PUMPING SYSTEM MONITOR OPERATIONS MANUAL

Prepared by

C.E. Brockway, P.E. C.W. Robison, P.E. S. Kolar

University of Idaho Water Resources Research Institute

June 1992

TABLE OF CONTENTS

INTRODUCTION	1
SETUP	2
Hardware Description and Checklist	
Tools and Supplies	4
Hardware Installation	5
Components	5
Sensors	5
PROGRAM CHECKLIST AND DESCRIPTION	9
PROGRAM STORAGE AND LOADING	
Storage (RAM Disk)	
Loading (Calculator)	
OPERATION	
Start-up (Initialization)	
Operational Checks	
Power-up	
Information Display	
Read and Write Pointers	
Breaking In	
Departure	
DATA TRANSFER TO THE RAM DISK	
DATA TRANSFER FROM RAM TO PC	
APPENDIX 1	
APPENDIX 2	
APPENDIX 3	

LIST OF FIGURES

Figure	1
Figure	27
Figure	3

PUMP STATION MONITOR OPERATIONS MANUAL

INTRODUCTION

The primary purpose of a pump station monitor is to provide the operator with real time information regarding the performance of the pump station and to record the performance parameters for later analysis. The performance of a pump station is determined from four basic components: input power, flow rate, discharge pressure, and input pressure. A pump station monitor requires a pump station to be equipped with pulse emitting watt meter(s), flow meter(s), and pressure transducer(s). This instrumentation allows the monitor to determine input power, flow rate, discharge pressure, and input pressure. Given these parameters, the calculator is programmed to provide the station efficiency, accumulated flow, and a number of other parameters. This data is collected and recorded on a real-time basis, and thus is "Time Tagged".

The heart of the monitoring system is the HP-41CX calculator. It performs the calculations, controls the scanning process of the sensors, conversion of the sensed parameter into standard units, and stores the results for later retrieval. The remaining components of the monitoring system, excluding the sensor portions, are a digital data acquisition interface (CMT-200) and the UI-MAD analog to digital conversion multiplier unit.

While an extensive knowledge of the HP 41 series calculators is not necessary, you must be familiar with the basic operation of the calculator, the XYZT stack, register allocations, the ALPHA keyboard, and program execution. This manual is not meant to replace the HP-41CX, HP-IL loop, CMT, and HP thermal printer manuals; further information and procedures can be found in these manuals.

The computational memory area of the calculator consists of 5 memory registers. These registers are really just storage bins for storing numbers which the calculator can perform arithmetic operations on. Each bin, or register, has a name, and the registers can be thought to be arranged as shown below:

Notice that the registers X thru T are shown one above the other. This is referred to as the "register stack".

Throughout this manual, HP41 keystrokes and commands will be indicated with the use of brackets, braces and single quotes. Square brackets indicate a key should be pressed while the calculator is not in monitoring mode. Curly braces {} indicate the characters should be entered using the blue lettered keys. Single quotes indicate the blue lettered key should be pressed while the calculator is in monitoring mode.

SETUP

The diagram in figure 1 shows a sketch of a generic pump site, with typical locations for sensors and monitoring equipment. A judicious choice for locations of monitoring equipment as near as possible to the pump will make the initial setup of the air tube and sensor lines easier and less expensive. Here are a few pointers:

Calculation of the energy used and system efficiency is based on the application of the Bernoulli equation between the water level in the well or stream and the discharge into the distribution system. The placement of the sensors defines the type of efficiency being monitored. Also, the sensor positions describe how you are implementing the Bernoulli equation.

The location of the low pressure sensor is generally fixed by the location of the installed air tube.

-2-

The location of the high pressure tap should be as near as possible to the pump on the discharge end. However, it should be in a section of the pipe which is free of air entrapment to give an accurate pressure reading.

Select the placement of the monitor box in as central a location as possible with respect to the different sensors. Sensor leads should be placed out of the way of traffic and should not interfere with operations.

HARDWARE DESCRIPTION AND CHECKLIST

You will need all of the following pieces of equipment and hardware for the site

setup.

- 1, HP 41CX handheld calculator (HP=Hewlett-Packard).
- 2, AC/DC power converters.
- 1, Wattmeter with electronic output and associated current transformers
- 2, HP 82181A extended memory module.
- 1, CMT-200 data acquisition and control unit. (CMT=Corvallis MicroTechnology).
- 1, U of I/ARS A/D conversion (MAD) unit w/cables.
- 1, Weatherproof enclosure box, 18x12x8 inches. Any adequate size and type will do.
- 1, flow meter with electronic output.
- 1, pressure transducer (high) w/fittings.
- 1, pressure transducer (low) w/fittings.
- 1, plastic air line for low pressure bubbler.
- 1, flow meter/valve for low pressure bubbler.

Air supply with a regulator

Misc. pipe fittings for air line into water.

Misc. pvc conduits to protect buried air line.

1, CMT HPIL RAM Disk, model# RD-128, w/9-volt battery.

1, HP-IL MODULE, # HP-82160A.

1, HP THERMAL PRINTER, # HP-82162A, w/paper roll.

1, Portable carrying case for the RAM Disk, Thermal Printer, and IL Module. Should be waterproof and impact resistant, approx. 13x11x6 inches.

The monitor system manual

TOOLS AND SUPPLIES

Assorted Philips and flathead screwdrivers.

Electrical crimping/stripping tool.

Assortment of solderless connectors and wire nuts for wire gage sizes 18-22. Soldering iron and solder.

Assorted wrenches and socket set, including a large pipe wrench (Minimum 3" jaw).

Assorted pliers and cutting dikes.

Cordless electric drill and bits. (optional)
2, 3, and 4 Conductor signal wire to be used between sensors and monitor box. Length depends on site.
Assorted conductor wires, sizes 18-22, and in colors red, black and green. Amounts depend on the number of sites and whether or not they are already wired.
Electrical tape and heat shrink.
1 to 2 foot long leads w/ alligator clips on each end.
Digital multimeter.
Spare 9 volt batteries.

HARDWARE INSTALLATION

Components

The MAD unit is attached to the enclosure box with two metal screws. Open the MAD unit and position it on the back plate of the enclosure box. Attach it with two screws and put the cover with the velcro strips back on.

Install the two EM modules in the two top ports of the calculator. The calculator should be turned off when you do this. Never remove the modules when the calculator is on. Also, be aware that even if the calculator is off, removing only one of the EM modules can cause all the data and information stored on both of them to be lost. For further information, consult the HP calculator and extended memory manuals.

Take the CMT-200 and calculator (w/EM modules) and install them in the grey enclosure box. Both units have velcro strips attached to their reverse sides which match the mating strips attached to the cover of the MAD unit. Connect the output module of the CMT-200 to one of the remaining available ports of the calculator. In this case it doesn't matter which of the remaining ports you choose.

Sensors

The pump efficiency monitor requires the installation of a minimum of four sensors for the primary pump performance parameters: input electrical power, flow rate, discharge pressure, and inlet water pressure or level. The sensor input leads in the enclosure box should be connected to the correct terminals of the MAD unit. You can

-5-

determine which one goes where by looking at the wiring diagram in figure 2. The exact wiring will depend on the types of sensors and MAD units used.

1. Pulse emitting watt meters.

The pulse watt meter requires installation by either the power company or a certified electrician. A two conductor signal line is all that is necessary to connect the watt meter to the MAD unit. Consult with the electrician or power company to determine where to connect the lines to the watt meter. It will be necessary to have the electricity shut off to the pump station in order to install the current transformers (CTs). Have the electrician install the CTs on the main feed lines to the pump control panel. The location of the CTs and voltage taps determine which electrical components are monitored. Do not include building heaters, ventilation or auxiliary equipment, unless you want to include them in the pump station efficiency.

2. Flow meter.

Two different types of signals from flow meters can be accommodated, pulse and analog. If existing flow meters do not have electronic output, most can be upgraded by contacting the manufacturor. The MAD unit accepts digital (pulse) signals or a 0-5 volt analog signal. See figure 2 for the correct wiring connections to the multiple analog to digital converter unit (MAD). The flow meter manual will assist in wiring the meter and meter installation.

-6-

UNIVERSITY OF IDAHO PUMP MONITOR MAD UNIT

Figure 2. MAD Unit sensor connection diagram.

3. High Pressure Transducer.

The high pressure transducer is connected to the main pipeline. It is necessary to have the transducer isolated by two valves. The configuration of the valves should allow the transducer to be exposed to atmospheric pressure and to allow connection of a test gauge for calibrating the sensor. It may be necessary to drill a hole and weld on a 1/2" mounting plate if such a plate does not already exist on the present pipeline. Typically, the transducer will require a four conductor signal line to connect it to the MAD unit. The pressure transducer manual will aid in wiring and installation.

At this point, it may be well to survey the elevation difference between the tip of the air tube or inlet pressure sensor and point in the pipe where the high pressure transducer is mounted. Note this difference in your log book since it will be needed later when you initialize the monitor.

4. Inlet Water Pressure or Level

The inlet water pressure or level sensing system depends on the type of pump and its use. If the pump is functioning as a booster pump where the inlet pipe is under pressure, then a pressure transducer is all that is required. If the pump is a deep well pump, then the inlet water level sensing system requires an air tube, air supply, air control valves, air regulator, and a low pressure transducer. Depending on the transducer, a four conductor signal cable will be required to connect it to the MAD unit. The pressure transducer manual will assist in wiring and installation.

For booster systems, the pressure transducer is connected to the inlet pipeline. It is necessary to have the transducer isolated from the inlet pipe by two valves. The configuration of the valves should allow the transducer to be exposed to atmospheric pressure or to the water pressure inside the pipe and to allow connection of a test gauge for calibration of the sensor. For well systems, the water level sensor system incorporates an air tube system to sense the depth to water from the high pressure sensor elevation. The actual measurement is the height of the water above the outlet (end) of the air tube in the well. The meter valve is used to control the rate of air release from the tank into the air tube. It should be placed in the line prior to the low pressure transducer. A needle valve is preferable. The transducer's pressure range depends on the maximum submerged length of the air tube.

PROGRAM CHECKLIST AND DESCRIPTION

The following is a list of the HP-41CX subroutines used in the pump station monitors.

EMAIN	ESCANF	SUMIT
AUTOES	SCANL	EINT
AUTOEL	SCANH	RAMSTO
ASCAN	EFCALC	ESTLOG
DSCAN	SITSTO	SPD
ESCANP		

These programs perform tasks as indicated below:

- EMAIN: The control program. It has two entry points, AUTOS and AUTOL, which take care of automatic scanning and logging. It also controls the keyboard for user input and output. Many of the subroutines are called and executed by the EMAIN program.
- AUTOES: Recalls site configuration constants, scans sensors, calculates flow, increments the number of scans, and stores data to intermediate registers. It calls several other subroutines to accomplish all this.
- AUTOEL: Calculates summary data from the intermediate data and posts the summary data to extended memory.
- ASCAN: Scans an analog channel, then converts the signal into its decimal equivalent. The value returned in the X-register.
- DSCAN: Scans a digital channel for its signal, calculates the frequency or pulse rate. Frequency is returned in the X-register.
- ESCANP: Scans watt meter. Uses DSCAN to obtain pulse rate, multiplies the frequency by the slope coefficient and adds the offset to obtain the power and stores it in register 4.
- ESCANF: Scans flow meter. Uses DSCAN to obtain pulse rate or ASCAN to obtain the flow signal level, multiplies the resulting sensor value by the slope coefficient and adds the offset to obtain the flow, and stores it in register 5.

- SCANL: Scans low pressure transducer. Uses the ASCAN routine to obtain the decimal reading from the low pressure transducer. Multiplies it by the slope coefficient and adds the offset to obtain the low pressure reading, and stores it in register 6.
- SCANH: Scans the high pressure transducer. Uses the ASCAN routine to obtain the decimal reading from the high pressure transducer. Multiplies by the slope coefficient and adds the offset to obtain the high pressure reading, and stores it in register 7.
- EFCALC: Recalls the current contents of the temporary storage registers containing the velocity head, discharge pressure head, input pressure head, elevation difference, flow rate, and input power. Uses these values and some constants to calculate the overall station efficiency.
- SITSTO: Stores the site configuration constants and various pointers to extended memory.
- RAMSTO: Transfers the data stored in extended memory to the portable RAM disk.
- SPD: Scans pump speed. Uses ASCAN to obtain the speed signal, multiplies by the slope, and adds an offset to obtain speed.
- SUMIT: Used to update intermediate data registers
- EINT: The start-up, or initialization routine. It is used to read into the calculator all the necessary data coefficients, slopes, and offsets for each channel particular to a given site.
- SETCLK: Used by the initialization routine to set the calculators internal clock to the correct time and date.
- ESTLOG: Used by the initialization routine to set the calculator alarms for scanning and daily summary logging.

PROGRAM STORAGE AND LOADING

STORAGE (RAM DISK)

All the programs for the pump station monitor are stored on the RAM disk in one file. This disk has a storage capacity of 128K bytes. This is more than enough to store all the programs. In addition, station data files can be created that can store data transferred from the EM to the RAM disk. The RAM disk is powered by a 9 volt battery. Even if this battery loses power, an auxiliary battery ensures that the contents of the disk will not be lost. At the beginning of the season the first thing you want to do with the RD (RD=RAM disk), is to make sure that it has a fresh 9 volt battery and auxiliary battery, and that the programs are still intact. To do this you will need:

The RAM disk. The HP thermal printer (advisable but not necessary). The HP IL module. The HP 41CX calculator.

The connections are shown in figure 3; however, refer to the HP and CMT manual for in depth information. CAUTION!!! <u>ALL COMPONENTS MUST BE TURNED OFF</u> <u>WHEN MAKING OR BREAKING ANY CONNECTIONS</u>. Once the components are all properly connected, be sure that they are all turned on. If one component in the loop is not turned on, a NON-EXISTENT error message will appear on the calculator display. Now you are ready to check the RD directory. On the calculator keyboard press [XEQ] [ALPHA]. Then, using the blue lettered keys, type in (DIR). Then press the [ALPHA] key again. If the printer is in the "norm" mode, you will get a printout of the directory at the same time that each program or data file is displayed on the calculator display. You can compare this printout with the previous one to make sure that all the programs are still there.

If you did not get a printout or directory listing on the calculator, do the following, otherwise go to the "Loading (calculator)" section below:

The loop connections are properly made. All components are powered up. The printer is in the norm mode. You keyed the instructions in correctly.

If after doing this there is still no result, you will need to check the four hardware components. Try switching components with "fresh" ones one at a time. If there is still no result, perhaps the RD has gone completely dead and needs to be reformatted. To do this refer to Section 3 "Mass Storage Operations" on page 31 of the HP IL module owners manual. Any files that are on the RD will be lost.

Figure 3. Pump station monitor data transfer equipment.

To load the RD with new programs you either need to find another RD or calculator with the programs already stored, or you will need to copy the programs line by line into the calculator main memory. In either case you need to understand the following:

The calculator is a controller.

The RD is simply a mass storage medium.

You need the calculator and HP IL module for input or output to the RD.

For input to the RD, a file or program must exist in the calculator main memory and have a specific file or program name. This name must be placed in the alpha register of the calculator. When you key in [XEQ] [ALPHA] {WRTP} [ALPHA] you can write the program specified in the alpha register to the RD.

For input from one RD to another, you again need the calculator as a controller. You first read a file or program from RD1 using the READA, READP, or READSUB commands into the calculator main memory. Turn off RD1 and the calculator and disconnect the calculator. Then you connect the calculator to RD2, power up both units, and use the WRTA or WRTP command as above to write this program into RD2. You can find detailed instructions on storing and retrieving programs on page 33 of the HP IL module owners manual.

The programs that are in the RD reside there permanently. As long as the main or auxiliary batteries are functioning, there should never be a need to copy each program line by line into the calculator main memory and then transfer them one by one into the RD. In case that ever happens, you can find complete program listings in Appendix 2.

This verification of programs on the RD should be carried out in the convenience of the office. Once you have verified the existence of all the programs that you will need on the RD, you should load them into the calculator in the field.

LOADING (CALCULATOR)

Be sure that the calculator has the EM modules installed. Turn it on to verify that you have power, then turn it back off. Press the back-arrow key and hold it down, then press the on key and release it, finally, release the back-arrow key. The message "MEMORY LOST" should appear in the calculator display. You have just cleared the calculator main memory and extended memory. The programs and data files will use all of the memory, that is why this step is necessary. Now turn the calculator back off. Connect the HP-IL unit to an available calculator port. The calculator and HP-IL should be in the loop with the RD and the printer. Turn all the units on. The calculator can be loaded program by program, or by loading a calculator "write-all" file. To load the calculator program by program perform the following steps:

- 1. [XEQ] [ALPHA] (SIZE) [ALPHA]. The calculator will prompt for a 3 digit input. Type in 060. This sizes the register allocation to 60 register blocks.
- 2. [GOLD KEY] [ASN] [ALPHA] {READSUB} [ALPHA]. Calculator will respond with a prompt for the key assignment. I usually use the blue "A" key in the top left of the keyboard. Instead of using [XEQ] [ALPHP] (READSUB) [ALPHA] every time you want to read a program from the RD to the calculator, all you have to do is put the name of the program into the alpha register, and press the blue "A" key. (You should have the calculator in "USER" mode.)
- 3. You should load the first program manually. Follow these directions.
 - A. [ALPHA] (EMAIN) [ALPHA]. This loads the alpha register with the name of the program "EMAIN", which is the first program you want to put in the calculator.
 - B. Now, [XEQ] [ALPHA] {READP} [ALPHA]. This keystroke series loads the program EMAIN from the RD to the calculator main memory. After you press the second [ALPHA] key, the display should go blank for a few seconds while the program is being read in. When the process is complete, whatever was in the X register last will be displayed, usually some number or name.
- 4. To load the next program (AUTOES in this case) do the following.
 - A. [ALPHA] {AUTOES} [ALPHA], then press the blue "A" key, or the key assigned in step 2 (with the calculator in USER mode).

The same thing should happen as before; a temporary blank display and then some number or name. Notice that this time you did not have to perform the keystroke series in step 3B above. That is why the key assignment was in step 2. 5. Continuing with AUTOEL program, load the remaining programs listed below.

PLACE IN THE ALPHA REGISTER EXECUTE COMMAND EMAIN READP AUTOES READSUB AUTOEL READSUB ASCAN READSUB DSCAN READSUB ESCANP READSUB ESCANF READSUB SCANL READSUB SCANH READSUB EFCALC READSUB SITSTO READSUB ESTLOG READSUB SPD READSUB SUMIT READSUB EINT READSUB

6. Two things remain to be done at this point. Get rid of the key assignment (it uses up valuable main memory); and pack the main memory. To pack the main memory press [GOLD KEY] [GTO] [PERIOD] [PERIOD]. The display will flash the message "Packing".

To load the calculator with the "write-all" file, key in [ALPHA] {EMONTOR} [ALPHA] [XEQ] [ALPHA] (READA) [ALPHA]. The display will go blank while the file is being read into the calculator from the RD. The calculator is now loaded with all the necessary programs to operate the pump station monitor.

OPERATION

START-UP (INITIALIZATION)

Now that the calculator has all of the programs loaded, you need to tell it what kind of station it's dealing with, and many different station parameters. Also the internal clock and alarms need to be set. This is the initialization process. The program EINT, whose listing appears with the other programs listed in appendix B, performs the initialization. During the program execution the calculator display will prompt you with a series of questions.

Prior to starting the initialization process you will need to calculate all the slopes and offsets for all the sensors that you have installed in your pump monitoring system. To help you do this, follow the steps below. First, let us define a few terms that were used in the equations.

Definitions:

R_a Register containing offset for the channel sensor

- R_b Register containing slope for the channel sensor
- f(x) MAD unit response for channel sensor
- Y₁ First reading from the HP-41CX calculator
- Y₂ Second reading from the HP-41CX calculator
- ER₁ First external readings (i.e. from a pressure gauge)
- ER₂ Second External reading

To determine the coefficients we will use the following mathematical expression.

Y= $R_a + R_b^* f(x)$ $R_a = ER_1 - R_b Y_1$ $R_b = (ER_2 - ER_1) / (Y_2 - Y_1)$

To begin make sure that your pump and HP-41CX monitoring system are fully operational. Start the pump and also turn on the monitor. You will need to execute EMAIN in the monitor, and then you will need to initialize the system. When you come to the part in the initialization where it requests slopes and offset you will enter 0 in for the offset and 1 in for the slope. This will allow the calculator to operate and will return MAD unit responses, f(x), for the sensor channels.

For example, we will determine the coefficients for the discharge pressure. The pump is on and you have completed the initialization of the monitoring system. At this time press the "D" key on the calculator and wait for it to return a number to the display. When the number appears record that number, at the same time observe the reading on the external pressure gauge and record these numbers as a pair. Repeat this procedure again. This time you will need to reconfigure the pump's operation to obtain

-16-

different values than the first time. For this example we will assume that you just completed the procedure and obtained the following values.

> $ER_1 = 240 \text{ psi}$ - Pump operating $ER_2 = 100 \text{ psi}$ - Pump not operating $Y_1 = 0.75$ $Y_2 = 0.02$

Plugging these numbers into the equations will yield the following coefficients. Calculate Rb first so that you can use that value to determine R_{a} .

 $R_{a} = \text{REGISTER 18} - \text{High pressure offset}$ $R_{b} = \text{REGISTER 19} - \text{High pressure slope}$ $R19 = (ER_{2} - ER_{1}) / (Y_{2} - Y_{1})$ = (240 - 100) / (0.75 - 0.02) = 191.78 $R18 = ER_{1} - R19^{*}f(x)_{1} (R19 = 191.78)$ = 240 - (191.78 * 0.02) = 236.16 R18 = offset = 236.16 R19 = slope = 191.78

Now that you have determined the coefficients, enter them in the appropriate spaces on the blank initialization form in Appendix 1. The output/input elevation difference is the measured distance between the high pressure transducer and the point where the water level is being calculated from. You should have measured this when you were installing the pressure transducers.

After you have entered the information for the last prompt, the display should show "DONE" after several seconds. You now have finished the initialization process. The calculator will "wake-up" at the time and date you specified and begin scanning sensors, make calculations and storing data.

OPERATIONAL CHECKS

There are several things that you can check to make sure that the program is operating correctly once it is up and running.

Power-up

Make sure you have power. When you turn the calculator on, there should be a beep, followed by the current time and date. If the current time and date are incorrect, you should first dump any data (see the "Data Transfer to the RAM Disk" section on page 21), and then re-initialize (see the "Start-up (Initialization)" section on page 15. In any case, in the lower right corner of the display you should also see the program annunciator "PRGM". This tells you that the calculator is in program mode. It must be in program mode in order to execute any of it's routines. If it is in program mode and the EMAIN program is working correctly, it should turn itself off ninety seconds after the last operation it performed.

Information Display

This feature allows you to check some current values of selected station parameters. It is a built in routine of the main program, and thus does not require that you break in. When the calculator is in program mode you can press the blue "A, B, C, D, E, F, G, H, or I" keys to accomplish the following:

A= Display of current input horsepower.
B= Display of current flowrate (cfs).
C= Display of current input pressure (ft of head).
D= Display of current output pressure (ft of head).
E= Display of current efficiency (%).
F= Pump speed (rpm).
G= Display of current pumping costs (\$/AF).
H= Executes initialization routine.
I= Dumps data from EM to RAM disk.

It may take anywhere from 5 seconds to a couple of minutes for the calculator to display the information you request.

Read and Write Pointers

These pointers simply are an accounting tool of the calculator to keep track of how many of the registers in EM have been filled and/or emptied, that is, written to or read from respectively. EM is 560 registers long and works like a circular file. That is, when register 560 is finally filled, the next register to be filled will be number 001. Whatever was in register 001 will be written over. The write pointer tells you up to what register information has been stored. The read pointer tells you up to what register information has been read and stored on the RAM disk, RD.

The pump monitor program gives you the flexibility to set the number of times you scan and log data. You must be careful and make sure you have calculated the number of days that the system can store your data before you start writing over your records. For example, we will assume that you have 560 registers available to store data in. This program stores data to the extended memory in register blocks of 7 registers. If you were to set your scan interval at 15 minutes and log every hour, you would then have used 7 registers every hour. At the end of one day you would have used 168 registers. This would leave you approximately two days before you would have to dump the data to the RAM disk or data would start being overwritten.

BREAKING IN

During normal operation of the monitor the program EMAIN is in control of all program executions together with the "wake-up" alarms. Regardless of which subroutine might be operating at any given time, control always returns to the EMAIN program. At all such times, the "PRGM" annunciator will appear in the lower right corner of the display. If you press any key except the nine keys which were discussed earlier, you will invoke an error message telling you "INVALID KEY". This prevents you from inadvertently altering any of the programs or stored data. However, you can get out of program mode and access the programs and EM by BREAKING IN. This you do by pressing the ENTER key. When you do you will notice that the PRGM annunciator vanishes. Now you can operate the calculator from the keyboard. This gives you the flexibility to recall registers and make program and coefficient changes whenever necessary.

Getting back to R&W pointers - once you have broken in, simply press [RCL] {12}. This recalls memory register 12, the register in which the write pointer is stored. Refer to register map section (Appendix 2) for a complete pump monitor program register map. If the value in the register is satisfactory, all you need to do to get back into program mode is press the R/S key. If you want to change the number say to 56, press {56} [STO] {12}. This stores a new value of 56 in register 12. Next, press [XEQ] [ALPHA] (SITSTO) [ALPHA]. This stores your register change to EM, from where it is recalled during subsequent scannings. After this operation, you need to press the following keys: [XEQ] [ALPHA] (EMAIN) [ALPHA]. Recapping the steps you've taken:

- 1. Break-in. [ENTER]
- 2. Check some register. [RCL] {xx}
- 3. Make some change. i.e {56} [STO] {12}
- 4. Save change to EM. [XEQ] [ALPHA] (SITSTO) [ALPHA]
- 5. Get back into monitor mode. [XEQ] [ALPHA] {EMAIN} [ALPHA]

So now you know how to BREAK-IN so that you can check and alter, if necessary, your R&W pointers. You can also use the break-in feature to check the time, date and alarms.

DEPARTURE

The last operational check that you should make before leaving any site is to make sure that the calculator is in program mode. If you happen to be there when it is due to make its next scan, you could also watch to see that it wakes up and scans. (a pointer will move back and forth across the display) The calculator will then turn itself off after 90 seconds. Remember, make sure that the calculator is in monitor mode before you leave the site.

DATA TRANSFER TO THE RAM DISK

The electronic transfer of data from the calculator EM to the RD is straight

forward. Follow these steps:

- A. Connect the calculator, HP-IL module, RD and the printer in the series loop, figure 3.
- B. Turn all the components on.
- C. Press the "I" key.

After a few seconds the transfer should commence. The printer will print the results while the transfer is being made. It will first print the station name and today's date. Then the data follows in the following format:

SFUL
(HP)
S)
FT)
%)

The description of the data is in the right hand column. This information does not appear on the printout. When the transfer is completed, the word DONE will appear in the calculator display and will be printed by the printer. Here are some trouble shooting tips:

If after pressing the "I" key nothing happens, or you get an error message such as

"NONEXISTENT", check the following:

- a. Connections and power-on for all components.
- b. Make sure that the calculator is in program mode.
- c. R&W pointers in the calculator should be different values. Write pointer should have advanced. If not, you will get a "DONE" message printed by the printer and in the calculator display, but no data.
- d. Run Cat 1 for the calculator. This displays all programs in the calculator main memory. Be sure that RAMSTO is listed. If not, load it in! The transfer cannot take place without that program.

If the transfer stops before the word DONE appears, you will probably get an error message such as NONEXISTENT, or END OF FILE, or RAM FULL. You can check several things to remedy this.

- a. Printer out of paper.
- b. Printer not sufficiently charged.
- c. RAM Disk battery is low.
- d. Station file on the RD is not of sufficient length to accommodate the number of days you are trying to dump. In this case the message RAM FULL will be displayed. The PCMTSTO program will update the calculator read pointer and the RAM write pointer up to (but not including) the last day printed. These days are also stored on the RAM DISK. Any additional days of data will not be dumped. You will need to reformat the RAM. Refer to the Office Manual to accomplish this.

Now you will have a hard copy of the data transfer, the data will be stored on the

RAM, and the RAM write pointer will have advanced 7 times the number of days you

dumped. If you check the calculator R&W pointers after the transfer the read pointer

should be the same value as the write pointer.

DATA TRANSFER FROM RAM TO PC

To transfer data collected by the pump monitor and upload to the RAM disk unit

to a PC, the following items will be needed:

HP-41CX calculator and HP-IL (interface loop) RAM disk IBM compatible PC with serial port and GW-BASIC Serial cable and connectors HP to PC basic programs (see Appendix 3)

After the basic programs have been loaded into the PC, you should make the following connections (see figure 3). Make sure that calculator, RAM disk, PC, and printer are turned off before connecting.

- The RAM disk should be connected to the HP-41CX calculator by the HP-IL cable.
- 2. Connect the serial port of the PC to the RAM disk using the serial cable.
- 3. Verify connections and turn on the PC and HP-41CX.
- Execute the BASIC program, "HPINPUTO" on the PC. You should see a title screen and instructions - - follow them.
- 5. To start the HP-41CX data dump, enter the following keystrokes: [XEQ] [ALPHA] (RAMDUMP) [ALPHA].

At the end of the transfer, the RD pointers will be updated.

APPENDIX 1 - PUMP INITIALIZATION WORKSHEET

To the user: If you will take the time to fill out this worksheet you will find that it is in the same format as the calculator will prompt you for input during the initialization process.

STATION NA	ME:
	Enter the station name using up to 6 characters
NOTE: Turn	to the appendices for instructions on how to calculate IP, OP coefficients
I-A?:	The calculator is asking you for the water level low pressure offset, ft
I-B?:	
	The calculator is prompting you for the water level low pressure slope, ft
D-A?:	The calculator is prompting you for the discharge pressure offset, ft head
D-B?:	
	The calculator is prompting you for the discharge pressure slope, ft head
O-I ELEV?	The calculator is prompting you for the output / input elevation difference.
S-A:	The calculator is prompting you for the speed sensor offset, rpm
S-B:	The calculator is prompting you for the speed sensor slope, rpm
MAX EFF?	The calculator is prompting you for the pumps rated maximum efficiency. Enter
	the number in the decimal form of percent (i.e. $65\% = 0.65$)
WM-A:	The calculator is prompting you for the watt meter offset
WM-B:	The calculator is prompting you for the watt meter slope.
KWH COST?	
	The calculator is prompting you for the current energy cost which can be obtained from the local utility company, \$/kw
PA:	The coloulator is prompting you for the pine area on ft
CAN II MES	The calculator is prompting you for the pipe area, sq ft.
SCAN H.MS?	The calculator is prompting you for the scan interval. EXAMPLE: For a scan interval of every 30 minutes you would enter 0.3000
LOG H.MS	
	The calculator is prompting you for interval to summarize and log the scanned data to EM. For example, logging interval of 4 hours would be entered as 4.000.
START M.DY	?
	The calculator is prompting you for the <i>Month,Day,Year</i> that you want the pump monitor to start data collection. EXAMPLE: If you wanted the pump monitor to start on January 1, 1999 you would enter 1.11999.
START H.MS	?
	The calculator is prompting you for the Hour, minute, second that you want the scan interval to begin. EXAMPLE: If you wanted to start at 1:30 pm, you would enter 13 0000 (Note: The time format is in 2400 hr.)

APPENDIX 2. HP41 pump monitor program listings, register maps and flag useage.

HP41 PUMP STATION MONITOR REGISTER MAP

Register		
Number	Contents of the register	Units
1		
2		
3	Registers 00 thru 09 are used by several	
4	of the subprograms in EMAIN. Depending on	
5	which subprogram is being used at the time	
6	will determine the contents of the	
7	register(s).	
8		
9		
10	Station name (i.e., Ketchum or Sun Valley)	
11	Extended Memory Read Pointer	registers
12	Extended Memory Write Pointer	registers
13	Speed sensor offset	rpm
14	Speed sensor coefficient	rpm/f(x)
15	Untry land offert	It
10	Water level officient	IC ft (f(m))
1/	Water level coefficient	IT/I(X)
10	Discharge Pressure coefficient	IL ft /f/m)
20	Number of Flow meters	IL/I(X)
21	Flow mater offset	ofe
22	Flow meter coefficient	ofc/f(v)
23	Pipe area	sa-ft
24	Tipo diou	sque
25	Extended Memory file size	registers
26		106100010
27		
28		
29		
30	Number of watt meters	
31	Watt meter offset	hp
32	Watt meter slope	hp/f(x)
33		
34		
35		
36		
3/		
30	Freren cost	¢ /lasha
59	Date and time	Ş/KWNI
40	Number of observations during a scan interval	
42	Total input horsenower during a scan interval	hn
43	Total flow during a scan interval	cfs
44	Total water level during a scan interval	ft
45	Total discharge pressure during a scan interval	af
46	Total efficiency during a scan interval	8
47		
48		
49		
50	Transfer date & time to ram disk	
51	Transfer number of observations to ram disk	
52	Transfer calculated input horsepower to ram disk	hp
53	Transfer calculated flow to ram disk	cfs
54	Transfer water level to ram disk	ft

55	Transfer	calculated	discharge pressure to ram disk	ft
56	Transfer	calculated	speed to ram disk	rpm
57	Transfer	calculated	efficiency to ram disk	8
58				
59				

HP41 PUMP STATION MONITOR CALCULATOR FLAG USAGE

A flag has only two states, set or clear. These states can be interpreted as "on/off" (like a switch), as "yes/no" (like a decision). The calculator has 56 flags. Also the first eight flags (00 thru 07) can be interpreted as the eight bits in a byte, and that byte can be transformed into a number in the x register.

FLAG MAP

Flag Number	Condition
1	Pump on, using power and flowing?
2	Water level scanned?
3	Efficiency calculated?
4	Hp scanned?
5	Flow scanned?
6	Water level (yes)
7	Discharge pressure (yes) Is there discharge pressure at this time?
8	.
9	
10	Set if pump is running

HP41 PUMP STATION MONITOR FIELD PROGRAM LISTINGS

Main Control Program

Pro	gram Name: EMAIN	
01 02	LBL "EMAIN" GTO 00	Global label for main control program
03	LBL "AUTOS"	AUTOMATIC SCANNING ENTERY POINT
04 05	XEQ "AUTOES" GTO 99	AUTOMATIC SCAN OF PUMP SENSORS
06	LBL "AUTOL"	AUTOMATIC DAILY DATA POSTING
07 08	XEQ "AUTOEL" GTO 99	AUTOMATIC POSTING OF DATA REGISTERS
		THE USER WANTS THE INPUT HORSEPOWER NOW PRESS THE KEY WITH "A" ON IT
09	LBL 11	
10 11	XEQ "ESCANP" GTO 00	SUBPROGRAM THAT CALULATES INPUT HORSEPOWER
		THE USER WANTS THE FLOW NOW. PRESS THE "B" KEY or 1/X
12	LBL 12	
13	XEQ "ESCANF"	SUBPROGRAM THAT CALULATES FLOW (CFS)

14	GTO 00	
		THE USER WANTS INPUT/HEAD OR WATER LEVEL PRESS THE "C" KEY or SQUARE ROOT
15	LBL 13	
16	XEO "LNOW"	
17	GTO OO	
		THE USER WANTS THE DISCHARGE PRESSURE
10	T.D.T. 1/	PRESS THE "D" KEY OF LOG
10	LBL 14 XEO "HNOU	
20	GTO 00	
		THE USER WANTS THE PUMPING STATION EFFICIENCY
		NOW
		PRESS THE "E" KEY or LN
21	LBL 15	CURRATING MILLS ALL OUT LEDG BERT GERMON
22	XEQ "ENOW"	SUBROUTINE THAT CALCULATES EFFICIENCY
25	610 00	
		THE USER WANTS THE PUMP SPEED NOW
		PRESS THE "F" KEY or X Y
24	LBL 21	
25	XEQ "SPD"	
26	GTO 00	
		THE HEER HANTE THE CHDENT BINDING COOT
		PRESS THE "C" KEY
27	LBL 22	
28	XEQ "CNOW"	
29	GTO 00	
		THE USER WANTS TO INITILIZE THE SYSTEM
30	TRT 23	FRESS THE "H" KET OF SIN
31	XEO "EINT"	
32	"DONE"	
33	GTO 00	
		THE USER WANTS TO DUMP THE DATA FROM THE
		CALCULATOR TO THE RAM DISK
34	LBI. 24	
35	XEO "RAMSTO"	GO DUMP THE DATA TO THE RAM DISK
36	LBL 00	
37	AVIEW	
38	FIX 2	FIX 2 DECIMAL PLACES
39	XEQ BEEP	WILL CAUSE THE CALCULATOR TO BEEP
40	99 OFT VEV V	WAIT 99 SECONDS
41	GEI KEI A	CIFAD DISDIAY
43	XOY	EXCHANGE X REGISTER WITH Y REGISTER
44	4	ADDIDIDA
45	X	
46	X<=Y	
47	GTO 99	
48	41	BREAK PROGRAM KEYCODE
49	X-Y?	TEST FOR THE ENTER KEY
50	GTO 98	TURN ON THE NORMAL KEYBOARD
21	ACI	DRING DACK THE REIGODE FOR ANOTHER TEST

52	25	MAXIMUM KEYCODE ACCEPTED
53	X>Y?	CHECK FOR A VALID USER RESPONSE
54	GTO IND Y	GO DO WHAT IS REQUESTED
55	"INVALID KEY"	ERROR MESSAGE TO USER
56	GTO 00	RETURN BACK TO ENTERY POINT
57	I BT 99	ADDRESS OF SUBBOUTINE TO POWER DOWN THE HP 41
51		CALCULATOR
50	0	DOLED DOLN THE CVCTEM
50	NOF	FOWER DOWN THE SISTEM
59	AOF 11	ADD CONTINUE DI LO
60	SF 11	SET CONTINUE FLAG
61	OFF	SHUT THE CALCULATOR OFF
62	XEQ "SITRCL"	RECALL SITE CONFIGURATION DATA
63	CLA	CLEAR CALCULATOR DISPLAY
64	DATE	SHOW TODAYS DATE
65	ADATE	APPENDS CURRENT DATE IN ALPHA REGISTER
66	APPEND	
67	TIME	RECALL THE CURRENT TIME FROM THE CALCULATOR
68	ATTME	SHOW ME THE CURRENT TIME
69	CTO 00	
70	TRI 09	CUTT DOLN THE LOCATIO SYSTEM
70	STOP	SHOT DOWN THE LOGGING SISTEM
/1	STOP	
12	GTO 00	
73	END	
PROGRAM	NAME: AUTOEL USE	D TO POST SUMMARY REGISTERS
01	LBL "AUTOEL"	GLOBAL ENTERY POINT LEVEL
02	XEQ "SITRCL"	RECALL SITE CONFIGURATION REGISTERS
03	DATE	SHOW A NUMERIC EQUIVALENT OFTODAYS DATE
04	100	
05	*	
06	INT	RETURN AN INTEGER PART OF A NUMBER
07	TIME	RETURN NUMBER FOR CURRENT TIME
08	100	
09	/	
10	+	
11	STO 40	CTODE TT IN DECICTED 40
10	DCI 41	DECALL THE NUMBER OF SUCCESSFUL COMMO
12	RGL 41	RECALL THE NUMBER OF SUCCESSFUL SCANS
13	X=0?	DOES THE NUMBER IN REG. 41 EQUAL ZERO? SKIP THE
	the second se	NEXT LINE UNLESS X EQUALS ZERO.
14	GTO 01	GOTO LABEL 01
15	042.047	
16	STO 48	STORE THE NUMBER FOR THE REGISTER BLOCKS 042.047
17	LBL 00	
18	RCL 41	RECALL THE NUMBER OF SUCCESSFUL SCANS
19	ST IND 48	
20	TSG 48	
21	GTO 00	
22	IBL 01	
22	APCT 10	DECALL THE CTATION NAME
25	25	DECIMAL CODE FOR A NUMBER
24	JJ VTCA	CONTERT THE NUMBER IN THE Y DECISION TO
25	XIOA	CONVERT THE NUMBER IN THE X REGISTER TO
		EQUIVALENT BYTE AND PUT IT IN THE ALPHA REGISTER
26	RCL 12	RECALL THE EXTENDED MEMORY WRITE POINTER
27	FILESIZE	RETURN THE NUMBER OF FILES TO THE DISPLAY
28	MOD	ADJUST THE POINTER
29	SEEKPTA	SET THE FILE POINTER
30	040.047	REGISTER BLOCK
31	SAVERX	SAVE THE REGISTER BLOCK TO THE FILE
32	8	LOAD X WITH THE RECORD LENGTH IN THE RECISTER
		and a water the showed abioth in the short flat

55 51 +12	THEN STORE IT IN REGISTER 12
34 040 047	REGISTER BLOCK IN MAIN MEMORY
35 CLRCX	CLEAR THE CONTENTS OF THE REGISTER BLOCK
36 XEO "SITSTO"	UPDATE THE SITE CONFICURATION FILE
37 DTN	OIDATE THE SITE CONFIGURATION TILE
20 END	
36 END	
PROGRAM NAME: AUTOES - CONTR	ROL THE AUTOMATIC SCANNING OF THE PUMP SENSORS
01 LBL "AUTOES"	GLOBAL ENTERY LABEL
02 XEQ "SITRCL"	RECALL SITE CONFIGURATION DATA
03 LBL 00	
04 0	CLEAR
05 X F	CLEAR ALL FLAGS SET
06 XEO "ESCANP"	GO GET THE CURRENT FLOW
07 XEO "ESCANF"	GO GET THE INPUT HORSEPOWER
08 FC? 00	IS FLAG 00 CLEAR
09 GTO 01	
10 XEO "LNOW"	GO GET THE WATER LEVEL
11 XEO "HNOW"	GO GET THE DISCHARGE PRESSURE HEAD
12 XEO "SPD"	GO GET THE PUMP SPEED
13 XEO "EFCALC"	GO GET THE PUMP'S CURRENT EFFICIENCY
14 RCL 27	RECALL THE MAXIMUM EFFICIENCY
15 RCL 09	RECALL THE CURRENT EFFICIENCY
16 X<=Y?	IF THE NUMBER IN REGISTER 27. Y. IS GREATER THAN
	THE NUMBER IN REGISTER 09 SKIP THE NEXT
	INSTRUCTION
17 GTO 01	GO TO LABEL 01
18 ISG 26	CHECK THE NUMBER IN REGISTER 26. FOR A NUMBER
	(ii.jikk) IN REGISTER 26. INCREMENTS ii by kk AND
	SKIPS THE XT PROGRAM LINE IF 11+kk>11.
19 GTO 00	
20 LBL 01	
21 RCL 27	RECALL THE MAXIMUM EFFICIENCY
22 STO 26	STORE THAT NUMBER IN REGISTER 26
23 FC? 10	
24 XEQ "SUMIT"	GO ADD THE DATA TO THE APPROPRIATE REGISTERS
25 RTN	
26 END	

PROGRAM	NAME: ASCAN SCAN	S THE ANALOG CHANNELS
01	LBL "ASCAN"	GLOBAL ENTERY LEVEL
02	INVON	INVERT MODE ON
03	ODX	THIS FUNCTIONS SETS THE 8 OUTPUT LINES ACCORDING
		TO THE BINARY EQUIVALENT OF THE INTEGER IN THE X
		REGISTER. FOR EXAMPLE IF THE NUMBER 130 IS IN
		THE X REGISTER THE OUTPUT WOULD BE AS FOLLOWS:
		1-CLOSED CIRCUIT 0-OPEN CIRCUIT
		LINE #
		STATE
		D07 1
		D06 0
		D05 0
		D04 0
		D03 0
		D02 0
		D01 1
		D00 0
04	2	INPUT PRESSURE CONVERSION
05		
06	ODX	OUTPUT DATA FROM X
07	2	INPUT PRESSURE START CONVERSION
08	+	
09	ODX	OUTPUT DATA FROM X
10	LBL 00	
11	ICX	READS THE INPUT CONTROL LINE AND PLACES THE
		RESULT (1 OR 0) IN THE X REGISTER
12	X NE 0?	CHECK THE DONE STATUS
13	GTO 00	
14	18	GET THE DATA CODE FOR THE OUTPUT
15	ODX	TELLS THE MADD UNIT TO SEND IT
16	IDX	GET A VALUE
17	256	
18	1	TRANSFORM THE NUMBER TO A DECIMAL NUMBER BY
1000		DIVIDING BY 256
19	RTN	RTN BACK WITH THE READING IN THE X REGISTER
20	END	

PROGRAM NAME: DSCAN

FUNCTION: SCAN DIGITAL LINES

01	LBL "DSCAN"	GLOBAL ENTERY LEVEL
02	INVON	THIS FUNCTION INVERTS THE BITS OF EVERY BYTE SENT TO THE OUTPUT LINES DOO-DO7.
03	3	DIGITAL DATA INSTRUCTION CODE FOR THE MADD UNIT
04	ODX	OUTPUT DATA FROM X
05	2	BUILD INPUT LINE MASK
06	RCL Z	RECALL THE DIGITAL LINE TO SCAN
07	y^X	RAISE Y TO THE X POWER
08	1500	BUMP MASK TO Y AND LOAD THE X REGISTER WITH 15 SECONDS
09	RATE	COUNT THE NUMBER OF EVENTS IN THE TIME INTERVAL X
10	X-0?	IF NO PULSES WHERE COUNTED
11	RTN	RETURN
12	30	

13	X<=Y?	
14	GTO 05	
15	RDN	MOVE STACK DOWN
16	RCL Z	RECALL THE DIGITAL LINE TO SCAN
17	20	NEED 20 BYTE TIME BUFFER
18	BUFX	CREATE A BUFFER OF 20 BYTES
19	XOY	BRING BACK THE MASK
20	8	WILL RECORD THE TIME FOR & STATE CHANGES
21	TIMET	TIME THE INDUT SIGNAL
22	2	WILL USE THE TIME INTERVALS BETWEEN THE 2nd AND 8th
23	X>PT	USE X TO SET THE INPUT/OUTPUT BUFFER
24	1.006001	
25	STO 03	
26	0	PUT A ZERO IN THE X RECISTER FOR SUMMATION
27	LBL 00	FOR IT BERG IN THE A RECEDIER FOR SCHEMITOR
28	BUF>TX	COPY THE NEXT TWO BYTES IN THE BUFFER AS TIME DATA TO X
29	+	
30	ISC 03	
31	GTO 00	CO DO IT ACAIN
32	300	2 STATE CHANGES /PULSE AND 1 SEC/100 (CENTISECOND)
33	1	(OMITIBEOUD)
34	1/X	
35	RTN	
36	IBI 05	
37		
39	DTN	
30	END	
39	END	

PROGRAM NAME: ESCANP

FUNCTION: PERFORM THE POWER SCAN ON THE WATT METER

01	LBL "SCANP"	GLOBAL ENTER LEVEL
02	"NO-HP"	TELL THE USER THAT THE PUMP IS OFF
03	0	PUT ZERO IN THE X REGISTER
04	STO 04	PUT ZERO IN REGISTER 04
05	XEQ "DSCAN"GO	SCAN THE DIGITAL LINES
06	X-0?	DOES THE NUMBER EQUAL ZERO?
07	RTN	
08	RCL 32	RECALL THE WATT METER SLOPE
09	*	
10	RCL 31	RECALL THE WATT METER OFFSET
11	+	
12	STO 04	STORE IT IN REGISTER 04
13	SF 04	SET THE FLAG TO INDICATE THAT THE PUMP IS ON
14	SF 00	
15	"HP-IN:"	
16	ARCL 04	RECALLS THE INPUT HORSEPOWER AND PUT IT IN THE ALPHA DISPLAY (ie. HP-IN:98.654889)
17	RTN	
18	END	

PROGRAM NAME: ESCANF

FUNCTION: PEFORM FLOWRATE SCAN ON THE HIGH AND LOW PRESSURE TRANSDUCERS

01	LBL "ESCANF"	GLOBAL ENTERY LEVEL
02	"NO-Q"	
03	0	PUT A ZERO IN THE X REGISTER
04	STO 05	CLEAR REGISTER 05
05	1	
06	XEO DSCAN	GO SCAN THE DIGITAL LINE
07	X=0?	
08	RTN	
09	RCL 22	RECALL THE FLOW METER SLOPE
10	*	
11	RCI. 21	RECALL THE FLOW METER OFFSET
12	+	
13	STO 05	STORE IT IN REGISTER 05
14	SE 03	DIORE II IN REDIDIER 05
15	SE 00	
16	JF OU	
17	Q-CFS.	DECALL THE FLOU AND DUE TO IN THE DIODIAN (1.
17	ARCL 05	Q-CFS: 1.788986)
18	RTN	
19	END	
CONTRACT OF CALL		

PROGRAM NAME: SCANL

FUNCTION: CALCULATE THE INPUT PRESSURE HEAD

01	LBL "SCANL"	GLOBAL ENTER LEVEL
02	23	REGISTER WITH FLOW METER OFFSET
03	XEQ "ASCAN"	GO SCAN THE ANALOG CHANNELS
04	RCL 17	RECALL WATER LEVEL SLOPE
05	*	MULTIPLY FLOW METER OFFSET BY THE WATER LEVEL SLOPE
06	RCL 16	RECALL WATER LEVEL OFFSET
07	+	ADD THE WATER LEVEL OFFSET
08	STO 06	STORE IT IN REGISTER 06
09	SF 02	SET FLAG 02 TO INDICATE A SCAN ON THE WATER LEVEL
10	RTN	THATS ALL
11	END	

PROGRAM NAME: SCANH

FUNCTION: CALCULATE THE DICHARGE PRESSURE HEAD

01	LBL "SCANH"	GLOBAL ENTERY LEVEL
02	27	REGISTER WITH MAXIMUM PUMP EFFICIENCY
03	XEQ "ASCAN"	GO GET THE INPUT SENSOR READING
04	RCL 19	RECALL DISCHARGE PRESSURE SLOPE
05	*	MULTIPLY THE MAXIMUM EFFICIENCY BY THE DISCHARGE
		PRESSURE SLOPE
06	RCL 18	RECALL DISCHARGE PRESSURE OFFSET
07	+	ADD THE DISCHARGE PRESSURE OFFSET
08	STO 07	STORE THAT NUMBER IN REGISTER 07
09	SF 01	SET FLAG 01. TELLS THE CALCULATOR THAT THE PUMP
		IS RUNNING
10	RTN	YOUR DONE

11 END

PROGRAM NAME: EFCALC

FUNCTION: CALCUALTE THE PUMP EFFICIENCY

01	LBL "EFCALC"	GLOBAL ENTERY LEVEL
02	RCL 05	RECALL VELOCITY HEAD
03	RCL 23	
04	1	
05	X^2	RAISE X TO THE SECOND POWER
06	64.4	2 TIMES GRAVITY (2G)
07	1	
08	RCL 07	RECALL OUTPUT PRESSURE HEAD
09	+	
10	RCL 06	RECALL INPUT PRESSURE HEAD
11		
12	RCL 15	RECALL THE OUTPUT/INPUT SENSOR ELEVATION DIFFERENCE
13	+	
14	RCL 05	RECALL THE FLOW
15	*	
16	RCL 04	RECALL THE INPUT HORSEPOWER
17	1	
18	11.34545	62.4 DIVIDED BY 550 TIMES 100
19	*	
20	STO 09	
21	SF 09	
22	RTN	
23	END	

PROGRAM NAME: SITSTO

FUNCTION: TRANSFERS SITE DATA FROM THE MAIN MEMORY TO THE EXTENDED MEMORY

01	LBL "SITSTO"	GLOBAL ENTERY LEVEL
02	"LOGGER"	SITE DATA FILE NAME
03	0	PUT A ZERO IN THE X REGISTER TO SET THE FILE POINTER TO THE BEGGING OF THE FILE
04	SEEKPTA	SET THE FILE POINTER TO ZERO
05	10.039	REGISTER BLOCK TO BE COPIED TO THE FILE
06	SAVERX	SAVE THE REGISTERS
07	LBL "SITRCL"	
08	"LOGGER"	SITE DATA FILE NAME
09	0	
10	SEEKPTA	SET THE FILE POINTER TO ZERO
11	10.039	
12	GETRX	COPY THE REGISTER BLOCK
13	RTN	
14	END	

PROGRAM NAME: ESETLOG

FUNCTION: TO SET THE ALARMS FOR THE WANTED SCAN INTERVALS

01	LBL "ESETLOG"	GLOBAL ENTERY LEVEL
02	CLRALMS	CLEAR ALL PREVIOUS ALARMS
03	"SCAN H.MS?	
04	PROMPT	TELLS THE CALCULATOR HOW MANY TIMES YOU WANT THE MONITOR TO PERFORM SCANS
05	STO 01	STORE THAT NUMBER IN RECISTER 01
05	ICTADT M DV2	STORE THAT NONDER IN REGISTER OF
00	START M.DI	LANG MUR MARR INTER VOLUME DAM MIRE MUR AGAINA ARR
07	PROMPT	TO BE PERFORMED
08	STO 02	STORE THAT NUMBER IN REGISTER 02
09	"START H.MS?"	
10	PROMPT	ASK THE USER WHAT HOUR, MIN, SECOND THE SCANS ARE
11	"ATTOCH	ENTERN DOTNT FOR COANC
11	AUTOS	ENTERT POINT FOR SCANS
12	XYZALM	IN THE Y REGISTER, THE SCAN INTERVAL IN THE Z RESGISTER
13	HR	
14	RCL Z	RECALL THE REPEAT INTERVAL OF THE ALARM
15	HR	
16	0.50	
17	4	
1/	*	
18		
19	"LOG H.MS?"	
20	PROMPT	ASKS THE USER HOW MANY TIMES DO YOU WANT TO LOG THE DATA THAT IS COLLECTED.
21	STO 03	
22	HR	
23		
25	T	CONTENTS THE NUMBER IN THE V DECISTER FROM
24	HMS	DECIMAL HOURS FORMAT TO HOURS, MINUTES, SECONDS
25	RCI 03	
26	XOL US	
20		
21	ENTER	
28	ENTER	
29	24	
30	/	
31	INT	
32	RCL 02	
33	XOY	
34	DATE +	CALCULATE A NEW DATE FROM THE DATE IN THE Y REGISTER
35	YOY	
36	24	
30	24	
3/	MOD	
38	" AUTOL"	
39	XYZALM	
40	RTN	
41	LBL "SETCLK" GO SET	THE CLOCK
42	FIX 6	
43	CIK 24	SET THE CLOCK TO 24 HOUR FORMAT
44	DATE	CO GET TODAYS DATE
44	IM DV2	GO GET TODATS DATE
45	H.DIT	
46	ARCL X	
47	PROMPT	IS THE MONTH, DAY, YEAR CORRECT?
48	SETDATE	SET THE CLOCK TO THE DATE IN THE X REGISTER
49	TIME	
50	"H.MS?"	
51	ARCL X	
~ ~	- ALCOND AL	

-34-

52	CF 22	
53	PROMPT	IS THE TIME CORRECT?
54	FS? 22	
55	SETIME	SET THE CLOCK TO THE TIME IN THE X REGISTER
56	RTN	
57	END	
PROGRAM	NAME: EINT	
FUNCTION	: INTILIZE THE DATA	FILE CALLED LOGGER
PECTOTER	UCF.	
REGISTER	10 STATION NAME	
	15 OUTPUT /INPUT P	PRESSURE ELEVATION DIFFERENCE
	16 INPUT PRESSURE	SENSOR OFFSET
	17 INPUT PRESSURE	SENSOR SLOPE
	18 OUTPUT PRESSUR	E SENSOR OFFSET
	19 OUTPUT PRESSUR	E SENSOR SLOPE
	20 TOTAL NUMBER C	F FLOW METERS
	30 TOTAL NUMBER O	F WATT METERS
	39 ENERGY COST	
01	LBL "EPINT"	GLOBAL ENTERY LEVEL
02	"LOGGER"	NAME OF THE FILE THAT DATA WAS STORED IN
03	30	
04	SF 25	SET FLAG 25. WITH FLAG 25 SET THE CALCULATOR WILL
		IGNORE 1 ERROR
05	CRFLD	CREATE A DATA FILE
06	CF 25	CLEAR FLAG 25
07	"SIA: "	SHOW THE STATION NAME
08	IU VEO A	REGISTER 10 HAS THE STATION NAME
10	ALQ A	THAT TO THE HATED I PHEN OPPORT
10	"IP-Af"	WHAT IS THE WATER LEVEL OFFSET
12	YEO B	REGISTER WITH WATER LEVEL OFFSET
13	TD_B2"	LUAT IS THE MATED I FUEL STODE
14	17	RECISTER WITH THE WATER LEVEL SLOPE
15	XEO B	REGISTER WITH THE WRIER LEVEL SLOTE
16	"OP-A?	WATER IS THE DISCHARGE PRESSURE OFFSET
17	18	REGISTER WITH DISCHARGE PRESSURE OFFSET
18	XEO B	ADDIDIDA WITH DIDOMAKOD TREDDORE OTIDET
19	"OP-B?"	WHAT IS THE DISCHARGE PRESSURE SLOPE
20	19	REGISTER WITH DISCHARGE PRESSURE SLOPE
21	XEQ B	
22	"O-I ELEV?"	WHAT IS THE OUTPUT / INPUT ELEVATION FERENCE
23	15	PUT IT IN REGISTER 15
24	XEQ B	
25	"S-A "	WHAT IS THE SPEED OFFSET
26	13	
21	XEQ B	WILD TO THE OPPOP OF OPP
28	"S-B "	WHAT IS THE SPEED SLOPE
29	14 VEO D	
30	ALU D	THAT TO THE DINDO MANTHIN EDELOTENCY IN CENT
31	PAA EFFI	WHAT IS THE FUMPS MAXIMUM EFFICIENCY IN CENT
32	VEO B	
34	RCL 27	
35	INT	
36	STO27	PUT IT IN REGISTER 27
37	27	AND ADAMA LI
38	RCL 27	

39	ENTER	
40	ENTER	
41	2	
41	2	
42	1000	
43	1000	
44	/	
45	+	
46	STO 26	
47	STO 27	
1.8	"LTM A "	UHAT IS THE WATT METED OFFORT
40	21	WIRI IS THE WAIT METER OFFSET
49	31	
50	XEQ B	
51	"WM-B "	WHAT IS THE WATT METER SLOPE
52	32	
53	XEO B	
54	"\$/KWH?" WHAT IS TH	HE ENERGY COST (CALL YOUR UTILITY COMPANY FOR THE CURRENT RATE)
55	30	
55	VEO P	
20	XEQ B	
5/	"Q-A "	WHAT IS THE FLOW METER OFFSET
58	21	
59	XEQ B	
60	"О-В "	WHAT IS THE FLOW METER SLOPE
61	22	
62	VEO B	
02	ALLY D	
63	"PA:-"	
64	23	
65	XEQ B	
66	EMROOM	GO GET THE NUMBER OF REGISTERS AVAILABLE FOR A NEW FILE
67	8	
68	,	
00	TNIT	
69	INI	
70	8	
71	*	
72	STO 25	
73	CLA	CLEAR THE DISPLAY
74	ARCI 10	RECALL THE STATION NAME
75	25	REGALS THE STATION MATE
15	33	
/6	XTOA	
77	RCL 25	RECALL THE NUMBER OF REGISTERS AVAILABLE
78	SF 25	SET THE ERROR IGNORE FLAG
79	CRFLD	CREATE A DATA FILE
80	CF 25	
81	XFO "STTSTO"	CO TRANSFER THE DATA FROM MAIN MEMORY TO THE
01	ABQ DIIDIO	EVTENDED MEMORY
00	WEG BOEMOLVE	
82	XEQ "SETCLK"	GO SET THE CLOCK
83	XEQ "ESTLOG"	GO SET THE ALARMS
84	XEQ "SITRCL"	GO GET THE SITE CONFIGURATION DATA
85	RTN	
86	END	
00	LILLO	

PROGRAM NAME: RAMTSTO

FUNCTION: STORE DATA TO THE RAM DISK

01	LBL "RAMSTO"	GLOBAL ENTRY LEVEL	
02	SF 25		
03	0		
04	STO 05		

05	"MASTER"	NAME OF THE RECORD THAT CONTAINS FILE NFIGURATION INFORMATION
06	SEEKR	SEEK THE RECORD CALLED MASTER
07	"NO MASTER"	ERROR MESSAGE IF THE MASTER FILE CANNOT LOCATED
08	FC2 25	
00	CTO 00	
09	G10 99	AURROUMTUR RUMPU BOTUM
10	LBL 05	SUBROUTINE ENTRY POINT
11	4	PUT 4 IN THE X REGISTER
12	ST+05	ADD THIS NUMBER TO 4 AND STORE IT IN REGISTER
13	6.009	REGISTER BLOCKS 06 - 09
14	READRY	COPY THE DATA FILE USING REGISTERS 06-09
15	ILEADICA.	EDDOD WECCACE IE THE ELLE CANNOT DE FOIND
15	EOF	ERROR MESSAGE IF THE FILE CANNOT BE FOUND
10	FG7 25	
17	RTN	
18	RCL 06	RECALL THE WATER LEVEL
19	RCL 10	RECALL THE STATION NAME
20	X NE Y?	
21	CTO 05	
21	610 05	
22	4	
23	ST-05	
24	FIX 6	
25	FC 55?	IS THE PRINTER HOOKED UP
26	GTO 10	
27	ADV	ADVANCE THE PRINTER PAPER
20	HOTA . II	ADVANCE THE TRIVIER TATER
20	DIA:	
29	ARCL 10	
30	PRA	PRINT THE STATION NAME IN THE ALPHA REGISTER
31	"DATE: "	
32	DATE	
33	ARCL X	
34	DDA	DETNT TODAVE DATE
25	ADV	IKINI IODAIS DAIE
35	ADV	
36	LBL 10	
37	CLA	CLEAR THE DISPLAY
38	ARCL 10	
39	35	
40	XTOA	
40	PCI 11	DECALL THE DEAD DOINTED
41	ROL II	REGALL THE READ FOINTER
42	RGL 25	REGALL THE EXTENDED MEMORY FILE SIZE
43	MOD	CALCULATES THE REMAINDER OF Y DIVIDED BY X
44	SEEKPTA	SET THE POINTER TO THE NUMBER IN THE X REGISTER
45	50.057	REGISTER BLOCK THAT CONTAINS THE DATA
46	GETRX	COPY FILES 50 TO 57
17	FS2 55	IS THE PIENTER CONNECTED
1.0	PPPECY	DETNT DECICTEDE 50 TO 57
40	PRREGA	CIDED THE DIGDLAN
49	CLA	CLEAR THE DISPLAY
50	ARCL 10	
51	RCL 08	
52	SEEKR	POSTION THE WRITE POINTER TO THE CORRECT FILE
53	50.057	
54	URTRY	COPY REGISTERS 50 TO 57 TO THE RAM DISK
55	o	OUT REGISTERS SO TO S7 TO THE MAT DISK
55	0	
56	ST +08	
57	ST +11	
58	RCL 12	RECALL THE EXTENDED MEMORY WRITE POINTER
59	RCL 11	RECALL THE EXTENDED MEMORY READ POINTER
60	X <v2< td=""><td>CHECK TO SEE IF ALL THE DATA HAS BEEN TRANSFEDED</td></v2<>	CHECK TO SEE IF ALL THE DATA HAS BEEN TRANSFEDED
61	CTO 10	SHEEK TO DE IT ALL THE DATA HAS DEEN TRANSFERED
10	G10 10	
62	15G 00	
63	GTO 10	
64	RCL 05	

65	"MASTER"
66	SEEKR
67	6.009
68	WRTRX
69	XEQ "SITSTO"
70	CF 25
71	"DONE"
72	RTN
73	END

PROGRAM NAME: SPEED (SPD)

FUNCTION: CALCULATES THE SPEED OF THE PUMP (R.P.M)

01	LBL "SPD"	
02	0	
03	STO 08	CLEAR REGISTER 08
04	RCL 13	RECALL SPEED OFFSET
05	RCL 14	RECALL SPEED SLOPE
06	X-Y?	
07	RTN	
08	55	
09	ASCAN	GO SCAN THE ANALOG CHANNELS
10	RCL 14	RECALL THE SLOPE
11	*	
12	RCL 13	RECALL THE OFFSET
13	+	
14	STO 08	STORE IT IN REGISTER 08
15	CLA	
16	ARCL 08	
17	"R.P.M: "	
18	RTN	
19	END	

PROGRAM NAME: SUMIT

FUNCTION: CHECKS DATA THEN STORES IT

01	LBL "SUMIT"	
02	RCL 04	RECALL THE INPUT HORSEPOWER
03	ST +42	ADD IT THEN STORE IT IN REGISTER 42
04	RCL 05	RECALL THE FLOW
05	ST +43	ADD IT THEN STORE IT IN REGISTER 43
06	RCL 06	RECALL THE WATER LEVEL
07	ST +44	ADD IT THEN STORE IT IN REGISTER 44
08	RCL 07	RECALL THE DISCHARGE PRESSURE
09	ST +45	ADD IT THEN STORE IT IN REGISTER 45
10	RCL 08	RECALL THE SPEED
11	ST +46	ADD IT THEN STORE IT IN REGISTER 46
12	RCL 09	RECALL THE EFFICIENCY
13	ST +47	ADD IT THEN STORE IT IN REGISTER 47
14	1	PUT 1 IN THE REGISTER
15	ST +41	ADD 1 TO THE TOTAL OBSERVATIONS OF THE SCAN PERIOD
16	RTN	
17	END	

The following is the copy of the HP41CX program, RAMDUMP, which transfers data to a PC running the BASIC program found in Appendix 3.

PROGRAM NAME: RAMDUMP

FUNCTION: USED TO TRANSFER DATA FROM THE RAM DISK TO THE P.C.

01	LBL "RAMDUMP"	GLOBAL ENTERY LEVEL
02	"CMTDISK1"	ADDRESS OF
03	SF 25	
04	FINDID	
05	"NO RAM"	
06	X-0?	
07	GTO 99	
08	FC? 25	
09	GTO 99	
10	1	
11	+	
12	STO 04	
13	SF 17	
14	AUTO I/O	
15	0	
16	STO 05	
17	LBL 00	
18	"MASTER"	
19	SF 25	
20	BCL 05	
21	SEEKD	
22	FC2 25	
22	FUT 25	
23	006 000	
24	DEADBY	
25	READKA	
20	FU7 25	
27	GIO IS	
20	CF 25	
29	RCL 09	
30	RCL 08	
31	X<=Y?	
32	GTO 12	
33	RCL 07	
34	9	
35	+	
36	.01	
37	+	
38	1000	
39	/	
40	10	
41	+	
42	STO 02	
43	RCL 07	
44	100	
45	1	
46	RCL 08	
47	1	

48	*
49	+
50	1000
51	1
52	RCL 09
53	+
54	STO 01
55	CLA
56	ARCL 06
57	SEEKR
58	XEQ 50
59	13
60	XTOA
61	FIX O
62	CF 29
63	ARCL 07
64	13
65	XTOA
66	SCI 9
67	OUTA
68	LBL 05
69	XEQ 60
70	RCL 02
71	STO 00
72	READRX
73	XEQ 50
74	LBL 10
75	CLA
75 76	CLA ARCL IND 00
75 76 77	CLA ARCL IND 00 32
75 76 77 78	CLA ARCL IND 00 32 XTOA
75 76 77 78 79	CLA ARCL IND 00 32 XTOA OUTA
75 76 77 78 79 80	CLA ARCL IND 00 32 XTOA OUTA ISG 00
75 76 77 78 79 80 81	CLA ARCL IND 00 32 XTOA OUTA ISG 00 GTO 10
75 76 77 78 79 80 81 82	CLA ARCL IND 00 32 XTOA OUTA ISG 00 GTO 10 CLA
75 76 77 78 79 80 81 82 83	CLA ARCL IND 00 32 XTOA OUTA ISG 00 GTO 10 CLA 13
75 76 77 78 79 80 81 82 83 83	CLA ARCL IND 00 32 XTOA OUTA ISG 00 GTO 10 CLA 13 XTOA
75 76 77 78 79 80 81 82 83 84 85	CLA ARCL IND 00 32 XTOA OUTA ISG 00 GTO 10 CLA 13 XTOA OUTA
75 76 77 78 79 80 81 82 83 84 85 86	CLA ARCL IND 00 32 XTOA OUTA ISG 00 GTO 10 CLA 13 XTOA OUTA ISG 01
75 76 77 78 79 80 81 82 83 84 85 86 87	CLA ARCL IND 00 32 XTOA OUTA ISG 00 GTO 10 CLA 13 XTOA OUTA ISG 01 GTO 05
75 76 77 78 79 80 81 82 83 84 85 86 87 88	CLA ARCL IND 00 32 XTOA OUTA ISG 00 GTO 10 CLA 13 XTOA OUTA ISG 01 GTO 05 CLA
75 76 77 78 79 80 81 82 83 84 85 86 85 86 87 88 89	CLA ARCL IND 00 32 XTOA OUTA ISG 00 GTO 10 CLA 13 XTOA OUTA ISG 01 GTO 05 CLA 35
75 76 77 78 79 80 81 82 83 84 85 86 85 86 87 88 89 90	CLA ARCL IND 00 32 XTOA OUTA ISG 00 GTO 10 CLA 13 XTOA OUTA ISG 01 GTO 05 CLA 35 XTOA
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91	CLA ARCL IND 00 32 XTOA OUTA ISG 00 GTO 10 CLA 13 XTOA OUTA ISG 01 GTO 05 CLA 35 XTOA 13 YTOA
75 76 77 78 79 80 81 82 83 84 85 86 85 86 87 88 89 90 91 92 92	CLA ARCL IND 00 32 XTOA OUTA ISG 00 GTO 10 CLA 13 XTOA OUTA ISG 01 GTO 05 CLA 35 XTOA 13 XTOA
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94	CLA ARCL IND 00 32 XTOA OUTA ISG 00 GTO 10 CLA 13 XTOA OUTA ISG 01 GTO 05 CLA 35 XTOA 13 XTOA 13 XTOA 0UTA YEO 60
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94	CLA ARCL IND 00 32 XTOA OUTA ISG 00 GTO 10 CLA 13 XTOA OUTA ISG 01 GTO 05 CLA 35 XTOA 13 XTOA 13 XTOA 0UTA XEQ 60 PCL 08
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96	CLA ARCL IND 00 32 XTOA OUTA ISG 00 GTO 10 CLA 13 XTOA OUTA ISG 01 GTO 05 CLA 35 XTOA 13 XTOA 13 XTOA 0UTA XEQ 60 RCL 08 STO 00
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97	CLA ARCL IND 00 32 XTOA OUTA ISG 00 GTO 10 CLA 13 XTOA OUTA ISG 01 GTO 05 CLA 35 XTOA 13 XTOA 0UTA 13 XTOA 0UTA XTOA OUTA XEQ 60 RCL 08 STO 09
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97	CLA ARCL IND 00 32 XTOA OUTA ISG 00 GTO 10 CLA 13 XTOA OUTA ISG 01 GTO 05 CLA 35 XTOA 13 XTOA 0UTA 13 XTOA OUTA XEQ 60 RCL 08 STO 09 'MASTER' PCL 05
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98	CLA ARCL IND 00 32 XTOA OUTA ISG 00 GTO 10 CLA 13 XTOA OUTA ISG 01 GTO 05 CLA 35 XTOA 13 XTOA 13 XTOA 0UTA XEQ 60 RCL 08 STO 09 'MASTER' RCL 05 SEEVE
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99	CLA ARCL IND 00 32 XTOA OUTA ISG 00 GTO 10 CLA 13 XTOA OUTA ISG 01 GTO 05 CLA 35 XTOA 13 XTOA 13 XTOA 13 XTOA 0UTA XEQ 60 RCL 08 STO 09 'MASTER' RCL 05 SEEKR 006 000
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 91 00	CLA ARCL IND 00 32 XTOA OUTA ISG 00 GTO 10 CLA 13 XTOA OUTA ISG 01 GTO 05 CLA 35 XTOA 13 XTOA 13 XTOA 13 XTOA 0UTA XEQ 60 RCL 08 STO 09 'MASTER' RCL 05 SEEKR 006.009

102	"READY"
103	AVIEW
104	STOP
105	LBL 12
106	4
107	ST+ 05
108	GTO 00
109	LBL 15
110	CLA
111	33
112	XTOA
113	13
114	XTOA
115	OUTA
116	"DONE"
117	LBL 99
118	AVIEW
119	RTN
120	LBL 50
121	RCL 04
122	SELECT
123	MANIO
124	RTN
125	LBL 60
126	AUTOIO
127	END

THE FOLLOWING IS A EXAMPLE OF THE OUTPUT THAT WAS OBTAINED FROM THE PROGRAM

STA:	NWOODS	THIS IS THE STATION NAME
DATE:1	1.201989	IS THE DATE THAT THE DATA WAS TRANSFERED TO THE RAM DISK WHICH WAS NOVEMBER 20 1989
R50=	1,107.175234	REGISTER 50 CONTAINS THE DECIMAL EQUIVALENT OF THE CURRENT DATE AND TIME
R51-	16.00	SHOWS THE NUMBER OF SUCCESSFUL SCANS DURING A SCAN PERIOD. (i.e If the pump was on)
R52=	78.796363	REGISTER 52 CONTAINS THE INPUT HORSEPOWER
R53=	0.720638	REGISTER 53 CONTAINS THE CURRENT FLOW IN CFS
R54-	-12.024179	REGISTER 54 CONTAINS THE WATER LEVEL THE MINUS SIGN INDICATES THE DEPTH FROM THE PUMP BASE TO THE WATER LEVEL
R55=	199.940469	REGISTER 55 CONTAINS THE CURRENT DISCHARGE PRESSURE
R56=	1,324,951172	REGISTER 56 CONTAINS THE PUMP SPEED IN RPM'S
R57=	20.467971	REGISTER 57 CONTAINS THE AVERAGE PUMP EFFICIENCY FOR THE SCAN PERIOD

41

APPENDIX 3

The following are the MICROSOFT QUICK BASIC programs that you will need to put on your PC in order to transfer data from the RAMDISK to your PC, also will allow you to print the data from your PC to your printer.

```
02 DECLARE SUB HEADER (N!, D$, X$, PAGE!, T$)
03 DECLARE SUB PUMPHEAD (D$, X$)
04 DECLARE SUB LEVELHEAD (D$, X$)
05 DECLARE SUB XCHNGHEAD (D$, X$)
06 DECLARE SUB EFFMON (D$, T$, X$)
07 ' PROGRAM HPOUTPUT.BAS
08 /
09 ' This program is for output of data gathered by HPINPUT.BAS from
10 ' HP41CX monitors. The program, for each data file stored, identifies
11 ' type of file; prints a header for the file; and then prints the data
12 ' in tabular fashion.
13 '
14 ' Microsoft QuickBASIC v. 2.0
15 ' IBM Personal Computer
16 /
17 OPTION BASE 1
18
19 ' Arrays to Store Master database file - GLOBAL
20
21 DIM SHARED STA$(40), LENR(40), DESCRP$(40), TYPE$(40), CODE$(40)
22
23 ' Variables for temporary storage of data
24
25 DEFDBL Z
26 DIM ZNUM(13)
27
28 ' Open output device
29
30 OUTDEV$ = "LPT1:"
31 OPEN OUTDEV$ FOR OUTPUT AS #5
32 CALL READMAST(STANUM)
33 PICK:
34
    LOCATE 20, 10
35 PRINT "
36
    LOCATE 20, 10
37
     INPUT "SELECT STATION TO PRINT: ", P$
38
     FOR N = 1 TO STANUM
39
            IF (P$ = STA$(N)) GOTO PRTIT:
40
     NEXT N
41
     LOCATE 20, 10
42
     INPUT "NOT FOUND, DO YOU WISH TO QUIT: ", P$
43
    IF (P$ = "YES") GOTO QUIT:
44
     GOTO PICK:
45
46 PRTIT:
47
     LOCATE 20, 10
48
    PRINT "Printing Station "; N; ": " + STA$(N)
```

01 DECLARE SUB READMAST (STANUM!)

```
49 OPEN STAS(N) + ".DAT" FOR INPUT AS #1
 50
      PAGE = 0
 51 NEWPAGE:
 52
    PAGE = PAGE + 1
 53
      CALL HEADER(N, D$, X$, PAGE, T$)
 54
     I = 0
 55
      WHILE (I < 45) AND (NOT EOF(1))
 56
            I = I + 1
 57
            INPUT #1, MM, DD, YY
            PRINT #5, USING D$; MM; DD; (YY MOD 100);
 58
 59
            IF (NOT (T$ = "NO")) THEN
 60
                  INPUT #1, TT
 61
                  PRINT #5, USING T$; TT;
 62
            END IF
 63
            IF LENR(N) = 14 THEN
 64
                  FOR J = 1 TO 8
 65
                        INPUT #1, ZNUM(J)
 66
                        IF (ZNUM(J) > 8.999999E+09) THEN
 67
                              PRINT #5, USING X$; 0!;
 68
                        ELSE
 69
                              PRINT #5, USING X$; ZNUM(J);
 70
                        END IF
 71
                  NEXT J
 72
                  PRINT #5, : PRINT #5, SPC(38);
 73
                  I = I + 1
 74
                  FOR J = 9 TO (LENR(N) - 1)
 75
                        INPUT #1, ZNUM(J)
 76
                        PRINT #5, USING X$; ZNUM(J);
 77
                  NEXT J
 78
            ELSE
 79
                  FOR J = 1 TO (LENR(N) - 1)
80
                        INPUT #1, ZNUM(J)
                        PRINT #5, USING X$; ZNUM(J);
81
82
                  NEXT J
83
            END IF
84
            PRINT #5,
85
     WEND
86
     PRINT #5, CHR$(12);
87
     IF NOT EOF(1) GOTO NEWPAGE
88 CLOSE #1
89
     GOTO PICK:
90 QUIT:
91
    CLS
92 END
93
94 SUB EFFMON (D$, T$, X$) STATIC
95 PRINT #5, "
                                      96 PRINT #5, "
                                Number Input
                                                     Water Output 103Pump Energy"
97 PRINT #5, "
                    Date Time
                                   of Energy
                                               Flow Level
                                                             Head 105Speed
                                                                               Eff"
98 PRINT #5, "
                                Scans
                                        (hp) (cfs) (ft) (ft) 107(rpm)
                                                                               (%)"
99 PRINT #5, "
                  -----109-------
100 D$ = "
           ##/##/## 11
101 T$ = " #### "
102 X$ = "####.## "
```

```
103
104 END SUB
105
106 SUB HEADER (N, D$, X$, PAGE, T$) STATIC
107
108 ' This subroutine uses the file record length RLEN(N), and the station
109 ' code (CDE) to determine which table header and output format is to .
110 ' be used. At the same time, data for the station is printed: name
111 ' station type, description, and date.
112
113 PRINT #5, : PRINT #5,
114 PRINT #5, "
                 University of Idaho"
115 PRINT #5, "
                  Diversion/Pump Station Monitor/Efficiency Project"
116 PRINT #5.
117 PRINT #5, " print date: " + DATE$ + " page: "; PAGE
118 PRINT #5,
119 PRINT #5, "
                 Name: " + STA$(N) + " type: " + TYPE$(N)
120 PRINT #5, "
                         # + DESCRP$(N)
121 PRINT #5,
122
123 T$ = "NO"
124 IF LENR(N) = 14 THEN
125 CALL PUMPHEAD(D$, X$)
126 ELSEIF LENR(N) = 8 THEN
127 CALL EFFMON(D$, T$, X$)
128 ELSEIF CODE$(N) = "L" THEN
129 CALL LEVELHEAD(D$, X$)
130 ELSE
131 CALL XCHNGHEAD(D$, X$)
132 END IF
133
134 PRINT #5,
135
136 END SUB
137
138 SUB LEVELHEAD (D$, X$) STATIC
139
140 'This prints the column headers for level Stations
141 ' and chooses the output format for printing.
142 /
143
144 PRINT #5, "
                       145 PRINT #5, "
                                ---- Level (ft) --- ---- Flow (cfs) ----"
146 PRINT #5, "
                       Date min mean max min mean max"
147 PRINT #5, "
                       148 PRINT #5,
149
150 D$ = "
                ##/##/## "
151 X$ = "###.## "
152
153 END SUB
154
155 SUB PUMPHEAD (D$, X$) STATIC
156
```

```
158 PRINT #5, " Min. Mean Max. Max/Min Elec. Input Output"
159 PRINT #5, "
               Date Flow
(cfs)
                             Flow Flow Eff. Power Flow
                                                            Head
                                                                  Head"
160 PRINT #5. "
                       (cfs) (cfs) (cfs) (%)
                                                (hp) (cfs)
                                                            (ft)
                                                                  (ft)"
162 D$ = " ##/##/## "
163 X$ = "####.## "
164
165 END SUB
166
167 SUB READMAST (STANUM) STATIC
168
169 ' Open and Read Master Storage file if it exists
170
171 STANUM = 0
172
173
     OPEN "MASTER.DAT" FOR INPUT AS #1
174
     CLS
175 PRINT
176
     PRINT "
                UNIVERSITY OF IDAHO PUMP MONITOR SYSTEM": PRINT
177
     PRINT "
                             STATIONS ON FILE": PRINT
178
     PRINT " Sta. RL Description
                                          Type"
179 WHILE NOT EOF(1)
180
      STANUM = STANUM + 1
181
182
     LINE INPUT #1, X$
183
      STA$(STANUM) = LEFT$(X$, 6): 'STA is the 6 letter name
184
      XXX$ = MID$(X$, 7, 2)
185
      LENR(STANUM) = VAL(XXX$):
                            'RLEN is the data/record
      DESCRP$(STANUM) = MID$(X$, 9, 30): 'DESCRP is a short description of the site
186
      TYPE$(STANUM) = MID$(X$, 39, 15): 'TYPE is the type of station in words
187
188
      CODE$(STANUM) = RIGHT$(X$, 1): 'CODE is the type of station in code
189
                         ' L = level, P = pump, Q = pump - flow only, X = exchange
190
191
      X$ = "\ \ ## \
                                        1 1
                                                  1 1"
      PRINT USING X$; STA$(STANUM); LENR(STANUM); DESCRP$(STANUM); TYPE$(STANUM); CODE$(STANUM)
192
193
     WEND
194 CLOSE #1
195 END SUB
196
197 SUB XCHNGHEAD (D$, X$) STATIC
198
199 PRINT #5, "
             200 PRINT #5, "
                             Total
                                    Percent
                                             Volume
                                                      Last
                                                             Last"
201 PRINT #5, "
                                    Times
                                                      Time
                    Times
                             Times
                                            for day
                                                             Time"
202 PRINT #5. "
                Date ON
                             Checked
                                     ON
                                           (cfs-day)
                                                       ON
                                                             OFF
                203 PRINT #5, "
204 PRINT #5,
205
206 D$ = " ##/##/## "
207 X$ = "####.#### "
208
209 END SUB
210
```

```
211
212 DECLARE SUB SEPERTIME (Z#, MM!, DD!, TT!)
213 DECLARE SUB FIND (NAME$, STANUM!, I!)
214 DECLARE SUB NEWSTA (NAMES, TYP!, N!)
215 DECLARE SUB TRANSLAT (REC$, ZNUM#(), KIND!)
216 DECLARE SUB SEPERDATE (Z#, MM!, DD!, YYYY!)
217 ' PROGRAM HPINPUT
218 /
219 ' This is the Input Routine for retrieving data from the HP
220 ' Ramdisk. Data is read in, station by station, from the
221 ' RAMDISK. The first line is the station name, the second
222 ' data per record. Based upon the data per record, the data
223 ' records are transformed from characters strings into
224 ' individual numbers. These numbers are stored in a database
225 ' consisting of a Master file and a file for each station which
226 ' has been dumped.
227 /
228 ' William A. Perkins
229 ' University of Idaho
230 ' Diversion and pump station monitor project July 1987
231 / Microsoft QuickBASIC v. 2.0
232 ' IBM Personal Computer w/ Asynchronous Port
233
234
235
       OPTION BASE 1
236
237 ' Arrays for master data file - Available to all routines
238 DIM SHARED STA$(20), DESCRP$(20), TYPE$(20), LENR(20), CODE$(20)
239
240 ' Arrays for reading in data
241 DEFDBL Z
242 DIM LIN$(180), ZNUM(14): ' LIN = record ZNUM = data
243
            ****
244 1
                    FUNCTIONS DECLARED ****
245 DEF FNRDCOM1$
246 ' This reads a line of information from the COM port one
247 ' character at a time. The COM port must be previously
248 ' assigned as #1. Characters with ASCII codes above 90
249 ' decimal are ignored.
250
251 X$ = ""
252 BEGLOOP:
253
     CH$ = INPUT$(1, #1): ' Read one character
254
      IF ASC(CH$) > 90 THEN
255
             GOTO BEGLOOP:
                                 'Character is not readable, read another
256
      ELSE
257
             IF (ASC(CH$) = 13) THEN
                                      'Last char of line is a <CR> - finished
258
                    GOTO ENDLOOP:
259
             ELSE
260
                    X$ = X$ + CH$:
                                      'Character OK, add to string
                    GOTO BEGLOOP:
261
262
             END IF
263 END IF
264 ENDLOOP:
```

265 FNRDCOM1\$ = X\$ 266 END DEF 267 / **** END FUNCTION DECLARATION **** 268 269 ' Port for the computer 270 PORTS = "COM1:" 271 ' Display some Introductory Remarks 272 CLS 273 PRINT : PRINT 274 PRINT " HP Monitoring Station Data Transfer" 275 PRINT 276 PRINT " This is the input routine for transferring data, gathered from the" 277 PRINT " various stations, from the HP RAMDISK to computer storage. You will" 278 PRINT " need the following equipment:" 279 PRINT * the office HP 41CX calculator" 280 PRINT " 281 PRINT " * an HP-IL module" 282 PRINT " * the CMT RAMDISK where station data is" 283 PRINT " stored" 284 PRINT 285 PRINT " Be sure all equipment is hooked up properly, and the RAMDISK's RS -232" 286 PRINT " port is connect to the proper port on the computer. The active port" 287 PRINT " here is " + PORT\$ + "." 288 PRINT 289 PRINT "Press any key to continue, or Q to quit..."; 290 xxx\$ = INPUT\$(1) 291 IF xxx\$ = "Q" OR xxx\$ = "q" GOTO ABORT 292 293 ' Open and Read Master Storage file if it exists 294 CLS : PRINT : PRINT " Reading Storage Data ... " 295 STANUM = 0 296 ON ERROR GOTO NOMASTER: 'skip reading master if not found 297 OPEN "MASTER.DAT" FOR INPUT AS #1 298 ON ERROR GOTO 0 299 CLS : PRINT : PRINT " UNIVERSITY OF IDAHO HP41 MONITOR SYSTEM" 300 PRINT " STATIONS ON FILE": PRINT 301 PRINT " Sta. RL Descrition Type" 302 WHILE NOT EOF(1) 'Read records from Master and list on screen. STANUM = STANUM + 1 303 304 LINE INPUT #1, X\$ 305 STA\$(STANUM) = LEFT\$(X\$, 6): 'STA is the 6 letter name 306 xxx\$ = MID\$(X\$, 7, 2) 307 'RLEN is the data/record LENR(STANUM) = VAL(xxx\$): 308 DESCRP\$(STANUM) = MID\$(X\$, 9, 30): 'DESCRP is a short description of the site 309 TYPE\$(STANUM) = MID\$(X\$, 39, 15): 'TYPE is the type of station in words CODE\$(STANUM) = RIGHT\$(X\$, 1): 'CODE is the type of station in code 310 ' L = level, P = pump, Q = pump - flow only, X = exchange E = Efficiency 311 312 X\$ = "\ \ ## \ 1 1 / !" 313 PRINT USING X\$; STA\$(STANUM); LENR(STANUM); DESCRP\$(STANUM); TYPE\$(STANUM); CODE\$(STANUM) 314 WEND 315 CLOSE #1 316 317 NOMASTER: ' RESUME here if Master file not found 318

```
319 PRINT "press any key to continue..."
320 xxx$ = INPUT$(1)
321 IF (xxx$ = "Q" OR xxx$ = "q") GOTO ABORT
322 ' Set COM port to listen
323 PORT$ = PORT$ + "9600, N, 8, 1, CSO, DSO, CDO, ASC"
324 OPEN PORTS FOR INPUT AS #1
325
326 ' Instructions for operation of calculator during dump.
327 CLS
328 PRINT
329 PRINT "
                     Ready to read data from HP RAMDISK ...."
330 PRINT
                    Start the calculator transfer test dump program by keying in:"
331 PRINT "
332 PRINT
333 PRINT "
                            [XEQ] [ALPHA] RAMDUMP [ALPHA] "
334 PRINT
335
336 STALOOP: ' Loop for input of each station. Read in data from HP
337
     LN = 0
338 RECLOOP:
                  ' Loop to read several records for a station
339
             LN = LN + 1
340
             LIN$(LN) = FNRDCOM1$
341
             LOCATE 10, 5
342
             PRINT USING "Recieving Data... ## LINES READ"; LN
343
             LOCATE 15, 1
344
             PRINT LINS(LN)
345
             IF INSTR("!", LIN$(LN)) <> 0 GOTO ALLDONE: ' End of data being sent.
346
             IF INSTR("#", LIN$(LN)) = 0 GOTO RECLOOP: ' End of one station data.
347
      LN = LN - 1
348 STATIONS = LINS(1)
                                     ' Decipher and store data records.
349
     TYPENO = VAL(LIN$(2))
350
      CALL FIND((STATION$), (STANUM), N): 'See if this station has a file.
351
      LOCATE 12, 5
352
      IF (N > 0) THEN ' The station has been dumped before.
353
             PRINT "Station: "; STA$(N); SPC(2); LENR(N); " data per record"
354
             PRINT SPC(7); TYPE$(N)
355
             PRINT SPC(7); DESCRP$(N)
356
             OPEN STA$(N) + ".DAT" FOR APPEND AS #2
357
      ELSE
                       ' The station has not been previously dumped.
358
             PRINT "Station: "; STATION$; SPC(2); TYPENO; "data per record"
359
             PRINT CHR$(7); "** NEW STATION **"
360
             CALL NEWSTA((STATION$), (TYPENO), STANUM)
361
             N = STANUM
362
             OPEN STA$(N) + ".DAT" FOR OUTPUT AS #2
363
      END IF
364
365
      ' Loop to store transform and store data
      IF (CODE$(N) = "E") THEN
366
367
             INPUT "Year data collected: ", YEAR
368
      FND IF
      FOR J = 3 TO LN
369
370
             LOCATE 20, 5
371
             CALL TRANSLAT(LIN$(J), ZNUM(), (LENR(N)))
            IF (CODE$(N) = "E") THEN
372
```

```
CALL SEPERTIME(ZNUM(1), MON, DAY, TT)
373
374
                    PRINT USING "Storing... DAY = ##/## ####"; MON; DAY; TT
                    PRINT #2, USING "## ## #### ####"; MON; DAY; YEAR; TT;
375
376
             ELSE
377
                    CALL SEPERDATE(ZNUM(1), MON, DAY, YEAR)
378
                    PRINT USING "Storing... DATE = ##/##/####"; MON; DAY; YEAR
379
                    PRINT #2, USING "## ## ####"; MON; DAY; YEAR;
380
             END IF
381
             FOR K = 2 TO TYPENO
                    PRINT #2, USING " #.#######****; ZNUM(K);
382
383
             NEXT K
384
             PRINT #2,
385
      NEXT J
386
      CLOSE #2
387
388
       ' Instructions for operation of calculator
389
      CLS
390
      PRINT
301
      PRINT
392
      PRINT "
                  Ready for Next Station .... "
393
     PRINT
394
      PRINT "
                      When calculator displays 'READY',"
395
      PRINT "
                      Press the calculator's RUN/STOP (R/S) key"
396
      GOTO STALOOP: ' Return to beginning of station loop.
397
398
399 ALLDONE: ' Exit from station loop to here to finish up
400 CLOSE #1: ' Close COM port
401
402 ' Resave Master file
403 OPEN "MASTER.DAT" FOR OUTPUT AS #1
404 FOR I = 1 TO STANUM
     X$ = "\ \##\
405
                                                               11"
                                                 11
406
     PRINT #1, USING X$; STA$(1); LENR(1); DESCRP$(1); TYPE$(1); CODE$(1)
407 NEXT I
408 CLOSE #1
409 ABORT:
410 END
411
412 SUB FIND (NAMES, STANUM, I) STATIC
413
414 ' This finds the station name NAME$ in the arrays which represent
415 ' the master storage file. The number in the array is returned
416 ' (I), if the name is found, otherwise a zero is returned.
417 SHARED STAS()
418 FOUND = 0
419 I = 1
420 WHILE (FOUND = 0) AND (I <= STANUM)
421 IF NAMES = LEFTS(STAS(I), LEN(NAMES)) THEN
422
       FOUND = 1
       ELSE
423
424
       I = I + 1
425
      END IF
426 WEND
```

```
427 IF I > STANUM THEN I = 0
428 END SUB
429
430
431 SUB NEWSTA (NAMES, TYP, N) STATIC
432
433 ' This adds a new station to the master arrays. The user is asked
434 ' for a description of the station (30 char), and may be asked to input a
435 ' station type.
436 SHARED STAS(), TYPES(), LENR(), DESCRPS(), CODES()
437 N = N + 1
438 STA$(N) = NAME$
439 LENR(N) = TYP
440 INPUT "Station Description: "; DESCRP$(N)
441 IF LENR(N) = 4 THEN
442
     TYPE$(N) = "DIVR FLOW
                                 н
443 CODE$(N) = "Q"
444 ELSEIF LENR(N) = 14 THEN
445
     TYPE$(N) = "DIVR FLOW/EFF. "
446 CODE$(N) = "P"
447 ELSEIF LENR(N) = 7 THEN
448 PRINT "Type number is 7 - input code for station "
449 PRINT "( X = exchange, L = level):";
450 CODE$(N) = INPUT$(1)
451
     IF CODES(N) = "X" THEN
452
             TYPE$(N) = "EXCHANGE WELL"
453 ELSE
454
             TYPE$(N) = "LEVEL MONITOR"
455
      END IF
456 ELSEIF LENR(N) = 8 THEN
457
     TYPE$(N) = "PUMP EFFICIENCY"
458 CODE$(N) = "E"
459 END IF
460 PRINT "Station Type: "; TYPE$(N)
461 END SUB
462
463 SUB SEPERDATE (Z, MM, DD, YYYY) STATIC
464
465 ' This subprogram takes the number passed as Z, in HP date format,
466 ' mm.ddyyyy, and translates it into 3 numbers MM, DD, YYYY.
467 ' This makes the date easier to read.
468
      MM = INT(Z)
469
       DD = INT((100 * Z) MOD 100)
470
       YYYY = (10000 * Z) MOD 1000000
471 END SUB
472
473 SUB SEPERTIME (Z, MM, DD, TT) STATIC
474
475 ' This subprogram takes the number passed as Z, in HP date format,
476 ' MMDD.TTTTT, and translates it into 3 numbers MM, DD, TT.
477 ' This makes the date easier to read.
478
479
       MM = INT(Z / 100)
480
       DD = Z MOD 100
```

```
481 TT = (10000 * Z) MOD 10000
482
483 END SUB
484
485
486 SUB TRANSLAT (REC$, ZNUM(), KIND) STATIC
487
488 ' This subprogram sorts a data line out into the proper number
489 ' of data.
490
491
       FOR J = 1 TO KIND
492
        LOCN = INSTR(REC$, " ")
493
494
        xxx$ = LEFT$(REC$, LOCN)
495
        ZNUM(J) = VAL(xxx$)
        REC$ = RIGHT$(REC$, LEN(REC$) - LOCN)
496
497
       NEXT J
498 END SUB
```