was used to estimate the impacts of groundwater pumping on monthly, seasonal, and annual streamflows. The differences between the two time series were related to the history of groundwater development within the basin.

Although the model appeared to simulate the overall historic time series reasonably well, its performance varied by month and season.

The application of the model to the time period in which the Camas Creek basin groundwater withdrawals were significant produced a simulated record with lower streamflows than those observed. This may be attributable to the fact that most of the large wells have pumped from deep aquifers, with no connection to the surface stream system.

CHAPTER 1

INTRODUCTION

1. Background

The conjunctive use of surface and groundwater has posed significant water rights issues in many Idaho river basins. Increases in groundwater pumping rates, primarily for irrigation, have led to changes in surface streamflow, and have caused concerns over the impacts of the reduction on previously allocated surface water rights. However, the magnitude of this effect and its variability over time remain difficult to estimate, resulting in very real problems associated with current and future planning, as well as management of the State's water resources.

Although this problem can be addressed by detailed deterministic hydrologic modeling of surface and subsurface flows in a particular basin, the application of such models is an expensive and time-consuming process, and their accuracy is often dependent upon extensive input data requirements. Therefore, other procedures that offer the possibility of quantifying pumping impacts on surface water flows, without the cost and time requirements of basin modeling, are certainly needed. Such procedures could be used to identify those basins where a clear pumping impact exists; to screen candidate basins for further, more detailed, studies; and to guide future decisions related to allocation of surface and groundwater rights. If such procedures can be shown to be effective, then they have the potential to be used by the Idaho Department of Water Resources in the conjunctive management of the State's surface and
groundwater resources. They may also be used as technical inputs to administrative or judicial proceedings related to future water rights issues.

2. Nature and Scope of Research Project

In general, this study tests the applicability of multivariate streamflow models to the detection and quantification of groundwater pumping effects on surface water flow rates. The application was limited to one particular basin, Camas Creek in Camas County, Idaho, where groundwater use for irrigation is currently substantial. By establishing a multivariate stochastic relationship between the natural flow rates (prior to extensive groundwater development) on Camas Creek and the flow rates on adjacent basins, a comparison was made between the observed and estimated flows for the period when groundwater withdrawal was significant. This comparison indicates, quantitatively, the impacts of groundwater pumping on the surface flow regime for Camas Creek.

More specifically, a multivariate model was developed to permit the estimation of monthly flows on Camas Creek by the use of the monthly flow series on nearby basins. This model was based on time-series for all the stations during the historical period before the Camas Creek basin was extensively pumped. Since the adjacent basins to be used in this study have never experienced substantial groundwater development, their more recent flow records can be used to generate a synthetic record for Camas Creek that represents natural (unpumped) conditions.

By a detailed comparison and analysis of the synthetic and observed time-series for Camas Creek, several critical observations can be made relative to general model performance and the specific effects of groundwater use within this basin :

1. Statistical tests applied to the difference between two time-series, to indicate whether or not the procedure can establish a significant link between groundwater withdrawal and impacts on streamflow.
2. Monthly and seasonal differences in the time series, to see how these are related to the seasonal distribution of irrigation pumping.
3. Tests for trends in streamflow change, to indicate whether the basin has established an "equilibrium" condition.
4. Examination of the time-history of well development and comparison to the annual differences between the two flow series, to obtain information concerning the time lag between well development and impacts on the Camas Creek streamflow.
5. Comparisons between total number of wells (and estimated withdrawal, if possible) and annual differences (time-lagged, if necessary) to indicate whether this relationship is affected by "wet" or "dry" year conditions.
6. Cumulative differences between the time series, to provide a measure of the total volumetric effects of pumping (total historic streamflow change).

These and other similar observations provide valuable insights into the nature of streamflow alterations Camas Creek as a result of extensive groundwater pumping within the basin.

3. Specific Research Objectives

The specific research objectives of this proposed project include:

1. To develop a multivariate monthly flow model for Camas Creek that can be used to estimate the streamflow that might have
occurred if the basin had not experienced groundwater withdrawal.
2. To test whether such a model is sensitive enough to detect, at some statistical level of significance, appreciable streamflow changes that may have resulted from pumping.
3. To determine, if these changes are significant, the quantitative effects of the pumping on the surface water flow. These effects will include:

* Annual flow changes
* Trends or behavior in these changes
* Monthly and seasonal impacts

4. To establish, if possible, the relationship between any observed effects and the history of groundwater development within the basin.
5. To estimate the effects of future year drought conditions, coupled with current pumping rates, on Camas Creek flows.
6. To suggest other candidate basins where this or similar procedures may be used to investigate the impacts of groundwater withdrawals on surface streamflow.

The tasks, methodologies and results related to these objectives are fully described in the following chapters of this report.

CHAPTER 2

STUDY STREAM SELECTION AND INITIAL DATA ANALYSIS

1. Selection of Streamflow Records

Development of a multivariate stochastic model to find the impacts of groundwater pumping on the surface water flow requires one "key" station and one or more subordinate stations. The basin of the "key" station should use a substantial amount of groundwater for irrigation. The "key" station and the subordinate stations data should be of good quality, with a sufficiently large sample size to adequately define the sample statistics and to meet parameter parsimony restrictions during modeling. In addition, the data of the subordinate stations should be reasonably free of the effects of pumping and/or storage regulation. The drainage area of each subordinate station should be similar to the drainage area of the "key" station. Based on these considerations, the following criteria and constraints were established to select the "key" station and subordinate stations:

1. Each record should consist of at least 40 years of data in order to help reduce the uncertainty associated with the estimates of the model parameter (parameter parsimony).
2. Each subordinate station record should represent natural conditions. In other words, there should be a minimal amount of pumping and/or storage regulation.
3. Each record should be described by the U. S. Geological Survey as at least "fair" over its entire length.
4. The drainage area of each subordinate basin should not differ from the key station by more than 100%.
5. The hydrologic regimes of the subordinate stations should be as similar as possible to those of the "key" station.

HISARS (47) and The Water Resources Data Publication for Idaho (48) were reviewed, keeping in mind the established criteria and constraints. To select the "key" station for Camas Creek basin, the above applicable criteria and constraints were considered. It was concluded that the Camas Creek station (13.1415.00) is the only possible " key " station to meet the criteria and constraints. Therefore, station 13.1415 .00 was chosen as the " key " station in this study. More details for this station are found in Appendix A, Table A.1.

As candidates for the subordinate stations, five stations were found to meet the first three selection criteria as stated above; and these stations are listed in Appendix A, Table A.1. The application of the above last two criteria resulted in the elimination of two stations (13.0830.00 and 13.1200.00). This resulted in one " key " station and three subordinate stations listed in Table 2.1. The locations of the streamflow stations are illustrated in Fig.2.1. The Camas Creek Basin map is in Fig.2.2.

Table 2.1: Streamflow Records
Gage Location Drainage Area Period of Record (USGS No.)

Camas Creek at Blaine (13.1415.00)
$648 \mathrm{mi}^{2}$
1925-1985
(1925-1944)
Big Wood Slough at Hailey (13.1395.10)

Big Lost River at Chilly
$450 \mathrm{mi}^{2}$
1925-1985
(13.1205.00)

Goose Creek at Oakley $\quad 633 \mathrm{mi}^{2}$
(1925-1948)
(13.0825.00)

1925-1985
(1984)

Fig. 2.1 Location of Streamflow Stations

Fig. 2.2 Camas Creek Basin

2. Initial Data Analysis

Using the data summary routines in HISARS, the flow records (stored in HISARS as daily values) were accessed for the four stations and aggregated for each station to process a file of monthly flow values. For any station, if the flow records were incomplete during a particular water year, those "monthly" values were treated as "missing data" that could eventually be filled in utilizing a data augmentation analysis.

Although three gages (Camas Creek, Big Lost River, Goose Creek) showed a common period of 1925 to 1985 water years, Big Wood Slough gage showed a common period of 1925 to 1973. Fortunately, the Big Wood River station (13.1395.00), which has a complete record of 1961-1985 water years, has been moved from the Big Wood Slough at Hailey station (13.1395.10).

Using the relationship of the overlapping period between the streamflow records of the old station (13.1395.10) and those of the new station (13.1395.00), the streamflow records of 1974-1985 water years for the Big Wood Slough at Hailey Station (13.1395.10) were easily estimated (see the following chapter). Therefore, a common period of records encompasses 61 years (19251985 water years) for all four gages. A listing of the monthly streamflow records used in the initial step can be found in Appendix B, Tables B. 1 through B.4.

Annual groundwater bulletins, published by the Idaho Department of Reclamation, Department of Water Resources, and the Geological Survey were reviewed to obtain a chronological history of well development in the Camas Creek basin. Table Q.1, Appendix Q shows the logs of irrigation wells in the study area.

CHAPTER 3

DATA AUGMENTATION

1. Big Wood Slough (13.1395 .10)

Big Wood Slough station (13.1395.10) has a complete period of record from 1925 to 1973, and therefore data augmentation was required for 19741985. Trials to find a long-term key station that could be used to extend the data at the subordinate station (13.1395.10) were conducted. Review of Water Resources Data for Idaho(48) showed that the Big Wood River station (13.1395.00) has been moved from the Big Wood Slough station (13.1395.10). Big Wood River station (13.1395.00) has a complete record period of 1961-1985, and the two gages have a 13 year overlap period. Because the two streamflow records show a high linear relationship (Table C.1), a simple linear regression model was selected to fill in 1974-1985 records of Big Wood Slough station (13.1395.10).
1.1 Model Description: Generally, the objective of a simple linear regression model is to provide a means of predicting or estimating one variable, the dependent variable, from knowledge of a second variable, the independent variable. This regression model considers only a spatial correlation coefficient, ignoring any serial correlation coefficients, and no special constraints are associated with this model. A simple linear regression can be expressed as equations 3.1-3.4:

$$
\begin{align*}
& Y_{\tau}=\alpha_{\tau}+\beta_{\tau} X_{\tau}+\varepsilon_{\tau} \tag{3.1}\\
& \beta_{\tau}=\frac{\operatorname{cov}\left(Y_{\tau}, X_{\tau}\right)}{S_{x \tau}^{2}} \tag{3.2}\\
& \alpha_{\tau}=Y_{\tau}-\beta_{\tau} X_{\tau}-\varepsilon_{\tau} \tag{3.3}\\
& \varepsilon_{\tau}=Z_{\tau} S_{y \tau}\left(1-R_{\tau}{ }^{2}\right) \tag{3.4}
\end{align*}
$$

where:
$\tau=$ month
$\mathrm{Y}=$ monthly streamflow value at subordinate station
$\mathrm{X}=$ monthly streamflow value at key station
$\varepsilon_{\tau}=$ residual series
$\mathrm{S}_{\mathrm{x} \tau}=$ standard deviation of key station records
$\mathrm{S}_{\mathrm{y} \tau}=$ standard deviation of subordinate station records
$\mathrm{R}_{\tau}{ }^{2}=$ coefficient of determination

The parameters ($\alpha_{\tau}, \beta_{\tau}, R_{\tau}{ }^{2}$) were calculated for each month and are listed in Appendix C, Table C.1.
1.2 Results: Using the parameters and equations 3.1-3.4, the 1974-1985 water year records of the Big Wood Slough (13.1395.10) were estimated. These results are provided as Table D. 1 in Appendix D.

2. Goose Creek (13.0825.00)

The monthly records of Goose Creek in HISARS have one missing month (January, 1984). Contact with the USGS to obtain the missing data information resulted in a complete record covering the period of 1925 to 1985 at Goose Creek. In addition, the Goose Creek monthly record has two
months with zero flows (September, 1935 and August, 1940). A minimum value of 1 cfs-day was used to permit a possible log-transformation of the multisite model. The results are in Appendix D, Table D.3.

3. Big Lost River (13.1205 .00)

The Big Lost River station (13.1205.00) has a partial record from 1925 to 1948 in the winter months (November through April), and it was therefore necessary to determine a key station that could be used to fill in these missing records. This key station record should overlap the subordinate station record by as much as possible to provide the most reliable estimate of the correlation between the two records. Trials to find a key station which had at least a 20 year overlap period and a high spatial correlation with Big Lost River were conducted. The results (Table E.1) showed Big Wood Slough (13.1395.10) was the only available pairing station, considering criteria such as overlapping record length, correlation, and location. Two modeling processes were considered to fill in partial records of the Big Lost River station (13.1205.00). One was a multivariate $\operatorname{AR}(1)$ model approach; the other was a disaggregation model application. These two modeling processes are described in the following sections.
3.1 Multivariate AR(1) Model Approach: Autoregressive models of order p, denoted by $\operatorname{AR}(p)$, have been extensively used in hydrology and water resources since the early 1960's for modeling annual and periodic hydrologic time series. The application of these models has been attractive in hydrology mainly because the autoregressive form has an intuitive type of time dependence (the value of a variable at the present time depends on the values at previous times), and they are very simple models to use. It is assumed that $\mathrm{AR}(\mathrm{p})$ models preserve
in the statistical sense the historical mean, standard deviation and the first p serial correlation coefficients.

The simplest autoregressive model is an $\operatorname{AR}(1)$ or first-order autoregressive model. This model regresses flow in time period t against flow in period t-1. AR(1) models are based on normal time series and most of the goodness-of-fit tests are also based on the normality of the series analyzed. Therefore, before the model parameters of the $\mathrm{AR}(1)$ model can be determined, the assumption of the normality of the $\operatorname{AR}(1)$ model should be examined.

The simple $\operatorname{AR}(1)$ model considered so far deals with streamflows for a single site. Several new problems arise in the streamflow generation when several sites are used. It is not satisfactory simply to use single site generation procedures for each of the sites in turn, because streamflows at various sites can be strongly interrelated. Independent generation of the streamflow values for multiple sites cannot preserve spatial and temporal correlations between streamflows; consequently, multivariate techniques are needed to preserve the spatial and time dependence $(32,42)$. Therefore, a multivariate $\operatorname{AR}(1)$ model has the property to preserve the historical means, standard deviations, lag-zero and the lag-one cross-correlation and the lag-one autocorrelation.
a) Preliminary Analysis: Before beginning the data augmentation process, the normality of each monthly series was tested, since this is a critical model assumption. The hypothesis that the skew coefficient is not significantly different from zero was tested using approximate 95% confidence limits around a $\mathrm{g}=0$ value:

$$
\begin{equation*}
g(95 \%)=0 \pm 1.96(6 / n)^{1 / 2} \tag{3.5}
\end{equation*}
$$

where:

$$
\begin{aligned}
\mathrm{g}(95 \%) & =\text { limit for coefficient of skew equal to zero } \\
\mathrm{n} & =\text { number of monthly values. }
\end{aligned}
$$

The test for normality of the key station (13.1395.10) showed normality for October through February and June flows. The months of March, April, May, July, August, and September flows were found to be log-normal and were transformed by using a logtransformation:

$$
\begin{equation*}
Y_{\tau}=\log \left(X_{\tau}\right) \tag{3.6}
\end{equation*}
$$

where:
$\tau \quad=$ month
$Y_{\tau}=$ transformed monthly streamflow value
$X_{\tau}=$ raw monthly streamflow value

The test results for normality for the key station (13.1395.10) are shown in Appendix F, Table F.1. The tests for normality of the subordinate station (13.1205.00) showed normality for October through March and June flows. The months of April, May, July, August, and September flows can again be log-transformed. These results are shown in Appendix F, Table F.2. Because several of the monthly streamflows of the subordinate station were extremely high in the 1984-1985 water year, these records were considered as outliers for the normality analysis. After conducting logtransformations for the two stations, the test for normality of the common period between the key station and subordinate station
also showed normality. Results are provided in Appendix F, Table F.3.
b) Estimation of Parameters: The AR(1) model (lag-one multivariate autoregressive model) of the standardized annual monthly series $Z_{v}{ }^{(i)}, i=1,2, \ldots n$ can be represented in matrix form by:

$$
\begin{equation*}
\mathrm{Z}_{v}=\mathrm{A}_{1} \mathrm{Z}_{v-1}+\mathrm{B}_{v} \tag{3.7}
\end{equation*}
$$

where:

$$
\mathrm{Z}_{v}=\mathrm{nx} 1 \text { vector of elements } \mathrm{Z}_{v}
$$

A_{1} and $\mathrm{B}=\mathrm{nxn}$ matrix parameters

$$
\begin{aligned}
\varepsilon_{v}= & \mathrm{nx1} \text { vector of independent, normally } \\
& \text { distributed random variable with mean zero } \\
& \text { and variance one }
\end{aligned}
$$

Using the representation of equation 3.7, the $\operatorname{AR}(1)$ model having one key station and one subordinate station can be presented as follows:

$$
\begin{align*}
& Z_{V}^{(1)}=\mathrm{a}^{11} \mathrm{Z}_{V-1}{ }^{(1)}+\mathrm{a}^{12} \mathrm{Z}_{\nu-1}{ }^{(2)}+\mathrm{b}^{11} \varepsilon_{\varepsilon_{V}}{ }^{(1)}+\mathrm{b}^{12} \varepsilon_{V}{ }^{(2)} \tag{3.8}\\
& \mathrm{Z}_{V}^{(2)}=\mathrm{a}^{21} \mathrm{Z}_{\nu-1}{ }^{(1)}+\mathrm{a}^{22} \mathrm{Z}_{\nu-1}(2)+\mathrm{b}^{21} \varepsilon_{\varepsilon_{V}}(1)+\mathrm{b}^{22} \varepsilon_{\varepsilon_{V}}(2) \tag{3.9}
\end{align*}
$$

where the a's and b's are the elements of the estimated matrix parameters, A_{1} and B, respectively, and $\varepsilon_{\nu}{ }^{(1)}$ and $\varepsilon_{v}{ }^{(2)}$ are independent and identically distributed normal variables with mean zero and variance one. For the $\operatorname{AR}(1)$ model of equation 3.7 the moment estimates of the parameters A_{1} and B were obtained from:

$$
\begin{align*}
\mathrm{A}_{1} & =\mathrm{M}_{1} \mathrm{M}_{0}-1 \tag{3.10}\\
\mathrm{BB}^{T} & =\mathrm{M}_{0}-\mathrm{A}_{1} \mathrm{M}_{1} \mathrm{~T}=\mathrm{D} \tag{3.11}
\end{align*}
$$

where M_{0} and M_{1} are the lag-zero and lag-one correlation matrices of Z_{v} (42). A_{1} and BB^{T} were obtained from equations 3.10 and 3.11. Matrix B was obtained from the matrix $\mathrm{BB}^{T}=\mathrm{D}$. If B is a lower triangular matrix and D is a positive definite matrix, then non-zero elements of B may be determined by:

$$
\begin{align*}
& b^{i j}=d^{j i} / b_{i j}, \text { for } j=1, i=1, \ldots, n, \tag{3.12}\\
& b^{i j}=\left[d^{i j}-\sum_{k=1}^{j-1}\left(b^{j k}\right)^{2}\right]_{, \text {for } j=2, \ldots, n, i=j}^{1 / 2} \tag{3.13}\\
& b^{i j}=\left[d^{i j}-\sum_{k=1}^{j-1} b^{j k} b^{i k} / b^{i j}\right], \text { for } j=2, \ldots n-1, i=j+1, \ldots, n \tag{3.14}
\end{align*}
$$

where $b i j$ are the elements of $B, d i j$ are the elements of D and n is the size of the matrices B and D (44). The estimation of parameters of the model requires the solution of the matrix equation $\mathrm{BB}^{T}=\mathrm{D}$. That is, determine the elements of a matrix B such that the product of B times its transpose B^{T} is equal to D. Therefore, the a's and b's of the equation 3.8 and 3.9 were obtained by the estimated matrix parameters A_{1} and B, respectively.

In order to estimate the parameters of this model, monthly sample means and standard deviations for both stations were obtained. Using these statistics, the standardized annual monthly series, $Z_{v}{ }^{(i)}$, were determined. The correlation matrices, M_{0} and
M_{1} were determined from the lag-zero and lag-one correlation matrices of $\mathrm{Z}_{\mathrm{v}}{ }^{(\mathrm{i})}$. Frequently, when transformed series are modeled, the statistics of the transformed series (Y) are preserved; but once the inverse transform is applied and the actual series examined, the historical (untransformed) statistics are not preserved. This problem has prompted the development of formulas for the logarithmic transform which relate the moments of the historical record (X) to those of the transformed record (Y) $(42,43)$. Use of these relationships helps to preserve the actual historical correlation coefficients. These relationships for the logarithmic transform are listed below and were used to determine the statistics of the transformed series that, in turn, were used in estimating the parameters for the multivariate model:

$$
\begin{align*}
& \text { If } \mathrm{Y}_{\tau-1}=\log \left(\mathrm{X}_{\tau-1}\right) \quad \text { and } \quad \mathrm{Y}_{\tau}=\log \left(\mathrm{X}_{\tau}\right) \\
& \mathrm{r}_{\mathrm{x}, \tau}=\frac{\exp \left(\mathrm{S}_{\mathrm{y}, \tau-1} \mathrm{~S}_{\mathrm{y}, \tau} \mathrm{r}_{\mathrm{y}, \tau}\right)-1}{\left[\exp \left(\mathrm{~S}_{\mathrm{y}, \tau-1}{ }^{2}\right)-1\right]^{1 / 2}\left[\exp \left(\mathrm{~S}_{\mathrm{y}, \tau}{ }^{2}\right)-1\right]^{1 / 2}} \tag{3.15}\\
& \text { if } \mathrm{Y}_{\tau-1}=\log \left(\mathrm{X}_{\tau-1}\right) \quad \text { and } \mathrm{Y}_{\tau}=\mathrm{X}_{\tau} \\
& \mathrm{r}_{\mathrm{y}, \tau}=\frac{\left[\mathrm{r}_{\mathrm{x}, \tau} \exp \left(\mathrm{~S}_{\mathrm{y}, \tau-1}{ }^{2}\right)-1\right]^{1 / 2}}{\mathrm{~S}_{\mathrm{y}, \tau-1}} \tag{3.16}\\
& \text { if } \mathrm{Y}_{\tau-1}=\mathrm{X}_{\tau-1} \text { and } \quad \mathrm{Y}_{\tau}=\log \left(\mathrm{X}_{\tau}\right) \\
& \mathrm{r}_{\mathrm{y}, \tau}=\frac{\mathrm{r}_{\mathrm{x}, \tau-1}\left[\exp \left(\mathrm{~S}_{\mathrm{y}, \tau}^{2}\right)-1\right]^{1 / 2}}{\mathrm{~S}_{\mathrm{y}, \tau}} \tag{3.17}
\end{align*}
$$

where:

$$
\mathrm{Y}=\text { transformed monthly streamflow values }
$$

$\mathrm{X}=$ raw monthly streamflow values
$\mathrm{S}_{\mathrm{y}}=$ standard deviation of transformed monthly streamflows
$\mathrm{r}_{\mathrm{x}}=$ correlation coefficient between raw monthly streamflows
$r_{y}=$ correlation coefficient between transformed months
$\tau=$ month
c) Model Application: The model was applied to fill in the missing monthly records of the Big Lost River station (13.1205.00) using the estimates obtained from the relationship of the 25 years of common record (1949-1973) between the key station (13.1395.10) and the subordinate station. Using the annual monthly multivariate AR(1) model, the monthly data of the 1925-1948 water years for the Big Lost River were generated. However, when filling in the missing monthly flows, if the actual monthly data existed for 1925-1948, the generated values were disregarded, and instead the actual values were used. These filled in monthly records were summed to form annual records. These annual records were compared with the annual flows generated by the annual multivariate $\operatorname{AR}(1)$ modeling. The difference between the two annual time series (one was the sum of the monthly flows by the annual monthly multivariate $\operatorname{AR}(1)$ modeling, the other was the annual flows by the annual multivariate $\operatorname{AR}(1)$ modeling) of the each year for the 19251948 water years was calculated and the results are shown in Appendix G, Table G.6.
d) Comparisons of Simple Statistics: After filling in data for the missing monthly records (November through April) by the multivariate $\operatorname{AR}(1)$ model, the simple statistics (mean, standard deviation, skew coefficient) were compared between the original
monthly data of the 1949-1985 for November through April and the filled-in monthly data of the 1925-1985 for November through April. However, since the monthly records of the 1984-1985 water years were considered as outliers in the statistical analyses, these monthly values were excluded from the comparisons (Table F.4). The comparisons show that the simple statistics of the filled-in record appear not to be substantially different from those of the original record on the Big Lost River station (13.1205.00). The results of the monthly simple statistics comparisons between original and filled-in streamflows for station 13.1205 .00 are shown in Appendix F, Table F.4.

Although the annual monthly multivariate AR(1) model worked well, as an alternative approach, the following disaggregation model was tried to fill in the missing monthly records of the Big Lost River, and then the performances of the both models for this particular data were examined.
3.2 Disaggregation Model Approach: Traditionally, synthetic stream flow records have been generated by models designed to preserve the statistics at one time level. For example, synthetic monthly streamflow records have often been generated by models developed from and designed to preserve the historical monthly record. Experience has shown that if each year's monthly flows are summed to form an annual series, the statistics of the generated annual series do not necessarily resemble the statistics of the historical annual record. This is because any modeling errors, whether due to unreasonable assumptions (i.e, linear correlation, normality, etc.) or
poor parameter estimates are concentrated into the resulting annual series.

Disaggregation models are designed to overcome the inconsistencies of the above by generating time series at different time levels (36). Therefore, a disaggregation model is a process by which a key series (annual flows) is broken apart into subseries (monthly flows) which are then summed to obtain the key series values. The key series could itself have been generated previously by a multivariate stochastic model designed to preserve its statistics. Then, generation of the subseries is accomplished by using a multivariate stochastic model designed to preserve the important statistical properties of not only the subseries itself, but also of the linear relationships between the key and subseries values. In this manner, statistical properties are preserved at both key and subseries levels and the relationships between the two levels are maintained. The annual records (sum of the monthly records) with partial monthly records of 1925-1948 for the Big Lost River station (13.1205.00) can be regarded as missing annual records. To fill in these missing annual records of 1925-1948, a multivariate $\mathrm{AR}(1)$ model with the form of equation 3.7 was applied.
a) Model Selection and Assumption: Lane's disaggregation model (45) was used in this study because of the ease of parameter estimation and the limited number of parameters. Lane's model for an annual to monthly disaggregation can be written as:

$$
\begin{align*}
\mathrm{J}_{\tau, v}= & \mathrm{Q}_{\tau} \mathrm{Y}_{v}+\mathrm{G}_{\tau, v} \mathrm{l}_{\tau, v}+\mathrm{H}_{\tau, v} \mathrm{~J}_{\tau-1, v} \tag{3.18}\\
& \text { (for } \tau=1 \text { to 12) }
\end{align*}
$$

where:

$$
\begin{aligned}
& \mathrm{J}_{\tau}= \text { standardized, normalized monthly streamflow value } \\
& \text { (if } \tau=1 \text { then } \tau-1=12 \text { and } v=\mathrm{v}-1 \text {) } \\
& \mathrm{Y}= \text { pre-existing normalized, standardized annual value } \\
& \text { corresponding to same year as monthly } \mathrm{J} \text { value }
\end{aligned}, \begin{aligned}
\lambda= & \text { random deviate } \\
\mathrm{t} & =\text { current month } \\
\mathrm{v}= & \text { year } \\
\text { Q,G,H }= & \text { monthly model parameters }
\end{aligned}
$$

This model is designed to preserve the linear cross correlation between annual and monthly values, along with the lag-one correlations, variances and means of the annual and monthly values. In order to use this model, the parameters Q, G, and H of equation 3.16 first must be estimated for each month of the time series. For a one-station temporal model using normalized and standardized sequences, the parameters can be estimated as follows:

$$
\begin{align*}
& \mathrm{Q}_{\tau}=\frac{\mathrm{r}_{\mathrm{yj}, \tau}-\mathrm{r}_{\mathrm{j}, \tau} \mathrm{r}_{\mathrm{yj}, \tau-1}}{2} \tag{3.19}\\
& 1-\mathrm{r}_{\mathrm{yj}, \tau-1} \tag{3.20}\\
& \mathrm{H}_{\tau}=\mathrm{r}_{\mathrm{j}, \tau}-\mathrm{Q}_{\tau} \mathrm{r}_{\mathrm{yj}, \tau-1} \tag{3.21}\\
& \mathrm{G}_{\tau} \mathrm{G}_{\tau} \mathrm{T}=1-\mathrm{Q}_{\tau} \mathrm{r}_{\mathrm{yj}, \tau}-\mathrm{H}_{\tau} \mathrm{r}_{\mathrm{j}, \tau}
\end{align*}
$$

where:
$\mathrm{r}_{\mathrm{yj}, \tau}=\begin{aligned} & \text { correlation coefficient between each month and } \\ & \text { corresponding annual value }\end{aligned}$
$\mathrm{r}_{\mathrm{j}, \tau-1}=$ correlation coefficient between previous monthly value and corresponding yearly value

```
r}\mp@subsup{\textrm{r}}{\textrm{j},\tau}{}=\mathrm{ lag one serial correlation coefficient between monthly
        value
\tau = month
```

b) Normality of Monthly Streamflow Records: The annual series (key) for the 1949-1983 water years were found to approximate a normal distribution. Hence, only the monthly series (subseries) for the same period (1949-1983) were further examined for normality. The normality of each monthly series was checked by determining if the coefficient of skewness for each series was statistically different from zero. Equation 3.5 gives the bounds for a coefficient of skewness equal to zero at the 5% significance level. Therefore, if the coefficient of skewness of a monthly series fell within the 95% limits, the series was considered normal. The results of this test for normality are summarized in Appendix G , Table G.1. From Table G.1, it can be seen that the assumption of normality was not valid for many of the untransformed monthly series. It is necessary to find an appropriate transformation that will convert the skewed sequences into normally distributed sequences. To do this, transformed sequences must be used for model generation and the inverse transform applied to obtain the actual streamflow values. This procedure was followed because it was recommended by Lane (45) when presenting his model.
c) Lognormal Transformation: A lognormal transform was used to reduce the skewness of the time series, as was previously described in equation 3.6. Equations 3.15 through 3.17 were used to preserve the actual historical correlation coefficients for the logarithmic transformation series. The series corresponding to the
skew coefficients in Table G. 1 marked with an " * " were used for modeling. Based on the transformation selected in Table G. 1 for each monthly series, the appropriate relationships (equations 3.15 through 3.17) were solved to obtain the correlation coefficients of the transformed sequences. The results are listed in Appendix G, Table G.2.
d) Standardizing Monthly Streamflow Values: Lane's model also assumes that the means of the normally distributed series are equal to zero. This assumption was satisfied by subtracting the means of the monthly untransformed/transformed series (listed in Table G.2). In addition, each transformed value was divided by its transformed standard deviation (Table G.2) to create standardized series. Equation 3.22 illustrates the steps taken to arrive at the series actually used in modeling for the transformed series:

$$
\begin{equation*}
Z=\frac{\log (x)-\bar{y}}{S_{y}} \tag{3.22}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \mathrm{Z}=\begin{array}{l}
\text { normally distributed monthly streamflow value with } \\
\text { mean of zero and standard deviation of one }
\end{array} \\
& \mathrm{x}=\begin{array}{l}
\text { historical monthly streamflow value, except for months } \\
\text { where } \log (\mathrm{x}) \text { would be replaced simply by } \mathrm{x}
\end{array} \\
& \overline{\mathrm{y}}=\text { mean of transformed series } \\
& \mathrm{S}_{\mathrm{y}}=\text { standard deviation of transformed series }
\end{aligned}
$$

e) Monthly/Annual Correlation Coefficients: In order to estimate the parameters Q, G, and H , the correlation coefficient between each month and the corresponding annual streamflow had to be calculated. Equation 3.23 was used to calculate these correlation
coefficients between untransformed monthly and annual values:

$$
\begin{equation*}
r_{y j, \tau}=\frac{\sum_{v=1}^{n}\left(x_{\tau, v}-\bar{x}_{\tau}\right)\left(y_{v}-\bar{y}\right)}{s_{x, \tau} s_{y}} \tag{3.23}
\end{equation*}
$$

where:
$\tau=$ month
$\mathrm{n}=\mathrm{year}$
$\mathrm{x}=$ raw monthly streamflow value
$\mathrm{y}=$ raw annual streamflow value
$\bar{x}=$ mean of monthly streamflow
$\overline{\mathrm{y}}=$ mean of annual streamflow
$\mathrm{s}_{\mathrm{x}}=$ standard deviation of monthly streamflow
$s_{y}=$ standard deviation of annual streamflow

However, the correlation coefficients as calculated from equation 3.23 were inappropriate for some of the monthly and corresponding annual series (October, April, July, August, September) since logarithmic transformations were used. Hence, once again, the relationships, as developed for the logarithmic transformation relating the transformed and historical statistics, were utilized. In this particular case, the annual series was to be untransformed, while the several monthly series were to be transformed. Thus, equation 3.17 was used to arrive at the correlation coefficients to be used in estimating the model parameters for the log-transformed monthly records. The resulting correlation coefficients are listed in Appendix G as Table G.3.
f) Disaggregation Model Parameters: The parameters Q, G, and H for Lane's disaggregation model were estimated using equations 3.17 and the statistics shown in Tables G.2, and G.3. The resulting estimates are listed in Appendix G , Table G.4.
g) Model Application: Using the disaggregation model, the monthly data of the 1925-1948 water years for the Big Lost River were generated. However, when filling in the missing monthly flows of 1925-1948, if the actual monthly data existed for this period, the generated values were disregarded, and instead the actual values were used. The filled-in monthly records of each year were summed to form annual records. The formed annual records were compared with the annual flows generated by the annual multivariate $\mathrm{AR}(1)$ modeling. The difference between the two annual time series (one was the sum of the monthly flows by the disaggregation modeling, the other was annual flows by the annual multivariate $\mathrm{AR}(1)$ modeling) of each year for the 1925-1985 water years was calculated, and the results are shown in Appendix G, Table G.5.
3.3 Conclusion: As described earlier, the annual flows (by the annual multivariate $\mathrm{AR}(1)$ modeling) were compared with the sum of the monthly flows (by the monthly multivariate AR(1) modeling) in Table G.6. Again, the annual flows by the annual multivariate $\operatorname{AR}(1)$ modeling were compared with the sum of the monthly flows by the disaggregation modeling in Table G.5. From these comparisons, it was seen that the sum of the monthly flows of each year by the annual monthly multivariate AR(1) modeling agreed more closely with the annual flows by the annual multivariate AR(1) modeling. Thus, the
results using the annual monthly multivariate AR(1) modeling approach were concluded to be more acceptable than those of the disaggregation model approach, in this particular application. Therefore, the results of the multivariate $A R(1)$ model were selected to represent the complete flow record at Big Lost River station (13.1205.00) for the years 1925 to 1948. The final records are shown in Appendix D, Table D. 2

4. Camas Creek (13.1415.00)

The Camas Creek station (13.1415.00) has a partial record from 19251944 (for most years in the months of October through March; for three years in April; and for only one year in May). Because development of groundwater for irrigation on a significant scale reportedly began in 1953 (46), the cut-off date between "natural streamflow" and streamflow affected by groundwater withdrawals within the Camas Creek basin was assumed to be the 1953 water year. Therefore, the overlap period between a long-term key station and the subordinate station (13.1415.00) could be as short as only eight years (1945-1952) in the months of December through February (Table B.4)

Several trials were conducted to find a long-term key station that could be used to fill in the data at the subordinate station (13.1415.00). From the trials, it was seen that only two nearby stations have the records of 1925 through 1952. One station was Big Wood Slough (13.1395.10), the other was Goose Creek (13.0825.00). The correlation coefficients of the monthly streamflows were calculated between Camas Creek (13.1415.00) and Big Wood Slough (13.1395.10), and between Camas Creek (13.1415.00) and Goose Creek (13.0825.00). The two comparisons (Table H.1) showed that eight of the
twelve monthly correlation coefficients between Camas Creek and Big Wood Slough were higher than the monthly correlation coefficients between Camas Creek and Goose Creek. Therefore, Big Wood Slough station (13.1395.10) was determined to be a better pairing station and was selected as the key station for the Camas Creek station (13.1415.00). As described earlier in this section, the overlap period between the key station (13.1395.10) and the subordinate station (13.1415.00) was very short (only eight years in the months of December through February). Therefore, a simple spatial regression (equation 3.1) was applied. The coefficient of determination (the proportions of variability in Y explained by the relationship) for each month was calculated. The results (Table I.1) showed poor coefficients of determination for the months of January through May.

A polynomial (quadratic) regression approach described below was sought to get a better representation for this data. The coefficients of determination of each month were calculated and compared to those results by the simple regression approach. The results (Table I.1) showed that the polynomial (quadratic) regression method appeared to be better than the linear regression approach for these particular data. The coefficients of determination for the months of January and February were still not good. However, the streamflows of the winter season were small in quantity compared with the other seasons. Therefore, the polynomial (quadratic) regression was chosen to fill the data of the missing monthly record from 1925 through 1944 for the Camas Creek station.
4.1 Model Description: A polynomial (quadratic) regression equation can be written as follows:

$$
\begin{equation*}
Y_{\tau}=\alpha_{\tau}+\beta 1_{\tau} X_{\tau}+\beta 2_{\tau} X_{\tau}{ }^{2}+\varepsilon_{\tau} \tag{3.24}
\end{equation*}
$$

where:
$\tau=$ month
$\mathrm{Y}=$ monthly streamflow value at subordinate station
$\mathrm{X}=$ monthly streamflow value at key station
$\varepsilon=$ residual series

The parameters estimates ($\alpha_{\tau}, \beta 1_{\tau}, \beta 2_{\tau}$) were calculated using similar procedures to those described in equations 3.1-3.4, and the results are presented in Appendix I, Table I.2.
4.2 Results: Using the estimates (Table I.2) and the equation 3.24 , missing monthly records for the 1925-1944 water years of Camas Creek (13.1415.00) were filled in. These results are provided as Table D. 4 in Appendix D. In addition, the simple statistics of monthly flows for each station were provided in Tables D. 5 through D.8.

CHAPTER 4

MULTIVARIATE MODEL DEVELOPMENT

1. Introduction to the Previous Modeling Approaches

For several decades, researchers in Idaho have recognized both the importance of the State's groundwater resources, as well as the fact that their use may have a significant effect on surface water within the pumped basins. Ralston (1) studied the groundwater development of the Snake River Plain and the tributary basins and indicated that the groundwater resources of Idaho are a major key to the agricultural future of the State. He also concluded that this particular region has the greatest potential for the continued development of groundwater for irrigation.

However, the pumping of groundwater throughout the Snake River Plain has had a growing influence on the streamflows of the region and has resulted in a number of water management issues and problems. For this reason, numerous groundwater studies have been undertaken in recent years in an attempt to analyze the conjunctive use characteristics of this important region. All prior efforts have used deterministic modeling approaches described below.
1.1 Deterministic Groundwater Models: Traditionally, the approaches to analyze the conjunctive use of surface and groundwater resources have used deterministic modeling of the groundwater aquifer system, in either 2- or 3-dimensions. Many of the research studies, such as those by Hybbert (2), Todd (3), Toth (4), and De Wiest (5), have dealt with the mathematical development and the analytical solution of differential equations which govern groundwater flow. Todd (3)
explained finite-difference methods, finite-element methods, and hybrid computer models in terms of a digital computer model. The finite-difference method is a computational procedure based on dividing an aquifer into a grid and analyzing the flows associated within a single zone of the aquifer. The finite-element technique involves solving a differential equation for groundwater flow by means of variational calculus.

A combination of a digital model and a resistance network analog, known as a hybrid computer model, has been developed to reduce the lengthy computer time sometimes required for iterative finitedifference solutions. The digital computer provides the input data, such as sources, sinks, and aquifer properties and boundaries; these are expressed in electric form by a digital-analog converter and connected with a resistance network by means of a distributor. After the analog relaxes the system, the node voltages are fed back to the digital computer through a multiplexer and an analog-digital converter. This approach is most advantageous for solving iterationintensive problems such as non-steady flows in unconfined aquifers. Because these approaches use approximate numerical solutions of the finite difference equations, it has often been difficult to apply them to complex, real problems. Todd (3) also pointed out gaps that exist between the need for and the actual use of groundwater models in management: 1) Difficulties in the accessibility of existing models to potential users form a serious impediment; documentation including descriptions of models, listings of codes, and user's manuals would help alleviate this problem. 2) There is need for improved communications between water managers and technical personnel
responsible for modeling. 3) Because of inadequacies of input data, the reliability of model output is often seriously questioned; hence, more cost-effective means of data collection are required. 4) Improvements in modeling are needed to make computer codes more understandable and easier to use. 5) Further model development is needed for more complicated aspects.

Peaceman and Rachford (6) introduced a method to improve the speed of the computational process and to solve the problems of instability for any size of time step. Their work simplified the application problems and has helped to evolve a family of models which can be used to study multi-layer groundwater systems. Further development work by the USGS, Bredehoeft and Pinder (7), Trescott, et al (8), and Dabiri, et al (9), has led to models which can analyze the effects of groundwater pumping and recharge on subsurface storage, watertable drawdown, and streamflow.

Bredehoeft and Pinder (7) asserted that when the hydrologic system is represented by aquifers in which flow is assumed horizontal, and confining layers in which flow is assumed vertical, the problem can be reduced to solving two-dimensional equations for each aquifer, the aquifers being coupled through leakage. They used an iterative scheme to simultaneously solve the finite difference equations describing the response of confined and unconfined acquifers with or without storage in the confining layer.

Trescott, et al (8) contended that the digital model is a versatile tool in groundwater development and management because it allows the immediate and long-term effects of proposed well fields to be investigated prior to installation. He indicated that when
non-homogeneity of the porous media and complex aquifer geometry make pumping-test analysis difficult, if not impossible, a digital model can be used to evaluate boundary effects. He concluded that it is important in making digital models of such aquifers to have good geological control; otherwise excessive time can be consumed adjusting parameters in the model in an effort to duplicate aquifer response to pumping stress.

In Idaho, De Sonneville (10) developed a digital groundwater model to undertake a groundwater study in the upper Snake River Basin, and later extended the model (10). The mathematical model (10) developed is a finite difference digital model, like models of Bredehoeft and Pinder (7), and calculates hydraulic head values on a gridpoint basis. Newton (11) updated the model which was also applied to the Silver Creek aquifer in Blaine County (12), the Henry's Fork area (13), the Boise Valley aquifer (14), and to the Mud Lake area (15). Lindgren (14) had two main objectives in modeling the Boise groundwater system. The first was to develop the capability to generate reach gains and losses on the Boise and Snake Rivers resulting from the modification of the present irrigation management scheme. The second was to describe the changes in the groundwater surface caused by changing the system. During the years of use, various calibration and management versions of the model have evolved. However, because of the complexity of these models, the cost of model application is expensive and the data requirements are significant.

1.2 Other Deterministic Studies of Conjunctive Use: Numerous prior

 studies ($16,17,18,19,20,21,22,23,24$) in the United States have offered other methods of analysis of the conjunctive use of surface water and groundwater. Most of these studies employed a simple hydrologic model of the stream-alluvial aquifer system, developed for maximizing the beneficial uses of the waters of a state. Examples of such coordinated basin management models include studies for basins in California, Colorado, Idaho, Maryland, and New York. Beaver, and Frankel (16) used system analysis technology for the groundwater resource management in southern California's San Bernardino valley. In the simulation of the Valley's groundwater basins, the mathematical model has been designed to develop a history of water table or piezometric head movements with time.Bittinger (20) explains that the highest beneficial use of total water resources can only be obtained through a combined or integrated use of both surface and groundwater. He gave a simple hypothetical stream-aquifer situation to illustrate the influence of groundwater pumping upon surface flows and water available for diversion. He also suggested that legal and economic factors must be considered in designing the physical situation.

Morel-Seytoux (21) developed a specific hydrologic model of a stream-alluvial aquifer system for the purpose of designing rules and regulations which maximize the beneficial uses of the waters of a state within the law. The model is particularly applicable when decisions on pumping rates are to be reviewed on a frequent basis.

Taylor (22) explains that the unrestricted development of groundwater can reduce streamflows and hence jeopardize the rights to the flow of surface water where aquifers are intimately associated with streams. He has developed a simulation model to aid in the solution of such problems. This hydrologic model represents the physical response of the stream-aquifer system to changes in river flows, diversions, and pumping. It treats streamflow as a stochastic input and an economic model that represents the response of irrigation water users to variations in water supply and cost.

Simple relationships between the pumping of a well and the resulting depletion of a nearby stream have been derived by several investigators $(25,26,27,28,29,30)$. They have shown these relationships in the form of equations and charts. However, such charts are useful as computational tools only in the range of comparatively large effects; and rather formidable equations must be solved to evaluate small effects.

Conover (26) studied pumping effects of the groundwater in Rincon and Mesilla valley in New Mexico. He concluded that in order to have reliable data for a future revaluation of the effects of pumping, if such becomes desirable, the following records should be kept: information on the irrigation wells such as, location, performance, and pumpage; measurements of water level in the irrigation wells annually and in the auger wells seasonally; and additional measurements of drain flow.

Theis (29) explained that pumping water from a well that taps an aquifer which is hydraulically connected with a stream or drain reduces the flow of surface water either by reducing the flow of
groundwater to the stream or drain or by causing the surface water to infiltrate the aquifer and percolate toward the well. He provided a chart for determination of the percentage of pumped water being diverted from a stream or drain. He insisted that if the hydraulic constants of the aquifer are known, then the theoretical percentage of surface water in the discharge of the well (at a given distance from the stream or drain and at a given time since pumping began) can be determined readily through use of the chart.

Jenkins (31) provided tools that simplify the seemingly intricate computations and gave examples of their use. By using his curves and tables, the depletion in flow of a nearby stream caused by pumping a well can be calculated readily when field conditions approach certain assumed conditions. Computations can be made of the rate of stream depletion at any time during the pumping period or the following nonpumping period, the volume of water induced from the stream during any period, pumping or nonpumping, and the effects, both in rate and volume of stream depletion, of any selected pattern of intermittent pumping. He provided sample computations to illustrate the use of the curves and tables.

However, the application of these deterministic models is an expensive and time-consuming process, and their accuracy is often dependent upon extensive input data requirements. Moreover, the extensive input data are not available for most research study areas. 1.3 Stochastic Models: A detailed literature review has not disclosed any prior studies in Idaho (or in other areas within the U.S) that have used stochastic methods to investigate the conjunctive use of surface and groundwater. Although such methods have been frequently used
to study the long term behavior of streamflow or groundwater storage, there has been no attempt to undertake the type of research performed for this project, where a modeled natural flow regime is compared to an observed altered flow regime.

2. Multivariate Models and Model Selection

Since the early 1960's, extensive research efforts have been concentrated on developing methods to analyze the stochastic characteristics of hydrologic series and to devise generating schemes for univariate hydrologic series. Periodic multivariate models are necessary to generate multiple periodic series at several sites. For instance, a water resource system of several reservoirs may require the generation of monthly streamflows at several sites in order to simulate the operation of such a system. If monthly streamflow data are available at the site of interest, a periodic multivariate model can be used to model and generate monthly streamflows at those sites (40).

The multivariate modeling of surface streamflow, using subordinate station data to predict or extend the streamflow record at key station, is well documented and has been extensively applied. In 1964, Fiering (32) proposed multivariate analysis for the simultaneous generation of synthetic flow sequences at a key station X and a subordinate station Y to preserve the lagone serial and lag-zero cross correlation coefficient of the two stations. However, subsequent examination of this model by others $(33,34)$ showed that these correlation coefficients were not preserved unless some constraint conditions were met. Lawrance (34) presented a modification of the Fiering model that preserves the lag-one serial and lag-zero cross correlation coefficients with much less stringent constraints. In 1973, Yevjevich (35)
presented an improved multisite model which can reduce time dependence, skew coefficient, and variance of the model residuals, while preserving all of the individual station statistics.

The general model structure of an $\mathrm{AR}(1)$ Model with monthly parameters is given by:

$$
\begin{equation*}
\mathrm{Z}_{v, \tau}=\mathrm{A}_{1, \tau} \mathrm{Z}_{v, \tau-1}+\mathrm{B}_{\tau} \varepsilon_{v, \tau} \tag{4.1}
\end{equation*}
$$

where $A_{1, \tau}$ is an $n \times n$ monthly coefficient matrix associated with the time interval $\tau, Z_{v, \tau-1}$ is an $n x 1$ vector of standardized monthly values, B_{τ} is an nxn monthly matrix for time interval τ, and $\varepsilon_{v, \tau}$ is an $n \times 1$ vector of time independent, normally distributed random variables. The sequences, $\mathrm{Z}_{\mathrm{v}, \tau}$ and $\varepsilon_{v, \tau}$ have expected values equal to zero, and variances equal to one.

This model has the property to preserve the historical means, standard deviations, the lag-zero and the lag-one cross correlation and the lag-one autocorrelation. A recent study (36) has shown that the Yevjevich model was clearly superior to the other earlier models in properly modeling the flows on several Idaho streams. For this reason, the multisite $\operatorname{AR}(1)$ model was applied to this study.

For the record period of 1925 to the cut-off date of 1952, the multivariate AR(1) model can be developed to relate the Camas Creek monthly flows to the flows on the other three streams. When the monthly flows at stations of Big Wood Slough, Big Lost River, Goose Creek, and Camas Creek were used, the above four sites were numbered as $1,2,3$, and 4 , respectively.

Using the representation of equation 4.1, the generating $\operatorname{AR}(1)$ model for one key station and three subordinate stations can be written as:

$$
\begin{align*}
& z_{\nu, \tau}{ }^{(3)}=a^{31} z_{\nu, \tau-1}{ }^{(1)}+a^{32} z_{\nu, \tau-1}{ }^{(2)}+a^{33} z_{\nu, \tau-1}{ }^{(3)}+a^{34} z_{\nu, \tau-1}{ }^{(4)}+b^{31} \varepsilon_{\nu, \tau}{ }^{(1)}+b^{32} \varepsilon_{v, \tau}^{(2)}+b^{33} \varepsilon_{, \tau}{ }^{(3)}+b^{34} \varepsilon_{v, \tau}{ }^{(4)} \tag{4.2}
\end{align*}
$$

where:

$$
\left.\begin{array}{rl}
\mathrm{Z}_{v, \tau^{(\mathrm{i})}=} & \text { standardized monthly flows for station }(\mathrm{i}=1,2,3,4) \\
\text { a's and b's }= & \text { the elements of the estimated matrix parameters A1 } \\
& \text { and } \mathrm{B}
\end{array}\right) \quad \begin{aligned}
& \varepsilon_{v, \tau^{(4)}}=\begin{array}{l}
\text { independent and identically distributed normal }(0,1) \\
\\
\text { deviate for } \mathrm{i}=1,2,3,4
\end{array} \\
& v= \begin{array}{l}
1,2, \ldots, \mathrm{~N} \\
\\
(\mathrm{~N} \text { is the number of years of records) }
\end{array} \\
& \tau= \begin{array}{l}
1,2, \ldots, \mathrm{w} \\
\\
(\mathrm{w} \text { is the number of time periods within the year) }
\end{array}
\end{aligned}
$$

Because it is assumed that B is a lower triangular matrix, equation 4.2 can be changed as follows to generate monthly flows of the one key station (Camas Creek), using monthly flows of the three subordinate stations (Big Wood Slough, Big Lost River, Goose Creek).

$$
\begin{align*}
& \varepsilon_{v, \tau}^{(1)}=1 / b^{11}\left(Z_{V, \tau}^{(1)}-a^{11} Z_{V, \tau-1}{ }^{(1)}-a^{12} Z_{v, \tau-1}{ }^{(2)}-a^{13} Z_{v, \tau-1}{ }^{(3)}-a^{14} Z_{\nu, \tau-1}{ }^{(4)}\right) \\
& \varepsilon_{\nu, \tau}^{(2)}=1 / b^{22}\left(Z_{V, \tau}^{(2)}-a^{21} Z_{V, \tau-1}{ }^{(1)}-a^{22} Z_{V, \tau-1}{ }^{(2)}-a^{23} Z_{V, \tau-1}{ }^{(3)}-a^{24} Z_{V, \tau-1}{ }^{(4)} \cdot b^{21} \varepsilon, \tau \tau^{(1)}\right) \\
& \varepsilon_{\nu, \tau}^{(3)}=1 / b^{33}\left(Z_{V, \tau}^{(3)}-a^{31} Z_{V, \tau-1}{ }^{(1)}-a^{32} Z_{V, \tau-1}{ }^{(2)}-a^{33} Z_{V, \tau-1}{ }^{(3)} \cdot a^{34} Z_{V, \tau-1}{ }^{(4)}-b^{31} \varepsilon v, \tau^{(1)} \cdot b^{32} \varepsilon v, \tau^{(2)}\right) \\
& \varepsilon_{v, \tau}{ }^{(4)}=\text { random number (normal deviate) } \tag{4.3}\\
& Z_{\nu, \tau}{ }^{(4)}=a^{41} Z_{\nu, \tau-1}{ }^{(1)}+a^{42} Z_{\nu, \tau-1}{ }^{(2)}+a^{43} Z_{\nu, \tau-1}{ }^{(3)}+a^{44} Z_{\nu, \tau-1}{ }^{(4)}+b^{41} \varepsilon_{\nu, \tau}{ }^{(1)}+b^{42} \varepsilon_{\nu, \tau}{ }^{(2)}+b^{43} \varepsilon_{\nu, \tau}{ }^{(3)}+b^{44} \varepsilon_{v, \tau}{ }^{4)} \tag{4.4}
\end{align*}
$$

To generate standardized monthly values of the key station $\left(Z_{v}, \tau^{(4)}\right)$ using the standardized monthly values of the three subordinate stations, the following two steps are necessary: the first step requires the calculation of
 using equation 4.3 ; and the second step is to generate a $Z_{v, \tau} \tau^{(4)}$ value, using the above calculated standardized normal random numbers and equation

3. Preliminary Analysis

The main purposes of this analysis were to check the normality of the original monthly time series, and to make appropriate transformations to normal, if necessary. The normality of the raw monthly series and lognormal transformed monthly series for the four stations was checked by determining if the coefficient of skewness of each series did not differ from zero. Equation 3.18 was used for the bounds for a coefficient of skew equal to zero at the 5% significance level. The computed skew coefficients for the raw monthly series for the four stations are listed in Appendix J, Table J.1. Although some monthly series of Goose Creek used for modeling (January, February, July, August, September) were not valid for the assumption of normality, the monthly flows of the other three stations (including the key station) were valid for the normality assumption either in a raw monthly series or in a log normal transformed monthly series for those months. Therefore, it was decided to relax the normality assumption for those months of Goose Creek. The series corresponding to the skew coefficients in Table J. 1 of Appendix J marked with an " * " were the series used for modeling. Based on each normalized series (four stations) from the previous step, the monthly mean, monthly standard deviation, and the monthly correlation coefficients (lag-zero, and lag-one) for each series were
computed. The resulting statistics are listed in Appendix K , Tables K. 1 through K. 12 .

4. Estimation of Parameters

The standardized variate $Z_{v, \tau^{(i)}}$ is:

$$
\begin{equation*}
Z_{v, \tau}{ }^{(i)}=\frac{Y_{v, \tau}{ }^{(i)}-\bar{X}_{v, \tau}{ }^{\text {(i) }}}{S_{v, \tau}{ }^{(i)}} i=1,2,3,4 \tag{4.5}
\end{equation*}
$$

where $\mathrm{Y}_{V, \tau^{(i)}}$ is normalized value of the monthly stream flows, and $\mathrm{X}_{\mathrm{V}, \tau^{(\mathrm{i})}}$ and $S_{v}, \tau^{(i)}$ are the estimated values of the mean and standard deviation of the normalized series.

With the AR(1) model for four stations, the monthly matrix parameter estimates for the model of equation 4.1 can be obtained from (49):

$$
\begin{equation*}
\mathrm{A}_{1, \tau}=\mathrm{M}_{1, \tau} \mathrm{M}^{-1} 0, \mathrm{t}-1 \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{B}_{\tau} \mathrm{B}_{\tau}^{\mathrm{T}}=\mathrm{M}_{0, \tau}-\mathrm{M}_{1, \tau} \mathrm{M}^{-1} 0, \tau-1 \quad \mathrm{M}_{1, \tau} \tag{4.7}
\end{equation*}
$$

where $\mathrm{M}_{0, \tau}, \mathrm{M}_{0, \tau-1}$, and $\mathrm{M}_{1, \tau}$ are the monthly matrix correlations given by:
 obtained by correlating $Z_{v, \tau^{(i)}}$ with $Z_{v, \tau-\kappa}{ }^{(i)}$. The elements of the matrix B_{τ}
can be obtained by use of equations 3.12 through 3.14. The calculated matrices $\mathrm{M}_{0, \tau}$ and $\mathrm{M}_{1, \tau}$ are listed in Appendix K , Tables K. 1 through K. 12 .

5. Data Generation

The multivariate $\operatorname{AR}(1)$ model for the synthetic generation of the monthly series for the key station (Camas Creek) can be obtained by substituting the estimated parameters into their corresponding model equations. Thus, the generation of the monthly series for the key station $X_{v, \tau}{ }^{(4)}$ can be made by:

$$
\begin{align*}
& X_{v, \tau}^{(4)}=\bar{X}_{v, \tau}+S_{x, \tau}^{(4)} \tau_{x, \tau}^{(4)} \text {, for raw monthly series } \tag{4.9}\\
& \text { and }
\end{align*}
$$

$$
\begin{equation*}
X_{v, \tau}^{(4)}=\exp \left(\bar{Y}_{v, \tau}^{(4)}+S_{y, \tau}^{(4)} Z_{v, \tau}^{(4)}\right), \text { for transformed monthly series } \tag{4.10}
\end{equation*}
$$

where $\bar{X}_{v, \tau}{ }^{(4)}$ and $S_{x, \tau}$ are the estimates of the monthly mean and monthly standard deviation for the raw monthly series, and $\bar{Y}_{v, \tau}$ and $S_{y, \tau}$ are the estimate of the monthly mean and monthly standard deviation for the logtransformed monthly series. $\mathrm{Z}_{v, \tau^{(4)}}$ is the standardized, normalized monthly flow generated by equation 4.4. The following relationships (50) were used to relate the characteristics of the untransformed variate $X_{v, \tau}$ and the transformed variate $Y_{v, \tau}$:

$$
\begin{align*}
& \bar{Y}_{v, \tau}=1 / 2 \log \left[\frac{\bar{X}_{v, \tau}^{2}}{\left(C_{v, \tau}^{2}+1\right)}\right] \tag{4.11}\\
& S_{y, \tau^{2}}=\log \left(C_{v, \tau^{2}}+1\right) \tag{4.12}
\end{align*}
$$

where C_{v} is the coefficient of the variation of the raw data $\left(\mathrm{C}_{v, \tau}=\mathrm{S}_{\mathrm{x}, \tau} / \overline{\mathrm{X}}_{v, \tau}\right)$.

These results are provided in Table L. 1 and L. 2 in Appendix L. For the period of natural flow (1925-1952) on the four streams, the historical data from the subordinate stations were used to generate monthly flows for Camas Creek. The historical monthly flows and the generated monthly flows for Camas Creek for the period of natural flow (1925-1952) were plotted in Fig.L. 1 through Fig.L.12. In addition, the historical annual flows and the generated annual flows (monthly sums) at Camas Creek were plotted in Fig.L.13. Although the model appeared to simulate overall historical time series reasonably well, its performance varied by month and season. The poorest agreement between modeled and observed flows occurs in the peak spring runoff months and is probably attributable to variations in snowpack among the four basins used in the model development. As typical results of monthly flows and the results of annual flows, copies of Fig.L. 8 and Fig.L. 13 are included here as Fig.4.1 and Fig.4.2. Statistical comparisons (mean, variance, skew) were performed between the historical and generated monthly series. Hypothesis tests were used to compare the statistics of the two series (historical vs. generated) for each month and annual flows $(39,41)$. A paired mean difference t-statistic (Table 4.1) was considered in order to compare the statistics of the two series. The variability of the two series were considered to understand the results by the paired mean difference testing. Therefore, equality of the variances between two series was first tested by using an F-statistic (Table 4.2). Then the means of the two series were tested using the paired difference t-statistic. The results of these tests are presented in Table 4.3

Table 4.1
Hypothesis Tests using F- and Paired Difference t-statistics

F-statistic

Null Hypothesis: $\quad \sigma_{h}{ }^{2}=\sigma_{g}{ }^{2}$
Alternative Hypothesis: $\sigma_{\mathrm{h}}{ }^{2} \neq \sigma_{\mathrm{g}}{ }^{2}$
Test Statistics: $\mathrm{F}=\left(\right.$ larger of $\left.\mathrm{sh}^{2}, \mathrm{sg}^{2}\right) /\left(\right.$ smaller of $\left.\mathrm{sh}^{2}, \mathrm{sg}^{2}\right)$
Degrees of Freedom: n-1

$$
\left(\mathrm{n}=\text { sample size of } \mathrm{s}_{\mathrm{h}}{ }^{2} \text { and } \mathrm{sg}^{2}\right)
$$

t-statistics

Null Hypothesis: $\mu_{\mathrm{h}}-\mu_{\mathrm{g}}=\mu_{\mathrm{d}}=\mathrm{D}_{0}=0$
Alternative Hypothesis: $\mathrm{D}_{0} \neq 0$
Test Statistic:

$$
\mathrm{t}=\frac{\overline{\mathrm{d}}-\mathrm{D}_{0}}{\mathrm{~s}_{\mathrm{d}} / \sqrt{\mathrm{n}}}
$$

Degrees of Freedom: n-1
where the subscripts h and g represent the two series of each length, n . The Greek letters represent the population statistics while the lowercase letters represent the sample estimates of these statistics. d and s_{d} are the sample mean and standard deviation of the n differences.

From Table 4.2, it was seen that at the 5% level of significance, the null hypotheses of equality of variance between the two monthly series were not rejected, except for September flows. Likewise, from Table 4.3 no significant differences between the means for the two monthly series for all months were found. From Fig.L.12, it was seen that the difference of the variance in the September flows was caused by the generated outlier of the 1940 record. Coefficients of skew (Table L.3) for the historical monthly streamflows and the generated monthly flows were compared on a monthly
basis. The comparison showed that the skew coefficients of all but two months (February, September) were similar to each other. It was concluded that the differences of the skew coefficients of the two months were caused by the relaxed normality assumption for those months of Goose Creek station (section 3 of this chapter). Also, the correlation coefficients between historical monthly flows and generated monthly flows were compared in Appendix L, Table L.4. Generally, the correlation coefficient between historical monthly flows and generated monthly flows for each month preserved the correlation coefficient between the key station and the three other subordinate stations (Tables K. 1 through K.12). From these results, it was concluded that the modeled generated flows were statistically similar to the historical flows.

Fig. 4.1
CAMAS CREEK MAY STREAMFLOWS
(observed vs. generated)

Fig. 4.2
CAMAS CREEK ANNUAL STREAMFLOWS
(observed vs. generated)

Table 4.2
Hypothesis Test for Equality of Variances between Two Monthly Series (for 1925-1952 Water Years)

Oct	28	119	97	1.48	2.16	equal
Nov	28	267	224	1.42	2.16	equal
Dec	28	438	375	1.36	2.16	equal
Jan	28	218	253	1.34	2.16	equal
Feb	28	1048	809	1.68	2.16	equal
Mar	28	3950	3485	1.28	2.16	equal
Apr	28	28690	22098	1.69	2.16	equal
May	28	10069	11235	1.24	2.16	equal
Jun	28	2891	3564	1.52	2.16	equal
Jul	28	696	779	1.25	2.16	equal
Aug	28	113	97	1.35	2.16	equal
Sep	28	69	202	8.41	2.16	unequal
Ann	28	39693	31124	1.63	2.16	equal

[^0]Table 4.3
Hypothesis Test of Paired Mean Difference between Two Monthly Series (for 1925-1952 Water Years, Streamflow in cfs-days)

Month	Years	Mean	Std Error	Sample t	5% t	Unequal/Equal
Oct	28	-2.68	13.78	-0.19	-2.05	equal
Nov	28	10.30	31.15	0.33	2.05	equal
Dec	28	11.79	83.72	-0.14	-2.05	equal
Jan	28	15.89	30.04	0.53	2.05	equal
Feb	28	-197.55	211.98	-0.93	-2.05	equal
Mar	28	-419.53	417.67	-1.00	-2.05	equal
Apr	28	1070.62	3829.38	0.28	2.05	equal
May	28	-285.11	952.64	-0.30	-2.05	equal
Jun	28	-638.32	361.22	-1.77	-2.05	equal
Jul	28	-19.84	09.35	-0.18	-2.05	equal
Aug	28	2.53	16.07	0.16	2.05	equal
Sep	28	-33.45	32.93	-1.02	-2.05	equal
Ann	28	-508.95	3190.34	-0.16	-2.05	equal

CHAPTER 5

MODEL APPLICATION

1. Introduction

The model described in the previous chapter was applied to the time period 1953-1985, subsequent to the reported date of initiation of significant groundwater withdrawals. The monthly flow records at the subordinate stations were used to generate "synthetic-natural" monthly flow series on Camas Creek through the 1985 water year.

2. Adjustment of the Simple Statistics for the Wet Period

The comparisons of monthly means and standard deviations between the periods 1925-1952 and 1953-1985 for three subordinate stations showed that the period 1925-1952 was drier than the period 1953-1985 (Tables M. 1 through M.3). The F-statistic (for the variance, $\mathrm{s}_{\mathrm{d}}{ }^{2}$, of the historical time series for the period of 1925-1952 and the variance, $\mathrm{s}_{\mathrm{w}}{ }^{2}$, of the historical time series for the period of 1953-1985) was tested for the null hypothesis, $\mathrm{H}_{0}: \sigma_{\mathrm{d}}^{2}=\sigma_{\mathrm{w}}^{2}$, and the alternative hypothesis, $\mathrm{H}_{\mathrm{a}}: \sigma_{\mathrm{d}}^{2}<\sigma_{\mathrm{w}}^{2}$, on the two series of each subordinate station. Depending on the results of these tests of the variances, appropriate t-tests were then run on the monthly means. Table 5.1 summarizes the hypothesis tests and the F - and t - statistics used in conducting them.

Table 5.1

Hypothesis Tests using F- and t -statistics

F-statistic

Null Hypothesis: $\sigma_{\mathrm{d}}{ }^{2}=\sigma_{\mathrm{w}}{ }^{2}$
Alternative Hypothesis: $\sigma_{\mathrm{d}}{ }^{2}<\sigma_{\mathrm{w}}{ }^{2}$
Test Statistics: $\mathrm{F}=\left(\mathrm{s}_{\mathrm{w}}{ }^{2}\right) /\left(\mathrm{s}_{\mathrm{d}}{ }^{2}\right)$
Degrees of Freedom: d-1, w-1 (d = sample size of $\left.\mathrm{s}_{\mathrm{d}}{ }^{2}\right)$

$$
\left(\mathrm{w}=\text { sample size of } \mathrm{s}_{\mathrm{w}}{ }^{2}\right)
$$

t-statistics

Null Hypothesis: $\mu_{\mathrm{d}}=\mu_{\mathrm{w}}$
Alternative Hypothesis: $\mu_{\mathrm{d}}<\mu_{\mathrm{w}}$
If $\sigma_{d}^{2}=\sigma_{w}^{2}$ as determined by F -statistic, then
Test Statistic:

$$
\mathrm{t}=\frac{\overline{\mathrm{X}}_{\mathrm{d}}-\overline{\mathrm{X}}_{\mathrm{w}}}{\left(\mathrm{Sp}^{2}(1 / \mathrm{d}+1 / \mathrm{w})\right)^{1 / 2}}, \quad \mathrm{Sp}^{2}=\frac{(\mathrm{d}-1) \mathrm{s}_{\mathrm{d}}^{2}+(\mathrm{w}-1) \mathrm{s}_{\mathrm{w}}^{2}}{\mathrm{~d}+\mathrm{w}-2}
$$

Degrees of Freedom: $\mathrm{d}+\mathrm{w}-2$
If $\mathrm{s}^{2} \neq \mathrm{s}_{\mathrm{w}}{ }^{2}$ as determined by F-statistic, then

Test Statistic:

$$
\mathrm{t}=\frac{\overline{\mathrm{X}}_{\mathrm{d}}-\overline{\mathrm{X}}_{\mathrm{w}}}{\left(\mathrm{~s}_{\mathrm{d}}^{2} / \mathrm{d}+\mathrm{s}_{\mathrm{w}}^{2} / \mathrm{w}\right)^{1 / 2}}
$$

Degrees of Freedom :

$$
\frac{\left(s_{d}^{2} / d+s_{w}^{2} / w\right)^{2}}{\frac{\left(s_{d}^{2} / d\right.}{d-1}+\frac{\left(s_{w}^{2} / w\right.}{w-1}}
$$

where the subscripts d and w represents two series of lengths d and w, respectively. The Greek letters represent the population statistics while the lowercase letters represent the sample estimates of these statistics.

The results of the variance tests are presented in Tables 5.2, 5.4, and 5.6. From these tables, it is seen that although the variances between the two monthly series for Big Wood Slough were not statistically different for most months, the variances between the two monthly series for the other two subordinate stations were statistically different for most months at the 5% significance level. The t-statistic (for the mean, μ_{d}, of the historical time series for the period of 1925-1952 and the mean, μ_{w}, of the historical time series for the period of 1953-1985) was tested as the null hypothesis, $\mathrm{H}_{0}: \mu_{\mathrm{d}}-\mu_{\mathrm{w}}=0$, and the alternative hypothesis, $\mathrm{H}_{\mathrm{a}}: \mu_{\mathrm{d}}-\mu_{\mathrm{w}}<0$, on the two series of each subordinate station (Table 5.1). The results (Tables 5.3, 5.5, and 5.7) show that the means between the two monthly series for the three subordinate stations were statistically different for most months at the 5% significance level. Therefore, it was concluded that an adjustment of the simple statistics (mean, standard deviation) of the dry period (1925-1953) on Camas Creek was necessary to generate a synthetic-natural monthly flow series for the wet period(1953-1985).

The ratios of the mean and standard deviation for each month of both periods for the three subordinate stations were calculated (Tables M. 1 through M.3). To know the proportion of variability in the "key" station contributed by each subordinate station, coefficients of determination between monthly flows of Camas Creek and each subordinate station were also calculated by application of the simple spatial regression model. Weighted average ratios of the mean and standard deviation for the wet period on Camas Creek were obtained by weighting three coefficients of determination to the ratios of the mean and standard deviation of monthly data of both periods for the three subordinate stations. Finally, using the calculated weighted ratios of the mean and standard deviation for the wet
period on Camas Creek and the mean and standard deviation for the dry period on Camas Creek, the "natural" monthly mean and standard deviation (necessary model parameters) for the wet period on Camas Creek were estimated.

As an example, the estimating procedure of the "natural" monthly mean of October flows for the wet period on Camas Creek was provided in Appendix M, Table M.4. The results of the estimated monthly statistics for the wet period of Camas Creek, using weighted average ratios of the mean and standard deviation between two periods, are presented in Appendix M, Table M.5.

3. Model Application

The model was applied to generate a synthetic-natural monthly flow series on Camas Creek for the period of 1953-1985. The historical monthly flows (assumed to be affected by pumping) and the syntheticnatural monthly flows for Camas Creek for the period of 1953-1985 were presented in Appendix N, Tables N. 1 through N.12, and were plotted in Appendix N, Fig.N. 1 through Fig.N.12. The historical annual flows and the synthetic-natural annual flows for the same period are presented in Appendix N, Table N. 13 and are plotted in Appendix N, Fig.N. 13. Fig.N. 13 is included here in Fig.5.1.

Table 5.2

Hypothesis Test for Equality of Variances between Dry and Wet Periods Streamflows for Big Wood Slough (13.1395.10)
$\begin{array}{ll}\text { Null Hypothesis: } & \sigma_{d}^{2}=\sigma_{w}^{2} \\ \text { Alternative Hypothesis: } & \sigma_{d}{ }^{2}<\sigma_{\mathrm{w}}{ }^{2}\end{array}$

Month \begin{tabular}{c}
Std (d)

(Cfs-days)

Std (w)

(Cfs-days)
\end{tabular}

$\underset{\mathrm{F}}{\text { Sample }}$
5%
Null Hypothesis

Oct	1838	1900	1.07	1.85	accept
Nov	1392	1581	1.29	1.85	accept
Dec	999	1165	1.36	1.85	accept
Jan	877	1039	1.40	1.85	accept
Feb	696	807	1.34	1.85	accept
Mar	1518	1492	0.97	1.85	accept
Apr	8616	7940	0.85	1.85	accept
May	18018	22185	1.52	1.85	accept
Jun	19540	24252	1.54	1.85	accept
Jul	10900	13109	1.45	1.85	accept
Aug	3085	4202	1.85	1.85	accept
Sep	1842	2583	1.97	1.85	reject

* "Std (d) " $=$ Standard Deviation of the Historical Monthly Streamflows for 1925-1952 Water Years
* "Std (w) " = Standard Deviation of the Historical Monthly Streamflows for 1953-1985 Water Years
* Sample F $=\operatorname{Std}^{2}(\mathrm{w}) / \operatorname{Std}^{2}(\mathrm{~d})$

Table 5.3

Hypothesis Test for Equality of Means between Dry and Wet Periods Streamflows for Big Wood Slough (13.1395.10)

Null Hypothesis:	$\mu_{\mathrm{d}}=\mu_{\mathrm{w}}$
Alternative Hypothesis:	$\mu_{\mathrm{d}}<\mu_{\mathrm{w}}$

Month	Mean (d) (Cfs-days)	Mean (w) (Cfs-days)	Sample t	5% t	Null Hypothesis
Oct	5432	7217	-3.71	-1.67	reject
Nov	5033	6319	-3.34	-1.67	reject
Dec	4507	5575	-3.80	-1.67	reject
Jan	4211	5400	-4.77	-1.67	reject
Feb	3845	4749	-4.63	-1.67	reject
Mar	5205	6011	-2.09	-1.67	reject
Apr	16875	15752	0.53	-1.67	accept
May	38269	43272	-0.96	-1.67	accept
Jun	37074	50464	-2.35	-1.67	reject
Jul	17112	23550	-2.06	-1.67	reject
Aug	6797	9706	-3.03	-1.67	reject
Sep	5209	7387	-3.83	-1.67	reject

*" Mean (d) " $=\quad \begin{aligned} & \text { Mean of the Historical Monthly Streamflows for 1925-1952 } \\ & \\ & \text { Water Years }\end{aligned}$

* " Mean (w) " $=$ Mean of the Historical Monthly Streamflows for 1953-1985

Water Years

Table 5.4

> Hypothesis Test for Equality of Variances between Dry and Wet Periods Streamflows for Big Lost River (13.1205.00)

Null Hypothesis:	$\sigma_{d} 2=\sigma_{w} 2$
Alternative Hypothesis:	$\sigma_{d} 2<\sigma_{w} 2$

Month	Std (d) (Cfs-days)	Std (w) (Cfs-days)	Sample F	5 \% F	Null Hypothesis
Oct		1273	1237		0.94
Nov	591	1595	7.28	1.85	accept
Dec	441	1172	7.07	1.85	reject
Jan	385	1033	7.17	1.85	reject
Feb	302	810	7.16	1.85	reject
Mar	393	789	4.02	1.85	reject
Apr	3318	2744	0.68	1.85	accept
May	8658	11827	1.87	1.85	reject
Jun	13606	15206	1.25	1.85	accept
Jul	8815	11508	1.70	1.85	accept
Aug	2508	3583	2.04	1.85	reject
Sep	1137	2164	3.62	1.85	reject

* $"$ Std $(\mathrm{d}) "=\quad \begin{aligned} & \text { Standard Deviation of the Historical Monthly Streamflows } \\ & \text { for 1925-1952 Water Years }\end{aligned}$
* "Std (w) " $=\quad$ Standard Deviation of the Historical Monthly Streamflows for 1953-1985 Water Years
* Sample F $=\quad \operatorname{Std}^{2}(\mathrm{w}) / \operatorname{Std}^{2}(\mathrm{~d})$

Table 5.5

Hypothesis Test for Equality of Means
between Dry and Wet Periods Streamflows for Big Lost River (13.1205.00)

Null Hypothesis: $\quad \mu_{\mathrm{d}}=\mu_{\mathrm{w}}$					
Alternative Hypothesis: $\mu_{\mathrm{d}}<\mu_{\mathrm{w}}$					
Month	$\begin{aligned} & \text { Mean (d) } \\ & \text { (Cfs-days) } \end{aligned}$	$\begin{aligned} & \text { Mean (w) } \\ & \text { (Cfs-days) } \end{aligned}$	Sample t	$\begin{gathered} 5 \% \\ t \end{gathered}$	Null Hypothesis
Oct	3502	4607	-1.76	-1.67	reject
Nov	2887	3385	-1.66	-1.68	accept
Dec	2554	2905	-1.59	-1.68	accept
Jan	2340	2721	-1.96	-1.68	reject
Feb	2026	2312	-1.88	-1.68	reject
Mar	2312	2551	-1.53	-1.68	accept
Apr	6182	5301	1.14	-1.67	accept
May	23454	25990	-0.96	-1.67	accept
Jun	29925	41299	-3.05	-1.67	reject
Jul	14875	20747	-2.21	-1.67	reject
Aug	5440	7475	-2.60	-1.67	reject
Sep	3427	4972	-3.56	-1.68	reject
$\text { * " Mean (d) " }=\begin{aligned} & \text { Mean of the Historical Monthly Streamflows for 1925-1952 } \\ & \text { Water Years } \end{aligned}$					

Table 5.6

Hypothesis Test for Equality of Variances between Dry and Wet Periods Streamflows for Goose Creek (13.0825.00)

Null Hypothesis: $\quad \sigma_{d}{ }^{2}=\sigma_{w}{ }^{2}$
Alternative Hypothesis: $\sigma_{d}{ }^{2}<\sigma_{w}{ }^{2}$

Month	$\begin{gathered} \text { Std (d) } \\ \text { (Cfs-days) } \end{gathered}$	$\underset{\text { (Cfs-days) }}{\operatorname{Std}(\mathbf{w})}$	$\underset{\mathrm{F}}{\text { Sample }}$	$\begin{gathered} 5 \% \\ \mathrm{~F} \end{gathered}$	Null Hypothesis
Oct	167	234	1.96	1.85	reject
Nov	147	224	2.32	1.85	reject
Dec	182	255	1.96	1.85	reject
Jan	366	920	6.32	1.85	reject
Feb	815	1131	1.93	1.85	reject
Mar	774	906	1.37	1.85	accept
Apr	1487	1353	0.83	1.85	accept
May	2212	3760	2.89	1.85	reject
Jun	940	2281	5.88	1.85	reject
Jul	234	538	5.24	1.85	reject
Aug	170	313	3.37	1.85	reject
Sep	140	231	2.70	1.85	reject
*"Std (d) " $=\quad \begin{aligned} & \text { Standard Deviation of the Historical Monthly Streamflows } \\ & \text { for 1925-1952 Water Years }\end{aligned}$					
* " Std (w) ${ }^{\text {a }}=\underset{\mathrm{f}}{\mathrm{S}}$		Standard Deviation of the Historical Monthly Streamflows for 1953-1985 Water Years			
* Sample F = $\operatorname{Std}^{2}(\mathrm{w}) / \mathrm{Std}^{2}(\mathrm{~d})$					

Table 5.7

> Hypothesis Test for Equality of Means between Dry and Wet Periods Streamflows for Goose Creek (13.0825.00)
$\begin{array}{ll}\text { Null Hypothesis: } & \mu_{\mathrm{d}}=\mu_{\mathrm{w}} \\ \text { Alternative Hypothesis: } & \mu_{\mathrm{d}}<\mu_{\mathrm{w}}\end{array}$

Month	Mean (d) (Cfs-days)	Mean (w) (Cfs-days)	Sample t	5% t	Null Hypothesis
Oct	456	614	-3.05	-1.67	reject
Nov	642	766	-2.58	-1.67	reject
Dec	660	803	-2.53	-1.67	reject
Jan	723	1149	-2.44	-1.68	reject
Feb	1045	1493	-1.79	-1.67	reject
Mar	1723	2044	-1.47	-1.67	accept
Apr	2935	2972	-0.10	-1.67	accept
May	3902	4923	-1.32	-1.68	accept
Jun	1547	2299	-1.73	-1.68	reject
Jul	418	615	-1.91	-1.68	reject
Aug	262	435	-2.73	-1.68	reject
Sep	222	398	-3.65	-1.67	reject

* " Mean (d) " $=\quad \begin{aligned} & \text { Mean of the Historical Monthly Streamflows for 1925-1952 } \\ & \\ & \text { Water Years }\end{aligned}$
* " Mean (w) " = Mean of the Historical Monthly Streamflows for 1953-1985

Water Years

Fig. 5.1
CAMAS CREEK ANNUAL STREAMFLOWS
(observed vs. generated)

CHAPTER 6

COMPARISONS OF OBSERVED AND SYNTHETIC RECORDS

1. Introduction

A detailed comparison and analysis of the synthetic and observed time series for Camas Creek is required to make critical observations relative to the general model performance and specific effects of groundwater use within this basin. This chapter presents comparisons of the observed and synthetic records. The topics discussed include the statistical analysis of the two series, the seasonal characteristics, and trends in streamflow change.

2. Statistical Analysis

Statistical comparisons (mean, variance, skewness) were made between the observed and synthetic monthly and annual time series.

The F-statistic (for the variance, $\sigma_{h}{ }^{2}$, of the observed time series and the variance, $\sigma_{\mathrm{g}}{ }^{2}$, of the synthetic time series) was used to test the null hypothesis, $\mathrm{H}_{0}: \sigma_{\mathrm{h}}{ }^{2}=\sigma_{\mathrm{g}}{ }^{2}$, and the alternative hypothesis, $\mathrm{H}_{\mathrm{a}}: \sigma_{\mathrm{h}}{ }^{2}>\sigma_{\mathrm{g}}{ }^{2}$, for the two series. At the 5% level of significance, the null hypothesis was rejected for eight of the twelve months (Table 6.1). However, the null hypothesis failed to reject the variance test of the annual (monthly sum) series (Table 6.1). Therefore, it was seen that although the observed time series was significantly more variable than the simulated time series based on monthly streamflows for many months, the monthly variability did not significantly affect the variability of the annual time series.

The paired mean difference t-statistic (between the mean, μ_{h}, of the observed time series and the mean, μ_{g}, of the synthetic time series) was

Table 6.1

Hypothesis Test for Equality of Variances between Two Monthly Series (for 1953-1985 Water Years)

Null Hypothesis:	$\sigma_{\mathrm{h}}{ }^{2}=\sigma_{\mathrm{g}}{ }^{2}$
Alternative Hypothesis:	$\sigma_{\mathrm{h}}{ }^{2}<\sigma_{\mathrm{g}}{ }^{2}$

Month	Years	Std (h) (Cfs-days)	Std (g) (Cfs-days)	Sample F	5% F	Null Hypothesis
Oct	33			109	7.20	1.84
Nov	33	292	520	453	1.32	1.84
Dec	33	2339	1586	2.17	1.84	reject
Jan reject						
Feb	33	1303	367	12.60	1.84	reject
Mar	33	5465	1420	14.81	1.84	reject
Apr	33	9858	4396	5.03	1.84	reject
May	33	22906	27003	0.72	1.84	accept
Jun	33	12139	14877	0.67	1.84	accept
Jul	33	4484	4375	1.05	1.84	accept
Aug	33	1231	741	2.76	1.84	reject
Sep	33	249	118	4.44	1.84	reject
Ann	33	42808	42441	2.45	1.84	reject
			111	1.02	1.84	accept

* "Std (h) " = Standard Deviation of the Historical Monthly Streamflows
* "Std (g) " = Standard Deviation of the Generated Monthly Streamflows
* Sample F $=\operatorname{Std}^{2}(\mathrm{~h}) / \operatorname{Std}^{2}(\mathrm{~g})$
tested as the null hypothesis, $\mathrm{H}_{0}: \mu_{\mathrm{h}}-\mu_{\mathrm{g}}=\mathrm{D}_{0}=0$, and the alternative hypothesis, $\mathrm{H}_{\mathrm{a}}: \mu_{\mathrm{h}}-\mu_{\mathrm{g}}=\mathrm{D}_{0}>0$, on the two series. The results (Table 6.2) show that the means of the simulated streamflows of October, November, January, and July were significantly lower than those of the observed streamflows of the same months at the 5% level of significance.

Coefficients of skewness for the historical monthly streamflows and the generated monthly streamflows are compared in Table O.1. In general, the coefficients of the two time series were close to each other.

The above monthly and annual statistical tests applied to the difference between two time series showed that the synthetic monthly records are lower than the observed monthly records for four months. However, the means of the simulated streamflows of the other months (except April) were also lower (although test results shows that they are not significantly lower than the means of the observed streamflows, some of them are very close to the critical value of the 5% level of significance) than those of the observed streamflows of the same months. A statistical test for the seasonal time series may give a more clear distinction regarding whether the two series are different.

3. Seasonal Characteristics

To portray seasonal differences in the time series and to determine how these are related to the seasonal distribution of irrigation well development, the monthly data were grouped into four seasons. To make the seasonal groupings, the beginning and ending months of the irrigation pumping period were given priority consideration. Because irrigation pumping begins in May and ends in October in the Camas Creek basin, the month of May was regarded as the first month of the summer season and

Table 6.2

Hypothesis Test for Paired Mean Difference between Two Monthly Series (for 1953-1985 Water Years, Streamflow in cfs-days)

Null Hypothesis:
$\mu_{\mathrm{h}}-\mu_{\mathrm{g}}=\mathrm{D}_{\mathrm{o}}=0$
Alternative Hypothesis: $\mu_{\mathrm{h}}-\mu_{\mathrm{g}}=\mathrm{D}_{\mathrm{o}}>0$

Month	Years	Mean	Std Error	Sample t	5% t	Null Hypothesis
Oct						
Nov	33	100	38	2.60	1.693	reject
Dec	33	177	35	4.94	1.693	reject
Jan	33	267	494	0.54	1.693	accept
Feb	33	505	229	2.20	1.693	reject
Mar	33	992	884	1.12	1.693	accept
Apr	33	2181	1288	1.69	1.693	accept
May	33	-992	3867	-0.26	1.693	accept
Jun	33	829	1653	0.50	1.693	accept
Jul	33	461	456	1.01	1.693	accept
Aug	33	391	132	2.95	1.693	reject
Sep	33	42	30	1.41	1.693	accept
Ann	33	37	29	1.26	1.693	accept
		4994	4405	1.13	1.693	accept

the month of October regarded as the last month of the fall season. Table 6.3 shows the seasonal grouping for the monthly data.

Table 6.3

Seasonal Distinction for Monthly Data	
Season	Months
Spring	February - April
Summer	May - July
Fall	August - October
Winter	November - January

The observed and synthetic time series for each season were calculated and the results are plotted in Fig.6.1 through Fig.6.4.

For each season, a statistical comparison (mean, variance) was performed on the observed and synthetic seasonal time series. F-statistics (for the variance, $\sigma_{\mathrm{sh}}{ }^{2}$, of the observed time series and the variance, $\sigma_{\mathrm{sg}}{ }^{2}$, of the synthetic time series) were tested using the null hypothesis, $\mathrm{H}_{0}: \sigma_{\mathrm{sh}}{ }^{2}=\sigma_{\mathrm{sg}}{ }^{2}$, and the alternative hypothesis, $\mathrm{H}_{\mathrm{a}}: \sigma_{\mathrm{sh}^{2}}^{2}>\sigma_{\mathrm{sg}}{ }^{2}$, on the two series. At the 5% level of significance, the null hypotheses were rejected for the fall and winter seasons (Table 6.4). A paired mean difference t-statistic (for the mean, μ_{sh}, of the observed time series and the mean, μ_{sg}, of the synthetic time series) was tested for the null hypothesis, $\mathrm{H}_{0}: \mu_{\text {sh }}-\mu_{\mathrm{sg}}=\mathrm{D}_{0}=$ 0 , and the alternative hypothesis, $\mathrm{H}_{\mathrm{a}}: \mu_{\mathrm{sh}}-\mu_{\mathrm{sg}}=\mathrm{D}_{0}>0$, on the two time series. The results (Table 6.5) showed that only the fall season simulated streamflows were significantly lower than the observed streamflows at the 5 \% level of significance.

From the monthly, seasonal, and annual paired mean difference tests (Tables 6.2 and 6.5), it can be concluded that although the fall season simulated streamflows are significantly lower than the observed

Fig. 6.1
CAMAS CREEK SPRING SEASON STREAMFLOWS

Fig. 6.2
CAMAS CREEK SUMMER SEASON STREAMFLOWS
(OBSERVED vs. generated)

Fig. 6.3
CAMAS CREEK FALL SEASON STREAMFLOWS (ObSERVED VS. GENERATED)

Fig. 6.4
CAMAS CREEK WINTER SEASON STREAMFLOWS (ObSERVED VS. GENERTATED)

Table 6.4

Hypothesis Test for Equality of Variances between Two Seasonal Series (for 1953-1985 Water Years)

Null Hypothesis:	$\sigma_{\mathrm{sh}}{ }^{2}=\sigma_{\mathrm{sg}}{ }^{2}$
Alternative Hypothesis:	$\sigma_{\mathrm{sh}^{2}}>\sigma_{\mathrm{sg}}{ }^{2}$

Season	Years	Std (sh) (Cfs-days)	Std (sg) (Cfs-days)	Sample F	5% F	Null Hypothesis
Spring		33	26579.38	30132.52	0.78	1.84
Summer	33	17294.99	19244.68	0.81	1.84	accept
Fall	33	559.16	221.11	6.39	1.84	reject
Winter	33	3673.79	2131.90	2.97	1.84	reject

$$
\begin{aligned}
& * \text { "Std }(\mathrm{sh}) "=\text { Standard Deviation of the Historic Monthly Streamflows } \\
& * \text { "Std }(\mathrm{sg}) "=\text { Standard Deviation of the Generated Monthly Streamflows } \\
& * \text { Sample } \mathrm{F}=\operatorname{Std}^{2}(\mathrm{sh}) / \operatorname{Std}^{2}(\mathrm{sg})
\end{aligned}
$$

Table 6.5

Hypothesis Test for Paired Mean Difference
between Two Seasonal Series (for 1953-1985 Water Years, Streamflow in cfs-days)

Null Hypothesis: $\quad \mu_{\text {sh }}-\mu_{\text {sg }}=D_{0}=0$
Alternative Hypothesis: $\mu_{\text {sh }}-\mu_{\text {sg }}=\mathrm{D}_{0}>0$

Season	Years	Mean	Std Error	Sample t	5% t	Null Hypothesis
Spring	33	2181.78	3810.24	0.57	1.693	accept
Summer	33	1682.24	1892.62	0.89	1.693	accept
Fall	33	180.54	74.07	2.44	1.693	reject
Winter	33	950.12	692.25	1.37	1.693	accept

streamflows, the difference between the two annual time series is apparently not significant.

4. Trends in Streamflow Change

Trends in streamflow change were examined by analyzing the ratios between the observed and synthetic seasonal and annual time series, and by analyzing the differences between the two time series. In addition to examining the total effects of the trend in streamflow change, cumulative differences between the two series were also analyzed. The analyses of these trends in streamflows are described in the following subsections.

4.1 Analysis of the Ratios between the Observed and Synthetic Flows:

To examine the records for trends in streamflow change, ratios between the observed and synthetic monthly flows were calculated. Because some generated monthly flows had zero values, the ratios (observed/synthetic) of those months could not be plotted. Instead, the calculation results of the monthly ratios are presented in Appendix P, Tables P. 1 through P.12. The results of the annual (monthly sum) ratio are also presented in Appendix P, Table P.13. To examine trends in seasonal and annual changes of the records, the ratios of the observed and synthetic flows were plotted in Fig.6.5 through Fig.6.9. 4.2 Analysis of the Differences between the Two Series: As an alternative way to examine the records for trends in streamflow change, a time series was created by obtaining the monthly differences between the observed and synthetic flows. Plots were prepared for the difference (observed minus synthetic) versus water year for each of the twelve monthly flows in Fig.P. 1 through Fig.P.12. The difference (observed minus synthetic) versus water year for the seasonal and

Fig. 6.5
RATIOS OF SPRING STREAMFLOWS (observed / synthetic)

71

Fig. 6.6
RATIOS OF SUMMER STREAMFLOWS (observed / synthetic)

Fig. 6.7
RATIOS OF FALL STREAMFLOWS
(OBSERVED / SYNTHETIC)
ouva

- OBSERVED/SYNTHETIC

Fig. 6.8
RATIOS OF WINTER STREAMFLOWS

Fig. 6.9
RATIOS OF ANNUAL STREAMFLOWS

annual data are plotted in Fig.6.10 through Fig.6.14. As an examination for the significance of differences of the monthly, seasonal, and annual time series, a t-statistic for the mean difference, μ_{d}, between the observed and synthetic time series was already tested in the earlier sections of this chapter (see Table 6.2 and Table 6.5). The results showed that the fall season difference between the observed and synthetic time series was significant at the 5% level.

To determine the linear regression equations, regression analyses were performed for the differences of the seasonal and annual time series. The simple linear regression model (equation 3.1) was applied to represent the relationship between the differences and water years. The following general equation was assumed as the functional relationship to be defined:

$$
\widehat{Y}=\alpha+\beta X
$$

where:
$\widehat{\mathrm{Y}}=$ estimated seasonal or annual difference
$\alpha=$ Y-intercept
$\beta=$ linear regression coefficient
$\mathrm{X}=$ water year

After estimating the parameters of the model, the significances of the slopes were tested using a t-statistic for the null hypothesis, $\mathrm{H}_{0}: \beta=0$, and the alternative hypothesis, $\mathrm{H}_{\mathrm{a}}: \beta \neq 0$, at the 5% level of significance. The estimated parameters and the test results for the slopes are summarized in Table 6.6. Table 6.6 shows that there is no trend for the differences of the seasonal and annual time series.

Fig. 6.10
DIFFERENCES OF SPRING STREAMFLOWS (OBSERVED - SYNTHETIC)

Fig. 6.11
DIFFERENCES OF SUMMER STREAMFLOWS

Fig. 6.12

DIFFERENCES OF FALL STREAMFLOWS

(OBSERVED - SYNTHETIC)

Fig. 6.13
DIFFERENCES OF WINTER STREAMFLOWS (OBSERVED - SYNTHETIC)

Fig. 6.14
DIFFERENCES OF ANNUAL STREAMFLOWS
(OBSERVED - SYNTHETIC)

Table 6.6

Estimates for the Simple Linear Regression between Differences and Water Years

Period	α	β	R-square	Null Hypothesis for Slope (β)
Spring	33287	-450.81		0.040
Summer	-6550	119.31	0.011	accept
Fall	-411	8.58	0.038	accept
Winter	6466	-79.94	0.038	accept
Annual	32792	-402.86		accept
				accept

4.3 Analysis of the Cumulative Differences between the Two Series: To

 examine the total effects of the trend in seasonal and annual streamflow change, cumulative differences between observed and synthetic series were calculated and then plotted in Fig.6.15 through Fig.6.19. Fig. 6.15 shows that the cumulative difference of the spring season has no visual trend of increase in streamflows. Fig. 6.16 and Fig. 6.17 show that although the summer season trend has more variability than the fall season trend, the two seasons have visual trends on increase in streamflows.For the winter season, the 1965 value of Fig. 6.18 completely distorts the trend. This distortion is caused by the poor agreement between modeled and observed flows in December and January of the 1965 water year. Because the 1965 value can be treated as an outlier, it is concluded that there is no trend for the cumulative differences of the winter season. Although the value of 1965 (Fig.6.17) for the fall season also reflects poor agreement between modeled and observed flows of August and September, the value does not affect the trend line as much as the winter season value.

As shown in Fig.6.19, the annual cumulative difference of the 1965 water year is also not greatly affected by the poor agreement of the two seasons. Fig. 6.19 also shows that the annual cumulative difference has not at least a visual trend of increase in streamflows.

From the examination of the total effects of the trend in seasonal and annual streamflow change, it is concluded that the fall season has a trend of increase in streamflows, and that the summer season may have a similar trend.

Fig. 6.15
CUMULATIVE DIFF. OF SPRING STREAMFLOWS (OBSERVED - SYNTHETIC)

Fig. 6.16
CUMULATIVE DIFF. OF SUMMER STREAMFLOWS

Fig. 6.17
CUMULATIVE DIFF. OF FALL STREAMFLOWS

Fig. 6.18
CUMULATIVE DIFF. OF WINTER STREAMFLOWS (OBSERVED - SYNTHETIC)

[1 CUMULATIVE DIFF.

Fig. 6.19
CUMULATIVE DIFF. OF ANNUAL STREAMFLOWS
(OBSERVED - SYNTHETIC)

CHAPTER 7

CONJUNCTIVE USE RELATIONSHIPS

1. Introduction

This chapter discusses the cause-effect relationships between groundwater withdrawal and streamflow change. From the Idaho Department of Water Resources, a chronological history of well development in the Camas Creek basin was obtained. Table Q.1, Appendix Q shows the logs of irrigation wells in the study area from 1953 through 1985 water years. From that information, irrigation well development history in the study area was analyzed in Table Q.2, Appendix Q. Fig.7.1 shows irrigation well development history from 1953 through 1985.

To obtain information concerning an annual time lag between well development and impacts on the Camas Creek streamflow, the time-history of well development was examined and compared to the figures and statistical test results of the previous chapter. Comparisons between the total number of wells and the seasonal and annual streamflow changes were conducted to indicate whether a relationship exists and if it is affected by "wet" or "dry" year conditions.

2. Conjunctive Use Relationship

Fig.6.3 and Table 6.5 of the previous chapter show that, generally, the simulated record produced lower streamflows than the observed streamflows. This may be attributed to the fact that most of the large wells have pumped (mainly in the summer season) from deep aquifers with no connection to the surface stream system.

Fig. 7.1
IRRIGATION WELL DEVELOPMENT HISTORY
(Camas Creek Basin)

90
y3awnin

Previous studies $(37,38,51)$ indicate that the unconfined aquifer extends from about 10 to 40 feet below the land surface and is separated from underlying artesian aquifers by a thick clay layer. Table 7.1 shows that all of the irrigation wells developed in the study area are deeper than 40 feet. These data would support the above conclusion that irrigation return flows contribute to the streamflows.

Table 7.1

Depth of the Irrigation Wells	
Depth (feet)	Number of Wells
<70	0
$70-100$	2
$100-200$	14
$200-300$	20
$300-400$	16
$400-500$	14
>500	10
	Total
	76

2.1 Time Lag between Well Development and Impacts on the Camas

 Creek Streamflows: Irrigation pumping begins in May (the early part of the irrigation season), reaches a maximum in June and July, and declines through August, September, and October. Therefore, it is concluded that the irrigation return flows pumped in the summer season are contributing to the streamflows in the fall season. For this reason, it can be concluded that the irrigation return flow contribution to streamflows is lagged by one season from the major irrigation pumping season.Table 6.2 shows that the annual streamflows are not significantly affected by the groundwater withdrawals in the Camas Creek basin. Therefore, it can be concluded that although the
irrigation return flows pumped mainly in the summer season have apparently contributed to the streamflows in the fall season, the contribution doesn't significantly increase the annual streamflows.

A comparison between the observed annual streamflows and the annual differences was conducted to examine whether a relationship exists and is affected by "wet" or "dry" year conditions. The results (Fig.7.2) show that no apparent relationship exists.

2.2 Comparisons between the Total Number of Wells and Annual

Changes: To examine the historical pattern of groundwater development and the pattern in streamflow change, comparisons between the total number of wells and the seasonal cumulative differences between the observed and the synthetic series were conducted in Fig. 7.3 through Fig.7.6. From Fig.7.3, Fig.7.6, and Fig.7.7, no relationship is seen in the spring and winter seasons, or in the annual data, between the cumulative well development and cumulative streamflow change. For the summer and fall seasons, however, as well development has increased, the streamflows appear to have also increased. This parallel relationship is more noticable in the fall season than in the summer season, as would be expected considering the previously presented results of trend lines and significance tests on the means.

From these results, it is concluded that although the fall season streamflow has apparently increased in a time pattern similar to the increase in groundwater development, the annual streamflow has not been significantly affected by the increase of the streamflow of the fall season.

Fig. 7.2

OBSERVED FLOWS AND ANNUAL DIFFERENCES

Fig. 7.3
CUMULATIVE DIFF. AND TOTAL NO. OF WELLS (SPRING SEASON)

Fig. 7.4
CUMULATIVE DIFF. AND TOTAL NO. OF WELLS (SUMMER SEASON)

Fig. 7.5
CUMULATIVE DIFF. AND TOTAL NO. OF WELLS
(FALL SEASON)

Fig. 7.6
CUMULATIVE DIFF. AND TOTAL NO. OF WELLS (WINTER SEASON)

Fig. 7.7
CUMULATIVE DIFF. AND TOTAL NO. OF WELLS (CUM. ANNUAL DIFF. AND TOTAL WELLS)

3. Conclusions

From the above results for conjunctive use relationships the following conclusions can be summarized.

1. Although the model appeared to work well, it is not sensitive enough to detect the quantitative effects of the pumping on the surface water flow.
2. Pumped groundwater from deep aquifers mainly in the summer season apparently contributes to streamflows in the fall season as irrigation return flows.
3. No relationship is seen between annual well development and annual change in the streamflows.
4. The historical pattern of groundwater development has paralleled the pattern of streamflow increases in the fall season, and, to a lesser extent, streamflow increases in the summer season.
5. No apparent relationship exists between the observed annual flows and the annual differences.
6. A lack of quantitative data exists concerning the number of irrigation wells pumped, the acreage brought under irrigation, and the water balances for the years 1953 through 1985.

From the comparisons of the observed and synthetic records of the previous chapter and the examinations of the conjunctive use relationships of this chapter, a summary of the results is provided.

As shown in Table 7.2, spring season shows a consistency in results. Although the summer season does not significantly increase streamflows, the season has at least a visual trend of increase in streamflows. For the fall season, the monthly comparison between the synthetic and observed time series shows the synthetic streamflows of August and September were not
significantly lower than the observed streamflows. However, the test statistics (Table 6.2) of the two months are very close to the critical values of the significance test on the means. Therefore, it is concluded that the fall season also showed consistent results. Although the synthetic streamflows of two months in the winter season (November, January) are significantly lower than the observed streamflows, the overall synthetic winter streamflows are not significantly lower than the observed winter streamflows. However, since January of the 1965 water year can be treated as an outlier, and the results of the significance test for the January time series would not be accepted. Therefore, it is concluded that the winter season also shows a consistency in results.

Table 7.2

Summary of Tests and Comparisons
Trend of
Pattern Cumulative Diff
Month Syn.<Obs. Season Syn.<Obs. Cum. Diff.=Well Dev. is Significant

Feb	No	Spring	No	No	No
Mar	No				
Apr	No				
May	No				
Jun	No	Summer	No	Yes	Yes
Jul	Yes				
Aug	No				
Sep	No	Fall	Yes	Yes	Yes
Oct	Yes				
Nov	Yes				
Dec	No	Winter	No	No	No
Jan	Yes				

CHAPTER 8

FUTURE IMPACTS AND RECOMMENDED RESEARCH

1. Future Impacts

From the results in Chapters 6 and 7 , it is concluded that the future irrigation well development in this particular basin (with the assumption that the wells have pumped from confined aquifers) will not deplete the nearby streamflows. Rather, pumped groundwater for irrigation purpose from confined aquifers will contribute to streamflows as return flows. More specifically, the irrigation return flows pumped in the summer season may be contributing to the streamflows in the fall season. However, because this increment of the streamflow in the fall season is small in quantity when compared with the other seasons, it may not significantly increase the annual streamflows.

2. Recommended Research

Additional research is recommended for other river basins to investigate the impacts of groundwater withdrawals on surface streamflows by similar modeling procedures. Groundwater pumpage for irrigation of the Raft River Valley in Southern Idaho (Fig.8.1) has decreased the flows of Raft River (51). The confined and unconfined sedimentary aquifers were developed for irrigation primarily in the 1950's and 1960's. The basin was declared critical in 1963 and closed for additional ground water permits. The impacts of development include some indication of land subsidence and a change in surface water flow patterns (51). The Mountain Home Area (Fig.8.1) has also undergone major groundwater development (mostly
irrigation purposes) affecting the nearby Canyon Creek in recent years. The aquifers are primarily composed of basalt and have been developed almost exclusively for irrigation. A portion of the area was declared critical in 1981. The entire Mountain Home Area was designated as a groundwater management area in 1982 (51). Therefore, these two basins are recommended to further investigate the impacts of groundwater withdrawals on surface streamflow by the similar multivariate modeling procedures. However, a severe lack of data exists concerning the number of irrigation wells pumped, the acreage brought under irrigation, and the water balances each year for the Camas Creek basin. Therefore, to apply the same multivariate modeling procedures effectively for future studies, sufficient surface and subsurface flow data are necessary.

APPENDIX A

CANDIDATE STATIONS

Table A. 1
Candidate Stations with at Least 40 years Record, Little Pumping and/or Regulation, and of at Least ' Fair " Quality

Station Number	Station Name	Area Sq Mi	Record Length	$*$ Remark
13.1415 .00	Camas Creek, Blaine	648	$1925-1985$	G
13.1395 .10	Big Wood Slough, Hailey	640	$1925-1973$	F
13.0825 .00	Goose Creek, Oakley	633	$1925-1985$	G
13.0830 .00	Trapper Creek, Oakley	54	$1925-1985$	G
13.1205 .00	Big Lost River, Chilly	450	$1925-1985$	G
13.1200 .00	North Fork,Chilly	114	$1945-1985$	G
$* \mathrm{E}=$ Excellent; $\quad \mathrm{G}=$ Good; $\quad \mathrm{F}=$ Fair;	$\mathrm{P}=$ Poor.			

APPENDIX B

HISTORICAL STREAMFLOW LISTINGS

(All units are in cfs-days)

Table B. 1

STATION: COMBINATION BIG WOOD R AND SLOUGH AT HAILEY ID (13.1395.10)

				JAM									
25	4150.00	3965.00	3633.00	3660.00	3456.00	4839.00	23300.00	64960.00	46480.00	26226.00	9979		
26	7683.00	5850.00	5540.00	69	4265.00	7482.00	16177.00	18807.00	10620.00	5082.00	15.00	3398.00	93360.00
27	3732.00	3953.00	3	38	2753.00	4367.00	11976.00	63099.00	68310.00	26097.00	972.00	00	189586.00
28	7565.00	7656.00	58	4963.00	4	6965.00	11282.00		23311.00	11676.00	14.00	86.00	. 00
29	4679.00												
30	3631.00	3242.00	4381.00	3218.00	3577.00		21565.00	29372.00	30135.00	11617.00	582.00		126604.00
31	60	6655.00	3611.00	36	2937.00	3574.00	74.00	13539.00	9117.00	3630.00	2661.00	2066.00	61869.00
32	2616.00	2773.00	2	24			10795.00	8.0	57327.00	22221.0	22.00	3702.00	59325.00
33	5236.00												
36	3703.00	4196.00	38	35	3560.00	63	08.	12	2355.00	3535.00	2322.00	2135.00	6751.00
35	2611.00	50	30	30			9689.00	30	70.	15199.00	5163.00	3917.00	126360.00
36	3826.00	3806.00	34	3554.00	3221.00		1815.00	36146.00					
37	39	3301	30	31	3167.00	3687.00	532.00	25962.00	14833.0	18	3632.00	00	. 00
38	29	3232.00	4202.	3388.00	3586.00	4339.00	22625.00	75390.00	00.	39127.00	11559.00	271.00	. 00
39	8563.00							21466.00		6968.00	3838.00	10.00	107303.00
60	4621.00	3859.00	36	32	3239.00	5914.00	18	40634	27166.00	848	6402.00	0	129166.00
61	68	57	4591.00	4	4028.0	65	2.	39377.	37767.00	16268.00	9166.00	6770.00	2.00
42	6178.00	58	62	54	4637.00	4887.00	25789.00	33807.00	66370.00	26557.00	1196.0	90.	. 00
43	56		50		5032.00	6589	42529.00	62960.00	68160.00	69632.00	14262.00	88.00	. 00
46	8690.0	72	55	51	45	493	10661	30630	. 0	2106	\%02	3.	
45	55	5683.00	480	46	4147.00	4863.00	9671.00	2660	36	19819.00	6961.00	5173.00	131865.00
46	64	510	48	48	4335.00	5762.00	29092.00	060	36623.00	\%.	34.00	32.00	169245.00
67	790	66	51		4668.			45030.00	30176.00	18000.00	67.00	5123.00	158923.00
48	620	56	4665	4665.00	39		10	32885.00	50457.00	168	326.00	4623.00	150696.00
49	5888.00	505	48	50	4023		18	37982	26	300.00	8.00	3770.00	130285.00
50	423	461	39	4020	3617	4064.00	76	34063.00	4214	23026.00	78	7000.00	1881.
51	68	709		4960.00	980		27092.00	56752.00	64556.00	26772.00	12091.00	15.00	210501.00
52	80				4988.00		29106.00	86650.00	63730.00	27622.00	11	8070.00	260695.00
53	69	580	61	66	4806		18389.0	522.	6638	296	31.	5589.0	2.0
56	626	548	67	496	448	5256.	17562.00	4038	2794	19826.00	7020.0	4873.00	168769.00
55	5529.00	4887.00	4	4076.00	3560.		\% 2		35779.00	15565.00	93.00	6318.00	H5197.00
56	43	47	6776.00	5808.00			28958.00	72050.	6S070.00	26177.00	9617.00	676.00	238393.00
57				4706.00	6370.00		110	so	5819	22263	8621	5993.00	190586.
58	65	57	55	5083	4612.		12221.00	90	59390.00	218	1028	7328.00	36023.
59	6617.00	6238.00	569	5126.00	4602	509	11866.00	109	2880	956.00	767.00	880.00	12686.00
60	769		4	4372.00	37		16726.00	20889.	2309	93.00	36.00	3671.00	106569.00
61	402		3600.00		3308.00	3817.00	7819.0	16352.00	23012	6966	28.	6765.00	Sa3
62	4	4269.00	35	37	3976	42	21650	2996	6666	18219.00	179.00	5800	152939.
63	691	5477.00	48	4196.00	5075.	5203	311	37660.	48980.	21480.00	183.00	6597.00	161876.00
66	6461.00	6630.00	4997.00	4581.00	4401.00	450	12535.00	3052	6623	22616.00	218	551	
65	5685.00	5229.00	6716.0	7150.00	523	6577.0	26267	64960.00	5916	\$5299.00	21248.00	13367.00	300877.0
56	97	7877.0	604	6198.0	4828.	5546	15408.00	25525.00	17246.00	755	6507.00	3901.	116383.00
67	4591	4738.00	4616.00	4737.00	4009.00	5389.00	9060.0	58621.00	83930.00	37576.00	11305.0	7968.00	236140.00
68	8995.00	7465.00	6234.00	5485.00	4990.00	7165.00	11358.00	16855.00	29887	11617.00	9212	332.00	
69	6969.00	5973.00	4986.00	5169.00	4662.00	5383.00	39887.00	94200.00	60862.00	23465.00	10043.00	7671.00	269210.
70	7942.00	5956.00	53	5308.00	4342.00	5689.00	8853.00	36602.00	50260.00	26160.00	8866.00	7563.00	170658.00
7	7720.00	7890.00	6454.00	6019.00	6053.00	6561.00	16186.00	67210.00	78570.00	36139.00	12812.00	977.0	261569.00
72	10156.00			6827.00	6089.00		13215.00	39171.0	76590.00	20869.0	10238.00	010.0	

Table B. 2
STATION: BIG LOST RIVER AT HOWEUL RANCH NR CHULIY ID (13.1205.00)

WTEAR	OCT	WOV	DEC	JAM	FEE	nar	APR	mar	Jum	Jur	aUG	SEP	ANW
25	2575	.	.	-	.	.	6467	35033	36385	20155	7291	4660	
26	4198	.	-	-	.	.	.	15622	9770	4936	2526	1887	-
27	2125	*	*	-	-	.	2689	17089	49278	19966	6960	4863	.
28	6720	-	-	.	-	-	6992	35560	18206	10676	6589	2851	
29	2895	-	-	12716	21080	8723	3686	2727	-
30	2309	8875	21005	28728	10508	6425	3958	.
31	5115	-	-	*	.	.	.	13738	11752	3222	2215	1618	.
32	1966	-	-	-	-	-	2699	23355	42635	17617	5164	3376	-
33	3358	2462	.	-	-	.	2603	9231	36794	7555	3019	1880	
36	1799	.	-	-	-	-	6687	11321	6619	2897	1679	1630	
35	1915	1867	*	.	.	.	3164	17574	64882	16567	4678	2667	
36	2559	2671	-	-	-	.	7911	22261	20426	5875	6621	2566	.
37	2169	.	-	.	.	.	1869	17080	12372	6106	2076	1765	
38	1919	-	-	-	*	*	7681	36399	62820	32032	9258	4992	
39	6757	.	-	18855	12279	7281	2950	2406	
40	2657	-	-	-	-	.	.	28569	25078	6962	2546	4861	
41	5156	,	-	-	-	*	*	26156	28365	12788	7087	4261	
42	4014	3272	11864	18023	34829	22819	5732	3215	
43	3239	3106	-	-	-	*	14563	33589	66582	36263	10308	6756	
44	4674	3667	-	*	-	-	2901	23363	61638	31069	3658	6759	
45	6125	3505	-	-	-		3272	16472	27206	19635	6549	4209	
46	3736	3070	-	-	-	*	12035	26570	29114	12876	5686	6463	
47	5607	3636	-	.	*	-	6801	33696	24769	16502	5361	3631	
48	3956	2706	-	-	-	.	5279	23678	63161	15668	5121	3533	
49	3818	3078	2805	2670	2056	2190	7292	27802	21663	8463	3702	2623	87922
50	2897	2426	1826	1761	1625	2100	5066	17768	30777	18622	5881	4221	94748
51	3587	3371	3560	3100	2670	2190	10280	32669	31946	21466	10481	6363	129661
52	4426	3239	3055	2635	2265	2615	9033	42195	46976	21562	8957	3928	148666
53	3306	2673	2720	2835	2300	2488	5146	13473	40653	26767	6325	3507	112171
56	3214	2826	2211	2003	2006	2227	6163	29708	26352	16636	4776	2737	98895
55	2528	2169	1760	1642	1454	1652	1913	11582	31621	15059	4857	2522	78559
56	2403	1952	2823	1990	1602	2212	9323	63554	53520	19566	6667	3626	148816
57	3321	2671	2188	1965	1825	2220	2688	27165	56063	21620	5868	3720	129074
58	6167	3035	2566	2469	2192	2651	3464	52702	62600	17296	7338	6109	166167
59	3402	2853	2308	2068	1822	2015	3665	8637	26788	8123	3552	4596	69827
60	3860	2697	2171	2271	2099	2534	5321	12631	23089	6095	3033	2158	67939
61	2086	1946	1809	1583	1370	1459	2226	13227	26286	4906	3059	3933	61886
62	3055	2435	1782	1683	2127	2378	9322	16533	61116	15890	7196	3167	106664
63	3890	2917	2619	2035	2285	1987	2776	27695	46663	20060	7087	5221	123013
66	4031	3568	2945	2790	2320	2170	4213	21972	38285	21628	6002	3667	113571
65	3055	2529	2906	3616	2474	2608	6936	30733	70640	45609	18170	7380	196256
66	5262	4019	3230	3177	2788	2893	5538	19617	14787	6580	3386	2663	73960
67	2485	2227	2168	2232	2531	2401	2316	37683	69560	40661	9710	5471	179625
68	6226	3857	2893	2653	2199	2709	4699	16989	40272	16271	9120	6289	111977
69	5029	3736	3166	3138	2476	3078	13431	58282	45363	26186	7893	4751	176525
70	4239	3261	2968	2725	3103	2820	3018	26308	52592	23240	6762	4868	135886
71	4025	3196	2818	3110	2359	2653	3621	30516	55606	29126	9998	5168	151792
72	5601	4402	3106	3162	2233	3260	6673	22365	67800	13675	6236	4691	120582
73	4785	3373	2792	2302	2151	2497	3355	23951	26850	10965	5027	4073	92121
74	3073	3466	2600	3931	2270	3063	10536	36510	63100	22270	7867	4086	160732
75	3628	3004	3002	3097	2526	1965	2075	16775	56150	45096	10155	5156	150625
76	4888	3785	3262	2699	2277	2601	6635	36883	30735	15063	8758	8329	123895
77	5108	3676	2615	2286	1908	1801	3506	6185	23789	8236	6190	2781	65879
78	2761	1821	2271	2573	1891	2532	4423	17535	62080	25559	7189	9939	120574
79	5175	3980	3261	2749	2570	3079	4298	26017	20657	7668	5904	3309	88647
80	2759	2651	2176	2184	1916	1885	6206	30026	34946	26300	7780	6062	125285
81	4543	3798	3300	2737	2236	2588	8771	28302	40016	15348	5742	3671	121068
82	3859	3190	3068	2616	2089	2527	5663	32178	51855	36566	12037	6120	161764
83	6016	4183	3461	2655	1799	1882	3369	32466	66360	41148	16375	6753	186663
86	6927	11196	8612	7585	6317	6003	7572	35292	67556	31981	16343	8100	191483
85	5960	5036	4555	3610	27%	3802	8365	20219	18179	7955	4516	11326	-

Table B. 3

STATION: GOOSE CREEK AB TRAPPER CREEK NR OKIEY ID (13.0825.00)

tea	${ }^{\text {ct }}$	MOV	DEC	JAM	FEB	Mel	APE	ur	Ju1	Nr	aug	SEP	AMM
26-25	696.00	765.00	899.00	961.00	616.00	1981.00	6718.00	4879.00	1976.00	831.00	483.00	666.00	9671
25-26	899.00	1002.00	806.00	13.00	868.00	1925.00	2216.00	995.00	315.60	422.30	296.30	59.70	715.9
26-27	593.00	822.00	635.00	682.00	2065.00	1530.00	2161.00	4696.00	2076.00	485.00	331.20	17.70	. 9
27-28	665.00	862.00	480.00	930.00	1015.00	2527.00	2232.00	4375.00	1077.00	325.00	207.00	260.80	16935.8
28-29	529.00	693.00	589.00	558.00	530.00	1318.00	2822.00	5165.00	2190.00	485.10	347.20	398.70	5625
29-30	543.00	622.00	763.00	522.00	1076.00	1147.00	1332.00	1579.00	551.90	205.00	366.40	306.10	. 40
30-31	590.00	608.00	565.00	565.00	690.00	1635.00	1421.00	720.00	295.50	58.20	96.80	152.60	7177.10
31-32	363.60	455.00	465.00	620.00	670.00	1818.00	2666.00	4988.00	2539.00	665.00	332.90	296.00	5656.5
32-33	476.00	660.00	490.00	558.00	500.00	1351.00	1516.00	3055.00	1936.00	396.20	183.30	185.10	302.6
$33-36$	359.40	552.00	620.00	723.00	759.00	1039.00	777.20	613.80	231.10	28.30	10.10	75.90	5588.90
36-35	299.00	465.00	496.00	558.00	560.00	968.00	1672.00	2254.00	892.00	262.50	6.10	0.00	8232.60
35.36	153.90	428.00	487.00	558.00	580.00	979.00	3462.00	4037.00	1313.20	265.60	500.20	233.10	2997
36-37	442.30	577.00	527.00	696.00	560.00	1399.00	1800.00	3223.00	1071.70	356.50	105.60	9.90	10636
37.38	267.20	575.00	798.00	775.00	875.00	1336.00	2866.00	5098.00	1652.00	686.00	190.20	265.50	161.9
38-39	388.20	662.00	746.00	713.00	616.00	4735.00	3336.00	1683.00	285.60	100.00	56.40	6.70	3163.7
39.40	299.40	463.00	562.00	775.00	750.00	1155.00	1895.00	1011.90	268.40	19.60	0.00	27.10	7188.60
40-61	213.30	378.00	446.00	558.00	801.00	1123.00	1853.00	2126.00	953.80	392.00	420.40	306.30	9570.80
$41-62$	497.00	737.00	813.00	713.00	672.00	2673.00	5822.00	7640.00	3646.00	686.00	209.10	170.50	6078.6
42.43	360.30	710.00	1005.00	2660.00	3115.00	2140.00	5333.00	3546.00	2868.00	615.00	266.20	152.60	2526.9
43.46	395.60	665.00	659.00	572.00	665.00	1630.00	2562.00	4361.00	2869.00	670.60	276.40	131.50	15195.1
46.65	338.40	558.00	433.00	677.00	1825.00	1567.00	2206.00	5576.00	2701.00	675.00	370.50	332.10	17237
45.46	528.00	835.00	1069.00	996.00	1096.00	2509.00	5621.00	5362.00	1558.00	479.30	273.60	335.70	20620.6
46.67	665.00	825.00	866.00	571.00	1365.00	1673.00	2025.00	1730.00	739.00	185.50	121.70	93.60	12880.6
47.68	350.50	586.00	731.00	636.00	1146.00	1222.00	2137.00	3577.00	1107.00	306.10	163.10	116.90	12054.6
48-69	280.90	513.00	574.00	497.00	645.00	2016.00	4900.00	6716.00	1875.00	327.30	195.70	185.80	18521.7
49-50	568.00	668.00	92.00	569.00	796.00	1619.00	3006.00	4766.00	2122.00	500.00	379.60	229.50	15509.1
50.51	509.00	721.00	965.00	767.00	4019.00	2695.00	4978.00	6696.00	1859.00	613.40	539.00	268.80	26630.2
51-52	550.00	615.00	568.00	566.00	26.00	1361.00	5501.00	9223.00	2589.00	872.00	685.00	398.00	23552
52-53	559.00	631.00	696.00	1173.00	926.00	1340.00	2505.00	4006.00	3208.00	676.00	651.60	327.60	16691.2
53-56	518.00	9.00	39.00	696.00	926.00	1285.00	1596.00	857.50	336.00	132.50	83.00	162.40	397.40
56.55	439.00	583.00	691.50	512.00	556.00	1050.00	1190.00	1957.00	782.00	637.30	286.40	173.80	8658.00
55-56	426.00	625.00	997.00	1370.00	756.00	3368.00	3700.00	4050.00	925.90	226.50	163.20	120.60	16726.2
56-57	422.50	589.00	836.30	559.00	1782.00	1791.00	2283.00	6606.00	2310.00	398.70	256.40	211.10	18039
57-58	490.30	678.00	749.00	719.00	3232.00	1777.00	3300.00	7110.00	1873.00	692.00	390.20	257.50	21068
58.59	475.00	675.00	827.00	853.00	16.00	1134.00	1759.00	1073.00	693.60	260.30	133.90	278.70	8856.50
59-60	626.00	565.00	467.00	502.00	606.00	1778.00	2235.00	1566.00	350.80	175.50	135.70	173.50	9156.50
60.61	413.90	633.00	546.00	597.00	996.00	1261.00	1433.00	686.00	630.40	150.10	359.30	663.50	969.20
61.62	521.00	626.00	688.00	2128.00	6749.00	3785.00	3862.00	2957.00	1778.00	602.00	373.10	230.80	24079.9
62-63	429.00	596.00	583.00	353.60	1086.00	1098.00	1285.00	2507.00	2296.00	470.80	202.50	361.80	11266.7
63 -66	400.00	687.00	440.70	458.00	555.00	1386.00	2486.00	4685.00	3831.00	877.00	355.50	316.00	16631.2
86.65	460.40	672.00	1403.00	2635.00	2026.00	1387.00	3881.00	5673.00	2290.00	700.00	596.00	507.00	22006.6
65-66	633.00	742.60	632.20	687.00	736.00	1736.00	2076.00	811.90	256.00	61.70	42.32	61.80	8654.52
66-67	329.20	525.00	425.50	678.00	779.00	1051.00	1190.00	2348.00	2269.00	761.00	299.70	238.10	10873.5
67-68	426.60	457.00	366.60	471.00	1522.00	1507.00	1468.00	1052.00	464.90	163.80	669.90	396.00	8726.80
68-69	500.00	763.00	69.00	997.00	900.00	2106.00	4878.00	3122.00	833.00	435.00	213.80	212.60	15687.6
69-70	462.90	533.00	592.00	2686.00	1251.00	1120.00	1672.00	6928.00	3506.00	931.00	658.20	620.00	20338.1
70.71	609.00	813.00	942.00	5043.00	1969.00	2636.00	4801.00	9386.00	3606.00	861.00	556.00	609.00	31605
$71 \cdot 72$	732.00	966.00	992.00	1612.00	1728.0	4165.00	4766.00	7962.00	3579.00	555.20	461.00	553.00	27807.2
$72 \cdot 73$	966.00	1161.00	1172.00	1059.00	1301.00	2116.00	4151.00	7003.00	1560.00	570.80	513.00	585.00	22137.8
73.74	834.00	1087.00	891.00	780.00	1368.00	2961.00	5385.00	7080.00	1929.00	566.00	636.20	331.50	23586.7
74-73	668.00	869.00	704.00	902.50	1677.00	3096.00	2092.00	9628.00	9949.00	2087.00	966.00	653.00	32891.5
75.76	1052.00	1133.00	1308.00	915.00	1885.00	2972.00	4252.00	7283.00	1505.00	477.00	699.00	663.00	26146
76-77	889.00	966.00	863.00	847.00	902.00	1292.00	1327.00	1273.00	774.40	286.70	319.40	381.10	10098.6
$77 \cdot 78$	563.00	703.00	932.00	1061.00	1012.00	1967.00	4055.00	5063.00	1526.00	368.20	326.60	613.00	18147.8
78-79	624.00	700.00	722.00	693.00	1989.00	3976.00	2717.00	5066.00	1667.00	366.50	476.70	602.00	19155.2
79-80	532.00	716.00	772.00	2761.00	2174.00	1389.00	3263.00	5718.00	3927.00	976.00	540.00	566.00	23310
80-81	698.00	867.00	981.00	857.00	901.00	1242.00	1670.00	1138.00	278.60	44.60	51.00	72.10	8780.30
82.83	860.00	955.00	920.00	897.00	1301.00	2329.00	3336.00	8186.00	4868.00	1230.00	993.00	671.00	26522
83 -86	903.00	1003.00	1165.00	1264.00	1195.00	2927.00	5533.00	19379	9657.00	2614.00	1661.00	1186.00	48267
86.85	1616.00	1527.00	1086.00	1018.00	1057.00	2619.00	6625.00	3641.00	967.00	695.00	552.00	657.00	19658

Table B. 4
STATION: CAMAS CREEK NR BLAINE ID (13.1415.00)

tear	OCT	NOV	08C	Jan	FE8	we	APR	nar	Jm	rr	aug	SEp	AnM
26.25	-	-		-		-			3225.00	549.00	186.00	167.10	
25-26						-	5967.00	1137.00	167.40	86.60	66.50	82.90	
26-27							56009	26631	8558.00	1226.00	177.90	177.40	
27-28	-	-	.	-		-	9170.00	5596.00	1020.00	270.20	122.10	98.00	
28-29				-			15617	5860.00	636.70	99.50	76.90	87.80	
29.30							6663.00	5301.00	1359.20	123.00	70.10	77.90	
30-31	-	-	.	-			4729.00	963.80	97.20	55.80	54.50	65.40	
31.32				-		-	30250	13658	8729.00	695.20	97.90	85.00	
32-33								13362	3609.00	192.40	69.60	85.10	
33-36	.	-		-			1969.00	373.60	89.60	61.80	55.80	73.20	
36-35							20777	4771.00	2250.10	106.70	61.70	55.20	
35-36	77.80						46638	12923	3311.20	122.60	96.10	74.60	
36-37	107.50	.					21975	5618.00	848.60	99.80	56.60	58.90	
37-38	94.40	130.60					73906	27287	6637.00	1962.00	166.60	166.60	
38.39	366.90						14990	3126.00	367.50	122.50	70.30	61.80	
39-60			-				17696	5665.00	868.40	72.10	56.00	291.90	
40-41	-	-				7086.00	15155	6839.00	2813.00	313.10	148.10	159.90	
41-42						-		11176	6403.00	415.80	96.00	88.90	
42-43							108560	20642	9315.00	2295.00	265.40	226.50	
63-46	615.60	672.00					13863	6109.00	6176.00	583.60	136.70	120.80	
66-65	176.80	363.40	276.00	705.00	1661.00	6829.00	21292	6293.00	3598.00	511.90	125.00	113.90	41925
45-66	195.80	320.80	374.00	392.00	369.00	2475.00	64735	13213	3350.00	388.90	128.90	133.80	66056.2
46.47	432.70	702.00	1756.00	620.00	5616.00	14289	7158.00	4570.00	1813.00	233.80	100.70	100.10	37387.3
47.48	169.20	286.00	336.40	316.00	1552.00	2806.00	14875	6736.00	2652.00	222.10	91.30	105.70	30123.7
48.69	139.00	295.90	310.00	310.00	358.00	1827.00	36563	9255.00	2066.00	199.40	91.00	95.90	51688.2
49.50	149.20	275.60	256.30	364.00	406.00	2236.00	52032	19078	6318.00	1214.80	299.70	253.70	82881.3
50.51	380.20	865.00	1130.00	775.00	1325.00	2366.00	56963	19893	4866.00	901.80	459.80	155.70	90120.5
51.52	425.40	689.00	881.00	775.00	702.00	875.00	99367	63597	9166.00	2641.00	502.00	312.60	159933
52.53	400.00	746.00	776.00	1313.00	1971.00	11716	28167	9567.00	6295.00	811.90	207.10	138.00	62106
53.56	229.70	388.60	665.00	596.00	903.00	5191.00	24905	7307.00	1676.00	662.20	133.90	111.60	62765
56-55	181.00	330.40	351.30	411.00	383.00	717.00	6285.00	7063.00	2206.00	322.70	104.80	91.00	18626
55.56	141.50	252.30	2058.20	3076.00	1938.00	5700.00	65176	18306	5626.00	488.50	168.90	116.50	103026
56.57	294.80	441.00	1760.00	558.00	6736.00	27548	22826	17283	6056.00	561.20	151.80	123.30	86315.1
57-58	245.10	336.00	465.00	618.00	918.00	2899.00	40878	26336	7666.00	869.80	159.90	202.70	81529.5
58.59	312.70	402.50	848.00	747.00	72.00	2905.00	15358	4262.00	603.00	168.50	96.20	321.00	26776.5
59.00	285.30	307.40	396.00	467.00	875.00	1370.00	34326	7328.00	1109.90	169.70	85.20	101.20	47018.7
60.61	139.90	232.50	300.80	290.30	1692.00	5568.00	6719.00	881.00	376.10	56.50	59.00	92.80	16187.9
61.62	142.90	163.90	269.20	634.00	2664.00	1667.00	48677	13963	7328.00	771.00	167.40	97.60	76125
62-63	265.50	389.30	680.00	509.00	31283	2623.00	4679.00	7766.00	6720.00	980.70	107.60	163.50	55746.6
63.66	256.50	625.00	589.00	527.00	580.00	856.00	27869	9858.00	4873.00	683.50	146.70	103.90	46757.6
06.65	238.00	385.00	13990	7640.00	8377.00	18172	56852	25534	13012	3937.00	1226.00	957.00	150128
65-66	1251.00	1535.00	1275.00	1288.00	1132.00	8066.00	23562	5011.00	1130.00	176.80	98.30	101.60	44626.7
56.67	173.10	398.10	408.00	674.00	792.00	3352.00	14826	16917	10469	2027.70	172.70	204.50	48396.1
67-68	338.00	538.00	499.00	569.00	1667.00	7907.00	3667.00	1655.00	2722.00	233.50	152.70	191.70	19739.9
68-69	255.90	467.90	459.00	916.00	1033.00	1486.00	83176	23195	6306.00	1696.70	180.50	226.00	119198
69-70	403.70	602.00	674.00	796.00	1063.00	7639.00	30808	16652	6785.00	1857.00	218.60	261.60	65717.7
70.71	477.10	1560.00	1769.00	1861.00	6389.00	16196	82010	32282	11911	2826.00	599.00	367.90	158226
71.72	846.00	1328.00	1223.00	1160.00	1251.00	43370	26868	15668	7906.00	1065.40	336.00	297.80	99095.2
72-73	703.00	1052.00	926.00	1017.00	1020.00	2697.00	22473	5906.00	1012.00	228.90	138.10	132.40	37105.6
73.74	207.00	969.00	959.00	1003.00	1159.00	2996	40739	15388	5066.00	586.60	169.10	128.00	96277.5
76.75	272.60	580.00	620.00	617.00	776.00	1668.00	23006	65552	8573.00	2876.00	262.80	285.40	85100.6
75.76	406.40	789.00	1163.00	865.00	925.00	1615.00	40671	10568	1809.00	267.80	216.90	279.10	59333.2
76-77	387.00	461.00	678.00	473.00	623.00	959.00	569.40	422.10	170.20	120.20	79.10	76.40	4818.40
77.78	96.50	200.30	596.90	521.00	660.00	8629.00	42615	15053	5660.00	1762.90	69.70	220.70	76065
78-79	253.10	331.80	422.00	363.60	560.00	8161.00	6212.00	3873.00	368.20	111.90	79.00	76.80	20792.6
79.80	178.20	257.70	273.00	439.80	1096.60	5077.00	21376	14836	6560.00	1631.90	139.10	156.80	51813.9
80.81 81.82	325.20 137.30	467.00 371.20	787.00 811.00	836.00 650.00	1615.00 1190.00	5806.00 7823.00	5262.00 62623	6226.00 31912	2101.00 10919	100.60 2603.00	65.90 218.00	$\begin{array}{r} 62.30 \\ 382.00 \end{array}$	$\begin{array}{r} 21607.8 \\ 119690 \end{array}$
82 -83	613.00	1039.00	968.00	1175.00	1298.00	23302	62200	48126	18662	5102.00	858.00	695.00	163816
83.86	1230.00	2480.00	1618.00	2032.00	2525.00	5516.00	65561	32069	12798	2618.00	639.00	480.00	129336
$86-85$	880.00	1595.00	1167.00	1116.00	1057.00	1572.00	36725	8198	1603	190.2	157.9	322.60	52561.7

APPENDIX C
 PARAMETERS FOR SIMPLE
 LINEAR REGRESSION

Table C. 1

Statistics for Simple Linear Regression

 Between 13.1395.10 \& 13.1395.00| Period | α | β | R-square |
| :--- | ---: | :---: | :---: |
| | | | |
| October | 1066.672420 | 0.904578 | 0.9910 |
| November | 1148.160003 | 0.873004 | 0.9871 |
| December | 1150.033244 | 0.844915 | 0.9575 |
| January | 1297.324493 | 0.806571 | 0.9432 |
| Feburary | 1288.587721 | 0.777823 | 0.9467 |
| March | 887.802124 | 0.903382 | 0.9740 |
| April | 542.092765 | 0.997925 | 0.9987 |
| May | 656.222229 | 0.996444 | 0.9996 |
| June | 345.010716 | 1.005019 | 0.9998 |
| July | 577.370228 | 0.998423 | 0.9996 |
| August | 458.899556 | 0.996036 | 0.9971 |
| September | 586.534051 | 0.966631 | 0.9955 |

APPENDIX D

AUGMENTED STREAMFLOW LISTINGS AND STATISTICS

(All units are in cfs-days)

Table D. 1
STATION: COMBINATION BIG WOOD R AND SLOUGH AT HAILEY ID (13.1395.10)

ear	OCT	NOV	DEC	JAN	FEB	MuR	APR	Mar	JUN	JUL	AUG	SEP	ANW
25	6150.00	45.00	3633.00	3660.0	3656.00	4839.00	23300.00	66960.00	46480.00	26226.00	9979.00	7383.00	202011
26	7683.00	360.00	5540.00	4931.00	4245.00	7682.00	16177.00	18807.00	10420.00	082.00	3715.00	3398.00	3360
27	3732.00	3953.00	3639.00	3817.00	2753.00	4367.00	11976.00	43	68310.00	26097.00	. 00	. 0	4
28	7565.00	656.00	5802.00	4963.	4361.00	6965.00	11282.00	51737.00	23311.00	11474.00	216.00	36.00	144546
29	4679.00	79	3763	3495.00	3053.00	3948.00	5737.00	16482.00	19363.00	8639.00	4399.00	3835.00	2152
30	3631.00	42.00	1.0	3218.	3577.00	5669.00	21565.00	29372.0	30135.00	11617.00	5592.00	605.00	66
31	6070.00	4655.00	3611.00	368	2937.00	357	576	13539.00	00	00	. 00	. 00	1869
32	2616.00	73	29	2461	2767.00	3335	10795.00	39258	57327.00	22221.00	. 00	00	159325
33	5236.00	4731	4216.00	3967	3657.00	3692.00	7640.00	20869.00	61682.00	905.00	6333.00	3680.00	113408
36	3703.00	6194.00	3839.00	3521.0	3560.00	6353.00	11608.00	12906.00	7055.00	3535.00	322.00	2135.00	31
35	2611.00	56	306	3090.00	3035	361	9689.00	30	63750.00	15199.00	163.00	3917.00	126360
36	3826.00	3806.00	3606.00	3556	3221.00	3463	19515.00	36146.00	27358.00	051.00	5062.00	3890.00	121296
37	3970.00	3301.00	3046.0	3121.00	3167.00	37.00	332.00	25962.00	14833.00	80.00	3632.00	07.00	2238
38	2952.00	3232	42	338	3586.00	433	.00	75390.00	100.00	39127.00	11559.00	1.00	263569
39	8863.00	303.	6304.00	5590.	4512	8928.00	17818.00	21464	11905.00	968.00	838.00	3810.00	303
40	4421.00	3859.00	3655.00	3233.00	3239.00	5916.00	18603.00	40634.00	27166.00	8489.00	4402.00	5529.00	129164
41	6827.00	5761.00	4591.00	4366.00	4028.00	6527.00	026.00	39377.00	. 00	268.00	46.00	770.00	12
42	6178.00	5862.00	6290.	5616.00	4637.00	48	25789.00	33	46	26557.00	196.00	5590.00	79
43	5697.00	5798.00	5060.00	4948.00	5032.0	6589.	42529.00	62960.00	68160.00	49632.00	14262.00	188.00	278635
44	8490.00	7262.00	5526.00	5193.0	4591.00	6939.00	10661.00	30630.00	33998.00	21065.00	7409.00	6793.00	166555
45	5549.00	5683.00	4801.00	4673.00	6147.00	4863.00	9671.00	26681.0	36064.00	19819.00	6961.00	5173.00	131845
46	4468.00	5108.00	4648.00	483	4335.00	57	29092.00	46060.00	36623.00	15170.00	. 00	32.00	2265
47	7909.00	6464.00	5164.00	458	4668.00	85	19767.00	65030.00	30	16000.00	. 00	. 00	159923
48	6268.00	5616.00	4665.00	4465.	3908.0	4035	10617.00	32885	50657.00	16853.00	6324.00	6623.00	150496
49	5888.00	5054.00	4853.00	5010.	4023.00	4708.00	18336.00	37982.00	26785.00	9300.00	578.00	3770.00	130285
50	4235.00	4617.00	3966.00	4023.	3617.00	4066.00	12976.00	36063.00	42140.00	23024.00	8178.00	7000.00	151881
51	6864.00	7094.00	5905.00	4960.0	4980.00	5462.00	27952.00	56752.00	46556.00	2.00	12091.00	7115.00	210501
52	8061.00	6187.00	5709.00	57	4988.00	52	6.0	86650.00	637	2.00	11358.00	0.00	260695
53	6923	5809.00	6177.00	64	4804.00	6561.00	. 00	26522.00	4639	7.00	331.00	9.00	592
54	6261.00	5486.00	4731.00	49	6486.00	5256.00	17362.00	38	27	.00	7020.00	. 00	99
55	5529.00	4887.00	419	4076.00	3560.00	37	6969.00	22167.00	. 00	15565.00	493.00	. 00	115197
56	4346.00	4779.00	6776.00	5808.00	4217.00	5853.00	28958.00	T20	65070.00	26177.00	617.00	6746.00	238393
57	755	193.00	5421.0	4706.00	6370.00	5393.00	11061.00	50838.0	58190.00	22243.00	8621.00	5993.00	190586
58	6537.00	5776.00	5579.00	5083.00	4612.00	5093.00	12221.00	90720.00	59390.00	21997.00	10287.00	. 00	34623
59	6617.00	6238.00	5691.00	5126.00	4602.00	5091	11866.00	16	28886	9954.00	767.00	6880.0	112486
60	7491.00	5549.00	4499.00	43	3723.00	57	16726.00	206	2309	. 0	3836.00	3671.00	106569
61	4026	3827.00	3600.	3775.	3308.00	3817.00	7879.00	16352.00	23012.00	6966.00	528.00	4765.00	85831
62	4838.00	4269.00	3590.00	3713.00	3976.00	4298.00	21650.00	29966.00	66661.00	18219.00	179.00	5800.00	152939
63	6914.00	5477.00	4820.00	4196.00	5075.00	5203.00	11.0	37640.00	48980.00	21480.00	83.00	6597.00	161876
66	646	6430.00	49	4581.	4401.00	6503.	12535.00	3052	66230.00	22616.00	3218	5514.00	54811
65	5685.00	5229.00	6716.0	7150.00	5239.0	657	26267.00	66960.00	89140.00	55299.00	21248.00	13367.00	306877
66	9746.00	7877.00	6048.00	6198.00	4828.00	5566.00	15608.00	25525.00	17264.00	7559.00	6507.00	3901.00	116383
67	4591.00	4738.00	4416.00	4757.00	4009.00	5389.00	9060.00	58421.00	83930.00	37376.00	11305.00	7968.00	40
68	8995.00	7465.00	6234.00	5485.00	4990.00	7165.00	11358.00	16855.00	29887.00	11617.00	212.00	33	5
69	6949.00	5973.00	4986.00	5169.00	4662.00	5383.00	39887.00	96200.00	60842.00	23465.00	10043.00	7671.00	2692
70	794	5956.00	5377.00	5308.	362.00	5689.00	8853.00	36402.00	50260.00	26160.00	8856.00	7543.00	170658
71	7720.00	7890.00	6654.00	6019.00	6053.00	6561.00	16184.00	67210.00	78570.00	36139.00	12812.00	9977.0	261569
72	10156.00	7899.00	6235.00	6627.00	6089.00	10385.00	13215.00	39171.00	76590.00	20869.00	10258.00	010	215694
73	8575.00	6886.00	5089.00	5073.00	4604.00	4978.00	9965.00	26786.00	22679.00	10605.00	5639.0	6886.00	115
74	-6010.28	-6820.46	-5739.06	-6108.3	. 5158.13	-8997	-33506.87	-69091.5	-96055.35	- 30369.39	- 12391.63	-7906.38	298154
75 76	$\begin{aligned} & -7938.55 \\ & -8140.92 \end{aligned}$	$\begin{aligned} & -7011.8 \\ & -7168.3 \end{aligned}$	-5664.88	$\begin{aligned} & -5533.86 \\ & -5701.01 \end{aligned}$	-6743.9 -5267.3	-5654.02 .5770 .25	-6854.19 .15087 .68	.36155 .35 -66322.41	.67545 .67 -33758.23	47571.76 16364.10	12600.81 -11120.96	.7933 .37 .9539 .45	- 213008 .170562
77	-7923.47	. 6107.50	-5346.28	-5120.43	-4367.78	-4897.15	.5379.55	-7333.32	-18006.78	. 8594.22	-5399.71	-4837.99	. 83292
78	- 5165.32	-4604.08	. 4643.38	-4513.59	-4090.43	-6346.46	-19098.34	-61236.07	-54000.18	-30064.70	-11082.96	-10564.87	- 195350
79	-7203.08	-6019.22	. 4986.62	-4805.35	-4192.72	-5164.08	-8865.90	-28121.71	-20469.58	-8873.64	. 6488.50	-4757.55	1099:3
80	- 5303.95	-4796.99	-4576.83	-4912.05	-4678.85	-5169.93	-19730.70	-53929.8	-50420.17	- 33029.52	- 11652.93	. 9567.12	207563
81	-8381. 32	-6827.05	- 6104.47	-5818.46	-5061.64	-7023.70	-17668.16	-37822.64	- 41263.90	. 16581.37	-6876.95	- 5052.00	162i91
82	-6795.34	-6288.24	-5391.66	-5168.9	-4888.13	7061.85	15615.81	-76780.02	87248.77	. 64821.85	-15986.58	-10110.60	283935
83	-9312.85	-7619.31	-6575.48	- 6210.31	- 5316.14	8116.26	14808.50	. 67566.52	-98468. 14	-8130.97	21177.28	2672.75	305072
84	-13048.78	-12423.81	-9637.41	-8533.27	-7509.15	-8969.02	19743.43	-56876.18	. 60210.96	- 35020.37	-16948.61	0125.68	255046
85	-9314.38	-8213.21	-739	-713	71	731	2625	32610.	23522	11267.	. 7631.	11988.15	156313

Table D. 2
STATION: BIG LOST RIVER AT HOWEUL RANCH NR CHITIY ID (13.1205.00)

EAR	OCT	WOV	OEC	JAN	FEs	Mr	APR	mar	JUM	Jul	aUg	SEP	ANM
25	2575	-2005.58	-1768.32	-1743.96	-1557.81	-1877.46	6667.00	35033	36385	20155	729	4660	-119519.13
26	4198	-3468. 12	-3063.66	-2774.35	-2131.86	-2903.15	-6281.21	15422	9770	4936	2526	1887	. 59361.31
27	2125	-2595.73	-2378.42	-2329.69	-1997.46	-2305.50	2689.00	17089	49278	19966	6960	4843	-114556.78
28	4720	-3902.47	-2885.19	-2538.33	-1961.37	-2667.61	4992.00	35560	18206	10676	4589	2861	.95518.97
29	2895	-2329.53	-1713.21	-1576.82	-1319.89	-1578.26	-1526.36	12716	21080	8723	3666	2727	-61865.55
30	2309	-2211.28	-2424.99	-1928.57	-1796.96	-2337.67	8875.00	21005	28728	10508	6425	3958	-92505.45
31	5115	-3219.20	-2527.90	-2614.68	-2012.80	-2186.65	-2739.75	13738	11752	3222	2215	1618	-52778.98
32	1964	-1937.93	-1842.10	-1571.26	-1637.90	-1671.61	2699.00	23355	42635	17617	5146	3376	-105450.78
33	3358	2462.00	-2542.46	-2355.97	-2016.82	-2030.20	2603.00	9231	36796	7355	3019	1880	-73865.45
36	1799	-3135.02	-2744.19	-2485.65	-2281.88	-2896.73	6487.00	11321	5619	2897	1679	1630	. 65775.49
35	1915	1867.00	-2569.20	-2396.66	-2272.53	-2310.30	3166.00	17574	44882	16567	4478	2467	-102440.49
36	2559	2671.00	-2522.16	-2636.87	-2179.10	-2143.26	7911.00	22261	20426	5875	4621	2566	-77767.37
37	2169	-2771.67	-2466.69	-2305.23	-2265.48	-2314.36	1869.00	17080	12372	6106	2076	1765	-55520.63
38	1919	-2112.95	-2377.82	-2002.50	-1991.11	-2166.73	7681.00	36399	62820	32032	9258	4992	-165730.13
39	6757	-3861.80	-3140.93	-2862.50	-2076.02	-3002.11	-6592.87	18855	12279	7281	2950	2606	-72022.23
40	2657	-2449.66	-2216.07	-1972.60	-1930.27	-2516.20	- 6681.46	28549	25078	6942	2546	4861	-88379.06
41	5156	-3212.73	-2590. 82	-2632.46	-2165.50	-2630.28	-5513.01	26156	28365	12788	7087	6261	-102337.80
42	4014	3272.00	-2985.91	-2658.97	-2155.66	-2198.31	11866.00	18023	34829	22819	5732	3215	-113766.83
43	3239	3106.00	-2368.57	-2317.90	-2023.70	-2346.83	16563.00	33589	44582	36243	10308	4756	-159619.00
46	4474	3667.00	-2538.23	-2617.76	-1899.25	-1987.65	2901.00	23363	61438	31069	8658	4759	-128971.87
65	4125	3505.00	-2602.61	-2505.76	-2132.77	-2236.78	3272.00	16472	27204	19635	6569	4209	-94266.70
46	3736	3070.00	-2805.55	-2777.16	-2628.28	-2681.59	12035.00	26570	29114	12876	5686	4663	-108018.56
47	5607	3636.00	- 3015.49	-2709.75	-2627.79	. 3179.17	6801.00	33496	26769	14502	5361	3631	-108713.20
48	3956	2706.00	-2218.93	-2085.36	-1705.40	-1716.66	5279.00	23678	43161	15668	5121	3533	-110826.33
49	3818	3078.00	2805.00	2670.00	2056.00	2190.00	7292.00	27802	21643	8463	3702	2623	87922.00
50	2897	2426.00	1826.00	1761.00	1625.00	2100.00	5046.00	17768	3077	18622	5881	4221	96748.00
51	3587	3371.00	3560.00	3100.00	2670.00	2190.00	10280.00	32669	31966	21466	10481	4363	129661.00
52	4626	3239.00	3055.00	2635.00	2265.00	2615.00	9033.00	42195	46976	21542	8957	3928	168666.00
53	3306	2673.00	2720.00	2835.00	2300.00	2488.00	5146.00	13673	40653	26747	6325	3507	112171.00
54	3214	2826.00	2211.00	2063.00	2006.00	2227.00	6143.00	29708	26352	16634	6776	2737	98895.00
55	2528	2169.00	1760.00	1642.00	1656.00	1652.00	1913.00	11582	31621	15059	4857	2522	78559.00
56	2403	1952.00	2823.00	1990.00	1602.00	2212.00	9323.00	43556	53520	19546	6267	3626	148816.00
57	3321	2671.00	2188.00	1945.00	1825.00	2220.00	2688.00	27145	54063	21620	5868	3720	129074.00
58	6167	3035.00	2566.00	2469.00	2192.00	2651.00	3466.00	52702	42600	17294	7338	4109	146167.00
59	3402	2853.00	2308.00	2068.00	1822.00	2015.00	3665.00	8637	26788	8123	3552	4596	69827.00
60	3860	2697.00	2171.00	2271.00	2099.00	2536.00	5321.00	12631	23089	6095	3033	2158	67939.00
61	2086	1946.00	1809.00	1583.00	1370.00	1459.00	2226.00	13227	26286	4906	3059	3933	61886.00
62	3055	2435.00	1782.00	1683.00	2127.00	2378.00	9322.00	16533	41116	15890	7196	3167	100666.00
63	3890	2917.00	2619.00	2035.00	2285.00	1987.00	2774.00	27695	44663	20060	7087	5221	123013.00
66	4031	3568.00	2945.00	2790.00	2320.00	2170.00	4213.00	21972	38285	21628	6002	3667	113571.00
65	3055	2529.00	2906.00	3616.00	2676.00	2608.00	6934.00	30733	70440	45609	18170	7380	196254.00
66	5262	4019.00	3230.00	3177.00	2788.00	2893.00	5538.00	19617	16787	6580	3386	2663	73940.00
67	2485	2227.00	2148.00	2232.00	2531.00	2601.00	2316.00	37683	69560	40661	9710	5471	179625.00
68	6226	3857.00	2893.00	2653.00	2199.00	2709.00	4499.00	16989	40272	16271	9120	6289	111977.00
69	5029	3736.00	3166.00	3138.00	2676.00	3078.00	13431.00	58282	45363	26184	7893	4751	174525.00
70	4239	3261.00	2948.00	2725.00	3103.00	2820.00	3018.00	26308	52592	23260	6762	4868	135884.00
71	4025	3196.00	2818.00	3110.00	2359.00	2653.00	3621.00	30514	55406	29124	9998	5168	151792.00
72	5401	4602.00	3106.00	3162.00	2233.00	3240.00	4673.00	22365	47800	13475	6234	4691	120582.00
73	4785	3373.00	2792.00	2302.00	2151.00	2697.00	3355.00	23951	26850	10965	5027	4073	92121.00
74	3073	3466.00	2600.00	3931.00	2270.00	3063.00	10536.00	36510	63100	22270	7847	c08s	160732.00
$\begin{aligned} & 75 \\ & 76 \end{aligned}$	$\begin{aligned} & 3428 \\ & 4888 \end{aligned}$	$\begin{aligned} & 3006.00 \\ & 3785.00 \end{aligned}$	$\begin{aligned} & 3002.00 \\ & 3262.00 \end{aligned}$	$\begin{aligned} & 3097.00 \\ & 2699.00 \end{aligned}$	$\begin{aligned} & 2524.00 \\ & 2277.00 \end{aligned}$	$\begin{aligned} & 1965.00 \\ & 2601.00 \end{aligned}$	$\begin{aligned} & 2075.00 \\ & 6635.00 \end{aligned}$	$\begin{aligned} & 14775 \\ & 36883 \end{aligned}$	$\begin{aligned} & 56150 \\ & 30735 \end{aligned}$	$\begin{aligned} & 45096 \\ & 15043 \end{aligned}$	$\begin{array}{r} 10155 \\ 8758 \end{array}$	$\begin{aligned} & 5156 \\ & 8329 \end{aligned}$	$\begin{aligned} & 150425.00 \\ & 1238 \geqslant 5.00 \end{aligned}$
77	5108	3676.00	2615.00	2286.00	1908.00	1801.00	3506.00	6185	23789	8236	6190	2781	65879.00
78	2761	1821.00	2271.00	2573.00	1891.00	2532.00	4623.00	17535	42080	25559	7189	9939	120574.00
79	5175	3980.00	3261.00	2749.00	2570.00	3079.00	4298.00	26017	20457	7648	5904	3309	88.67 .00
80	2759	2451.00	2176.00	2184.00	1916.00	1885.00	6206.00	30024	36946	26300	7780	6662	125285.00
81	4543	3798.00	3300.00	2737.00	2234.00	2588.00	8771.00	28302	60014	15348	5762	3671	121048.00
82	3859	3190.00	3068.00	2616.00	2089.00	2527.00	5663.00	32178	51855	36564	12037	6120	161744.00
83	6014	4183.00	3461.00	2655.00	1799.00	1882.00	3369.00	32666	66360	61148	16375	6753	126463.00
84	6927	11196.00	8612.00	7586.00	6317.00	6003.00	7572.00	35292	47554	31981	16343	8100	191683.00
85	5960	5034.00	4555.00	3610.00	2796.00	3802.00	8365.00	20219	18179	7955	4514	11326	96115.00

[^1]Table D. 3
STATION: GOOSE CREEK AB TRAPPER CREEK NR OKIEY ID (13.0825.00)

HTEAR	OCT	NOV	OEC	jaM	FEB	MR	APR	mur	JuM	JuL	aug	SEP	ANW
25	696.0	765.0	899.0	961.0	616	1981	4718.0	4879.0	1976.0	831.0	483.00	666.0	19671.00
26	899.0	1002.0	806.0	713.0	868	1925	2216.0	995. 0	315.6	622.3	296.30	259.7	10715.90
27	593.0	822.0	635.0	682.0	2065	1530	2161.9	4696.0	2076.0	485.0	331.20	317.7	16373.90
28	665.0	862.0	480.0	930.0	1015	2527	2232.0	4375.0	1077.0	325.0	207.00	240.8	16935.80
29	529.0	693.0	589.0	558.0	530	1318	2822.0	5165.0	2190.0	485.1	367.20	398.7	15625.00
30	543.0	622.0	763.0	522.0	1074	1167	1332.0	1579.0	551.9	205.0	344.40	304.1	8987.40
31	590.0	608.0	565.0	545.0	690	1635	1421.0	720.0	295.5	58.2	96.80	152.6	7177.10
32	343.6	455.0	465.0	620.0	670	1818	2686.0	4988.0	2539.0	665.0	332.90	296.0	15656.50
33	476.0	660.0	490.0	558.0	500	1351	1516.0	3055.0	1936.0	396.2	183.30	185.1	11302.60
34	359.4	552.0	620.0	72.0	759	1039	777.2	613.9	231.1	28.3	10.10	75.9	5588.90
35	299.0	465.0	496.0	558.0	560	968	1472.0	2256.0	892.0	262.5	6.10	1.0	8233.60
36	153.9	428.0	487.0	558.0	580	979	3462.0	6037.0	1313.2	265.6	500.20	233.1	12997.00
37	442.3	577.0	527.0	496.0	560	1399	1800.0	3223.0	1071.7	354.5	105.60	79.9	10636.00
38	247.2	575.0	798.0	775.0	875	1336	2866.0	5098.0	1452.0	686.0	190.20	245.5	15161.90
39	388.2	662.0	746.0	713.0	616	4735	3336.0	1483.0	285.4	100.0	54.60	26.7	13163.70
40	299.4	443.0	542.0	775.0	750	1155	1895.0	1011.9	268.4	19.6	1.00	27.1	7187.60
61	213.3	378.0	466.0	558.0	801	1123	1853.0	2126.0	953.8	392.0	420.40	306.3	9570.80
42	497.0	737.0	813.0	713.0	672	2673	5822.0	7640.0	3666.0	686.0	209.10	170.5	26078.60
43	360.3	710.0	1005.0	2460.0	3115	2140	5333.0	3546.0	2848.0	615.0	246.20	152.4	22526.90
44	395.6	645.0	659.0	572.0	645	1630	2562.0	6361.0	2869.0	670.6	274.40	131.5	15195.10
45	338.4	558.0	433.0	677.0	1825	1567	2206.0	5576.0	2701.0	675.0	370.50	332.1	17237.00
46	528.0	835.0	1069.0	996.0	1096	2509	5421.0	5362.0	1558.0	679.3	273.40	335.7	20420.40
47	665.0	825.0	866.0	571.0	1365	1673	2025.0	1730.0	739.0	186.5	121.70	93.6	10880.60
48	350.5	586.0	731.0	636.0	1146	1222	2137.0	3577.0	1107.0	306.1	143.10	116.9	12054.60
49	280.9	513.0	574.0	497.0	465	2016	4900.0	6714.0	1873.0	327.3	195.70	185.8	18521.70
50	568.0	668.0	492.0	569.0	796	1619	3006.0	6766.0	2122.0	500.0	379.60	229.5	15509.10
51	509.0	721.0	965.0	767.0	4019	2695	4978.0	6696.0	1859.0	613.6	539.00	268.8	26630.20
52	550.0	615.0	568.0	566.0	626	1361	5501.0	9223.0	2589.0	872.0	685.00	398.0	23552.00
53	559.0	631.0	696.0	1173.0	926	1340	2505.0	4006.0	3208.0	674.0	651.60	327.6	16691.20
54	518.0	669.0	639.0	696.0	926	1286	1596.0	857.5	334.0	132.5	83.00	162.6	7897.40
55	439.0	583.0	491.5	512.0	556	1050	1190.0	1957.0	782.0	637.3	286.40	173.8	8658.00
56	426.0	625.0	997.0	1370.0	756	3368	3700.0	4050.0	925.9	224.5	163.20	120.6	16726.20
57	422.5	589.0	836.3	559.0	1782	1791	2283.0	6606.0	2310.0	398.7	256.40	211.1	18039.00
58	490.3	678.0	769.0	719.0	3232	1777	3300.0	7110.0	1873.0	692.0	390.20	257.5	21068.00
59	475.0	675.0	827.0	853.0	914	1136	1739.0	1073.0	693.6	260.3	133.90	278.7	8856.50
60	626.0	565.0	467.0	502.0	606	1778	2235.0	1546.0	350.8	175.5	135.70	173.5	9156.50
61	613.9	633.0	546.0	597.0	996	1261	1633.0	686.0	630.4	150.1	359.30	463.5	7969.20
62	521.0	626.0	688.0	2128.0	6769	3785	3822.0	2957.0	1778.0	402.0	373.10	230.8	24079.90
63	429.0	596.0	583.0	353.6	1086	1098	1285.0	2507.0	2296.0	670.8	202.50	361.8	11244.70
66	400.0	687.0	460.7	458.0	555	1364	2466.0	4685.0	3831.0	877.0	355.50	316.0	16631.20
65	440.4	672.0	1403.0	2435.0	2026	1387	3881.0	5673.0	2290.0	700.0	594.00	507.0	22006.40
66	633.0	742.6	632.2	687.0	736	1736	2076.0	811.9	254.0	61.7	42.32	41.8	8456.52
67	329.2	525.0	425.5	678.0	779	1051	1180.0	2348.0	2269.0	761.0	299.70	238.1	10873.50
68	426.6	457.0	366.6	471.0	1522	1507	1468.0	1052.0	464.9	163.8	469.90	396.0	8726.80
69	500.0	743.0	749.0	997.0	900	2106	4878.0	3122.0	833.0	635.0	213.80	212.6	15687.40
70	442.9	533.0	592.0	2486.0	1251	1120	1672.0	6928.0	3506.0	931.0	458.20	420.0	20338.10
71	609.0	813.0	942.0	5063.0	1969	2436	4801.0	9386.0	3606.0	861.0	556.00	409.0	31605.00
72	732.0	946.0	992.0	1612.0	1728	4165	4764.0	7962.0	3579.0	555.2	441.00	553.0	27807.20
73	966.0	1141.0	1172.0	1059.0	1301	2116	4151.0	7003.0	1560.0	570.8	513.00	585.0	22137.80
76	834.0	1087.0	891.0	780.0	1348	2961	5385.0	7080.0	1929.0	546.0	436.20	331.5	23586.70
75	$\begin{array}{r} 668.0 \\ 1052.0 \end{array}$	$\begin{array}{r} 869.0 \\ 1133.0 \end{array}$	$\begin{array}{r} 704.0 \\ 1308.0 \end{array}$	$\begin{aligned} & 902.5 \\ & 915.0 \end{aligned}$	$\begin{aligned} & 1677 \\ & 1885 \end{aligned}$	$\begin{aligned} & 3096 \\ & 2972 \end{aligned}$	$\begin{aligned} & 2092.0 \\ & 4252.0 \end{aligned}$	$\begin{aligned} & 9428.0 \\ & 7283.0 \end{aligned}$	$\begin{array}{r} 9969.0 \\ 1505.0 \end{array}$	$\begin{array}{r} 2087.0 \\ 677.0 \end{array}$	$\begin{aligned} & 966.00 \\ & 699.00 \end{aligned}$	$\begin{aligned} & 653.0 \\ & 663.0 \end{aligned}$	$\begin{aligned} & 32891.50 \\ & 24166.00 \end{aligned}$
77	889.0	946.0	863.0	847.0	902	1292	1327.0	1273.0	774.4	284.7	319.40	381.1	10098.60
78	563.0	703.0	932.0	1041.0	1012	1967	4055.0	5063.0	1526.0	368.2	326.60	613.0	18167.80
79	624.0	700.0	722.0	693.0	1989	3976	2717.0	5046.0	1467.0	364.5	476.70	402.0	19155.20
80	532.0	716.0	772.0	2761.0	2174	1389	3263.0	5718.0	3927.0	974.0	540.00	546.0	23310.00
81	698.0	847.0	981.0	857.0	901	1242	1670.0	1138.0	278.6	46.6	51.00	72.1	8780.30
82	427.4	668.0	928.0	782.0	2740	2278	3402.0	6955.0	2346.0	947.0	388.70	569.1	22429.20
83	860.0	955.0	920.0	897.0	1301	2329	3336.0	8184.0	6868.0	1230.0	993.00	671.0	26522.00
84	903.0	1003.0	1165.0	1264.0	1195	2927	5533.0	19379.0	9457.0	2614.0	1661.00	1185.0	48247.00
85	1416.0	1527.0	1084.0	1018.0	1057	2619	4625.0	3641.0	967.0	695.0	552.00	657.0	19658.00

[^2]Table D. 4
STATION: CAMAS CREEK NR BLAINE ID (13.1415.00)

urear	Oct	vov	dec	A	FEB	me	APR	mar	un	Jut	aug	SEP	AM
25	-156.78	-223.62	402.51	-603.33	-850.05	. 3682.09	-56301.66	-26512.26	3225.0	549.0	188.6	67.1	90659.98
26	-353.98	-481.86	-778.36	-585.79	-1081.10	-9253.70	5967.00	1137.00	167.6	88.6	\$6.5.	32.9	-20022.19
27	-170.51	-274.62	-426.70	-521.87	-326.63	-4553.56	56009.00	26631.00	8558.0	1226.0	17.9	17.	98969. 19
28	-446.61	-1126.38	-1102.07	-890.81	-2077.40	-10309.06	00	5996.00	1020.0	279.2	122.1	88.	. 61
29	-180.66	-324.64	-355.35	-372.53	- 423.56	-3788.03	15617.00	380.00	53.7	. 5	76.9	87.8	. 63
30	-154.64	-200.88	97.49	-381.	113	163.65	6463.00	5301.00	939.2	123.0	70.1	77.9	20703.02
31	-126.9	-91.50	-297.05	s6	-1.00	-113.71	6739.00	963.80	97.2	55.8	54.5	65.4	. 6616.61
32	-120	-179.7	-841.83	-2590	-2	-5086.81	30250.00	58	8729.0	695.2	97.9	85.0	.60220.13
33	-144	-212010	-221.13	-269.46	-2010	2065	-6956.70	3362.00	3609.0	192.6	59.4	35.1	53
34	-132.	-23010	-328.19	-360.66	-8180	-5877.49	69.	373.40	89.6	61.8	55.8	73.2	0640.46
35	-69	-110	-706.76	-20	-86.40	-	Tr	4771.00	2250.1	106.7	61.7	55.2	32304.76
36	77.80	- 31	-416.28	-63.67	-308.40	-969.70	46438.00	12923.00	33	122.6	96.1	76.6	-62832.88
37	107.5	-120.	-646.87	-216.	-269.40	- 662.19	21975.00	18,	848.6	99.8	56.6	58.9	-30659
38	96.	130.60	-252.	-270.	-680.	-2717	73996.00	7287.00	6637	1962	166.6	. 6	116317.76
39	366.	-830.37	-1577.	-60	1003.	-16519.27	16990.00	26.00	367.5	122.5	70.3	61.8	39712.26
40	-158.6	-198.7	-386.	-299.	-561.	-6723	17496.00	645.00	8.6	72.1	56.0	1.9	-30513.61
41	-269.	-626.	-275.	-615.	-830.	7085.00	15155.00	8839.00	2813.0	. 1	168.1	59.9	531.30
42	-216.	-435.08	-1546.	-608.	-861.	01.	-66987.	174.00	.	45.8	96.0	88.9	6910.16
43	-221.	-482.	-6	-613.	112	272	106560.00	1862	15.0	2295.0	265.4	\% 5	82.80
4	41	672.00	-749.11	-587	-964	42	13843.00	6109.00	6176.0	583.4	136.7	0.8	-30780.79
45	176.80	363.40	276.00	705.00	16	6829.00	21292.00	6293.00	3598.0	511.9	125.0	113.9	. 0
46	193	320.80	376.00	392.00	369.00	2675.00	¢ 73	1321	3350.0	388.9	128.9	133.8	. 20
47	432	702	1736	62	5614	14289	715	4570	1813.0	233.8	00.	00.	. 30
48	149	28	336.40	316	155	280	14875.00	6736.00	2652	22.1	91.3	105	70
49	139.	295.90	310.00	310.00	358	1827.00	36563.00	9255.00	206	199.4	91.0	5.	20
50	149.	273.60	256.30	366	406	2236.00	52032.00	19078	6318	1214	29.	253	. 30
51	380.20	865.00	1130	775.00	1325	2366.	5963	19993.00	4846	901.8	459.8	155	120.50
52	425.	. 00	1.0	775.00	702.00	875.00	99367.0	43597.00	1166.0	2641.0	502.0	312.6	159933.00
53	400.0	. 00	S. 0	1313.00	1971.00	11716.	167.0	567	295	811.9	207.	138.0	2106.00
56	229.70	388.60	655.00	. 0	903.00	5191.00	905	307.00	1676.0	2.2	133.9	111.6	2745.00
55	181.00	330.60	351.30	411.00	383.00	717.00	6285.00	7043.00	06	322.7	106.	91.0	26.00
56	161.50	252.30	2058.20	3076	193	\%00,	S176.00.	18306.00	5626.0	8.5	168.9	116.5	103025.90
57	296.80	461.00	1760.00	558.00	6756.00	27368.10	22824.00	17283.00	6056.0	561.2	151.8	123.3	82315.10
58	265.10	336.00	445.00	618.00	918.00	2899.00	40878.00	26336.00	7646.0	849.8	159.9	202.7	81529.50
59	312.70	402.50	848.00	747.00	72.00	2905.0	15358.00	4262.00	603.0	168.5	96.2	321.6	26776.50
60	285.30	307.40	396.00	467.00	875.00	1370.00	34326.00	7528.00	1109.9	169.7	85.2	101.2	67018.70
61	139.90	232.50	300.80	290.30		5568.00	6719.00	881.00	376.1	56.5	59.0	92.8	6187.90
62	162.90	163.90	269.20	634.00	2686	1647.0	48	396	7328.0	71.0	167.4	97.6	7125.00
	245.50	389.30	680.00		1283	2423.00	4679.00	7764.00	672.0	980.7	107.6	163	5746.60
	25	62	589.	527.00	580.	866	739.	8858.00	4873	483.	166	103	65737.60
bs	238.00	385.00	13990.00	7640.00	8377.00	18172.	56662.0	25536.00	13012.0	3937.0	226	957.0	150128.00
66	1251.00	1535.00	1273.00	1288.00	1132.00	8068.0	23562.0	5011.00	1130.0	176.8	98.3	101.6	66626.70
67	173.10	398.10	408.00	674.00	722.00	3352.0	16826.0	16917.00	10449.0	2027.7	172.7	204.5	68396.10
68	338.00	538.00	49.00	569.00	1467.00	7907.0	3867.00	1455.00	2722.0	233.5	152.7	191.7	19739.90
69	255.90	467.90	459.00	916.00	1033.0	1486.	83176.0	23195.00	6306.0	1696.7	180.5	226.0	119198.00
70	403.70	602.00	674.00	794.00	1043.0	7639.00	30808.0	16652.00	6785.0	1857.0	218.6	261.6	65717.70
71	477.10	1560.00	1769.00	1861.00	6389.00	16196.0	82010.0	32282.00	11911.0	2826.0	58.0	367.9	158226.00
72	866.00	1328.00	1223.00	1160.00	1251.00	43370.00	24686.0	15688.00	7804.0	1045.4	336.0	297.8	20095. 20
73	703.00	1052.00	926.00	1017.00	1020.00	2497.00	22673.0	5906.00	1012.0	228.9	138.1	132.4	37105.60
76	207.00	969.00	959.00	1003.00	1159.00	29966.00	40739.00	15388.00	5066.0	584.6	169.1	128.0	96277.50
75	$\begin{aligned} & 272.60 \\ & 406.40 \end{aligned}$	$\begin{aligned} & 590.00 \\ & 789.00 \end{aligned}$	$\begin{array}{r} 620.00 \\ 1143.00 \end{array}$	$\begin{aligned} & 617.00 \\ & 845.00 \end{aligned}$	$\begin{aligned} & 776.00 \\ & 925.00 \end{aligned}$	$1668 .$ 1615.0	23006.00 40671.00	$\begin{aligned} & 65552.00 \\ & 10568.00 \end{aligned}$	$\begin{aligned} & 8573.0 \\ & 1809.0 \end{aligned}$	$\begin{gathered} 2876.0 \\ 267.8 \end{gathered}$	$\begin{aligned} & 266.6 \\ & 216.9 \end{aligned}$	$\begin{aligned} & 285.6 \\ & 279.1 \end{aligned}$	$\begin{aligned} & 85100.60 \\ & 59333.20 \end{aligned}$
7	387.00	461.00	478.00	473.00	623.00	क9.00	569.60	622.10	170.2	120.2	79.1	76.6	4818.60
78	96.50	200.30	596.90	521.00	860.00	\$629.00	42615.00	15053.00	5680.0	1762.9	60.7	220.7	76065.00
79	253.10	331.80	422.00	363.60	560.0	161.	6212.00	3873.00	368.2	111.	79.0	76.8	20792.60
80	178.2	257.70	273.00	439.80	1096.40	5077.0	21374.00	14836.00	6560.0	1431.9	139.1	154.8	51813.90
81	325.	447	787	836.	1615	5806	5262.00	6226.00	2101.0	100.4	65.9	. 3	21607.80
82	137.	37	811.	650.00	1190.	7823.0	62623.0	31912.00	10919.0	2603.0	218.0	382.0	119689.50
83	613.00	1039.0	968.00	1175.00	1288.0	23302.	62200.00	48126.00	18842.0	5102.0	858.0	485.0	$163816 . c 0$
84	1230.00	2480.00	1618.00	2032.00	2525.00	5516.00	65561.00	32049.00	12798.0	2618.0	639.0	488.0	129336.00
85	880.00	1595.00	114	1114	1057.0	1572.0	34725.0	8198.00	1603.	90	157.9	322.6	52561.70

Table D. 5
Summary of the Monthly Statistics for Big Wood Slough Station (13.1395.10)

Period	N (Years)	Minimum (Cfs-days)	Maximum (Cfs-days)	Mean (Cfs-days)	Std Dev (Cfs-days)
OCT	61	2611.00	13048.78	6398.59	2062.06
NOV	61	2773.00	12423.81	5728.89	1619.84
DEC	61	2948.00	9637.41	5085.69	1209.23
JAN	61	2461.00	8533.27	4854.58	1131.01
FEB	61	2753.00	7509.15	4334.41	878.77
MAR	61	3335.00	10385.00	5641.74	1545.97
APR	61	4949.00	42529.00	16268.01	8207.09
MAY	61	7333.32	94200.00	40975.84	20369.49
JUN	61	7055.00	98468.14	44318.03	23038.84
JUL	61	3430.00	55299.00	20595.04	12473.89
AUG	61	2322.00	21248.00	8371.04	3979.82
SEP	61	2064.00	13367.00	6387.72	2506.95
ANN	61	61869.00	306877.00	168959.57	63704.88

Table D. 6

Summary of the Monthly Statistics for Big Lost River Station (13.1205.00)

Period	N (Years)	Minimum (Cfs-days)	Maximum (Cfs-days)	Mean (Cfs-days)	Std Dev (Cfs-days)
OCT	61	1799.00	6927.00	3808.33	1275.72
NOV	61	1821.00	11196.00	3157.11	1255.94
DEC	61	1713.21	8612.00	2744.38	923.36
JAN	61	1571.24	7586.00	2546.73	820.57
FEB	61	1319.89	6317.00	2181.06	641.80
MAR	61	1459.00	6003.00	2441.84	645.26
APR	61	1524.86	14543.00	5706.17	3027.73
MAY	61	6185.00	58282.00	24826.43	10486.61
JUN	61	6619.00	70440.00	36078.48	15469.58
JUL	61	2897.00	45609.00	18051.84	10691.49
AUG	61	1679.00	18170.00	6541.61	3274.92
SEP	61	1430.00	11326.00	4263.64	1919.26
ANN	61	45775.49	196254.00	112347.59	36958.46

Table D. 7

Summary of the Monthly Statistics for Goose Creek Station (13.0825.00)

Period	$\underset{\text { (Years) }}{N}$	Minimum (Cfs-days)	Maximum (Cfs-days)	$\begin{gathered} \text { Mean } \\ \text { (Cfs-days) } \end{gathered}$	$\begin{aligned} & \text { Std Dev } \\ & \text { (Cfs-days) } \end{aligned}$
OCT	61	153.90	1416.00	541.72	219.83
NOV	61	378.00	1527.00	709.24	201.34
DEC	61	366.60	1403.00	737.83	233.90
JAN	61	353.60	5043.00	953.89	747.29
FEB	61	445.00	6749.00	1287.57	1016.54
MAR	61	968.00	4755.00	1897.20	856.86
APR	61	777.20	5822.00	2955.97	1404.60
MAY	61	413.90	19379.00	4454.95	3163.68
JUN	61	231.10	9949.00	1954.36	1821.06
JUL	61	19.60	2614.00	525.19	434.84
AUG	61	1.00	1641.00	355.87	270.08
SEP	61	1.00	1186.00	317.89	212.87
ANN	61	5588.90	48247.00	16691.70	7725.01

Table D. 8

Summary of the Monthly Statistics for Camas Creek Station (13.1415.00)

Period	N (Years)	Minimum (Cfs-days)	Maximum (Cfs-days)	Mean (Cfs-days)	Std Dev (Cfs-days)
OCT	61	69.40	1251.00	304.58	242.82
NOV	61	31.73	2480.00	534.43	444.78
DEC	61	221.13	13990.00	943.71	1759.27
JAN	61	20.66	7640.00	787.09	1016.07
FEB	61	1.00	31283.00	1840.49	4141.98
MAR	61	113.71	43370.00	6669.13	7899.88
APR	61	569.40	106560.00	32609.85	25500.48
MAY	61	373.40	48124.00	13517.62	11282.40
JUN	61	89.60	18642.00	4628.12	3962.87
JUL	61	55.80	5102.00	876.28	1054.50
AUG	61	54.50	1224.00	189.38	202.74
SEP	61	55.20	957.00	178.51	144.43
ANN	61	4818.40	163816.00	63079.19	41610.51

APPENDIX E

PAIRING INFORMATION

Table E. 1
Pairing Information between
13.1395.10 \& 13.1205.00

1. Overlap Record : 25 years ($1949-1973$)
2. Correlation Coefficients for the Months Needed to Fill in the Missing Records of Station 13.1205.00
Month Corr. Coeff.

November $\quad 0.830$
December 0.738
January $\quad 0.788$
Feburary $\quad 0.509$
March 0.743
April 0.945
3. Location of the Two Stations

Station 13.1395.10:	Latitude	43°	31^{\prime}	$05^{\prime \prime}$	
Station 13.1205.00:	Longitude	Latitude	114°	19^{\prime}	$10^{\prime \prime}$
	Longitude	114°	59^{\prime}	$54^{\prime \prime}$	
	01^{\prime}	$12^{\prime \prime}$			

APPENDIX F
COMPARISONS OF SIMPLE STATISTICS

Table F. 1
Test for Normality for Station 13.1395.10

Period (Month)	Raw Skew Coeff. (Trans Skew Coeff.)	$*_{g}(95 \%)$	$*_{n}$	Normal (yes/no)
October	0.113	± 0.69	49	yes
November	0.047	± 0.69	49	yes
December	0.010	± 0.69	49	yes
January	0.221	± 0.69	49	yes
Feburary	0.226	± 0.69	49	yes
March	$1.175(0.384)$	± 0.69	49	no(yes)
April	$1.221(0.110)$	± 0.69	49	no(yes)
May	$0.990(0.033)$	± 0.69	49	no(yes)
June	0.470	± 0.69	49	yes
July	$1.114(-0.404)$	± 0.69	49	no(yes)
August	$1.296(-0.213)$	± 0.69	49	no(yes)
September	$0.888(-0.407)$	± 0.69	49	yes
*g(95\%) $=$	95% critical skew coefficient for hypothesis that g = 0.			

Table F. 2

Test for Normality for Station 13.1205 .00

Period (Month)	Raw Skew Coeff. (Trans Skew Coeff.)	${ }^{*} \mathrm{~g}(95 \%)$	${ }^{2} \mathrm{n}$	Normal (yes/no)
October	0.387	± 0.63	59	yes
November	-0.061	± 0.72	45	yes
December	-0.322	± 0.81	35	yes
January	0.243	± 0.81	35	yes
Feburary	-0.068	± 0.81	35	yes
March	0.031	± 0.81	35	yes
April	$0.989(0.054)$	± 0.66	53	no(yes)
May	$0.766(-0.478)$	± 0.63	59	no(yes)
June	0.267	± 0.63	59	yes
July	$0.869(-0.434)$	± 0.63	59	no(yes)
August	$1.370(-0.231)$	± 0.63	59	no(yes)
September	$1.114(0.000)$	± 0.63	59	no(yes)
* $9(95 \%)$	$=95 \%$ critical skew coefficient for hypothesis that g = 0.			

Table F. 3
Test for Normality for the Common Period between 13.1395.10 \& 13.1205.00

Period (Month)	Skew Coeff. $(13.1395 .10)$	Skew coeff. $(13.1205 .00)$	${ }^{*} \mathrm{~g}(95 \%)$	$*_{\mathrm{n}}$	Normal (yes/no)
October	0.113	0.477	0.69	49	yes
November	0.303	0.083	0.85	32	yes
December	-0.201	-0.238	-0.96	25	yes
January	0.421	0.075	0.96	25	yes
Feburary	0.455	-0.124	-0.96	25	yes
March	0.918	-0.022	-0.96	25	yes
April	0.130	0.199	0.85	32	yes
May	0.033	-0.076	-0.96	49	yes
June	0.470	0.301	0.69	49	yes
July	-0.404	-0.494	-0.69	49	yes
August	-0.213	-0.274	-0.69	49	yes
September	-0.407	-0.607	-0.69	49	yes

* $\mathrm{g}(95 \%)=95 \%$ critical skew coefficient for hypothesis that $\mathrm{g}=0$.
* n = sample size
* $\mathrm{g}(95 \%)= \pm 1.96(6 / \mathrm{n})^{1 / 2}$
* The records of 1984-1985 water years for 13.1205 .00 were considered as outliers.

Table F. 4

> Simple Statistics between Original and Filled-in Stream Flows for
> Station 13.1205 .00
> (for 1925-1983 water years)

Period (Month)	Mean (Cfs-days) Origin		Stand Dev (Cfs-days)		Skew Coef	
				Crigin		
October	3719	3719	1195	1195	0.387	0.387
November	3048	2989	646	654	-0.061	0.020
December	2685	2614	505	463	-0.322	-0.192
January	2537	2447	542	485	0.243	0.320
Feburary	2160	2101	380	344	-0.068	-0.001
March	2380	2358	417	416	0.031	0.094
April	5713	5629	3135	3049	0.989	0.985
May	24727	24727	10559	10559	0.766	0.766
June	36187	36187	15484	15484	0.267	0.267
July	17987	17987	10637	10637	0.869	0.869
August	6444	6444	3157	3157	1.370	1.370
September	4079	4079	1632	1632	1.114	1.114

* The records of 1984-1985 water years were considered as outliers.
* The months of October and May through September have a complete historical flow record for 1925-1985.

APPENDIX G

THE SIMPLE STATISTICS

 AND THE RESULTS
COMPARISONS

Table G. 1

Coefficients of Skew for Transformed and Untransformed Monthly Streamflow
 Station: 13.1205.00
 Period: 1949-1983 Water Years

Month	Skew Coeff Raw	Skew Coeff Trans(Log)
October	0.4034	${ }^{*}-0.1069$
November	$*_{-} 0.0233$	-0.4487
December	$*_{-} 0.3215$	-0.6207
January	$*_{0} 0.2431$	-0.2756
Feburary	$*_{-} 0.0679$	-0.6402
March	1.0308	-0.4604
April	$* 0.6535$	$* 0.0768$
May	$* 0.3053$	-0.6663
June	0.8215	-0.4008
July	1.4843	$* 0.3954$
August	1.2188	$* 0.1128$
September		$* 0.2900$

*" * " indicate the series used for modeling.

* $\mathrm{g}(95 \%)=95 \%$ critical skew coefficient for hypothesis that $\mathrm{g}=0$.
* $\mathrm{n}=$ sample size
* $g(95 \%)=1.96(6 / \mathrm{n})^{1 / 2}$
$=1.96(6 / 35)^{1 / 2}$
$=0.81$
* The records of 1984-1985 water years were considered as outliers.

Table G. 2
Statistics of Untransformed/Transformed Values as Calculated from Moment Relationships

Station: 13.1205.00
Period: 1949-1983 Water Years

Month	Mean (Cfs-days)	Standard Dev. (Cfs-days)	Lag-1 Ser Corr Coef
* October	8.229498	0.274755	0.85284
November	3074.343	672.5527	0.92188
December	2684.886	504.7803	0.77161
January	2536.514	541.9309	0.71840
Feburary	2159.637	379.5883	0.67542
March	2379.714	416.8587	0.62542
* April	8.479447	0.505448	0.42883
May	26353.940	11791.680	0.54360
June	40756.860	14766.720	0.41385
* July	9.773793	0.580517	0.91088
* August	8.810586	0.428249	0.84596
* September	8.363622	0.354542	0.68690

* " * " indicate the transformed monthly values.
* The records of 1984-1985 water years were considered as outliers.

Table G. 3

Correlation Coefficients between
Monthly and Annual Values
Station: 13.1205.00
Period: 1949-1983 Water Years

Month	Corr Coeff Raw	Corr Coeff Trans(Log)
October	0.01460	$* 0.01488$
November	$* 0.08379$	
December	$* 0.38240$	
January	$* 0.48597$	
Feburary	$* 0.32636$	
March	$* 0.26703$	
April	0.27781	$* 0.29654$
May	$* 0.69817$	$* 0.89917$
June	0.89770	$* 0.52621$

* " * " indicate the series used for modeling.
* The records of 1984-1985 water years were considered as outliers.

Table G. 4

Parameters for Lane's Disaggregation Model Station: 13.1205.00

Month	Q	H	GG^{T}
October	-0.60004	1.16859	0.012310
Novembeer	0.07009	0.92084	0.145226
December	0.31999	0.74480	0.302941
January	0.24744	0.62378	0.431630
Feburary	-0.00245	0.67661	0.543803
March	0.07042	0.60244	0.604419
April	0.19601	0.37649	0.780426
May	0.58874	0.36901	0.388361
June	1.18769	-0.41536	0.105705
July	0.57817	0.39186	0.105402
August	0.69135	0.20305	0.219726
September	-0.34789	0.99310	0.500902

Table G. 5

Difference between Annual Flows Generated by Multivariate AR (1) Modeling and Generated or Actual Monthly Sum Flows by Disaggregation Model Approach Station: 13.1205.00

Water Year	AR (1) (Cfs-days)	Gen or Actual (Cfs-days)	Difference (Cfs-days)
25	126313	120571	5742
26	88710	58233	30476
27	137338	112687	24650
28	99450	92022	7428
29	53180	65568	-12388
30	94834	92925	1909
31	72530	51010	21520
32	112269	107147	5122
33	94562	73842	20719
34	81374	42841	38532
35	118116	101554	16561
36	109967	74910	35056
37	93563	52035	41528
38	173830	165480	8350
39	87430	67299	20131
40	101394	83473	17921
41	117496	103495	14000
42	129348	109914	19434
43	173233	160562	12670
44	98169	129334	-31165
45	104327	95973	8354
46	132368	107540	24828
47	123447	106200	17246
48	95335	112301	-16966

* "AR (1)"indicates annual flows generated by multivariate AR (1) modeling
* "Gen or Actual" indicates generated or actual monthly sum flows by Disaggregation Modeling
* Difference" indicates "Annual" minus "Gen/Actual" for each year

Table G. 6

Difference between Annual Flows Generated by Multivariate AR (1) Modeling and Generated or Actual Monthly Sum Flows by Multivariate AR (1) Modeling Station: 13.1205.00

Water Year	$\begin{gathered} \mathrm{AR}(1) \\ \text { (Cfs-days) } \end{gathered}$	Gen or Actual (Cfs-days)	Difference (Cfs-days)
25	126313	119519	6794
26	88710	59361	29348
27	137338	114556	22781
28	99450	95518	3931
29	53180	61845	-8665
30	94834	92505	2329
31	72530	52778	19751
32	112269	105450	6818
33	94562	73845	20717
34	81374	45775	35598
35	118116	102440	15676
36	109967	77767	32199
37	93563	55520	38043
38	173830	165730	8100
39	87430	72022	15408
40	101394	88379	13015
41	117496	102337	15158
42	129348	113746	15601
43	173233	159419	13814
44	98169	128971	-30802
45	104327	94246	10081
46	132368	108018	24350
47	123447	108713	14733
48	95335	110826	-15491

* "AR (1)" indicates annual flows generated by multivariate AR (1) modeling
* "Gen or Actual" indicates generated or actual monthly sum flows by multivariate AR (1) modeling
* "Difference" indicates "Annual" minus "Gen or Actual" for each year

APPENDIX H
 COMPARISONS OF CORRELATION

 COEFFICIENTSTable H. 1
Comparisons of Correlation Coefficients with Camas Creek station (13.1415.00)

Month	Corr Coeff $(13.1395 .10)$	Corr Coeff $(13.0825 .00)$
October	0.8959	0.6107
November	0.8951	0.5010
December	0.9108	0.4687
January	0.5304	0.5619
Feburary	0.1375	0.7712
March	0.8272	0.3431
April	0.7450	0.7928
May	0.8102	0.7066
June	0.8762	0.7264
July	0.8437	0.6700
August	0.7664	0.7833
September	0.7362	0.2480

APPENDIX I
 COMPARISONS OF PARAMETER ESTIMATES
 BETWEEN SIMPLE REGRESSION AND QUADRATIC REGRESSION

Table I. 1

Coefficients of Determinations for Simple Regression and Quadratic Regression between 13.1415.00 and 13.1395.10 for 1925-1952 Water Years

Month	Simple Regr $\mathrm{Y}=\mathrm{a}+\mathrm{bX}$ (R-square)	Quadratic Regr $\mathrm{Y}=\mathrm{a}+\mathrm{bX}+\mathrm{cX}^{2}$ (R-square)
October	0.8027	0.8163
November	0.8012	0.8432
December	0.8295	0.9780
January	0.2813	0.2818
February	0.0189	0.0384
March	0.6842	0.8121
April	0.5550	0.5908
May	0.6565	0.7052
June	0.7678	0.7690
July	0.7118	0.7202
August	0.5873	0.5956
September	0.5420	0.5527

Table I. 2

Parameter Estimates for Polynomial(Quadratic) Regression between 13.1395 .10 \& 13.1415 .00

Month	α	$\beta 1$	$\beta 2$	R-square
Oct	38.453489	-0.001828	0.000005429	0.8163
Nov	255.725374	-0.140126	0.000030066	0.8432
Dec	6040.750890	-2.718566	0.000319000	0.9780
Jan	-163.157607	0.078357	0.000013819	0.2818
Feb	-7250.519943	3.623326	-0.000396000	0.0384
Mar	16953.00000	-6.393593	0.000712000	0.8121
Apr	11027.00000	0.128879	0.000055448	0.5908
May	3376.691743	-0.035157	0.000005342	0.7052
Jun	-1656.479140	0.147518	-0.000000214	0.7690
Jul	-211.566985	0.035845	0.000000395	0.7202
Aug	-0.482180	0.012469	0.000001012	0.5956
Sep	38.332898	0.004019	0.000002225	0.5527

APPENDIX J
TEST FOR NORMALITY FOR KEY STATION AND SUBORDINATE STATIONS

Table J. 1

Tests of Normality for Key Station and Subordinate Stations

Month	Camas Creek Skew Coeff		Big Wood Skew Coeff		Big Lost Skew Coeff		Goose Creek Skew Coeff	
	h Raw	Trans	Raw	Trans	Raw	Trans	Raw	Trans
Oct	0.8896	*0.2176	0.2616	-0.2558	0.5967	-0.0405	0.4753	-0.5564
Nov	1.1810	*-0.6516	0.2172	-0.2189	-0.1207	-0.4092	0.3394	0.2303
Dec	1.3869	*0.6326	0.2349	-0.089	-0.0893	-0.570	0.6530	0.3317
Jan	*0.1997	-2.1923	-0.0122	-0.3700	-0.4359	-0.7971	$\begin{array}{r} 4.2153 \\ (1.0747) \end{array}$	2.6428
Feb	$\begin{gathered} * 3.5363 \\ (0.7684) \end{gathered}$	-2.8151	0.1343	-0.1077	-0.4569	-0.9329	$\begin{array}{r} 2.5968 \\ (1.8701) \end{array}$	1.4243
Mar	$\begin{aligned} & * 1.6143 \\ & (0.8774) \end{aligned}$	-1.2267	0.9138	0.4151	0.3149	-0.1452	2.4056	1.0247
Apr	1.1358	*-0.3736	1.0684	0.0164	0.7031	-0.3777	0.7441	-0.0742
May	$\begin{aligned} & \text { *1.4835 } \\ & (0.9065) \end{aligned}$	-0.9812	0.8863	-0.2373	0.3845	-0.2892	0.3327	0337
Jun	0.8445	*-1.0721	0.5177	-0.805	0.2726	-0.858	0.2673	3
Jul	1.9066	*0.3814	1.1451	-0.3376	0.7510	-0.4591	0.0753	7088
Aug	2.1844	*0.9647	0.7083	-0.1933	0.4282	-0.4090	0.4466	-2.2573
Sep	1.4223	*0.6248	0.1830	-0.5206	-0.2704	-0.6931	0.9514	-2.7918
* The records of 1925-1952 water years were used to test for normality * " * " indicates the series used for modeling. * $g(95 \%)=95 \%$ critical skew coefficient for hypothesis that $\mathrm{g}=0$. * $\mathrm{n}=$ sample size * $g(95 \%)=1.96(6 / \mathrm{n})^{1 / 2}$ $=1.96(6 / 28)^{1 / 2}$ $=0.907$ ()" for Camas Creek indicates Feb. 1947, Mar. 1939 and 1947, and May 1952 were considered as outliers. * " () " for Gooses Creek indicates Jan. 1943, Feb. 1943 and 1951, and Mar. 1939 were considered as outliers.								

APPENDIX K
 CORRELATION COEFFICIENTS BETWEEN MONTHLY FLOWS
 (CFS-DAYS)

Table K. 1
CORRELATION COEFFICIENTS
BETWEEN MONTHLY FLOWS
1 = BIG WOOD, 2 = BIG LOST, 3 = GOOSE CREEK, 4 = CAMAS CREEK

Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
OCT1	28	8.541892	0.354379	239.172962	7.867489	9.089641
OCT2	28	8.097034	0.367524	226.716959	7.494986	8.818334
OCT3	28	6.053035	0.395468	169.484990	5.036303	6.801283
OCT4	28	5.233940	0.533021	146.550315	4.239887	6.101686
LAG1OCT1	27	8.473191	0.378084	228.776154	7.632401	9.020511
LAG1OCT2	27	8.069438	0.382967	217.874824	7.265430	8.515592
LAG1OCT3	27	5.005293	1.244379	135.142909	0	6.501290
LAG1OCT4	27	4.684652	0.447649	126.485605	4.010963	5.676411

	OCT1	OCT2	OCT3	OCT4	LAG1OCT1	LAG1OCT2	LAG1OCT3	LAG1OCT4
OCT1	1.00000	0.92185	0.31319	0.85196	0.95297	0.92546	0.27485	0.77709
OCT2	0.92185	1.00000	0.23600	0.73390	0.84157	0.93142	0.21805	0.69693
OCT3	0.31319	0.23600	1.00000	0.49164	0.39827	0.34107	0.85493	0.30299
OCT4	0.85196	0.73390	0.49164	1.00000	0.85251	0.77892	0.44698	0.83358

Table K. 2
CORRELATION COEFFICIENTS
BETWEEN MONTHLY FLOWS
1 = BIG WOOD, 2 = BIG LOST, 3 = GOOSE CREEK, 4 = CAMAS CREEK

Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
NOV1	28	8.485492	0.285579	237.593772	7.927685	8.943245
NOV2	28	7.946928	0.213887	222.513980	7.532088	8.269365
NOV3	28	6.439014	0.233964	180.292380	5.934894	6.909753
NOV4	28	5.678691	0.782915	159.003349	3.457263	7.026764
LAG1NOV1	28	8.541892	0.354379	239.172962	7.867489	9.089641
LAG1NOV2	28	8.097034	0.367544	226.716959	7.494986	8.818334
LAG1NOV3	28	6.053035	0.395468	169.484990	5.036303	6.801283
LAG1NOV4	28	5.233940	0.533021	146.550315	4.239887	6.101686

	NoV1	NoV2	Nov3	NoV4	LAG1NOV1	LAG1NOV2	LAG1NOV3	LaG1NOV4
NOV1	1.00000	0.87013	0.44786	0.81136	0.93751	0.86226	0.28746	0.85654
NOV2	0.87013	1.00000	0.35752	0.66464	0.86183	0.78615	0.21940	0.75308
NOV3	0.44786	0.35752	1.00000	0.52775	0.38237	0.28334	0.85604	0.53513
NOV4	0.81136	0.66464	0.52775	1.00000	0.72976	0.61385	0.47084	0.91437

Table K. 3
CORRELATION COEFFICIENTS
BETWEEN MONTHLY FLOWS
1 = BIG WOOD, 2 = BIG LOST, 3 = GOOSE CREEK, 4 = CAMAS CREEK

Variable N		Mean		Std Dev	Sum	Minimum	M Maximum	
DEC1	28	8.389		0.224428	234.907442	7.988882		48940
DEC2	28	7.830		0.180190	219.248517	7.446124		77516
DEC3	28	6.458		0.266482	180.845409	6.070738		55593
DEC4	28	6.230		0.619597	174.462104	5.398751		69654
LAG1D	EC1 28	8.485		0.285579	237.593772	7.927685		43245
LAG1D	EC2 28	7.946		0.213887	222.513980	7.532088		69365
LAG1D	EC3 28	6.439		0.233964	180.292380	5.934894		9753
LAG1D	EC4 28	5.678		0.782915	159.003349	3.457263		26764
	DEC1	DEC2	dec3	DEC4	Lagidect	Lagidece	LAGIDEC3	Lagideca
DEC1	1.00000	0.66630	0.43023	0.46261	0.87839	0.77350	0.48012	0.81399
DEC2	0.66630	1.00000	0.24905	0.50128	0.56669	0.71636	0.22299	0.42322
DEC3	0.43023	0.24905	1.00000	0.27546	0.24916	0.15403	0.60388	0.32150
DEC4	0.46261	0.50128	0.27546	1.00000	0.43368	0.41322	0.34835	0.51847

Table K. 4
CORRELATION COEFFICIENTS
BETWEEN MONTHLY FLOWS
1 = BIG WOOD, 2 = BIG LOST, 3 = GOOSE CREEK, 4 = CAMAS CREEK

Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
JAN1	28	4211.750000	877.946452	117929	2461.000000	5784.000000
JAN2	28	2340.795714	385.934512	65542	1571.240000	3100.000000
JAN3	28	723.750000	366.421294	20265	496.000000	2460.000000
JAN4	28	439.341429	218.864865	12302	20.660000	890.810000
LAG1JAN1	28	4507.892857	999.619718	126221	2948.000000	6304.000000
LAG1JAN2	28	2554.114286	441.235570	71515	1713.210000	3560.000000
LAG1JAN3	28	660.964286	182.050152	18507	433.000000	1049.000000
LAG1JAN4	28	620.922857	438.298588	17386	221.130000	1754.000000

	JAN1	JAN2	JAN3	JAN4	LAGIJAN1	LAG1JAN2	LAG1JAN3	LAGIJAN4
JAN1	1.00000	0.69156	0.21841	0.74118	0.92060	0.66276	0.34711	0.46727
JAN2	0.69156	1.00000	0.04304	0.48262	0.65323	0.95444	0.29122	0.50411
JAN3	0.21841	0.04304	1.00000	0.27728	0.18599	-0.03608	0.52514	-0.02102
JAN4	0.74118	0.48262	0.27728	1.00000	0.81367	0.53090	0.29648	0.57569

Table K. 5

> CORRELATION COEFFICIENTS
> BETWEEN MONTHLY FLOWS
> $1=$ BIG WOOD, $2=$ BIG LOST, $3=$ GOOSE CREEK, $4=$ CAMAS CREEK

Variab		N	Mean		Std Dev	Sum	Minimum	Maximum	
FEB1		28	3845.642		. 903799	107678	2753.0000	05032.	00000
FEB2		28	2026.41		813212	56740	1319.89000	2670.	00000
FEB3		28	1045.46		737044	29273	445.0000	04019.	00000
FEB4		28	920.36	291048	472300	25770	1.0000	05614.	00000
LAG1F	EB1	28	4211.75		946452	117929	2461.0000	5784.	00000
LAG1F	EB2	28	2340.79		934512	65542	1571.24000	O 3100	00000
LAG1F	EB3	28	723.750		421294	20265	496.0000	2460.	00000
LAG1FEB4		28	439.34		864865	12302	20.6600	- 890.8	10000
FEB1			FEB2	Feb3	FEB4	Lagifebi	LAGIFEB2	Lagifers	LAGIFEB4
FEB1 1.00000			0.43986	0.43021	0.48999	0.88005	0.64148	0.38894	0.77492
FEB2 0.43986			1.00000	0.36307	0.25092	0.34431	0.86924	0.03098	0.23766
FEB3 0.43021			0.36307	1.00000	0.26181	0.24432	0.33895	0.54039	0.46215
FEB4 0.48999			0.25092	0.26181	1.00000	0.30578	0.28850	0.06303	0.48910

Table K. 6
CORRELATION COEFFICIENTS
BETWEEN MONTHLY FLOWS
1 = BIG WOOD, 2 = BIG LOST, 3 = GOOSE CREEK, 4 = CAMAS CREEK

Table K. 7

> CORRELATION COEFFICIENTS
> BETWEEN MONTHLY FLOWS
> $1=$ BIG WOOD, $2=$ BIG LOST, $3=$ GOOSE CREEK, $4=$ CAMAS CREEK

Table K. 8
CORRELATION COEFFICIENTS
BETWEEN MONTHLY FLOWS
1 = BIG WOOD, 2 = BIG LOST, 3 = GOOSE CREEK, 4 = CAMAS CREEK

Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
MAY1	28					
MAY2	28	38269	18019	1071544	12906	84650
MAY3	28	3902.350000	2212.791502	109266	413.900000	9223.000000
MAY4	28	11631	10069	325661	373.400000	43597
LAG1MAY1	28	16876	8616.006965	472522	5737.000000	42529
LAG1MAY2	28	6182.719286	3318.330109	173116	1524.860000	14543
LAG1MAY3	28	2935.935714	1487.571602	82206	777.200000	5822.000000
LAG1MAY4	28	32735	28691	916571	1969.000000	106560

	MAY1	MAY2	MAY3	MAY4	LAG1MAY1	LAG1MAY2	LAG1MAY3	LAG1MAY4
MAY1 1.00000	0.91536	0.56728	0.82623	0.67970	0.50561	0.58643	0.79556	
MAY2	0.91536	1.00000	0.41117	0.56963	0.64550	0.51105	0.51859	0.58327
MAY3	0.56728	0.41117	1.00000	0.68586	0.33154	0.25323	0.74172	0.64621
MAY4	0.82623	0.56963	0.68586	1.00000	0.51481	0.31662	0.57878	0.85627

Table K. 9
CORRELATION COEFFICIENTS
BETWEEN MONTHLY FLOWS
1 = BIG WOOD, 2 = BIG LOST, 3 = GOOSE CREEK, 4 = CAMAS CREEK

Variable		N	Mean		Std Dev	Sum	Minimum	Maximum	
JUN1		28	37074		19540	1038084	7055.0000		85100
JUN2		28	29925		13607	837906	6619.0000		62820
JUN3		28	1547.700000		940.739083	43336	231.1000	003646	. 00000
JUN4		28	3440.282143		891.577682	96328	89.6000	0 9315	00000
LAG1J	UN1	28	38269		18019	1071544	129		84650
LAG1J	UN2	28	23455		8658.076784	656727	9231.00000		42195
LAG1J	UN3	28	3902.350000		2212.791502	109266	413.9000	0 9223	00000
LAG1J	UN4	28	1163		10069	325661	373.40000		43597
Jun1			N2 JUN3		3 JUN4	LAG1JUN1	Lagijun 2	LaG1JUN3	Lagijun4
JUN1 1.00000			0.95338 0	0.56674	$4 \quad 0.87625$	0.73808	0.49213	0.53473	0.78267
JUN2 0.95338			1.000000	0.53945	$5 \quad 0.78191$	0.62565	0.40767	0.46829	0.66214
JUN3 0.56674			$0.53945 \quad 1$	1.00000	0.69939	0.34718	0.15280	0.80623	0.52689
JUN4 0.87625			0.78191 0	0.69939	91.00000	0.64790	0.39202	0.60108	0.81009

Table K. 10
CORRELATION COEFFICIENTS
BETWEEN MONTHLY FLOWS
1 = BIG WOOD, 2 = BIG LOST, 3 = GOOSE CREEK, 4 = CAMAS CREEK

Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
JUL1	28	9.542739	0.680947	267.196699	8.140316	10.808353
JUL2	28	9.415818	0.667049	263.642901	7.971431	10.498002
JUL3	28	5.754848	0.954340	161.135754	2.975530	6.770789
JUL4	28	5.700640	1.135907	159.617921	4.021774	7.878913
LAG1JUL1	28	10.355118	0.636345	289.943298	8.861492	11.351582
LAG1JUL2	28	10.183565	0.543623	285.139811	8.797700	11.048029
LAG1JUL3	28	7.086885	0.822352	198.332791	5.442851	8.201386
LAG1JUL4	28	7.594487	1.316030	212.645638	4.495355	9.139381

	JUL1	JUL2	JUL3	JULA	LAG1JUL1	LAGIJUL2	LAG1JUL3	LAGIJUL4
JUL1	1.00000	0.97645	0.70402	0.90654	0.92377	0.88128	0.76304	0.90450
JUL2	0.97645	1.00000	0.71247	0.86110	0.87623	0.87285	0.75067	0.85926
JUL3	0.70402	0.71247	1.00000	0.69984	0.64382	0.60145	0.85435	0.71548
JUL4	0.90654	0.86110	0.69984	1.00000	0.80781	0.73270	0.72853	0.83294

Table K. 11

CORRELATION COEFFICIENTS

BETWEEN MONTHLY FLOWS
1 = BIG WOOD, 2 = BIG LOST, 3 = GOOSE CREEK, 4 = CAMAS CREEK

Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
AUG1	28	8.722812	0.467579	244.238744	7.750184	9.565354
AUG2	28	8.487581	0.506017	247.652262	7.425954	9.257319
AUG3	28	5.084014	1.463737	142.352400	0	6.529419
AUG4	28	4.728708	0.617361	132.403813	3.998201	6.218600
LAG1AUG1	28	9.542739	0.680947	267.196699	8.140316	10.808353
LAG1AUG2	28	9.415818	0.667049	263.642901	7.971431	10.498002
LAG1AUG3	28	5.754848	0.954340	161.135754	2.975530	6.770789
LAG1AUG4	28	5.700640	1.135907	159.617921	4.021774	7.878913

	AUG1	aUG2	aUG3	AUG4	LaG1AUG1	LaG1AUG2	LaG1AUG3	Lag1aUG4
AUG1	1.00000	0.94958	0.50009	0.85154	0.96009	0.92108	0.69385	0.91067
AUG2	0.94958	1.00000	0.56408	0.81890	0.91230	0.91387	0.69040	0.85334
AUG3	0.50009	0.56408	1.00000	0.56737	0.40683	0.38525	0.79066	0.53904
AUG4	0.85154	0.81890	0.56737	1.00000	0.75952	0.70774	0.58593	0.88836

Table K. 12
CORRELATION COEFFICIENTS
BETWEEN MONTHLY FLOWS
1 = BIG WOOD, 2 = BIG LOST, 3 = GOOSE CREEK, 4 = CAMAS CREEK

Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
SEP1	28	8.491859	0.383942	237.772063	7.632401	9.020511
SEP2	28	8.076811	0.377828	226.150710	7.265430	8.515592
SEP3	28	5.040334	1.235115	141.129361	0	6.501290
SEP4	28	4.722519	0.482822	132.230529	4.010963	5.744924
LAG1SEP1	28	8.728812	0.467579	24.238744	7.750184	9.565354
LAG1SEP2	28	8.487581	0.506017	237.652262	7.425954	9.253319
LAG1SEP3	28	5.084014	1.463737	142.352400	0	6.529419
LAG1SEP4	28	4.728708	0.617361	132.403813	3.998201	6.218600

	SEP1	SEP2	SEP3	SEP4	LAG1SEP1	LAG1SEP2	LAG1SEP3	LAG1SEP4
SEP1	1.00000	0.91130	0.32763	0.78354	0.94913	0.86606	0.37759	0.79390
SEP2	0.91130	1.00000	0.28633	0.74881	0.84938	0.84353	0.26614	0.65733
SEP3	0.32763	0.28633	1.00000	0.34107	0.34087	0.34505	0.79003	0.44162
SEP4	0.78354	0.74881	0.34107	1.00000	0.68198	0.56610	0.13449	0.74094

APPENDIXL

SIMPLE STATISTICS FOR

DATA GENERATION

Table L. 1
Mean and Standard Deviations for Transformed Months (by Raw Data)

MONTH	MEAN (X) (Cfs-days)	STD (S) (Cfs-days)	CV (S/X)
OCT1	5432.93	1838.76	0.33845
OCT2	3502.32	1273.91	0.36373
OCT3	456.43	167.82	0.36768
OCT4	215.45	119.00	0.55234
NOV1	5033.25	1392.39	0.27664
NOV2	2887.99	591.49	0.20481
NOV3	642.21	147.51	0.22969
NOV4	378.23	267.66	0.70767
DEC1	4507.89	999.62	0.22175
DEC2	2554.11	441.24	0.17275
DEC3	660.96	182.05	0.27543
DEC4	620.92	438.30	0.70588
APR1	16876.00	8616.01	0.51055
APR2	6182.72	3318.33	0.53671
APR3	2935.94	1487.57	0.50668
APR4	32735.00	28691.00	0.87646
JUL1	17112.00	10901.00	0.63704
JUL2	14875.00	8815.17	0.59262
JUL3	418.23	234.96	0.56179
JUL4	562.54	696.64	1.23838
AUG1	6797.46	3085.64	0.45394
AUG2	5440.86	2508.85	0.46111
AUG3	262.35	170.50	0.64988
AUG4	140.34	113.89	0.81151
SEP1	5209.93	1842.35	0.35362
SEP2	3427.68	1137.48	0.33185
SEP3	222.53	140.74	0.63246
SEP4	126.93	69.80	0.54993

* " 1 " = Big Wood River, " 2 " = Big Lost River,
" 3 " = Goose Creek, " 4 " = Camas Creek

Table L. 2
Means and Standard Deviations for Transformed Months (by Chow's Equations)

MONTH	MEAN (Y)	STD (S)
OCT1	8.5460	0.329314
OCT2	8.0991	0.352495
OCT3	6.0600	0.356085
OCT4	5.2396	0.516011
NOV1	8.4870	0.271554
NOV2	7.9478	0.202710
NOV3	6.4392	0.226742
NOV4	5.7325	0.637182
DEC1	8.3896	0.219093
DEC2	7.8308	0.171486
DEC3	6.4571	0.270412
DEC4	6.2291	0.635855
APR1	9.6178	0.481284
APR2	8.6029	0.503126
APR3	7.8705	0.478024
APR4	10.1112	0.754953
JUL1	9.5772	0.583626
JUL2	9.4569	0.548624
JUL3	5.8989	0.523738
JUL4	5.8677	0.964175
AUG1	8.7306	0.432851
AUG2	8.5053	0.439076
AUG3	5.3935	0.593556
AUG4	4.6911	0.711294
SEP1	8.4994	0.343259
SEP2	8.0874	0.323224
SEP3	5.2368	0.580070
SEP4	4.7115	0.514033

* " 1 " = Big Wood River, " 2 " = Big Lost River, " 3 " = Goose Creek, " 4 " = Camas Creek
* Streamflows are in cfs-days

Table L. 3

> Coefficients of Skew for Historical and Generated Monthly Streamflows Station: 13.1415 .00
> (Period: $1925-1952$ Water Years)

Month	Skew Coeff (Historical)	Skew Coeff (Generated)
October	0.8896	0.5398
November	1.1810	1.9514
December	1.3869	0.6367
January	0.1997	0.0988
Feburary	3.5363	0.2750
March	1.6143	1.4948
April	1.1358	2.1315
May	1.4835	0.7880
June	0.8445	0.5808
July	1.9066	3.1242
August	2.1844	1.7335
September	1.4223	4.8012

Table L. 4

Correlation Coefficients between
Historical Monthly Flows
and Generated Monthly Flows for Camas Creek
(Period: 1925-1952 Water Years)

Month	Corr. Coeff
October	0.79080
November	0.78952
December	0.41585
January	0.78296
Feburary	0.29251
March	0.83049
April	0.71047
May	0.89370
June	0.84475
July	0.69785
August	0.68705
September	0.54754

Fig. L. 1
CAMAS CREEK OCTOBER STREAMFLOWS (observed vs. generated)

Fig. L. 2
CAMAS CREEK NOVEMBER STREAMFLOWS (observed vs. generated)

Fig. L. 3
CAMAS CREEK DECEMBER STREAMFLOWS
(observed vs. generated)

Fig. L. 4
CAMAS CREEK JANUARY STREAMFLOWS

Fig. L. 5
CAMAS CREEK FEBRUARY STREAMFLOWS (observed vs. generated)

Fig. L. 6
CAMAS CREEK MARCH STREAMFLOWS
(ObSERVED vs. generated)

Fig. L. 7
CAMAS CREEK APRIL STREAMFLOWS

Fig. L. 8
CAMAS CREEK MAY STREAMFLOWS (observed vs. generated)

Fig. L. 9
CAMAS CREEK JUNE STREAMFLOWS

Fig. L. 10
CAMAS CREEK JULY STREAMFLOWS 170
(observed vs. generated)

Fig. L. 11
CAMAS CREEK AUGUST STREAMFLOWS

Fig. L. 12
CAMAS CREEK SEPTEMBER STREAMFLOWS

Fig. L. 13
CAMAS CREEK ANNUAL STREAMFLOWS (Observed vs. generated)

APPENDIX M

COMPARISONS OF MONTHLY FLOW STATISTICS BETWEEN DRY AND WET PERIODS

Table M. 1

Ratios of Monthly Statistics between
 Dry and Wet Period Flows (cfs-days)

Station: 13.1395.10

Month	Mean		Ratio	Std. Dev.		Ratio Wet/Dry
	Dry	Wet	Wet/Dry	Dry	Wet	
Oct	5432	7217	1.33	1838	1900	1.03
Nov	5033	6319	1.26	1392	1581	1.14
Dec	4507	5575	1.24	999	1165	1.17
Jan	4211	5400	1.28	877	1039	1.18
Feb	3845	4749	1.24	696	807	1.16
Mar	5205	6011	1.15	1518	1492	0.98
Apr	16875	15752	0.93	8616	7940	0.92
May	38269	43272	1.13	18018	22185	1.23
Jun	37074	50464	1.36	19540	24252	1.24
Jul	17112	23550	1.38	10900	13109	1.20
Aug	6797	9706	1.43	3085	4202	1.36
Sep	5209	7387	1.42	1842	2583	1.40

* " Dry " indicates the period of 1925-1952 water years
* " Wet " indicates the period of 1953-1985 water years

Month	Table M. 2					Ratio
	Ratios of Monthly Statistics between Dry and Wet Period Flows (cfs-days) Station: 13.1205.00					
	Mean		Ratio	Std. Dev.		
	Dry	Wet	Wet/Dry	Dry	Wet	Wet/Dry
Oct	3502	4607	1.32	1273	1237	0.97
Nov	2887	3385	1.17	591	1595	2.70
Dec	2554	2905	1.14	441	1172	2.66
Jan	2340	2721	1.16	385	1033	2.68
Feb	2026	2312	1.14	302	810	2.68
Mar	2312	2551	1.10	393	789	2.01
Apr	6182	5301	0.86	3318	2744	0.83
May	23454	25990	1.11	8658	11827	1.37
Jun	29925	41299	1.38	13606	15206	1.12
Jul	14875	20747	1.39	8815	11508	1.31
Aug	5440	7475	1.37	2508	3583	1.43
Sep	3427	4972	1.45	1137	2164	1.90

* " Dry " indicates the period of 1925-1952 water years
* " Wet " indicates the period of 1953-1985 water years

Table M. 3

Ratios of Monthly Statistics between Dry and Wet Period Flows (cfs-days) Station: 13.0825.00

	Mean		Ratio	Std. Dev.		Ratio
Month	Dry	Wet	Wet/Dry	Dry	Wet	Wet/Dry
Oct	456	614	1.35	167	234	1.40
Nov	642	766	1.19	147	224	1.52
Dec	660	803	1.22	182	255	1.40
Jan	723	1149	1.59	366	920	2.51
Feb	1045	1493	1.43	815	1131	1.39
Mar	1723	2044	1.19	774	906	1.17
Apr	2935	2972	1.01	1487	1353	0.91
May	3902	4923	1.26	2212	3760	1.70
Jun	1547	2299	1.49	940	2281	2.43
Jul	418	615	1.47	234	538	2.30
Aug	262	435	1.66	170	313	1.84
Sep	222	398	1.79	140	231	1.65

* " Dry " indicates the period of 1925-1952 water years
* " Wet " indicates the period of 1953-1985 water years

Table M. 4

Process to Estimate " Natural " Monthly Mean of October
 Camas Creek Station

1. Calculate Ratio of the Mean of Wet and Dry Periods for Three Subordinate Stations
(1) Big Wood Slough (13.1395.10)

Ratio $=7217 / 5432=1.33$
(2) Big Lost River (13.1205.00)

Ratio $=3502 / 4607=1.32$
(3) Goose Creek (13.0825.00)

Ratio $=614 / 456=1.35$
2. Calculate Coefficients of Determination between Camas Creek and Three Subordinate Stations
(1) Coefficient of Determination between Camas Creek and Big Wood Slough $=0.72$
(2) Coefficient of Determination between Camas Creek and Big Lost River $=0.53$
(3) Coefficient of Determination between Camas Creek and Goose Creek $=0.24$
(4) Total $=(1)+(2)+(3)=1.49$
3. Calculate Weighted Average Ratio

Weighted Average Ratio $=1.33(0.72 / 1.49)+1.32(0.53 / 1.49)+1.35(0.24 / 1.49)$ $=1.33$
4. Estimate the " Natural " Monthly Mean Flows

Estimated Mean Flows $=$ Dry Period Mean x Weighted Average Ratio
$=215 \times 1.33$
$=285.95$

Table M. 5

Estimation of Monthly Statistics for Wet Period Using Weighted Average Ratios Station: 13.1415.00

Month	Mean Dry	Ratio Wet/Dry	Mean Wet	S.Dev. Dry	Ratio Wet/Dry	S.Dev. Wet
Oct	215	1.33	285.95	119	1.08	128.52
Nov	378	1.21	457.38	267	1.72	459.24
Dec	620	1.19	737.80	438	1.90	832.20
Jan	439	1.28	561.92	218	1.70	370.60
Feb	920	1.25	1150.00	1048	1.44	1509.12
Mar	4641	1.15	5337.15	3950	1.33	5253.50
Apr	32734	0.97	31751.98	28690	0.90	25821.00
May	11630	1.17	13607.10	10069	1.41	14197.29
Jun	3440	1.40	4816.00	2891	1.52	4394.32
Jul	562	1.41	792.42	696	1.50	1044.00
Aug	140	1.45	203.00	113	1.47	166.11
Sep	126	1.47	185.22	69	1.63	112.47

* Streamflows are in cfs-days

* " Dry " indicates the period of 1925-1952 water years
* " Wet " indicates the period of 1953-1985 water years

APPENDIX N

COMPARISONS BETWEEN HISTORICAL FLOWS AND GENERATED FLOWS
(All units are in cfs-days)

TABLE N. 1

HISTORICAL MONTHLY FLOWS OF THE KEY STATION AND THREE SUBORDINATE STATIONS VS.
 GENERATED MONTHLY FLOWS OF THE KEY STATION

WYEAR	OCT1	OCT2	OCT3	OCT4	OCT4G
53	6923.00	3306	559.0	400.0	400.000
54	6261.00	3214	518.0	229.7	154.499
55	5529.00	2528	439.0	181.0	215.726
56	4344.00	2403	426.0	141.5	117.133
57	7557.00	3321	422.5	294.8	392.107
58	6537.00	4167	490.3	245.1	152.555
59	6417.00	3402	475.0	312.7	238.744
60	7491.00	3840	626.0	285.3	340.070
61	4024.00	2084	413.9	139.9	110.920
62	4838.00	3055	521.0	142.9	229.910
63	6914.00	3890	429.0	245.5	225.753
64	6461.00	4031	400.0	256.5	248.380
65	5685.00	3055	440.4	238.0	154.354
66	9744.00	5262	633.0	1251.0	487.384
67	4591.00	2485	329.2	173.1	144.220
68	8995.00	6226	426.6	338.0	248.290
69	6949.00	5029	500.0	255.9	193.136
70	7942.00	4239	442.9	403.7	280.073
71	7720.00	4025	609.0	477.1	288.699
72	10156.00	5401	732.0	846.0	442.136
73	8575.00	4785	966.0	703.0	546.277
74	6010.28	3073	834.0	207.0	203.099
75	7938.55	3428	668.0	272.6	260.258
76	8140.92	4888	1052.0	406.4	322.562
77	7923.47	5108	889.0	387.0	337.682
78	5165.32	2761	563.0	96.5	251.547
79	7203.08	5175	624.0	253.1	332.225
80	5303.95	2759	532.0	178.2	195.795
81	8381.32	4543	698.0	325.2	274.043
82	6795.34	3859	427.4	137.3	266.261
83	9312.85	6014	860.0	613.0	406.978
84	13048.78	6927	903.0	1230.0	450.301
85	9314.88	5960	1416.0	880.0	310.482

* "OCT1" indicates historical October flows of the Big Wood River
* "OCT2" indicates historical October flows of the Big Lost River
* "OCT3" indicates historical October flows of the Goose Creek
* "OCT4" indicates historical October flows of the Camas Creek
* "OCT4G" indicates generated October flows of the Camas Creek

TABLE N. 2

HISTORICAL MONTHLY FLOWS OF THE KEY STATION AND THREE SUBORDINATE STATIONS VS. GENERATED MONTHLY FLOWS OF THE KEY STATION

WYEAR	NOV1	NOV2	NOV3	NOV4	NOV4G
53	5809.00	2673	631.0	744.0	473.20
54	5484.00	2824	669.0	388.6	105.41
55	4887.00	2169	583.0	330.4	150.42
56	4779.00	1952	625.0	252.3	171.83
57	6193.00	2671	589.0	441.0	413.44
58	5776.00	3035	678.0	336.0	138.60
59	6238.00	2853	675.0	402.5	630.24
60	5549.00	2697	565.0	307.4	458.62
61	3827.00	1944	633.0	232.5	73.20
62	4269.00	2435	626.0	163.9	181.77
63	5477.00	2917	596.0	389.3	310.60
64	6430.00	3568	687.0	625.0	537.50
65	5229.00	2529	672.0	385.0	154.08
66	7877.00	4019	742.6	1535.0	1553.97
67	4738.00	2227	525.0	398.1	164.90
68	7465.00	3857	457.0	538.0	426.72
69	5973.00	3734	743.0	467.9	262.50
70	5956.00	261	533.0	602.0	317.13
71	7890.00	3196	813.0	1560.0	1389.58
72	7899.00	4402	944.0	1328.0	685.97
73	6886.00	3373	1141.0	1052.0	945.08
74	6820.46	3466	1087.0	969.0	428.94
75	7011.88	3004	869.0	590.0	363.76
76	7168.31	3785	1133.0	789.0	806.33
77	6107.50	3476	946.0	461.0	351.13
78	46044.08	1821	703.0	200.3	186.76
79	6019.22	3980	700.0	331.8	398.98
80	4796.99	2451	716.0	257.7	134.92
81	6827.05	3798	847.0	447.0	264.48
82	6288.24	3190	668.0	371.2	176.58
83	7619.31	4183	955.0	1039.0	481.49
84	12423.81	1196	1003.0	2480.0	2096.43
85	8213.21	5034	1527.0	1595.0	921.94

* "NOV1" indicates historical November flows of the Big Wood River * "NOV2" indicates historical November flows of the Big Lost River * "NOV3" indicates historical November flows of the Goose Creek * "NOV4" indicates historical November flows of the Camas Creek * "NOV4G" indicates generated November flows of the Camas Creek

TABLE N. 3

HISTORICAL MONTHLY FLOWS OF THE KEY STATION AND THREE SUBORDINATE STATIONS VS. GENERATED MONTHLY FLOWS OF THE KEY STATION

WYEAR	DEC1	DEC2	DEC3	DEC4	DEC4G
53	6177.00	2720	694.0	776.0	850.72
54	4731.00	2211	639.0	665.0	102.32
55	4194.00	1760	491.5	351.3	836.52
56	6776.00	2823	997.0	2058.2	190.25
57	5421.00	2188	834.3	1760.0	518.93
58	5579.00	2566	749.0	445.0	1229.59
59	5691.00	2308	827.0	848.0	1247.95
60	4499.00	2171	467.0	394.0	279.35
61	3600.00	1809	546.0	300.8	216.61
62	3590.00	1782	688.0	269.2	746.05
63	4820.00	2419	583.0	680.0	373.69
64	4997.00	2945	440.7	589.0	456.46
65	6716.00	2906	1403.0	13990.0	232.21
66	6048.00	3230	632.2	1273.0	419.32
67	4416.00	2148	425.5	408.0	216.77
68	6234.00	2893	366.6	499.0	251.48
69	4986.00	3166	749.0	459.0	193.55
70	5377.00	2948	592.0	674.0	1119.62
71	6454.00	2818	942.0	1769.0	735.79
72	6235.00	3106	992.0	1223.0	3002.66
73	5089.00	2792	1172.0	926.0	1014.91
74	5739.06	2600	891.0	959.0	549.33
75	5664.87	3002	704.0	620.0	1472.39
76	6321.85	3262	1308.0	1143.0	1503.70
77	5344.28	2615	863.0	478.0	474.75
78	4643.38	2271	932.0	596.9	248.08
79	4984.62	3261	722.0	422.0	265.24
80	4576.83	2176	772.0	273.0	418.84
81	6104.47	3300	981.0	787.0	915.10
82	5391.64	3068	928.0	811.0	79.61
83	6575.48	3461	920.0	968.0	1145.57
84	9637.41	8612	1165.0	1618.0	9170.90
85	7391.99	4555	1084.0	1147.0	881.98

* "DEC1" indicates historical December flows of the Big Wood River
* "DEC2" indicates historical December flows of the Big Lost River
* "DEC3" indicates historical December flows of the Goose Creek
* "DEC4" indicates historical December flows of the Camas Creek
* "DEC4G" indicates generated December flows of the Camas Creek

TABLE N. 4

HISTORICAL MONTHLY FLOWS OF THE KEY STATION AND THREE SUBORDINATE STATIONS VS.
GENERATED MONTHLY FLOWS OF THE KEY STATION

WYEAR	JAN1	JAN2	JAN3	JAN4	JAN4G
53	6474.00	2835	1173.0	1313.0	626.64
54	4949.00	2063	694.0	594.0	0.0
55	4076.00	1642	512.0	411.0	244.80
56	5808.00	1990	1370.0	3076.0	861.97
57	4706.00	1945	559.0	558.0	530.05
58	5083.00	2469	719.0	618.0	753.48
59	5124.00	2068	853.0	747.0	640.22
60	4372.00	2271	502.0	467.0	100.50
61	3775.00	1583	597.0	290.3	0.0
62	3713.00	1683	2128.0	634.0	209.48
63	4196.00	2035	353.6	509.0	303.74
64	4581.00	2790	458.0	527.0	485.04
65	7150.00	3416	2435.0	7640.0	239.62
66	6198.00	3177	687.0	1288.0	485.12
67	4757.00	2232	678.0	674.0	322.50
68	5485.00	2653	471.0	569.0	774.89
69	5169.00	3138	997.0	916.0	339.17
70	5308.00	2725	2484.0	794.0	1041.15
71	6019.00	3110	5043.0	1841.0	1528.91
72	6627.00	3162	1412.0	1160.0	912.97
73	5073.00	2302	1059.0	1017.0	652.08
74	6108.39	3931	780.0	1003.0	374.50
75	5533.86	3097	902.5	617.0	695.88
76	5701.01	2699	915.0	845.0	864.63
77	5120.43	2284	847.0	473.0	656.92
78	4513.59	2573	1041.0	521.0	0.0
79	4805.35	2749	693.0	363.6	490.99
80	4912.05	2184	2761.0	439.8	571.87
81	5818.46	2737	857.0	834.0	978.84
82	5166.99	2614	782.0	650.0	214.46
83	6210.31	2655	897.0	1175.0	977.53
84	8533.27	7586	1244.0	20320	1167.77
85	7133.91	3410	1018.0	1114.0	984.49

[^3]
TABLE N. 5

HISTORICAL MONTHLY FLOWS OF THE KEY STATION AND THREE SUBORDINATE STATIONS VS. GENERATED MONTHLY FLOWS OF THE KEY STATION

WYEAR	FEB1	FEB2	FEB3	FEB4	FEB4G
53	4804.00	2300	924	1971.0	399.68
54	4486.00	2006	926	903.0	144.57
55	3560.00	1454	556	383.0	612.81
56	4217.00	1602	756	1938.0	0.0
57	4370.00	1825	1782	6734.0	2281.50
58	4612.00	2192	3232	918.0	2967.02
59	4602.00	1822	914	772.0	3609.53
60	3723.00	2099	604	875.0	0.0
61	3308.00	1370	996	1492.0	0.0
62	3976.00	2127	6749	2664.0	0.0
63	5075.00	2285	1084	31283.0	4708.55
64	4401.00	2320	555	580.0	2478.40
65	5239.00	2474	2024	8377.0	0.0
66	4828.00	2788	736	1132.0	1589.39
67	4009.00	2531	779	792.0	821.99
68	4990.00	2199	1522	1467.0	568.52
69	4662.00	2476	900	1033.0	2882.90
70	4342.00	3103	1251	1043.0	0.0
71	6053.00	2359	1969	6389.0	4371.21
72	6089.00	2233	1728	1251.0	3471.29
73	4604.00	2151	1301	1020.0	1875.86
74	5158.13	2270	1348	1159.0	1398.63
75	4743.91	2524	1477	776.0	789.83
76	5267.30	2277	1885	925.0	2056.31
77	4347.78	1908	902	623.0	1870.74
78	4090.43	1891	1012	660.0	2862.38
79	192.72	2570	1989	560.0	0.0
80	4478.85	1914	2174	1094.4	0.0
81	5061.64	2234	901	1615.0	1754.84
82	4888.13	2089	2740	1190.0	1535.00
83	5316.14	1799	1301	1298.0	2967.59
84	7509.15	6317	1195	2525.0	3373.70
85	5716.75	2796	1057	1057.0	2340.61

* "FEB1" indicates historical Feburary flows of the Big Wood River
* "FEB2" indicates historical Feburary flows of the Big Lost River
* "FEB3" indicates historical Feburary flows of the Goose Creek
* "FEB4" indicates historical Feburary flows of the Camas Creek
* "FEB4G" indicates generated Feburary flows of the Camas Creek

TABLE N. 6

HISTORICAL MONTHLY FLOWS OF THE KEY STATION AND THREE SUBORDINATE STATIONS VS.
 GENERATED MONTHLY FLOWS OF THE KEY STATION

WYEAR	MAR1	MAR2	MAR3	MAR4	MAR4G
53	6541.00	2488	1340	11714	5514.84
54	5256.00	2227	1286	5191	0.0
55	3700.00	1652	1050	717	0.0
56	5853.00	2212	3368	5700	9259.48
57	5393.00	2220	1791	27548	4835.57
58	5093.00	2451	1777	2899	4821.19
59	5091.00	2015	1134	2905	5418.40
60	5730.00	2534	1778	1370	5137.22
61	3817.00	1459	1261	5548	5980.50
62	4298.00	2378	3785	1447	6593.01
63	5203.00	1987	1098	2423	770.80
64	4503.00	2170	1364	866	2458.59
65	6577.00	2608	1387	18172	4459.51
66	5544.00	2893	1736	8066	1622.40
67	5389.00	2401	1051	3352	4257.84
68	7165.00	2709	1507	7907	6744.79
69	5383.00	3078	2104	1486	4343.41
70	5689.00	2820	1120	7639	2330.34
71	6541.00	2453	2434	16194	8110.48
72	10385.00	3240	4145	43370	22054.51
73	4978.00	2497	2116	2497	4802.06
74	8997.40	3043	2941	29946	14940.91
75	5454.02	1965	3096	1668	6074.48
76	5770.25	2601	2972	1415	5484.77
77	4897.15	1801	1292	959	6564.74
78	6346.44	2532	1967	8629	9944.97
79	5164.08	3079	3976	8141	4960.69
80	516933	1885	1389	5077	1688.08
81	7023.70	2588	1242	5804	7738.08
82	7041.85	2527	2278	7823	9222.31
83	8114.26	1882	2329	23302	13261.21
84	8969.02	6003	2927	5516	7655.39
85	7316.81	3802	2419	1572	7821.68

* "MAR1" indicates historical March flows of the Big Wood River
* "MAR2" indicates historical March flows of the Big Lost River
* "MAR3" indicates historical March flows of the Goose Creek
* "MAR4" indicates historical March flows of the Camas Creek
* "MAR4G" indicates generated March flows of the Camas Creek

TABLE N. 7
HISTORICAL MONTHLY FLOWS OF THE KEY STATION AND THREE SUBORDINATE STATIONS VS.
GENERATED MONTHLY FLOWS OF THE KEY STATION

WYEAR	APR1	APR2	APR3	APR4	APR4G
53	18389.00	5144	2505	28167.0	22003.01
54	17562.00	6143	1596	24905.0	11344.40
55	4949.00	1913	1190	6285.0	5666.94
56	28958.00	9323	3700	65176.0	35214.42
57	11061.00	2688	2283	22824.0	23378.74
58	12221.00	3444	3300	40878.0	46118.49
59	11844.00	3665	1759	15358.0	20996.85
60	16726.00	5321	2235	34326.0	24327.55
61	7879.00	2226	1433	6719.0	12514.51
62	21650.00	9322	3842	48477.0	33717.57
63	7311.00	2774	1285	4479.0	14313.76
64	12535.00	4213	2464	27849.0	16748.18
65	26267.00	6934	3881	56662.0	70028.94
66	15408.00	5538	2076	23562.0	13311.98
67	9040.00	2316	1190	14826.0	11442.45
68	11358.00	4499	1448	3667.0	7103.23
69	39887.00	13431	4878	83176.0	105638.84
70	8853.00	3018	1672	30808.0	8561.39
71	16184.00	3621	4801	82010.0	56103.61
72	13215.00	4673	4764	24666.0	98107.84
73	9945.00	3355	4151	22473.0	42843.65
74	33506.87	10536	5385	40739.0	85572.15
75	6854.19	2075	2092	23006.0	13634.93
76	15087.68	6635	4252	40671.0	38148.91
77	5379.55	3506	1327	569.4	5208.23
78	19098.34	4423	4055	42615.0	66954.66
79	8865.90	4298	2717	6212.0	10705.60
80	19730.70	6206	3263	21374.0	47527.19
81	17668.14	8771	1670	5242.0	12097.10
82	15415.81	5643	3402	62423.0	26764.45
83	14808.50	3369	3334	62200.0	24873.51
84	19743.43	7572	5533	65561.0	54298.92
85	22425.58	8365	4625	34725.0	40116.93

* "APR1" indicates historical April flows of the Big Wood River
* "APR2" indicates historical April flows of the Big Lost River
* "APR3" indicates historical April flows of the Goose Creek
* "APR4" indicates historical April flows of the Camas Creek
* "APR4G" indicates generated April flows of the Camas Creek

TABLE N. 8

HISTORICAL MONTHLY FLOWS OF THE KEY STATION AND THREE SUBORDINATE STATIONS VS.
 GENERATED MONTHLY FLOWS OF THE KEY STATION

WYEAR	MAY1	MAY2	MAY3	MAY4	MAY4G
53	24522.00	13473	4004.0	9567.0	9720.66
54	40383.00	29708	857.5	7307.0	4843.79
55	22147.00	11582	1957.0	7043.0	9347.84
56	72050.00	43554	4050.0	18306.0	19948.81
57	50838.00	27145	6604.0	17283.0	26719.99
58	90720.00	52702	7110.0	26334.0	34973.35
59	16992.00	8637	1073.0	4262.0	0.0
60	20689.00	12631	1544.0	7528.0	0.0
61	16352.00	13227	686.0	881.0	0.0
62	29946.00	16533	2957.0	13963.0	2699.99
63	37640.00	27695	2507.0	7764.0	3053.50
64	30527.00	21972	4685.0	9858.0	8714.71
65	64960.00	30733	5673.0	25534.0	34234.51
66	25525.00	19617	811.9	5011.0	0.0
67	58421.00	37683	2348.0	14917.0	17227.84
68	16855.00	16989	1052.0	455.0	0.0
69	94200.00	58282	3122.0	23195.0	21036.97
70	34402.00	26308	6928.0	14652.0	11314.69
71	67210.00	30514	9386.0	32282.0	46321.92
72	39171.00	22365	7962.0	15668.0	13373.71
73	26786.00	23951	7003.0	5906.0	0.0
74	69091.55	34510	7080.0	15388.0	30424.58
75	34155.35	14775	9428.0	45552.0	19548.54
76	46322.41	34883	7283.0	10568.0	4308.32
77	7333.32	6185	1273.0	422.1	4882.95
78	41236.07	17535	5043.0	15053.0	22195.63
79	28121.71	26017	5044.0	3873.0	0.0
80	53929.87	30024	5718.0	14834.0	11899.74
81	37822.64	28302	1138.0	4224.0	0.0
82	74780.02	32178	6955.0	31912.0	55182.85
83	67566.52	32464	8184.0	48124.0	40039.11
84	54876.18	35292	19379.0	32049.0	10102.13
85	32410.60	20219	3641.0	8198.0	9424.45

* "MAY1" indicates historical May flows of the Big Wood River
* "MAY2" indicates historical May flows of the Big Lost River
* "MAY3" indicates historical May flows of the Goose Creek
* "MAY4" indicates historical May flows of the Camas Creek
* "MAY4G" indicates generated May flows of the Camas Creek

TABLE N. 9

HISTORICAL MONTHLY FLOWS OF THE KEY STATION AND THREE SUBORDINATE STATIONS VS.
 GENERATED MONTHLY FLOWS OF THE KEY STATION

WYEAR	JUN1	JUN2	JUN3	JUN4	JUN4G
53	46396.00	40653	3208.0	6295.0	3583.68
54	27940.00	24352	334.0	1674.0	100.85
55	35779.00	31421	782.0	2204.0	3490.01
56	65070.00	53520	925.9	5624.0	4323.74
57	58190.00	54063	2310.0	6056.0	5905.62
58	59390.00	42400	1873.0	7644.0	6551.87
59	28884.00	26788	493.6	603.0	3516.87
60	23092.00	23089	350.8	1109.9	0.0
61	23012.00	24284	430.4	376.1	3137.17
62	44461.00	41116	1778.0	7328.0	3311.39
63	48980.00	44643	2294.0	6720.0	5834.56
64	44230.00	38285	3831.0	4873.0	7883.12
65	89140.00	70440	2290.0	13012.0	10770.80
66	17244.00	14787	254.0	1130.0	0.0
67	83930.00	69560	2249.0	10449.0	7666.03
68	29887.00	40272	444.9	2722.0	0.0
69	60842.00	45363	833.0	6306.0	3089.09
70	50240.00	52592	3506.0	6785.0	4577.04
71	78570.00	55406	3604.0	11911.0	12706.72
72	76590.00	47800	3579.0	7904.0	7065.29
73	22479.00	26850	1560.0	1012.0	1539.25
74	96055.35	63100	1929.0	5046.0	11870.99
75	67545.67	56150	9949.0	8573.0	12501.55
76	33758.23	30735	1505.0	1809.0	1423.13
77	18006.78	23789	774.4	17.2	1297.91
78	54000.18	42080	1524.0	5660.0	5248.19
79	20469.58	20457	1447.0	368.2	59.60
80	50420.17	34944	3927.0	6560.0	5143.62
81	41263.99	40014	278.6	2101.0	0.0
82	87248.77	51855	2344.0	10919.0	14343.63
83	98468.14	66340	4848.0	18642.0	14560.05
84	60210.94	47554	9457.0	12798.0	7116.43
85	23522.14	18179	967.0	1603.0	1602.16

[^4]HISTORICAL MONTHLY FLOWS OF THE KEY STATION AND THREE SUBORDINATE STATIONS VS.
GENERATED MONTHLY FLOWS OF THE KEY STATION

WYEAR	JUN1	JUN2	JUN3	JUN4	JUN4G
53	46396.00	40653	3208.0	6295.0	3583.68
54	27940.00	24352	334.0	1674.0	100.85
55	35779.00	31421	782.0	2204.0	3490.01
56	65070.00	53520	925.9	5624.0	4323.74
57	58190.00	54063	2310.0	6056.0	5905.62
58	59390.00	42400	1873.0	7644.0	6551.87
59	28884.00	26788	493.6	603.0	3516.87
60	23092.00	23089	350.8	1109.9	0.0
61	23012.00	24284	430.4	376.1	3137.17
62	44461.00	41116	1778.0	7328.0	3311.39
63	48980.00	44643	2294.0	6720.0	5834.56
64	44230.00	38285	3831.0	4873.0	7883.12
65	89140.00	70440	2290.0	13012.0	10770.80
66	17244.00	14787	254.0	1130.0	0.0
67	83930.00	69560	2249.0	10449.0	7666.03
68	29887.00	40272	444.9	2722.0	0.0
69	60842.00	45363	833.0	6306.0	3089.09
70	50240.00	52592	3506.0	6785.0	4577.04
71	78570.00	55406	3604.0	11911.0	12706.72
72	76590.00	47800	3579.0	7904.0	7065.29
73	22479.00	26850	1560.0	1012.0	1539.25
74	96055.35	63100	1929.0	5046.0	11870.99
75	67545.67	56150	9949.0	8573.0	12501.55
76	33758.23	30735	1505.0	1809.0	1423.13
77	18006.78	23789	774.4	170.2	1297.91
78	54000.18	42080	1524.0	5660.0	5248.19
79	20469.58	20457	1447.0	368.2	592.60
80	50420.17	34944	3927.0	6560.0	5143.62
81	41263.99	40014	278.6	2101.0	0.0
82	87248.77	51855	2344.0	10919.0	14343.63
83	98468.14	66340	4848.0	18642.0	14560.05
84	60210.94	47554	9457.0	12798.0	7116.43
85	23522.14	18179	967.0	1603.0	1602.16

[^5]TABLE N. 11
HISTORICAL MONTHLY FLOWS OF THE KEY STATION AND THREE SUBORDINATE STATIONS

VS.
GENERATED MONTHLY FLOWS OF THE KEY STATION

WYEAR	AUG1	AUG2	AUG3	AUG4	AUG4G
53	9331.00	6325	651.60	207.1	209.175
54	7020.00	4776	83.00	133.9	115.961
55	6493.00	4857	286.40	104.6	46.503
56	9617.00	6467	163.20	148.9	216.457
57	8621.00	5868	254.40	151.8	127.779
58	10287.00	7338	390.20	159.9	265.547
59	4767.00	3552	133.90	96.2	106.827
60	3834.00	3033	135.70	85.2	60.015
61	4528.00	3059	359.30	59.0	96.044
62	8179.00	7196	373.10	167.4	119.545
63	8183.00	7087	202.50	107.6	164.990
64	8218.00	6002	355.50	146.7	72.082
65	21248.00	18170	594.00	1224.0	552.859
66	4507.00	3386	42.32	98.3	68.101
67	11305.00	9710	299.70	172.7	134.186
68	9212.00	9120	469.90	152.7	149.381
69	10043.00	7893	213.80	180.5	119.393
70	8866.00	6762	458.20	218.4	187.834
71	12812.00	9998	554.00	599.0	205.584
72	10238.00	6234	441.00	336.0	365.569
73	5639.00	5027	513.00	138.1	75.693
74	12391.63	7847	434.20	149.1	197.368
75	12600.81	10155	966.00	264.6	233.485
76	11120.94	8758	699.00	214.9	204.172
77	5399.71	4190	319.40	79.1	89.751
78	11082.96	7189	326.60	69.7	260.598
79	6486.50	5904	476.70	79.0	185.089
80	11652.93	7780	540.00	139.1	163.914
81	6876.95	5742	51.00	65.9	93.518
82	15986.58	12037	388.70	218.0	285.120
83	21177.28	16375	993.00	858.0	309.209
84	14948.61	14343	1641.00	639.0	518.628
85	7631.43	4514	552.00	157.9	217.989

* "AUG1" indicates historical August flows of the Big Wood River
* "AUG2" indicates historical August flows of the Big Lost River
* "AUG3" indicates historical August flows of the Goose Creek
* "AUG4" indicates historical August flows of the Camas Creek
* "AUG4G" indicates generated August flows of the Camas Creek

TABLE N. 12

HISTORICAL MONTHLY FLOWS OF THE KEY STATION AND THREE SUBORDINATE STATIONS
 VS. GENERATED MONTHLY FLOWS OF THE KEY STATION

WYEAR	SEP1	SEP2	SEP3	SEP4	SEP4G
53	5599.00	3507	327.6	138.0	114.640
54	4873.00	2737	162.4	111.6	205.759
55	4318.00	2522	173.8	91.0	42.808
56	6744.00	3426	120.6	116.5	176.961
57	5993.00	3720	211.1	123.3	107.627
58	7328.00	4109	257.5	202.7	178.856
59	6880.00	4594	278.7	321.6	314.555
60	3671.00	2158	173.5	101.2	83.380
61	4745.00	3933	463.5	92.8	206.312
62	5800.00	3147	230.8	97.6	72.623
63	6597.00	5221	341.8	163.5	212.154
64	5514.00	3647	314.0	103.9	91.827
65	13367.00	7380	507.0	957.0	243.535
66	3901.00	2663	41.8	101.6	105.488
67	7968.00	5471	238.1	204.5	147.172
68	7332.00	6289	396.0	191.7	121.529
69	7671.00	4751	212.6	226.0	173.681
70	7543.00	4868	420.0	241.6	144.200
71	9977.00	5168	409.0	367.9	173.847
72	8010.00	4491	553.0	297.8	348.671
73	4886.00	4073	585.0	132.4	78.994
74	7906.38	4086	331.5	128.0	179.382
75	7933.37	5156	653.0	285.4	154.047
76	9539.45	8329	663.0	279.1	306.627
77	4837.99	2781	381.1	76.4	97.634
78	10564.87	9939	613.0	220.7	522.518
79	4757.55	3309	402.0	76.8	86.772
80	9567.12	6662	544.0	154.8	175.703
81	5052.00	3671	72.1	62.3	128.169
82	10110.40	6120	569.1	382.0	212.566
83	12672.75	6753	671.0	495.0	169.728
84	10125.68	8100	1186.0	468.0	208.911
85	11988.15	11326	657.0	322.6	520.007

[^6]TABLE N. 13
HISTORICAL ANNUAL FLOWS OF THE KEY STATION VS.
GENERATED ANNUAL FLOWS OF THE KEY STATION

WYEAR	ANN4	ANN4G
53	62104.0	44942.37
54	42745.0	17808.93
55	18424.0	20853.99
56	103025.9	71132.11
57	84315.1	65584.88
58	81529.5	98859.24
59	26776.5	36931.14
60	47018.7	30825.21
61	16187.9	22433.01
62	76125.0	48206.04
63	55744.6	30648.64
64	46757.6	40581.12
65	150128.0	123697.36
66	44624.7	19727.56
67	48394.1	43471.43
68	19739.9	16486.08
69	119198.0	138674.85
70	65717.7	30622.68
71	158224.0	133642.83
72	99095.2	150599.60
73	37105.4	54514.91
74	96277.5	146687.71
75	85100.6	58212.69
76	59333.2	55665.89
77	4818.4	21971.63
78	76065.0	110773.57
79	20792.4	18099.56
80	51813.9	69191.31
81	21607.8	24431.94
82	119499.5	110371.39
83	163816.0	100447.51
84	129334.0	97735.94
85	52561.7	65343.12

* "ANN4" indicates historical Annual flows of the Camas Creek
* "ANN4G" indicates generated Annual flows of the Camas Creek

Fig. N. 1
CAMAS CREEK OCTOBER STREAMFLOWS (observed vs. generated)

Fig. N. 2
CAMAS CREEK NOVEMBER STREAMFLOWS

Fig. N. 3
CAMAS CREEK DECEMBER STREAMFLOWS (observed vs. generated)

Fig. N. 4
CAMAS CREEK JANUARY STREAMFLOWS (ObSERVED VS. GENERATED)

Fig. N. 5
CAMAS CREEK FEBRUARY STREAMFLOWS

Fig. N. 6
CAMAS CREEK MARCH STREAMFLOWS

Fig. N. 7
CAMAS CREEK APRIL STREAMFLOWS
(OBSERVED VS. GENERATED)

Fig. N. 8
CAMAS CREEK MAY STREAMFLOWS

Fig. N. 9
CAMAS CREEK JUNE STREAMFLOWS
(OBSERVED vs. generated)

Fig. N. 10
CAMAS CREEK JULY STREAMFLOWS
(ObSERVED vs. generated)

Fig. N. 11
CAMAS CREEK AUGUST STREAMFLOWS
(OBSERVED VS. GENERATED)

Fig. N. 12
CAMAS CREEK SEPTEMBER STREAMFLOWS (OBSERVED VS. GENERATED)

Fig. N. 13
CAMAS CREEK ANNUAL STREAMFLOWS (observed vs. generated)

APPENDIX 0
 COEFFICIENTS OF SKEWNESS FOR HISTORICAL AND GENERATED MONTHLY FLOWS

Table 0.1

Coefficients of Skewness for Historical and Generated Monthly Streamflows Station: 13.1415.00 (Period: 1953-1985 Water Years)

Month	Skew Coeff (Historical)	Skew Coeff (Generated)
October	1.8792	
November	1.8326	0.5975
December	5.3962	2.0691
January	4.3220	4.6561
Feburary	4.8371	0.3711
March	2.0944	0.4207
April	0.6300	1.6253
May	1.2068	1.2411
June	0.8742	1.1394
July	1.5790	0.7638
August	2.7975	1.2473
September	2.5588	1.5889
Annual	0.6652	1.7518
	0.7108	

APPENDIX P
DIFFERENCES BETWEEN
HISTORICAL FLOWS AND
GENERATED FLOWS

Table P. 1
RATIOS BETWEEN HISTORICAL AND GENERATED FLOWS (Streamflow in cfs-days)

WYEAR	OCT4	OCT4G	OCTRAT
53	400.0	400.000	1.00000
54	229.7	154.499	1.48674
55	181.0	215.726	0.83903
56	141.5	117.133	1.20803
57	294.8	392.107	0.75184
58	245.1	152.555	1.60663
59	312.7	238.744	1.30977
60	285.3	340.070	0.83894
61	139.9	110.920	1.26127
62	142.9	229.910	0.62155
63	245.5	225.753	1.08747
64	256.5	248.380	1.03269
65	238.0	154.354	1.54191
66	1251.0	487.384	2.56676
67	173.1	144.220	1.20025
68	338.0	248.290	1.36131
69	255.9	193.136	1.32497
70	403.7	280.073	1.44141
71	477.1	288.699	1.65259
72	846.0	442.136	1.91344
73	703.0	546.277	1.28689
74	207.0	203.099	1.01921
75	272.6	260.258	1.04742
76	406.4	322.562	1.25991
77	387.0	337.682	1.14605
78	96.5	251.547	0.38363
79	253.1	332.225	0.76183
80	178.2	195.795	0.91014
81	325.2	274.043	1.18668
82	137.3	266.261	0.51566
83	613.0	406.978	1.50622
84	1230.0	450.301	2.73151
85	880.0	310.482	2.83430

* "OCT4" indicates historical October flows
* "OCT4G" indicates generated October flows
* "OCTRAT" indicates OCT4/OCT4G
* "." indicates division by zero

Table P. 2
RATIOS BETWEEN HISTORICAL AND GENERATED FLOWS (Streamflow in cfs-days)

WYEAR	NOV4	NOV4G	NOVRAT
53	744.0	473.20	1.57227
54	388.6	105.41	3.68656
55	330.4	150.42	2.19652
56	252.3	171.83	1.46831
57	441.0	413.44	1.06666
58	336.0	138.60	2.42424
59	402.5	630.24	0.63865
60	307.4	458.62	0.67027
61	232.5	73.20	3.17623
62	163.9	181.77	0.90169
63	389.3	310.60	1.25338
64	625.0	537.50	1.16279
65	385.0	154.08	2.49870
66	1535.0	1553.97	0.98779
67	398.1	164.90	2.41419
68	538.0	426.72	1.26078
69	467.9	262.50	1.78248
70	602.0	317.13	1.89828
71	1560.0	1389.58	1.12264
72	1328.0	685.97	1.93594
73	1052.0	945.08	1.11313
74	969.0	428.94	2.25906
75	590.0	363.76	1.62195
76	789.0	806.33	0.97851
77	461.0	351.13	1.31290
78	200.3	186.76	1.07250
79	331.8	398.98	0.83162
80	257.7	134.92	1.91002
81	447.0	264.48	1.69011
82	371.2	176.58	2.10216
83	1039.0	481.49	2.15788
84	2480.0	2096.43	1.18296
85	1595.0	921.94	1.73005

* "NOV4" indicates historical November flows
* "NOV4G" indicates generated November flows
* "NOVRAT" indicates NOV4/NOV4G
* "." indicates division by zero

Table P. 3

RATIOS BETWEEN HISTORICAL AND GENERATED FLOWS

 (Streamflow in cfs-days)| WYEAR | DEC4 | DEC4G | DECRAT |
| ---: | ---: | ---: | ---: |
| | | | |
| 53 | 776.0 | 850.72 | 0.9122 |
| 54 | 665.0 | 102.32 | 6.4992 |
| 55 | 351.3 | 836.52 | 0.4200 |
| 56 | 2058.2 | 190.25 | 10.8184 |
| 57 | 1760.0 | 518.93 | 3.3916 |
| 58 | 445.0 | 1229.59 | 0.3619 |
| 59 | 848.0 | 1247.95 | 0.6795 |
| 60 | 394.0 | 279.35 | 1.4104 |
| 61 | 300.8 | 216.61 | 1.3887 |
| 62 | 269.2 | 746.05 | 0.3608 |
| 63 | 680.0 | 373.69 | 1.8197 |
| 64 | 589.0 | 456.46 | 1.2904 |
| 65 | 13990.0 | 232.21 | 60.2472 |
| 66 | 1273.0 | 419.32 | 3.0359 |
| 67 | 408.0 | 216.77 | 1.8822 |
| 68 | 499.0 | 251.48 | 1.9843 |
| 69 | 459.0 | 193.55 | 2.3715 |
| 70 | 674.0 | 1119.62 | 0.6020 |
| 71 | 1769.0 | 735.79 | 2.4042 |
| 72 | 1223.0 | 3002.66 | 0.4073 |
| 73 | 926.0 | 1014.91 | 0.9124 |
| 74 | 959.0 | 549.33 | 1.7458 |
| 75 | 620.0 | 1472.39 | 0.4211 |
| 76 | 1143.0 | 1503.70 | 0.7601 |
| 77 | 478.0 | 474.75 | 1.0068 |
| 78 | 596.9 | 248.08 | 2.4061 |
| 79 | 422.0 | 265.24 | 1.5910 |
| 80 | 273.0 | 418.84 | 0.6518 |
| 81 | 787.0 | 915.10 | 0.8600 |
| 82 | 811.0 | 79.61 | 10.1872 |
| 83 | 968.0 | 1145.57 | 0.8450 |
| 84 | 1618.0 | 9170.90 | 0.1764 |
| 85 | 1147.0 | 881.98 | 1.3005 |

* "DEC4" indicates historical December flows
* "DEC4G" indicates generated December flows
* "DECRAT" indicates DEC4/DEC4G
* "." indicates division by zero

Table P. 4
RATIOS BETWEEN HISTORICAL AND GENERATED FLOWS (Streamflow in cfs-days)

WYEAR	JAN4	JAN4G	JANRAT
53	1313.0	626.64	2.0953
54	594.0	0.00	.
55	411.0	244.80	1.6789
56	3076.0	861.97	3.5686
57	558.0	530.05	1.0527
58	618.0	753.48	0.8202
59	747.0	640.22	1.1668
60	467.0	100.50	4.6468
61	290.3	0.00	.
62	634.0	209.48	3.0265
63	509.0	303.74	1.6758
64	527.0	485.04	1.0865
65	7640.0	239.62	31.8838
66	1288.0	485.12	2.6550
67	674.0	322.50	2.0899
68	569.0	774.89	0.7343
69	916.0	339.17	2.7007
70	794.0	1041.15	0.7626
71	1841.0	1528.91	1.2041
72	1160.0	912.97	1.2706
73	1017.0	652.08	1.5596
74	1003.0	374.50	2.6782
75	617.0	695.88	0.8866
76	845.0	864.63	0.9773
77	473.0	656.92	0.7200
78	521.0	0.00	.
79	363.6	490.99	0.7405
80	439.8	571.87	0.7691
81	834.0	978.84	0.8520
82	650.0	214.46	3.0309
83	1175.0	977.53	1.2020
84	2032.0	1167.77	1.7401
85	1114.0	984.49	1.1316

* "JAN4" indicates historical January flows
* "JAN4G" indicates generated January flows
* "JANRAT" indicates JAN4/JAN4G
* "." indicates division by zero

Table P. 5
RATIOS BETWEEN HISTORICAL AND GENERATED FLOWS (Streamflow in cfs-days)

WYEAR	FEB4	FEB4G	FEBRAT
53	1971.0	399.68	4.93145
54	903.0	144.57	6.24611
55	383.0	612.81	0.62499
56	1938.0	0.00	
57	6734.0	2281.50	2.95157
58	918.0	2967.02	0.30940
59	772.0	3609.53	0.21388
60	875.0	0.00	
61	1492.0	0.00	
62	2664.0	0.00	
63	31283.0	4708.55	6.64387
64	580.0	2478.40	0.23402
65	8377.0	0.00	
66	1132.0	1589.39	0.71222
67	792.0	821.99	0.96352
68	1467.0	568.52	2.58038
69	1033.0	2882.90	0.35832
70	1043.0	0.00	
71	6389.0	4371.21	1.46161
72	1251.0	3471.29	0.36038
73	1020.0	1875.86	0.54375
74	1159.0	1398.63	0.82867
75	776.0	789.83	0.98249
76	925.0	2056.31	0.44983
77	623.0	1870.74	0.33302
78	660.0	2862.38	0.23058
79	560.0	0.00	.
80	1094.4	0.00	
81	1615.0	1754.84	0.92031
82	1190.0	1535.00	0.77524
83	1298.0	2967.59	0.43739
84	2525.0	3373.70	0.74844
85	1057.0	2340.61	0.45159

* "FEB4" indicates historical February flows
* "FEB4G" indicates generated February flows
* "FEBRAT" indicates FEB4/FEB4G
*". " indicates division by zero

Table P. 6

RATIOS BETWEEN HISTORICAL ANDGENERATED FLOWS (Streamflow in cfs-days)

WYEAR	MAR4	MAR4G	MARRAT
53	11714	5514.84	2.12409
54	5191	0.00	.
55	717	0.00	0.61559
56	5700	9259.48	5.69695
57	27548	4835.57	0.60130
58	2899	4821.19	0.53614
59	2905	5418.40	0.26668
60	1370	5137.22	0.92768
61	5548	5980.50	0.21947
62	1447	6593.01	3.14349
63	2423	770.80	0.35223
64	866	2458.59	4.07489
65	18172	4459.51	4.97165
66	8066	1622.40	0.78725
67	3352	4257.84	1.17231
68	7907	6744.79	0.34213
69	1486	4343.41	3.27806
70	7639	2330.34	1.99668
71	16194	8110.48	1.96649
72	43370	22054.51	0.51999
73	2497	4802.06	2.00430
74	29946	14940.91	0.27459
75	1668	6074.48	0.25799
76	1415	5484.77	0.14608
77	959	6564.74	0.86767
78	8629	9944.97	1.64110
79	8141	4960.69	3.00756
80	5077	1688.08	0.75006
81	5804	7738.08	0.84827
82	7823	9222.31	1.75715
83	23302	13261.21	7655.39
84	5516	7821.68	0.20098
85	1572	7	

* "MAR4" indicates historical March flows
* "MAR4G" indicates generated March flows
* "MARRAT" indicates MAR4/MAR4G
*"." indicates division by zero

Table P. 7
RATIOS BETWEEN HISTORICAL AND GENERATED FLOWS (Streamflow in cfs-days)

WYEAR	APR4	APR4G	APRRAT
53	28167.0	22003.01	
54	24905.0	11344.40	1.28014
55	6285.0	5666.94	2.19536
56	65176.0	35214.42	1.85086
57	22824.0	23378.74	0.97627
58	40878.0	46118.49	0.88637
59	15358.0	20996.85	0.73144
60	34326.0	24327.55	1.41099
61	6719.0	12514.51	0.53690
62	48477.0	33717.57	1.43774
63	4479.0	14313.76	0.31292
64	27849.0	16748.18	1.66281
65	56662.0	70028.94	0.80912
66	23562.0	13311.98	1.76998
67	14826.0	11442.45	1.29570
68	3667.0	7103.23	0.51624
69	83176.0	105638.84	0.78736
70	30808.0	8561.39	3.59848
71	82010.0	56103.61	1.46176
72	24666.0	98107.84	0.25142
73	22473.0	42843.65	0.52454
74	40739.0	85572.15	0.47608
75	23006.0	13634.93	1.68728
76	40671.0	38148.91	1.06611
77	569.4	5208.23	0.10933
78	42615.0	66954.66	0.63648
79	6212.0	10705.60	0.58026
80	21374.0	47527.19	0.44972
81	5242.0	12097.10	0.43333
82	62423.0	26764.45	2.33231
83	62200.0	24873.51	2.50065
84	65561.0	54298.92	1.20741
85	34725.0	40116.93	0.86559

* "APR4" indicates historical April flows
* "APR4G" indicates generated April flows
* "APRRAT" indicates APR4/APR4G
* "." indicates division by zero

Table P. 8

RATIOS BETWEEN HISTORICAL AND GENERATED FLOWS (Streamflow in cfs-days)

WYEAR	MAY4	MAY4G	MAYRAT
53	9567.0	9720.66	0.98419
54	7307.0	4843.79	1.50853
55	7043.0	9347.84	0.75344
56	18306.0	19948.81	0.91765
57	17283.0	26719.99	0.64682
58	26334.0	34973.35	0.75297
59	4262.0	0.00	.
60	7528.0	0.00	
61	881.0	0.00	
62	13963.0	2699.99	5.17150
63	7764.0	3053.50	2.54266
64	9858.0	8714.71	1.13119
65	25534.0	34234.51	0.74586
66	5011.0	0.00	
67	14917.0	17227.84	0.86587
68	1455.0	0.00	
69	23195.0	21036.97	1.10258
70	14652.0	11314.69	1.29495
71	32282.0	46321.92	0.69691
72	15668.0	13373.71	1.17155
73	5906.0	0.00	
74	15388.0	30424.58	0.50578
75	45552.0	19548.54	2.33020
76	10568.0	4308.32	2.45293
77	422.1	4882.95	0.08644
78	15053.0	22195.63	0.67820
79	3873.0	0.00	
80	14834.0	11899.74	1.24658
81	4224.0	0.00	
82	31912.0	55182.85	0.57830
83	48124.0	40039.11	1.20192
84	32049.0	10102.13	3.17250
85	8198.0	9424.45	0.86987
* "MAY4" indicates historical May flows * "MAY4G" indicates generated May flows * "MAYRAT" indicates MAY4/MAY4G *"." indicates division by zero			

Table P. 9
RATIOS BETWEEN HISTORICAL AND GENERATED FLOWS (Streamflow in cfs-days)

WYEAR	JUN4	JUN4G	JUNRAT
53	6295.0	3583.68	1.7566
54	1674.0	100.85	16.5989
55	2204.0	3490.01	0.6315
56	5624.0	4323.74	1.3007
57	6056.0	5905.62	1.0255
58	7644.0	6551.87	1.1667
59	603.0	3516.87	0.1715
60	1109.9	0.00	.0
61	376.1	3137.17	0.1199
62	7328.0	3311.39	2.2130
63	6720.0	5834.56	1.1518
64	4873.0	7883.12	0.6182
65	13012.0	10770.80	1.2081
66	1130.0	0.00	.
67	10449.0	7666.03	1.3630
68	2722.0	0.00	.0
69	6306.0	3089.09	2.0414
70	6785.0	4577.04	1.4824
71	11911.0	12706.72	0.9374
72	7904.0	7065.29	1.1187
73	1012.0	1539.25	0.6575
74	5046.0	11870.99	0.4251
75	8573.0	12501.55	0.6858
76	1809.0	1423.13	1.2711
77	170.2	1297.91	0.1311
78	5660.0	5248.19	1.0785
79	368.2	592.60	0.6213
80	6560.0	5143.62	1.2754
81	2101.0	0.00	0.
82	10919.0	14343.63	0.7612
83	18642.0	14560.05	1.2804
84	12798.0	7116.43	1.7984
85	1603.0	1602.16	1.0005

* "JUN4" indicates historical June flows
* "JUN4G" indicates generated June flows
* "JUNRAT" indicates JUN4/JUN4G
*". " indicates division by zero

Table P. 10
RATIOS BETWEEN HISTORICAL AND GENERATED FLOWS (Streamflow in cfs-days)

WYEAR	JUL4	JUL4G	JULRAT
53	811.9	1046.13	0.77610
54	642.2	691.37	0.92888
55	322.7	199.61	1.61665
56	488.5	651.06	0.75031
57	541.2	373.53	1.44888
58	849.8	708.69	1.19911
59	148.5	210.95	0.70396
60	169.7	38.51	4.40665
61	56.5	97.74	0.57806
62	771.0	324.70	2.37450
63	980.7	376.54	2.60450
64	483.5	406.83	1.18846
65	3937.0	2626.94	1.49870
66	176.8	84.41	2.09454
67	2027.7	925.53	2.19085
68	233.5	97.25	2.40103
69	1496.7	402.21	3.72119
70	1857.0	749.21	2.47861
71	2824.0	1706.48	1.65487
72	1045.4	768.98	1.35946
73	228.9	141.06	1.62271
74	584.4	547.83	1.06675
75	2876.0	2483.54	1.15802
76	267.8	236.43	1.13268
77	120.2	139.19	0.86357
78	1742.9	2098.24	0.83065
79	111.9	81.37	1.37520
80	1431.9	1271.64	1.12603
81	100.4	187.77	0.53470
82	2663.0	2088.55	1.27505
83	5102.0	1255.53	4.06362
84	2418.0	1576.43	1.53385
85	190.2	200.40	0.94910

[^7]Table P. 11
RATIOS BETWEEN HISTORICAL AND GENERATED FLOWS (Streamflow in cfs-days)

WYEAR	AUG4	AUG4G	AUGRAT
53	207.1	209.175	0.99008
54	133.9	115.961	1.15470
55	104.6	46.503	2.24932
56	148.9	216.457	0.68790
57	151.8	127.779	1.18799
58	159.9	265.547	0.60215
59	96.2	106.827	0.90052
60	85.2	60.015	1.41965
61	59.0	96.044	0.61430
62	167.4	119.545	1.40031
63	107.6	164.990	0.65216
64	146.7	72.082	2.03518
65	1224.0	552.859	2.21395
66	98.3	68.101	1.44344
67	172.7	134.186	1.28702
68	152.7	149.381	1.02222
69	180.5	119.393	1.51181
70	218.4	187.834	1.16273
71	599.0	205.584	2.91365
72	336.0	365.569	0.91912
73	138.1	75.993	1.82448
74	149.1	197.368	0.75544
75	264.6	233.485	1.13326
76	214.9	204.172	1.05254
77	79.1	89.751	0.88133
78	69.7	260.598	0.26746
79	79.0	185.89	0.42682
80	139.1	163.914	0.84862
81	65.9	93.518	0.70468
82	218.0	285.120	0.76459
83	858.0	309.209	2.77482
84	639.0	518.628	1.23210
85	157.9	217.989	0.72435

* "AUG4" indicates historical August flows
* "AUG4G" indicates generated August flows
* "AUGRAT" indicates AUG4/AUG4G
*"." indicates division by zero

Table P. 12
RATIOS BETWEEN HISTORICAL AND GENERATED FLOWS (Streamflow in cfs-days)

WYEAR	SEP4	SEP4G	SEPRAT
53	138.0	114.640	1.20377
54	111.6	205.759	0.54238
55	91.0	42.808	2.12577
56	116.5	176.961	0.65834
57	123.3	107.627	1.14562
58	202.7	178.856	1.13331
59	321.6	314.555	1.02240
60	101.2	83.380	1.21372
61	92.8	206.312	0.44980
62	97.6	72.623	1.34393
63	163.5	212.154	0.77067
64	103.9	91.827	1.13148
65	957.0	243.535	3.92962
66	101.6	105.488	0.96314
67	204.5	147.172	1.38953
68	191.7	121.529	1.57740
69	226.0	173.681	1.30124
70	241.6	144.200	1.67545
71	367.9	173.847	2.11623
72	297.8	348.671	0.85410
73	132.4	78.994	1.67608
74	128.0	179.382	0.71356
75	285.4	154.047	1.85268
76	279.1	306.627	0.91023
77	76.4	97.634	0.78251
78	220.7	522.518	0.42238
79	76.8	86.872	0.88508
80	154.8	175.703	0.88103
81	62.3	128.169	0.48608
82	382.0	212.566	1.79709
83	495.0	169.728	2.91643
84	468.0	208.911	2.24019
85	322.6	520.007	0.62038

[^8]* "SEP4G" indicates generated September flows
* "SEPRAT" indicates SEP4/SEP4G
*"." indicates division by zero

Table P. 13

RATIOS BETWEEN HISTORICAL AND GENERATED FLOWS (Streamflow in cfs-days)

WYEAR	ANN4	ANNG	ANNRAT
53	62104.0	44942.37	1.38186
54	42745.0	17808.93	2.40020
55	18424.0	20853.99	0.88348
56	103025.9	71132.11	1.44837
57	84315.1	65584.88	1.28559
58	81529.5	98859.24	0.82470
59	26776.5	36931.14	0.72504
60	47018.7	30825.21	1.52533
61	16187.9	22433.01	0.72161
62	76125.0	48206.04	1.57916
63	55744.6	30648.64	1.81883
64	46757.6	40581.12	1.15220
65	150128.0	12697.36	1.21367
66	44624.7	19727.56	2.26205
67	48394.1	43471.43	1.11324
68	19739.9	16486.08	1.19737
69	119198.0	138674.85	0.85955
70	65717.7	30622.68	2.14605
71	15824.0	133642.83	1.18393
72	99095.2	150599.60	0.65800
73	37105.4	54514.91	0.68065
74	96277.5	146687.71	0.65634
75	85100.6	58212.69	1.46189
76	59333.2	55665.89	1.06588
77	4818.4	21971.63	0.21930
78	76065.0	110773.57	0.68667
79	20792.4	18099.56	1.14878
80	51813.9	69191.31	0.74885
81	21607.8	24431.94	0.88441
82	119499.5	110371.39	1.08270
83	163916.0	100447.51	1.63086
84	129334.0	97735.94	1.32330
85	52561.7	65343.12	0.80440

* "ANN4" indicates historical Annual flows
* "ANN4G" indicates generated Annual flows
* "ANNRAT" indicates ANN4/ANN4G
*"." indicates division by zero

Fig. P. 1
DIFFERENCES OF OCTOBER STREAMFLOWS

Fig. P. 2
DIFFERENCES OF NOVEMBER STREAMFLOWS
(OBSERVED - SYNTHETIC)

Fig. P. 3
DIFFERENCES OF DECEMBER STREAMFLOWS

Fig. P. 4
DIFFERENCES OF JANUARY STREAMFLOWS

Fig. P. 5
DIFFERENCES OF FEBRUARY STREAMFLOWS (OBSERVED - SYNTHETIC)

Fig. P. 6
DIFFERENCES OF MARCH STREAMFLOWS
(OBSERVED - SYNTHETIC)

Fig. P. 7
DIFFERENCES OF APRIL STREAMFLOWS

Fig. P. 8
DIFFERENCES OF MAY STREAMFLOWS
(OBSERVED - SYNTHETIC)

Fig. P. 9
DIFFERENCES OF JUNE STREAMFLOWS

Fig. P. 10
DIFFERENCES OF JULY STREAMFLOWS
(Observed - synthetic)

Fig. P. 11

DIFFERENCES OF AUGUST STREAMFLOWS

Fig. P. 12
DIFFERENCES OF SEPTEMBER STREAMFLOWS
(observed - synthetic)

APPENDIX Q
LOGS OF IRRIGATION WELLS IN THE STUDY AREA

Table Q. 1
Logs of Irrigation Wells in the Study Area

Project I.D NO.	Well Location	Date Drilled	Depth (feet)	Remarks
1	2S11E	11/04/76	229	
2	2S12E	08/02/77	207	
3	2S12E	11/02/79	597	
4	2S12E	11/09/80	460	
5	2S12E	11/03/80	327	
6	2S12E	11/03/56	266	
7	2S13E	06/24/73	360	
8	2S14E	10/28/53	533	
9	2S14E	06/15/68	364	
10	2S17E	01/05/79	245	
11	2S17E	06/01/65	250	
12	2S17E	11/17/76	410	
13	2S17E	03/30/76	407	
14	2S17E	05/17/53	226	
15	2S17E	07/19/55	100	
16	1S09E	10/21/80	483	
17	1S09E	10/23/76	551	
18	1S12E	07/30/80	200	
19	1S12E	12/15/82	433	
20	1S13E	05/07/77	1125	
21	1S13E	06/06/68	400	
22	1S13E	06/01/73	363	
23	1S13E	11/12/76	415	
24	1S13E	05/27/77	460	
25	1S13E	06/30/73	363	
26	1S13E	12/11/77	500	
27	1S13E	10/24/75	200	Deepened
28	1S13E	08/20/78	155	
29	1S13E	07/30/78	165	
30	1S14E	12/12/76	500	
31	1S14E	07/15/54	535	
32	1S14E	10/31/80	226	Dom. \& Irr.
33	1S14E	10/21/74	120	
34	1S14E	01/09/79	356	
35	1S14E	11/06/74	243	
36	1S14E	03/29/78	520	
37	1S14E	12/30/78	535	
38	1S14E	06/15/79	388	
39	1S14E	10/27/76	465	
40	1S14E	06/04/77	355	

Table Q. 1 (Continued)
Logs of Irrigation Wells in the Study Area

Project I.D NO.	Well Location	Date Drilled	Depth (feet)	Remarks
41	1S14E	$10 / 24 / 74$	280	
42	1S14E	$03 / 02 / 79$	460	Replacement
43	1S14E	$07 / 07 / 53$	434	
44	1S14E	$03 / 17 / 78$	500	
45	1S14E	$06 / 12 / 74$	202	
46	1S14E	$06 / 17 / 74$	300	
47	1S14E	$05 / 28 / 75$	130	
48	1S14E	$01 / 11 / 75$	98	
49	1S14E	$05 / 10 / 75$	78	
50	1S14E	$04 / 03 / 78$	160	
51	1S15E	$08 / 20 / 53$	480	
52	1S15E	$11 / 29 / 79$	486	
53	1S15E	$06 / 26 / 74$	160	
54	1S15E	$04 / 25 / 74$	185	
55	1S15E	$06 / 20 / 74$	140	
56	1S15E	$12 / 10 / 76$	252	
57	1S15E	$01 / 18 / 77$	196	
58	1S15E	$11 / 20 / 54$	155	Dom. \& Irr.
59	1S15E	$08 / 30 / 53$	122	
60	1S15E	$10 / 24 / 74$	222	
61	1S15E	$11 / 17 / 53$	283	
62	1S15E	$03 / 03 / 78$	260	
63	1S15E	$02 / 28 / 77$	345	
64	1S15E	$03 / 06 / 78$	282	
65	1S15E	$09 / 01 / 79$	263	
66	1S15E	$11 / 29 / 76$	345	
67	1S16E	$09 / 08 / 55$	318	
68	1S16E	$08 / 23 / 55$	208	
69	1S17E	$06 / 17 / 73$	160	
70	1S17E	$09 / 30 / 78$	386	Replacement
71	1S17E	$12 / 24 / 74$	135	
72	1N09E	$11 / 29 / 74$	440	
73	1N14E	$09 / 28 / 77$	300	
74	1N14E	$06 / 21 / 74$	280	
75	1N14E	$01 / 19 / 79$	377	
76	1N17E	$08 / 20 / 67$	358	

Table Q. 2
Irrigation Well Development History in the Study Area

No. of Irrigation Cumulative No. of Water Year Well Developed Irrigation Well

53	4	4
54	3	7
55	4	11
56	0	11
57	1	12
58	0	12
59	0	12
60	0	12
61	0	12
62	0	12
63	0	12
64	0	12
65	1	13
66	0	13
67	1	14
68	2	16
69	0	16
70	0	16
71	0	16
72	0	16
73	4	20
74	6	26
75	9	35
76	2	37
77	9	52
78	7	61
79	3	68
80	4	71
81	0	75
82	1	75
83	0	76
84	0	76
85		

REFERENCES

1. Dale R. Ralston and Eugene J. Kozak, "Ground-water Development in Idaho: 1969, "Water Information Bulletin", No. 17, 1970.
2. Hybbert, M.K., "The Theory of Groundwater Motion," J.Geol., 48(8) 1, 1980.
3. Todd .D.K., Groundwater Hydrology, New York, John Wiley and Sons, 1959.
4. Toth, J., "A theoretical Analysis of Groundwater Flow in Small Drainage Basins," Journal of Geophysics. Res., 68(16), 1963.
5. De Wiest, R.J.M., Geohydrology, New York, John Wiley and Sons, Inc., 1964.
6. Peaceman, D.W., and Rachford, H.H. "The Numerical Solution of Parabolic and Elliptic Differential Equations," J. Soc. Ind. Appl. Math.Vol. 3, 1955.
7. Bredehoeft, J.D., and Pinder, G. F., "Digital Analysis of Areal Flow in Multiaquifer Groundwater Systems: A Quasi Three-Dimensional Model," Water Resources Research, 6(3), 883-888, 1970.
8. Trescott, P.C., Pinder, G. F., and Jones, J. F., "Digital Model of Alluvial Aquifer," Journal of the Hydraulics Division, ASCE, 96(Hy-5), 1115-1128, 1970.
9. Dabiri, H. E., Green, D. W., and Winslow, J. D., "Digital Computer Simulation of an Aquifer: A Case Study", University of Kansas, U.S. Geological Survey, Lawrence, Kansas, 1970.
10. De Sonneville, J.L.J., "Development of a Digital Groundwater Model with Application of Aquifers In Idaho," Ph.D. Dissertation, University of Idaho, 1974.
11. Newton, G.D., "Application of a Simulation Model to the Snake Plain Aquifer,"Master's Thesis, University of Idaho, Moscow, Idaho 1978.
12. Brockway, C.E. and Grover, K.P., "Evaluation of Urbanization and Changes in Land Use on the Water Resources of Mountain Valleys," Idaho Water Resources Research Institute, Technical Completion Report, Project B-038-IDA, 905p, 1978.
13. Wytzes, J., "Development of a Groundwater Model for the Henry's Fork and Rigby Fan Areas, Upper Snake River Basin, Idaho, " Ph.D. Dissertation, University of Idaho, 1980.
14. Lindgren, J., "Application of a Groundwater model to the Boise Valley Aquifer in Idaho," Master's Thesis, University of Idaho, 1982.
15. Johnson, H., "Application of a Numerical Groundwater Flow Model to the Mud Lake Area in Southeastern Idaho," U.S.G.S. (in review), 58p, 1982
16. Beaver, J.A., and M.L. Frankel, "Significance of Groundwater Management Strategy - a Systems Approach," Ground water, Vol. 7, No. 3, pp. 22-26, 1969.
17. Moore, C.V., and J.H. Snyder, "Some Legal and Economic Implications of Sea Water Intrusion - a Case Study of Groundwater Management," Natural Resources Jour., Vol. 9, pp 401-419, 1969.
18. Orlob, G.T., and B.B. Dendy, "Systems Approach to Water Quality Management," Jour. HydraulicsDiv.,ASCE, V.99, no. HY4,pp.573-587, 1973.
19. Weschler, L.F., "Water Resources Management: The Orange County Experience," California Govt,,Ser. no. 14, Inst. Govt, Affairs, Univ. California, Davis, 67pp., 1968.
20. Bittinger, M.W., "The Problem of Integrating Ground-Water and Surface Water Use," Ground Water, v. no 3,pp. 33-38, 1964.
21. Morel- Seytoux, H.J., "A Simple Case of Conjunctive SurfaceGroundwater Management," Ground Water, v.13, pp. 506-515, 1975.
22. Taylor, O.J., and R.R. Luckey, "Water Management Studies of a Stream-Aquifer System, Arkansas River Valley, Colorado," Ground Water, v.12,pp.22-38, 1974
23. Ralston, D.R., "Adminstration of Ground Water as Both a Renewable and Nonrenewable Resource," Water Resources Bull, V.9,pp.908-917, 1973
24. Hansen, H.J., "Zoning Plan for Managing a Maryland Coastal Aquifer," Jour. Amer. Water Works Assoc., V.62, pp. 286-292, 1970.
25. Theis, C.V., "The Effect of a Well on the Flow of a Nearby Stream," Am. Geophys.. Union Trans., V.22, pt.3, p. 734-738, 1941
26. Conover, C.S., "Ground-water Conditions in the Rincon and Mesilla Valleys and Adjacent Areas in New Mexico," U.S. Geol.Survey, WaterSupply Paper 1230, 200p. (1955), 1954.
27. Glover, R.E., and Blamer, D.G., "River Deleption Resulting from Pumping a Well near a River, Am. Geophys. Union Trans., V.35, pt.3, p. 468-470, 1954.
28. Glover, R.E., "Ground Water-Surface Water Relationships,"(A paper given at Ground Water Section of Western Resources conference, Boulder, Colorado); Colorado State University, Paper CER60 REG45, 8pp. (1961), 1960.
29. Theis, C.V. and Conover, C.S., "Chart for Determination of the Percentage of Pumped Water being Diverted from a Stream or Drain," U.S. Geol. Survey Water-Supply Paper 1545-C, PP. c106-c109 (1964), 1963.
30. Hantush, M.S., "Hydraulics of Wells," in Chow, Ven Te, ed., Advances in Hydroscience, V.1: New York, Academic Press, P. 386. 1964.
31. Jenkins, C.T., "Techniques for Water-Resources Investigations of the United States Geological Survey," Book 4, Hydrologic Analysis and Interpretation, U.S. Department of the Interior, 1968.
32. Fiering, M.B., "Multivariate Technique for Synthetic Hydrology," J. Hydraulic Div, ASCE, HY5: 43-49, 1964.
33. Kahn, J.P., "A Method for Maintaining Cross and Serial Correlations and the Coefficient of Skewness under Generation in a Linear Bivariate Regression Model," Water Resources Research, Vol.10, no.6, pp. 12451248, Dec. 1974.
34. Lawrance, A.J., "A Reconsiderationof the Fiering Two-station Model," Journal of Hydrology, Vol.29, no.1/2, pp.77-85, March 1976.
35. Yevjevich, V., "Generation of Hydrologic Samples, Case Study of the Great Lakes," Hydrology Papers, no.72, Colorado State University, Fort Collins, Col., May 1975
36. Horn, Dennis, "Analysis and Generation of Low-Flow Sequences in Idaho Streams using Disaggreation Modeling," IWRRI Final Report, Sept. 1985.
37. Young, H.W., "Water Resources of Camas Prairie, South-Central Idaho: U. S. Geological Survey", Water Resources Investigations 78-82, Open File Report, 34p, 1978.
38. Young, H.W., Backsen, R. L., and Kenyon, K. S., Selected Hydrologic Data, Camas Prairie, South-Central Idaho: U. S. Geological Survey, Open File Report 78-500, 1978.
39. Ott, Lyman., An Introduction to Statistical Methods and Data Analysis, 3rd Edition. PWS-KENT, 1988.
40. Salas, J.D., Delleur, J. W., Yevjevich, V., and Lane, W. L., Applied Modeling of Hydrologic Time Series, Water Resources Publications, pp.142, 1980.
41. Dowdy, S.M., Statistics for Research, John Wiley \& Sons Inc., 1983.
42. Matalas, N.C., " Mathematical Assessment of Synthetic Hydrology ", Water Resources Research, Vol. 3,No4, pp937-946, 1967.
43. Mejia, M.M., Rodriguez-Iturbe, I., Cordova, J.R.," Multivariate Generation of Mixture of Normal and LognormalVariables ", Water Resources Research ,Vol.10, No.4, pp691-693, Aug. 1974.
44. Graybill, F.A., Introduction to Matrices with Applications in Statistics, Wadsworthpublishing Co., California 1969.
45. Lane, W.L., Applied Stochastic Technique, Bureau of Reclamation, Denver, Colorado, 1983.
46. Walton, W.C., "Ground-water resources of Camas Prairie, Camas and Elmore Counties", Idaho: U.S. Geological Survey Water-Supply paper1609, 1962.
47. Molnau, M., " Climate and Hydrology Data for Idaho." Idaho Agric. Exp. Station, Misc. Series NO.32, Moscow, Idaho, 1983.
48. U.S.G.S, Water Resource Data, Boise, Idaho, 1920-1985.
49. Salas, J. D., and Pegram, G. G. S., "A seasonal multivariate multilag autoregressive model in hydrology." In Modeling HydrologicProcesses, Edited by H. Morel-Seytoux, J. D. Salas,T. G. Sanders andR. E. Smith, Water Resources Publications, Fort Collins, Colorado,1978.
50. Chow, V.T., "The Log-probability Law and Its Engineering Applications." Preceedings American Society of Civil Engineers 80:536-1 to 536-25, 1954.
51. Ralston, Dale R, "Preliminary Assessment of Groundwater Management Alternatives for Idaho", Idaho Water and Energy Resources Research Institute, Final Report A-078-IDA, pp19, 1982.

[^0]: * " $\operatorname{Std}(\mathrm{h})$ " $=\quad$ Standard Deviation of the Historic Monthly Streamflows
 * "Std (g) " = Standard Deviation of the Generated Monthly Streamflows

[^1]: * " - " indicate estimated flous

[^2]: * " . " indicate estimateo flous

[^3]: * "JAN1" indicates historical January flows of the Big Wood River
 * "JAN2" indicates historical January flows of the Big Lost River
 * "JAN3" indicates historical January flows of the Goose Creek
 * "JAN4" indicates historical January flows of the Camas Creek * "JAN4G" indicates generated January flows of the Camas Creek

[^4]: * "JUN1" indicates historical June flows of the Big Wood River
 * "JUN2" indicates historical June flows of the Big Lost River
 * "JUN3" indicates historical June flows of the Goose Creek
 * "JUN4" indicates historical June flows of the Camas Creek
 * "JUN4G" indicates generated June flows of the Camas Creek

[^5]: * "JUN1" indicates historical June flows of the Big Wood River
 * "JUN2" indicates historical June flows of the Big Lost River
 * "JUN3" indicates historical June flows of the Goose Creek
 * "JUN4" indicates historical June flows of the Camas Creek
 * "JUN4G" indicates generated June flows of the Camas Creek

[^6]: * "SEP1" indicates historical September flows of the Big Wood River
 * "SEP2" indicates historical September flows of the Big Lost River
 * "SEP3" indicates historical September flows of the Goose Creek
 * "SEP4" indicates historical September flows of the Camas Creek
 * "SEP4G" indicates generated September flows of the Camas Creek

[^7]: * "JUL4" indicates historical July flows
 * "JUL4G" indicates generated July flows
 * "JULRAT" indicates JUL4/JUL4G
 *"." indicates division by zero

[^8]: * "SEP4" indicates historical September flows

