THE UNIVERSITY OF IDAHO LIBRARY

MANUSCRIPT THESES

The literary rights in any unpublished thesis submitted for the Master's degree and deposited in the University of Idaho Library are vested in the Regents of the University. This thesis is open for inspection, but it is to be used only with due regard for the literary rights involved. Bibliographical references may be noted, but the copying of passages or the publication of this thesis in whole or in part requires the consent of the Regents of the University of Idaho granted through the office of the Dean of the Graduate School.

This thesis has been used by the following persons, whose signatures attest their acceptance of the above restrictions.

A library which borrows this thesis is expected to secure the signature of each user.

HYDROGEOLOGY AND POTENTIAL RECLAMATION PROCEDURES FOR AN UNCONTROLLED MINE WASTE DEPOSITION SITE, KELLOGG, IDAHO

A Thesis

Presented in Partial Fulfillment of the Requirements for the DEGREE OF MASTER OF SCIENCE

with a

Major in Hydrology

in the GRADUATE SCHOOL UNIVERSITY OF IDAHO

by

Marc A. Norton November 1980

Authorization To Proceed With Final Draft

A preliminary draft of the thesis entitled "Hydrogeology And Potential Reclamation Procedures For An Uncontrolled Mine Waste Deposition Site, Kellogg, Idaho" by Marc A. Norton for the Master of Science degree with a major in Hydrology has been reviewed and found adequate. The committee hereby grants permission for the preparation of the final copy incorporating suggestions made by the committee. Permission is also given for the scheduling of the final examination to be held when authorized by the graduate dean after submission of two final copies of the thesis to the Graduate School.

Major Professor / ____ Date 11/20/79 Sulliame Date Nov 20,1979 Committe Member 46 Date Nov. 20, 1979 Committe Member

Final Approval

This thesis entitled "Hydrogeology And Potential Reclamation Procedures For An Uncontrolled Mine Waste Deposition Site, Kellogg, Idaho" by Marc A. Norton has been reviewed and approved by the University of Idaho officals whose signatures appear below.

Date 11/24/80 roféssór acc (cannow Date May 190 Departmental Administrator Dean Date Miller Date 11-24-20 Dean Date December 10, 1980 College Dea

ABSTRACT

The reclamation of the South Fork of the Coeur d'Alene River basin in northern Idaho from the effects of past mining practices is imperative if the water quality of the river is to meet the requirement of "fishable and swimmable" set by Public Law 92-50, the Federal Water Pollution Control Act Amendments of 1972. Current mining practices are monitored and regulated by the Federal Environmental Protection Agency to ensure that present mining activities are within the regulations.

Mine wastes or tailings were deposited on the flood plain or in the channel of the South Fork of the Coeur d'Alene River. These mine wastes were carried downstream, mixing with the native alluvial material and forming large deposits. In the early 1900's, a series of dams were constructed across the South Fork of the Coeur d'Alene River in an attempt to control the downstream movement of the mine waste. As the South Fork entered the Smelterville Flats study area, located one mile west of Kellogg, Idaho, the coarser sediments were deposited first. The finer materials were deposited in the backwaters of a dam located at the western end of the Flats.

These tailings have high concentrations of zinc, lead, iron, and many other metals. Water movement through these tailings leaches the heavy metals into solution where they are able to enter the water resource system. Piezometers were installed to monitor the water quality and for water level measurements. Soil pits were constructed to determine the depth of mine waste and its physical and chemical properties. The effect on the water quality of the South Fork of the Coeur d'Alene River by ground water in the Smelterville Flats study area is minimal. Based on the data collected, potential reclamation

ii

procedures were developed to minimize the long-term effect of the abondoned mine waste on the water resource system. Potential reclamation procedures include removal of the mine waste, fluctuation of the ground water level, or, do nothing at all.

ACKNOWLEDGEMENTS

I would like to thank the Hydrology section of the College of Mines and Natural Resources at the University of Idaho, which includes: Dr. Roy E. Williams, Professor; Dr. Dale R. Ralston, Associate Professor; Muriel Robinette, instructor; and Sue Line, secretary, for their help and encouragement. Iwould also like to thank Dr. C. M. Wai, Department of Chemistry, for his help.

I would like to thank the staff of the Environmental Affairs Department of the Bunker Hill Company for their help and cooperation. I would also like to thank Ed Pomeranian, Forester for the Bunker Hill Company for his help with the plant identification. Special thanks to Robert Murray, North Idaho College, for his help with plant identification.

My special thanks and appreciation to Dale and Lynn Marcy, who worked under adverse conditions till the job was completed.

Very special thanks and appreciation goes to my wife, Laurie and daughter, Tara, for their support during my stay at the University of Idaho and during the typing of the many drafts and the final copy of the thesis. I would also like to thank Laurie and Linda Hanisch for the excellent job of typing.

iv

TABLE OF CONTENTS

	90
ABSTRACT	ii
ACKNOWLEDGEMENTS	iv
LIST OF TABLES	ii
LIST OF FIGURES	ii
INTRODUCTION	1.
Statement of the Problem	1334455566
DESCRIPTION OF THE SMELTERVILLE FLATS STUDY AREA	i 1
Introduction 1 Geology 1 Bedrock 1 Alluvium 1 Hydrology 2 Surface Water 2 Ground Water 2 Data Collection System 2 Soil Sampling 2 Piezometer Construction 2 Water Level Measurement 2 Water Quality Sampling 2	$ \begin{array}{c} 1 \\ 4 \\ 4 \\ 4 \\ 2 \\ 0 \\ 2 \\ 1 \\ 1 \\ 4 \\ 6 \\ 6 \\ 6 \\ 6 \\ 7 \\ $
DISTRIBUTION AND CHARACTERISTICS OF MINE WASTES IN THE VALLEY ALLUVIUM	0
Developments in the Mining Industry	0 4 4 5

Page

Page

CHARACTERISTICS OF THE SURFACE AND GROUND WATER FLOW SYSTEMS	43
Hydrogeology Surface Water Channel Description and Movement Discharge Characteristics Discharge Characteristics Pond Characteristics Surface Water Quality Surface Water Quality Ground Water Ground Water Aquifer Description Ground Water Chemistry of the Ground Water by Dale Marcy Discharcy Piezometers 2P and 4P Zinc Calcium References Cited	43 43 50 53 56 59 64 88 88 89 97 101
RELATIONSHIP OF WATER QUALITY TO THE MINE WASTE AND WATER LEVEL FLUCTUATIONS coauthored by Dale Marcy and Marc Norton	102
POTENTIAL RECLAMATION PROCEDURES	118 119 120 121
CONCLUSIONS AND RECOMMENDATIONS	125 125 129
REFERENCES CITED	131
APPENDIX I. SOIL PROFILES	I 1
APPENDIX II. SOIL CHEMISTRY	I 1
APPENDIX III. WATER LEVELS	I 1
APPENDIX IV. WATER QUALITY	/ 1
APPENDIX V. PLANT LIST AND SURVEY NOTES	V 1

.

LIST OF TABLES

Table		Page
1	Sieve sizes for soil samples, Smelterville Flats study area	. 24
2	Water quality on August 12, 1978, for ponds in the Smelterville Flats study area	. 58
3	Water quality on August 12, 1978, for ground water near the ponds in the Smelterville Flats study area	58
4	Water quality values on August 12, 1978, com- paring the surface water, and the ground water from both the upper and lower aquifers in the Smelterville Flats study area	63
5	Water quality values for stations in ground water recharge zones, March 25, 1978, Smelterville Flats study area	74
6	Mineralogical composition of the ore types found in the Bunker Hill Company Mine (Ralston, 1973)	91

vii

Figure		Page
1	Location of the Smelterville Flats study area within the Coeur d'Alene River basin	2
2	Location of study area boundaries and land use, Smelterville Flats study area	12
3	Mean monthly precipitation for the Smelterville Flats study area based on a minimum 30 years of record	13
4	Surface distribution of mine wastes and alluvial deposits, Smelterville Flats study area (from Norbeck, 1974)	17
5	Cross sections of the South Fork of the Coeur d'Alen River valley at: (A) Pine Creek, (B) west end of Page Pond, and (C) Smelterville, Idaho, Smelterville Flats study area (from Norbeck, 1974)	e 18
6	Well logs from Bunker Hill Company wells and soil profile 6Y based on driller's description, Smelterville Flats study area	19
7	Mean monthly discharge of the South Fork of the Coeur d'Alene River at Kellogg, Idaho, based on twelve years of record	20
8	Location of soil profiles, Smelterville Flats study area	23
9	Piezometer construction techniques, Smelterville Flats study area	25
10	Location of water level measurement sites, Smelterville Flats study area	27
11	Location of water quality sampling sites, Smelterville Flats study area	29
12	Surface distribution of mine waste and location of cross sections, Smelterville Flats study area	33
13	Cross section Line X, Smelterville Flats study area	36
14	Cross section Line Y, Smelterville Flats study area	37

viii

(Continued)

Figure		Page
15	Cross section Line W, Smelterville Flats study area	38
16 A	Plots of zinc and lead concentrations in the soils, Smelterville Flats study area	40
16 B	Lead and calcium plotted as % PPM which is calculated by multiplying the metal concentration (PPM) for a size fraction by the precent by weight (%) for that size fraction of the total sample, Smelterville Flats study area	41
17	Location of river channel cross sections, Smelterville Flats study area	45
18	River channel cross sections (A) and (B), Smelterville Flats study area (Data from Ioannou, 1979)	46
19	River channel cross sections (C) and (D), Smelterville Flats study area (Data from Ioannou, 1979)	47
20	Aerial view of the Smelterville Flats study area in (A) 1937, (B) 1954, and (C) 1975	48
21	Monthly and mean monthly discharge for the South Fork of the Coeur d'Alene River at Kellogg, Idaho, Smelterville Flats study area	52
22	Location of several piezometers and the surface ponds, Smelterville Flats study area	54
23	Hydrographs of surface pond #204 and piezometer 9W, Smelterville Flats study area	55
24	Hydrographs for piezometers 6YA, 6YB, and 6YD, Smelterville Flats study area	60
25	Plot of ground water elevation versus elevation of water level of the South Fork of the Coeur d'Alene River, Smelterville Flats study area	66
26	Contour map of ground water elevation on November 19, 1977, Smelterville Flats study area	68

(Continued)

Figure		Page
27	Contour map of ground water elevation on December 4, 1977, Smelterville Flats study area	69
28	Contour map of difference between ground water elevation on November 19, and December 4, 1977, Smelterville Flats study area	70
29	Cross sections of Line X and Line Y, showing ground water elevations, Smelterville Flats study area	71
30	Cross section of Line W, showing ground water elevations, Smelterville Flats study area	72
31	Plot of zinc concentrations versus depth at piezometers 4X, 6X, 7X, 8X, and 9X, on March 25, 1978, Smelterville Flats study area	76
32	Daily values for precipitation, water level at Soil Pit 6, and discharge for the South Fork of the Coeur d'Alene River at Kellogg, Smelterville Flats study area	78
33	Accumulative departure from mean monthly precipitation, Smelterville Flats study area	80
34	Hydrographs for SP 6 and SP 8 taken from water level recorders, Smelterville Flats study area	82
35	Hydrographs for piezometers 2XA, 2XB, and 9XA from July, 1977 to July 1978, Smelterville Flats study area	83
36	Hydrographs for piezometers 2YA, 2YB, 10YA, and 10YB from July, 1977 to July, 1978, Smelterville Flats study area	84
37	Hydrographs for piezometers 3W, 5W, 9W, and 10W from July, 1977, to July 1978, Smelterville Flats study area	85
38	Hydrographs for piezometers 1P, 2P, 3P, and 4P from July, 1977 to July, 1978, Smelterville Flats study area	86

(Continued)

Figure		Page
39	Time plots of metal concentrations for piezometers 2P and 4P, Smelterville Flats study area	90
40	Soil moisture profiles of a hypothetical soil in a region having wet winters and dry summers (Davis and Deweist, 1966)	96
41	Solubility of calcium carbonate (calcite) in water at 25°C in the presence of carbon dioxide (Hem, 1970)	98
42	Equilibrium pH in relation to calcium and biocarbonate activities in solution in contact with calcite. Total pressure 1 atmosphere; temperature 25°C (Hem, 1970)	100
43	Contour maps for ground water elevations and for zinc and calcium concentrations on March 25, 1978, Smelterville Flats study area	107
44	Three-dimensional diagram of zinc concentrations on March 25, 1978, Smelterville Flats study area .	110
45	Three-dimensional diagram of calcium concentra- tions on March 25, 1978, Smelterville Flats study area	111
46	Three-dimensional diagram of ground water elevations on March 25, 1978, Smelterville Flats study area	112
47	Contour maps for ground water elevations and for zinc and calcium concentrations on January 10, 1978, Smelterville Flats study area	114
48	Contour maps for ground water elevations and for zinc and calcium concentrations on May 20, 1978, Smelterville Flats study area	115
49	Contour maps for ground water elevations and for zinc and calcium concentrations on August 12, 1978, Smelterville Flats study area	116

INTRODUCTION

Statement of the Problem

Mine wastes were dumped onto the flood plain or directly into the South Fork of the Coeur d'Alene River during the early history of the Coeur d'Alene Mining District. The river reworked and deposited these wastes in the river channel and on the flood plain as a mix with native alluvial material. These deposits extend from Mullan, Idaho, to the confluence of the South Fork of the Coeur d'Alene with the Coeur d'Alene River and further extend down the river to Coeur d'Alene Lake (Figure 1). The mine waste formed a large delta extending into Coeur d'Alene Lake as well as covering most of the lake bottom (Norbeck, 1974, p. 16 and Maxfield and others, 1974 A, p. 1-6). The waste deposits in the river channel, on the flood plains, and in the lake pose potential physical and chemical problems. Wind and river erosion continue to rework and expose the wastes to the river channel and flood plain environments. The chemical problems are complex involving acid formation with the leaching of the heavy metals into the water resource system. When the wastes are disturbed there is a marked increase in metal concentrations in the ground water at the site.

The reclamation of the South Fork of the Coeur d'Alene River is imperative if the objective of the Federal Water Pollution Control Act Amendments of 1972, Public Law 92-500 is to be met. The objective is to restore and maintain the chemical, physical, and biological integrity of the Nation's waters. Planning for reclamation of the Coeur d'Alene River requires knowledge of the pollution problem. The Idaho Department of Health and Welfare, through a grant and research program funded by the United States Environmental Protection Agency, issued a contract to

FIGURE 1. Location of the Smelterville Flats study area within the Coeur d'Alene River basin.

the University of Idaho at Moscow, Idaho to study the water quality problem in the South Fork of the Coeur d'Alene River basin, and to develop possible reclamation procedures. The contract was divided into separate projects to study different segments of the total problem. The sediment transport problem was studied by Christos Ioannou (hydrogeology, 1979) while the study of the tailings deposition sites was divided into two projects based on the environment of deposition. Tailings ponds or controlled deposition sites were studied by Mike Gross (hydrogeology, 1979) and the uncontrolled depositional sites, or the flood plains, were investigated by Dale Marcy (chemistry, 1979) and Marc Norton (hydrogeology). This report considers the hydrogeology of the uncontrolled mine waste deposition sites with a section written by Dale Marcy on the chemistry of the surface and ground water included to give the reader the complete setting. Because of the complex nature of the interrelationship between the chemistry and the hydrogeology, the discussion on the relationship of water quality to mine waste and water movement was co-authored by Dale Marcy and Marc Norton.

Purpose and Objectives

Purpose

The purpose of the study was to delineate alternative reclamation procedures to minimize any long-term effects of the mine wastes (uncontrolled deposition) in the Smelterville Flats study area, Idaho. <u>General</u> Objectives

The general objectives of the study were to determine the interaction of mine wastes with the surface and ground water flow systems and the subsequent impacts in the Smelterville Flats study area. The information gained from the study was used to develop possible reclamation

procedures.

Specific Objectives

To meet the purpose and general objectives, several specific objectives were determined:

- Describe the vertical and horizontal distribution of mine wastes in the shallow alluvium (less than 20 feet (6.1 meters)) of the undeveloped section of the Smelterville Flats study area.
- Describe the characteristics of the surface and ground water flow systems in the Smelterville Flats study area with respect to space and time.
- 3. Describe the characteristics of the surface and ground water quality with respect to space and time in the Smelterville Flats study area.
- 4. Determine the interrelationships between mine wastes, hydrologic characteristics, and the characteristics of the water quality.
- 5. Delineate potential alternative reclamation procedures to minimize any long-term effects of mine wastes in the Smelterville Flats study area.

Method of Study

A literature search was conducted to determine the mine development history of the Coeur d'Alene River basin as well as the geology, geomorphology, and the depostional history. A field study was organized to collect data on the distribution and chemistry of the mine waste, surface water flow characteristics, distribution of ground water potential, and surface and subsurface water quality. Based on the literature search and the field data, reclamation procedures were developed and examined for cost and physical feasibility.

Decsription of the Coeur d'Alene River Basin Location of the Basin

Located in northern Idaho, the Coeur d'Alene River basin lies in the Coeur d'Alene Mountains, which are part of the Bitterroot Range of the Northern Rocky Mountains (Figure 1). The terrain of the basin is rugged with few valley floors exceeding half-a-mile in width, and hillsides generally inclined at angles of 30 degrees or greater. The rich Coeur d'Alene Mining District is located principally within this basin. Climate and Vegetation

The climate of the Coeur d'Alene River basin is seasonal with snow occurring during the winter, rain in the spring and fall, with summers usually dry except for occasional thundershowers. The basin receives between 30 and 40 inches of precipitation a year with snow persisting until early summer at the higher elevations. Temperatures range from below 0° fahrenheit (F) to over 100° F (-18° to 38° celcius (C)). Prevailing wind directions are either from the east or from the west, which greatly affects the climate and air temperature of the valley.

Vegetation is abundant throughout most of the Coeur d'Alene River basin. Conifers found in the area include pines, firs, hemlock, cedar, spruce, and larch with deciduous trees such as willows, cottonwoods, alder, and aspen occupying the lower slopes, draws, and valley floors. There are many varieties of brush and grasses including buckbrush, huckleberry, twinberry, redtop, and quack grasses (Hobbs and others, 1965, p. 6). Large stands of timber were logged for use in the mines, for construction, and for fuel. A large forest fire in 1910 destroyed much of the remaining timber. Since then new stands of timber and brush have returned, except where smelter fumes have inhibited return growth.

These bare slopes present a water quality problem because precipitation is not retained in the soil, which yields high rates of surface runoff with high suspended and bedload sediment. Vegetation of these slopes is being attempted by the mining companies. Where the tailings have been deposited in the valley floor, vegetation is also limited in abundance. Regional Geology

The bedrock in the Coeur d'Alene River basin consists mainly of the Precambrian Belt series which is the host rock for the ore deposits being mined in the basin. The Belt series consists of a thick conformable group of fine-grained argillites and quartzites associated with smaller amounts of carbonate bearing dolomite rocks, laid down in a large geosyncline later to be folded and faulted. Igneous rock in the form of diabase and lamprophyre dikes make up the remaining bedrock. These dikes, possible satellites from the Idaho Batholith, intruded the Belt series during the Mesozoic. The Columbia River Basalts flowed up the lower Coeur d'Alene River in middle Miocene time. Pleistocene continental ice sheets twice dammed the Spokane River near the Idaho-Washington border flooding the Coeur d'Alene River basin (Hobbs and others, 1965, p. 11).

Previous Investigations

In the early 1920's, residents of the lower Coeur d'Alene River valley brought suit against the mines operating in the South Fork of the Coeur d'Alene River for alleged damages to their land resulting in crop loss and death to their livestock. The suit alleged that mine wastes deposited on the land by high water produced changes in the soil, and substances left upon the grass killed the animals that fed on the vegetation (Ellis, 1940, p. 3). As a result the legislature of the

State of Idaho set up a commission to investigate the situation. Dr. M. M. Ellis of the United States Bureau of Fisheries studied the effect of the mine waste upon the fisheries of the region.

> "During the month of July, 1932, no live fish were found in the Coeur d'Alene River from its mouth near Harrison to the confluence of the North and South Forks above Cataldo, nor in the South Fork from its junction with the North Fork to a point above Wallace, that is a 50 mile portion of the Coeur d'Alene River carrying the mine waste and mine slimes was without a fish fauna as far as could be determined" (Ellis, 1940, p. 7).

Ellis reported that steamboat captains assured him that there was 40 to 50 feet (12.2 to 15.2 meters) of water in the channel of the Coeur d'Alene River near the Cataldo Mission in 1912-1917. When measured by Ellis twenty years later, the river contained large bars of mine waste and tailings with only 12 to 15 feet (3.7 to 4.6 meters) of water. The river channel was being dredged so that boat traffic could be maintained. These deposits, because of the mass of material involved, constituted a hazard to certain froms of aquatic life regardless of the chemical composition of the waste (Ellis, 1940, p. 2-3).

In December of 1968, a program was initiated by the University of Idaho to study water quality in the Coeur d'Alene River. The study by Mink (1971) showed that concentration of zinc and cadmium exceeded the toxic limits for fish while most of the other elements' concentrations were slightly greater to comparable to the concentrations in the Coeur d'Alene above the confluence with the South Fork. The water quality data indicated two sources of contamination with a possible third source during high flow in the South Fork of the Coeur d'Alene River. Two of the sources were: 1) Canyon Creek near Wallace; and 2) the South Fork east of Smelterville. The third source was believed to be the old

tailings that had been deposited on the valley floor of the South Fork and its tributaries (Mink, 1971, p. 23-26).

The construction of tailing ponds by the mining companies in 1968 improved the quality of the South Fork of the Coeur d'Alene River by preventing the mine waste from being dumped onto the flood plain or into the South Fork. The studies have shown that well-managed tailing ponds are effective in improving the general quality of the water in the South Fork; and are especially effective in reducing suspended solids. But in the Coeur d'Alene Mining District, when the ponds receive effluent other than from the concentrating process, several elements were not effectively removed and could constitute a health hazard to the District (Mink, 1972, p. 138-141).

Galbraith (1971) determined that leaching of heavy metals by ground water passing through the mine waste can be initiated by the oxidation of sulfides through the action of microorganisms. The accumulation of heavy metals occurs in plants that draw ground water from the intermixed tailings and natural alluvium. When these plants are ingested by herbivores, death can result due to metal poisoning. Redtop (<u>Argrostis alba</u>), a grass which grows abundantly in the mine waste-natural alluvium mix, was found to accumulate zinc, lead, manganese, iron, copper, silver, and magnesium. Some animals grazing on redtop demonstrate symptoms of metal poisoning. This was verified when the bone marrow from a horse diagonosed as having lead poisoning showed abnormally high concentrations of lead (Galbraith, 1971, p. 90-123).

A field study was undertaken by Norbeck in 1974 to map the alluvial mine waste distribution in the South Fork of the Coeur d'Alene River valley. Air photos and field observations were used for the

mapping, depth soundings were made using seismic refraction, electrical resistivity, and well logs were used to determine the alluvial thickness. A water level contour map was drawn based on 88 water level measurements in the valley. The computation of zinc mass transport through the valley alluvium was made based on water quality samples from a Bunker Hill Company well with the cross section based on the well log. With the use of Darcy's Law, a value of 3,330 pounds of zinc per day at a total flow rate of 3,250,000 gallons per day was obtained during the month of August, 1971 (150 kilograms of zinc at a total flow of 1,300,000 liters per day) (Norbeck, 1974, p. 1-40).

Morilla (1975) investigated the hydrogeologic factors that control the movement of ground water through an abandoned tailings pond located west of Smelterville. Based on the data collected, Morilla determined that the flow system of the tailings pond was dynamic, responding rapidly to precipitation and to periods of no recharge (Morilla, 1975, p. 72).

In 1973, construction of a sewage treatment facility of the abandoned Page Tailings Pond instigated further studies (Hitt, 1974). The sewage from most of the South Fork valley is gravity fed or pumped to the pond for treatment. The loading impact and increased ground water recharge resulting from the filling of the sewage lagoon in July, 1974, was exhibited by rises in the ground water levels under and near the lagoons. Several springs and seeps occurred along the edges of the dikes (Hitt, 1974, p. 9-17) which were still flowing in 1977 and 1978, with tailings material coming out of one of the seeps.

A study was conducted by the University of Idaho in the Bunker Hill Company tailings pond considering leakage and seepage control from

the pond (Williams, and others, 1977). A detailed size analysis was conducted in conjunction with the determination of the engineering properties of the tailings material. The hydrochemistry and hydrogeology were analyzed for the tailings pond.

DESCRIPTION OF THE SMELTERVILLE FLATS STUDY AREA

Introduction

The Smelterville Flats study area was selected to demonstrate an uncontrolled depositional site for mine waste in the South Fork of the Coeur d'Alene River valley. The site is the largest undeveloped deposit of mine waste in the valley. It contains both periods of mine waste generation with deposits of the early jig tailings and the later chemical flotation tailings. The Bunker Hill Company, who owns most of the land, allowed the University of Idaho to do the study on the Smelterville Flats site.

The study area encompasses part of the flood plain of the South Fork of the Coeur d'Alene River west of Kellogg, known as the Smelterville Flats. The boundaries and the land use of the study area are shown in Figure 2. The municipal land use is limited to the townsite of Smelterville, while industrial use is varied. Industrial uses include the Shoshone County Airport, Interstate-90, a lumber yard, and two sewage lagoons. One of these lagoons was built on an abandoned tailings pond, with the second being built solely for sewage disposal. A drive-in-movie theater is located just east of the study area. Recreational use includes a car-snowmobile race track, a race track and hill climbs for motorcycles (Figure 2). The motocross track was constructed by the Bureau of Land Management on their land, but is maintained by the people who use the track. Because of dust problems, the motorcycle race track is not used very often during the summer months.

The climatic pattern described in the preceeding chapter was general because the weather changes with elevation. The elevation of the Coeur d'Alene River basin varies from 2,125 feet above sea level

FIGURE 2. Location of study area boundaries and land use, Smelterville Flats study area.

at Coeur d'Alene Lake to 2,200 feet at Smelterville, to over 6,800 feet at Stevens Peak, a nearby mountain (666 to 670 to 2,084 meters above sea level). The study area is located on the valley floor and displays a more moderate climate than the surrounding mountains, as the summer temperatures are generally higher and winter temperatures not as cold. For this reason snow does not generally accumulate on the valley floor; however, during the data collection period (June, 1977 to September, 1978) snow reached a maximum depth of three feet (.97 meters) and stayed for several weeks. Precipitation data are collected by the Bunker Hill Company at a site near the Environmental Affairs Office in Smelterville. The Company has a minimum of thirty years of record of mean monthly precipitation. Average annual precipitation for the study area is 30.80 inches (78.23 centimeters). Most of the precipitation occurs in the winter in the form of snow with July receiving the lowest amount of precipitation (Figure 3).

FIGURE 3. Mean monthly precipitation for the Smelterville Flats study area based on a minimum of 30 years of records.

Deciduous trees and grasses make up most of the vegetation found in the study area. A list of plant types found in the study area and an estimate on their population is given in Appendix V. Plant identification was done by Robert Murray, North Idaho College at Coeur d'Alene, and Ed Pomerainian, Forester for the Bunker Hill Company.

Geology

Bedrock

Fine-grained argillites and quartzites of the Precambrian Belt series make up most of the bedrock, which is overlain by alluvial material. Several small dikes outcrop along the valley walls near the western end of the study area. Except where fractured or faulted, the bedrock has a very low saturated hydraulic conductivity value and is assumed to be a no-flow boundary (Trexler and others, 1975, p. 44). There are two major mines near the study area: the Page Mine, which is inactive at this time; and the Bunker Hill Company, which is the largest mining and milling operation in the South Fork valley. Pyrite, an important ingredient in acid formation in the waste deposits, is abundant in the Prichard Formation, which is host to part of the ore bodies tapped by the Bunker Hill and Page mines. Pyrite is also abundant in the waste rock. The bedrock geology plays no major role in the hydrology except as a no-flow boundary. More detail on the geology can be obtained through Hobbs and others, 1965.

Alluvium

There were two periods of aggradation in the Coeur d'Alene River basin. Prior to the basalt flows of the middle Tertiary, the channel of the Coeur d'Alene River was incised to a depth comparable to the present. The damming of the ancient Coeur d'Alene River (Spokane

River) by the Columbia River Basalts near the Idaho-Washington border occurred during middle Tertiary causing accumulations of alluvial material behind the basalt dam to range in depths from 800 to 1,100 feet deep (244 to 335 meters). With continual uplift of the mountains to the east, the streams draining west cut through the basalt dam and eroded most of the gravels deposited behind it. Remnants of the basalt dam and the gravels are still visible today. Approximately 35 million years after the basalts dammed the river, lobes of the Cordilleran ice sheet advanced sufficiently southward to dam the Coeur d'Alene River near the present town of Coeur d'Alene, Idaho. A large lake formed behind the ice dam with the backwaters extending to Wallace, Idaho. Streams originating in the surrounding mountains deposited their sediment load into the backwaters of the ice dammed lake. The material which formed the lake bed deposit graded finer with increased distance from the sources. The material deposited over the gravels in the vicinity of the study area was a twenty-five foot (7.6 meters) thick bed of clay. When the ice dam failed, the old South Fork of the Coeur d'Alene River cut a channel through the clay layer. During the last period of glaciation (Wisconsin) large amounts of sediments were eroded when the valley glaciers melted. These sediments were carried downstream, filling the channel previously cut in the clay layer by the old South Fork, and covered the valley floor downstream. The South Fork of the Coeur d'Alene River is still an agraded river from Wallace to the confluence with the Coeur d'Alene River (Hobbs and others, 1965, p. 63-71).

When mining began, mill wastes dumped into the South Fork of the Coeur d'Alene River mixed with the native alluvial material on the flood plains or were deposited in the river channel. Norbeck (1974) mapped

the surface distribution of mine waste and alluvial deposits in the South Fork of the Coeur d'Alene River valley (Figure 4) and determined the depth to bedrock at several locations using seismic refraction, electrical resistivity, and well logs. Cross sections were drawn based on the estimates of the thickness of the valley alluvial material (Figure 5). Moving east to west, the valley becomes narrower and deeper with the cross sectional area reduced from about 600,000 square feet (56,000 square meters) at cross section C-C' to 60,000 square feet (5,600 square meters) at A-A'. Cross section C-C' is based on the log of one of several industrial wells located in the study area. Well logs and locations are presented in Figure 6.

Two of the three well logs (B.H. 6 and B.H. 8) available on the Bunker Hill Company wells in the study area show the four major lithologic layers: 1) the mine waste-native alluvium mix, 2) the sandy gravel deposited by the melting valley glaciers, 3) the clay layer deposited in the ancient lake, and 4) the gravels deposited behind the basalt dam. The third well log (B.H. 7) has only layers 1 and 2 with broken wall rock fragments (talus) and sand below layer 2. This well is believed to be located in the buried river channel. The log of a well (6Y) drilled during the study period supports the depositional history outlined above (Figure 6). The Bunker Hill Company reported similar well logs from around their tailings pond east of the study area. The clay layer separates the upper and lower gravel layers in parts of the study area based on Bunker Hill Company well logs, water level records, and drilling done during the study period.

FIGURE 4. Surface distribution of mine wastes and alluvial deposits, Smelterville Flats study area (from Norbeck, 1974).

•

FIGURE 5. Cross sections of the South Fork of the Coeur d'Alene River valley at: (A) Pine Creek, (B) west end of Page Pond, and (C) Smelterville, Idaho, Smelterville Flats study area (from Norbeck, 1974).

Hydrology

Surface Water

The mean monthly discharge rate for the South Fork of the Coeur d'Alene River is presented in Figure 7 and is based on twelve years of record from a combination of two United States Geological Survey stream gaging stations located near the study area. The hydrograph shows the snow melt period of May and June while the low flow comes after the normally dry summer months.

Most of the tributaries of the South Fork of the Coeur d'Alene River in the study area are perennial. The creeks that drain the ridge north of the study area are intermittent with flow only during the snow melt period or due to heavy rains. Humbolt, Silver, and Grouse Creeks drain the ridge to the south, discharging into the swamp around the Page Wastewater Treatment Facility which is located on an abandoned tailings pond (Figure 4). The swamp discharges nearly year-round and empties into the South Fork at the western end of the study area.

FIGURE 7. Mean monthly discharge of the South Fork of the Coeur d'Alene River at Kellogg, Idaho based on twelve years of record.

Several ponds are present in the study area. The ponds vary in size, water quality, bottom material, and source of water.

Ground Water

Based on available well logs, the ground water system in the study area includes an upper and lower aquifer separated by a discontinuous 25 foot (7.6 meters) thick clay layer. The upper aquifer consists of silt, sand, and gravel with the upper five to ten feet (1.5 to 3.0 meters) consisting of a mixture of mine waste and native alluvium. The lower aquifer is composed of sand, gravel and fractured wall rock (talus). The lower aquifer is tapped by the Bunker Hill Company for industrial use, while the upper aquifer is not used.

Data Collection System

Soil profiles were constructed and samples were collected and analyzed to determine the depth of mine waste, the presence and concentration of certain elements within the soil, and the relationship between size fractions and concentrations. Water level data from piezometers were utilized to describe the interrelationship of precipitation and river discharge with the ground water flow system. Water quality data were utilized to describe the leaching of metals from the abandoned mine wastes. Water quality, water levels, and soil samples were used to determine if the abandoned mine wastes are a source of heavy metal pollution to the water resource system.

Soil Sampling

A hollow stem auger was used for sampling the shallow alluvial material. Nineteen sites were laid out in two parallel lines extending north-south and approximately perpendicular to the direction of ground water flow. All of the sites were drilled to a depth of twenty feet (6.1 meters) except 6Y, which is fifty feet (15.2 meters) deep. Location of well 6Y is shown in Figure 6. An attempt was made at 6Y to reach the lower aquifer; the drilling ceased above the lower aquifer because of insufficient auger flight. Samples were taken every five feet (1.5 meters) with a split spoon sampler (18 inches by 2 inches (45.7 cm by 5.0 centimeters)). Grab samples were taken midway between the split spoon samples and at changes in soil color, texture, or grain size. The samples were logged, tagged, and stored in plastic bags. Changes in drilling speeds were also recorded.

Soil pits were constructed with shovel or a backhoe to allow more detailed examination of the soil profile and a more accurate sampling program. Soil pits constructed with the shovel range in depth from four to seven feet (1.2 to 2.1 meters) depending on when the river gravels were encountered. A truck mounted backhoe from the Department of Soils, University of Idaho, was used to reach depths of eleven feet (3.4 meters) deep and allowed the examination and sampling of the soil profile at depths not reachable by shovel. Sampling was done in one of two ways: 1) at 0.5 foot (15.2 cm) intervals from the bottom of the pit to the surface (control pit) and 2) at selected beds for comparison with the control pits. A chrome plated hand trowel was used to prevent soil contamination during collection. The samples were logged, tagged, and stored in plastic bags. Soil pit locations are shown in Figure 8 by the type of construction used. Soil profiles based on soil samples and changes in drilling speeds were drawn for each soil pit and are presented in Appendix I.

FIGURE 8. Location of soil profiles, Smelterville Flats study area.

ŝ
The soil samples were taken to the laboratory at the University of Idaho for processing. The samples were dried, sieved, and each size fraction was digested by wet chemistry methods and then analyzed using an atomic absorption spectrometer. Sieve sizes for the soil classification are given in Table 1. For more detail on the sample digestion procedures, see Marcy (1979). The soil samples were analyzed by Dale and Lynn Marcy for cadmium, zinc, lead, iron, maganese, calcium, and magnesium. These values are presented in Appendix II.

Table 1. Sieve sizes for soil samples, Smelterville Flats study area.

Soil Pit Type	Size Fraction (mm)	Grain Size Classification
Control Pits	> 2.362 2.362 to .417 .417 to .208 .208 to .075 .075 >	gravels very coarse to medium sand fine to very fine sand silt clay
Selective samples	> .180 .180 >	gravels to fine sand very fine sand, silt, clay

Piezometer Construction

Piezometers were installed in the hollow stem auger holes and in the soil pits. A posthole pounder driving two inch (5.0 cm) flushcoupled casing fitted with a polyethylene drive point was also used in the piezometer construction. Three-quarter inch (1.9 cm) polyvinyl chloride (PVC) pipe was used for most of the piezometers (Figure 9A and 9B). Five of the piezometers installed in soil pits dug with the backhoe had four inch (10.2 cm) PVC pipe (Figure 9C). The bottom twelve inches (30.48 cm) of the casing was perforated with a saw or a drill, then wrapped with fiberglass screen which was taped in place. The pipe was lowered into the holes or into the hollow stem auger flight with clean quartz sand being used to backfill around the slotted section when

possible. The auger flight and flush-coupled casing were backed out and the sides were allowed to collapse around the piezometers. Soil pits were backfilled with the material removed to construct the hole. Bentonite clay was used at all of the sites in the upper foot (30.48 cm) to prevent downward movement of water from the surface through the disturbed material. The PVC pipe was extended two to five feet (0.6 to 1.5 meters) above the surface with the top being cut at an angle to provide a measuring point. Plastic bags were placed over the top of piezometers to prevent foreign material from entering the piezometers (Figure 9A, B, C).

Water Level Measurement

The data on depth to water in piezometers were obtained using a chalked steel tape approximately every two weeks from July, 1977, through September, 1978. These data are presented in Appendix III. Water level data were also obtained from staff gages installed in Pond #204 (S.G. 2, Figure 10) and in the South Fork of the Coeur d'Alene River near piezometer 10Y (S.G. 1, Figure 10). Battery powered Stevens Type F recorders were installed on the four inch (10.2 cm) cased piezometers to provide continuous records of water level fluctuations. With the use of the University of Idaho's IBM computer and plotter, hydrographs, contour maps, and three-dimensional diagrams of the potentiometric surface were drawn depicting the direction of ground water movement. Water level measurement sites are presented in Figure 10. Water Quality Sampling

Initially, ground water samples were retrieved by lowering a plastic test tube into the piezometer. The piezometers were not bailed before sampling. Early field techniques used metal nuts glued to the

FIGURE 10. Location of water level measurement sites, Smelterville Flats study area.

top of the test tube for weight, but this method was abandoned because of probable heavy metal contamination from the plated nuts. An aluminum tube with a lead plug sealed in the bottom for weight was designed to prevent contamination of the water sample. The sample tube was rinsed twice with demineralized water before being lowered into the piezometer. Approximately 200 milliliters (ml) of water was withdrawn and placed in an acid washed 250 ml linear polyethylene (LPE) bottle. Temperature and pH data were taken in the field with a mercury thermometer (C) and a Sargent Welch meter, respectively. When Eh was measured, it was done at the sample site with an Orion Redox Electrode. In the field lab, the electrical conductivity (EC) of each sample was measured with a Yellow Springs Instrument (YSI) before being filtered through a 0.45 μ filter paper in a Millipore apparatus. The filtrate was transferred to an acid washed 135 ml LPE bottle which contained 6.5 ml of 1:1 HNO3. At the University of Idaho laboratory, the samples were diluted with 2.4 percent HNO_3 to get a sample concentration more suitable for analysis on an atomic absorption spectrometer for zinc, cadmium, lead, iron, and manganese. A lanthanum solution was added to the samples to give a final concentration of 1 percent lanthanum (vol/vol). Solutions were then analyzed for calcium and magnesium on the atomic absorption spectrometer. The concentrations were corrected for blanks and reported as metal concentrations in milligrams per liter (mg/l) (Marcy, personal communication, 1978). Water quality data are presented in Appendix IV with sample locations shown on Figure 11. The sampling and analyzing methods were in direct accordance with the Environmental Protection Agency (Manual of Methods for Chemical Analysis of Water and Wastes, 1976).

•

FIGURE 11. Location of water quality sampling sites, Smelterville Flats study area.

DISTRIBUTION AND CHARACTERISTICS OF MINE WASTES IN THE VALLEY ALLUVIUM

Developments in the Mining Industry

The first concentrator or stamp mill started operation within a year after Noah Kellogg discovered galena along the South Fork of the Coeur d'Alene River. Mechanical hammers were used to crush the ore to a suitable size for shipping. A method known as jigging was used to separate the heavy and light grained materials resulting from the crushing process. Mink (1972, p. 7) describes the jigging method as:

> "In its simplest form a jig consisted of a box without a top and with a perforated bottom. A shallow bed of grains was formed by fluctuating water currents. The heavy grains passed to the bottom, intermediate mixtures remained in the middle; and the lightest rose to the top of the bed. Some devices were hand-operated or powerdriven units in which the jig was moved up and down in the water; others were stationary jigs in which the water was pulsated by plungers or paddles."

After being washed from the jig tables the waste rock was dumped onto the flood plain or directly into the South Fork of the Coeur d'Alene River. The jig tailings, one-quarter inch to microscopic (rock powder) in size, were often high in lead and zinc. A method was not available to process lead and there was no attempt to remove the zinc. Lead assays for typical tailings were 0.90 - 1.5 percent, as the jigging method only removed the heaviest ores (Mink, 1972, p. 8).

The chemical flotation method was started in 1916 and gradually replaced the jigging method by 1928. After grinding the ore to a finegrained pulp, chemicals which bind with the metal ion are then added and the mixture is sent through agitators which forms a froth. Particles of the ore cover the froth which is skimmed off and sent to thickners where the ore settles before being filtered into the final concentrate. This process is repeated for each metal to be extracted with the remaining pulp being discharged as tailings (Mink, 1972, p. 8). The selective chemical flotation method resulted in nearly complete extraction of metals of economic importance, so lower grade ore could be mined economically.

The average grain size of the waste was reduced to silt size (0.200 mesh) and smaller. Because of the reduction in the size of the tailings, or slimes as they are termed, the South Fork and the main stem of the Coeur d'Alene River were able to transport the flotation tailings for longer distances than the jig tailings. Large deposits of tailings material formed in the slow sections of the channel and on the flood plains of the South Fork as well as the Coeur d'Alene River below the confluence with the South Fork. A large delta formed where the Coeur d'Alene River empties into Coeur d'Alene Lake. In 1974 two studies were conducted on material deposited in the delta and on the lake bottom. High concentrations of antimony, cadmium, copper, lead, silver, and zinc were found in the sediments collected from the delta and the lake bottom (Maxfield and others, 1974 A, p. 1-6, and Maxfield and others, 1974 B, p. 263-266).

Increased efficiency of the selective chemical flotation method made it profitable to rework jig tailings deposited along the South Fork of the Coeur d'Alene River and its tributaries. Waste deposits along Canyon Creek, Ninemile Creek, Big Creek, and the South Fork were processed from 1943 to 1948. The equipment used removed most of the jig tailings, but mixed the remaining mine waste with the upper native alluvium (Norbeck, 1974, p. 12).

The use of tailings ponds to treat mill wastes began in the 1920's but did not gain widespread use until 1968 when they were constructed to meet federal mining regulations. One of the two mining companies with direct depositional impact on the Smelterville Flats study area began construction of their tailing pond in the 1920's, approximately one mile upstream. It is not known what percentage of the tailings were deposited in the pond. The second mining company, located south of the study area, deposited their tailings between the old highway and the railroad tracks until sometime after 1937, when they constructed embankments around most of their deposits (Figure 12). The waste from the mining companies upstream from the Smelterville Flats accumulated on the flood plain within the study area from stream deposition.

A series of dams were built across the South Fork in the early 1900's to stop the downstream migration of mine wastes as a result of a law suit filed by the residents of the lower Coeur d'Alene River valley against the Mine Owners Association. The residents claimed that during high flow, mine wastes were deposited on their fields located on the flood plain. These deposits were believed to be the cause of death of livestock that were pastured in the fields contaminated by mine waste. One of these dams was constructed (1901) at the west end of the Smelterville Flats study area, but was abandoned in 1930 and mostly destroyed by a flood in 1932-1933 (Clements, 1978, personal communication). Remnants of the dam are still visible on the north side of the valley (Figure 12). Mine wastes deposited behind the dam covered a large portion of the Smelterville Flats.

FIGURE 12. Surface distribution of mine waste and location of cross sections, Smelterville Flats study area.

Distribution of the Mine Waste

Spacial Distribution

The distribution of mine wastes within the study area was mapped with more detail than Norbeck (1974) (Figure 12). With the use of air photos dating back to 1937 and field observations, the tailings deposits were delineated into coarse tailings (jigging method) and fine tailings (rock powder and flotation tailings). As the South Fork of the Coeur d'Alene River entered the Smelterville Flats, the coarser, larger grained sediments were deposited. The finer sediments were deposited at the west end of the study area in the backwaters of the dam constructed to prevent downstream movement of tailings by the South Fork. The waste material from the Page mine was deposited between the Pacific Northern Railroad tracks and Old Highway 10 (Figure 12). The waste on the north side of the tracks is from upstream mining operations.

Vertical Distribution

The geologic logs from the auger holes were of limited value in delineating the wastes as caving and mixing of the grab samples made it difficult to determine changes in the sediments. The large gap between the split spoon samples (5 feet or 1.5 meters) coupled with the loss of some soil samples, or an incorrect sample, added to the difficulty. Under saturated conditions, some of the samples were washed out of the sampler, or sand would come up the inside of the auger flight, preventing the sampler from sampling the real material. Changes in drilling rates indicated differences in the alluvial material, especially the gravel zones. Cross sections (Figure 12) were drawn based on the soil profiles from the auger holes, the soil pits, and the geologic logs from Bunker Hill Company wells #6, #7, and #8. Based on this information,

the lower limit of the mine waste was determined to be the top of the river gravel which was generally encountered between five to ten feet (1.5 to 3.1 meters) below the surface. Cross section X (Figure 13) shows the mine waste-native alluvium mix which is the surficial laver of the upper aquifer. This layer has been eroded by the South Fork of the Coeur d'Alene River along the northern part of cross section X. Several of the auger holes in cross section X reached the clay layer which separates the two aquifers. Cross section Y (Figure 14) shows similar features as cross section X, except that the clay layer was only encountered at station 6Y where the auger hole penetrated most of the clay layer. Fingers of the fine grained material deposited in the dam's backwaters are evident beneath station 6Y and 8Y, while the rest of the cross section shows a mixture of silt, sand, and gravel. Cross section W (Figure 15) shows the zone of fine grained material that was deposited behind the dam, which grades coarser towards the east as a result of natural flood plain deposition. The probable location of the buried river channel is noted at the break in the clay layer at B. H. well #8.

Mine Waste Characteristics

The type of soil at the Smelterville Flats study area is based on the size fractions of mine waste that are mixed with the soil. Type one is indicative of the coarse grained jig tailings because the size fractions are silt, sand, and gravel; while the second type of soil is indicative of the finer fraction of the tailings (rock powder and flotation) and consists of clay, silt, and sand. The type of soil found is location oriented, based on whether the alluvial material was deposited in the backwaters of the dam (type 2) or by the South Fork

.

FIGURE 13. Cross section Line X, Smelterville Flats study area.

FIGURE 14. Cross section Line Y, Smelterville Flats study area.

FIGURE 15. Cross section Line W, Smelterville Flats study area.

(type 1) on the flood plain in the eastern portion of the study area.

Metal concentrations are not directly dependent on the type of soil and thus, the soil size distribution. The finer size fraction has greater surface area available for chemical reactions than the coarser size fraction. Thus, leaching of soluable metals can be expected to occur more readily than in the coarse size fractions. The amount of oxidation that has taken place, as indicated by the amount and gradation of orange-red color, is less in the finer material than in the coarser material. This indicates that there is a lack of oxygen available in the finer materials for chemical reactions. A "zone of concentration" is evident when the metal concentrations are plotted versus depth (Figure 16 A). A similar trend is demonstrated by plotting the percent of metal concentration of each metal for each size fraction of the sample versus depth (Figure 16 B). The percent of metal concentration (% PPM) is calculated by multiplying the metal concentration (PPM) for a given size fraction by the percent by weight (%) for the size fraction of the total sample. The soil size fractions are listed in Table 1 on page 24. The "zone of concentration" is present in each of the size fractions, and based on the soil pit data, is restricted to the upper six feet (1.8 meters) of soil. Four generalizations can be stated to show the complex relationship between metal concentrations and size fractions: 1) the largest size fractions tends to have the lowest metal concentrations: 2) metal concentrations are generally independent of the size fraction in that each size fraction can have high metal concentrations; 3) the percentage of concentration tends to be higher for the smaller size fractions; and 4) the largest concentrations for four elements (Pb, Fe, Mn, Mg) are in the size fraction .417 to .208 milli-

FIGURE 16A. Plots of zinc and lead concentrations in the soils, Smelterville Flats study area.

FIGURE 16B. Lead and calcium plotted as % PPM which is calculated by multiplying the metal concentration (PPM) for a size fraction by the percent by weight (%) for that size fraction of the total sample, Smelterville Flats study area.

meters. The metal concentrations in the soils of the Smelterville Flats study area are still high even after being in the environment since the early 1900's. This indicates that the metal concentrations will not decrease appreciably over the next 100 years if left alone. The movement of metals from the soil into the water resource system will be discussed in a later section.

CHARACTERISTICS OF THE SURFACE AND GROUND WATER FLOW SYSTEMS

<u>Hydrogeology</u> Surface Water

Channel Description and Movement

The channel of the South Fork of the Coeur d'Alene River is braided through most of the study area, except where the river is contained against the hillside by Interstate-90, or where the Smelterville Bridge artificially channelizes the river. Generally, when two rivers of a given discharge are compared, braided channels occur on steep slopes, while a meandering river occurs on flat slopes. The South Fork of the Coeur d'Alene River has the capability to erode and transport sediment the size of the jig tailings and the slimes that were dumped onto the flood plain and into the channel. This over-supply of sediment often leads to a braided river channel. The well braided stream channel which had developed prior to 1937 has gradually evolved into a laterally meandering incising stream since the sediment load being dumped into the river or on the flood plain has been reduced due to current mining practices. A significant portion of the river's sediment load probably originates from the lateral meandering of the channel and from downcutting. Continued erosion of the mine waste will eventually result in their removal from the area where possible. The steep slopes of the braided channel contribute to both sediment transport and bank erosion and are often associated with coarse heterogeneous materials (Leopold, Wolman, and Miller, 1964, p. 292). This is the case of the South Fork through most of the study area. In the study area, the channel width of the South Fork in the channelized sections varies from 60 to 160 feet

(183 to 488 meters). The average width of the South Fork channel in the study area is approximately 450 feet (1,372 meters) with the widest section over 800 feet (2,438 meters) (Figure 17). The average gradient of the channel through the study area is 0.40 feet per 100 feet (0.14 meters per 100 meters).

Ioannau (1979) described the sediment transport capabilities of the South Fork of the Coeur d'Alene River. As part of his study, cross sections were surveyed in February, 1978, and again in August, 1978 (Figures 18 and 19). The cross sections showed both deposition and erosion over the seven month period. Cross section 18B shows that the river cut a deep channel south of the former channel, eroding a large volume of bank material. It is estimated that 4,200 cubic feet (120 cubic meters) of material was eroded from the bank on the southern end of cross section 18B between February 1978, and August 1978. Cross section 19C showed some erosion, but mostly deposition with the channel extremely braided through this section. Considerable deposition was evident at cross section 19D, with an average depositional depth of twelve inches (0.3 meters). A possible source for the material deposited could be sediment eroded from the bank upstream near cross section 18B.

The ability of the South Fork of the Coeur d'Alene River to move laterally within the study area is depicted by a series of air photos. The position of the river, dikes and dams used to control the river, and land use developments within the study area were transcribed from the photos onto maps (Figure 20). Figure 20A shows the study area in 1937 when the Page Mine was depositing tailings between the railroad and Highway 10 without the use of embankments. Remnants of the tailings dam built by the Mine Owners Association in 1901 were still evident

FIGURE 17. Location of the river channel cross sections, Smelterville Flats study area.

FIGURE 18. River channel cross sections (A) and (B), Smelterville Flats study area, (Data from Ioannou, 1979).

FIGURE 19. River channel cross sections (C) and (D), Smelterville Flats study area, (Data from Ioannou, 1979).

(8)

(A)

(C)

FIGURE 20. Aerial view of the Smelterville Flats study area in (A) 1937, (B) 1954, and (C) 1975. abutted against the railroad and the hillside at the west end of the study area. Tailings from the mining operations around Kellogg and Smelterville were deposited between the railroad and restraining dike. The restraining dike may have been built to protect the railroad tracks from the South Fork. A tailings deposit located between the railroad and Highway 10 at the west end of the study area near the tailings dam could have originated from two possible sources: 1) tailings could have been piped from a mining operation for disposal, although the pipeline is not visible in the photo, or 2) the tailings may have been siphoned or piped from the backwaters of the tailings dam.

By 1954 embankments had been constructed around most of the tailings deposited by the Page Mine south of the railroad (Figure 20B). The embankments were possibly built on top of tailings, which could be an explanation for the seeps and springs at the toe of the embankments. Highway 10 had been relocated to its present location in the center of the valley. The restraining dike was still intact, but the South Fork had started to cut a channel against the northern hillside through the mine waste-native alluvium material. By 1954, the Bunker Hill Company waterline had been constructed with most of it on the surface. Government Gulch Creek was diverted to the South Fork at the east end of the study area. The surface ponds present in 1978 had not yet appeared.

A 1968 photograph of the area (not included on Figure 20) showed the construction of Interstate-90 and the Shoshone County Airport within the study area. The photo demonstrates that only a short section of the Bunker Hill Company waterline remained above ground. Surface ponds #201 and #202 have appeared. During the construction of the airport, borrow material may have been removed from the site of pond #201, which

would allow the water table to have surface expression. The Page tailings pond was still receiving tailings material and the South Fork had widened the channel considerably.

By 1975 the sewage lagoon had been constructed on the Page tailings pond, and the Smelterville sewage lagoon was also in operation (Figure 20C). The South Fork of the Coeur d'Alene River has continued to enlarge its channel by eroding the mine waste-native alluvium material along its south bank. Few changes in the study area have occurred during the period from 1975 to 1978 except for the position of the South Fork within its banks.

The series of photos show that if the South Fork of the Coeur d'Alene River is left alone, the river will continue to widen its channel. This will render useless larger portions of the valley floor in an area that is short of flat building sites. The drainage pattern has been improved with the diversion of Government Gulch Creek. Discharge Characteristics

The discharge measurements for the South Fork of the Coeur d'Alene River presented in this report are the combination of data from two United States Geological Survey stream gaging stations. The first gaging station was located at Smelterville, Idaho, and had records from November 1966, through March 1974. The new station, located at Kellogg, Idaho, replaced the Smelterville site in April 1974, after a flood damaged the old station. The Kellogg station does not measure the discharge of two small tributaries which enter the South Fork between the two gaging stations. The amount of discharge from the two creeks is small and considered insignificant when compared to the discharge of the South Fork. The size of the watershed for the Kellogg station is

202 square miles (523 square kilometers) and the size of the previous Smelterville station is 210 square miles (544 square kilometers).

During the fifteen months that data were collected on this study, the monthly discharge of the South Fork of the Coeur d'Alene River was below average during eleven months, above average three months, and average for one month (Figure 21). Based on twelve years of record, the mean monthly discharges range from a low flow of 111 cubic feet per second (cfs) in September, to a high flow of 1,382 cfs in May (3.1 to 39.1 cubic meters per second (cms)). Mean daily discharge rates range from 59 cfs (1.7 cms) in January, 1977 to a high of 2,260 cfs (64.0 cms) in May, 1976. The low flow in January, 1977 occurred midway through ten months of drought that affected the western United States; while the high flow of May, 1976 was the result of snow melt of above normal snow fall that occurred during the previous winter. Peak discharges in the South Fork of the Coeur d'Alene River generally occur as a result of rapid snow melt. Flooding generally occurs when the ground is frozen beneath the snow pack and the snow melts rapidly.

The streams that drain the hillsides north of the study area are intermittent, discharging to the South Fork of the Coeur d'Alene River only after periods of snow melt or after a heavy rain. Due to sparse vegetation on these slopes, the discharge was high in suspended and bedload sediments. The sediments could contain high concentrations of zinc and lead from the fumes emitted by the smelters in the valley (Chaney, 1959). Streams that drain the slopes to the south of the study area are perennial, emptying into the swamp around the Page Wastewater Treatment Facility. Most of the sediments carried by these streams would settle out before the water reaches the South Fork of the

FIGURE 21. Monthly and mean monthly discharge for the South Fork of the Coeur d'Alene River at Kellogg, Idaho, Smelterville Flats study area.

Coeur d'Alene River.

Pond Characteristics

Several ponds are present in the Smelterville Flats study area (Figure 22). Pond #201 has no surface inflow or outflow, and had water in it the entire study period. Plant growth is dense in and around the pond compared to the rest of the study area. The high water mark from past years, noted by debris surrounding the pond, is approximately 2.5 feet (0.72 meters) higher than the maximum level reached during the study period. The water level in the pond responds similarly to the fluctuation of the ground water levels measured by nearby piezometers.

Pond #202 has no surface inflow or outflow. As the potentiometric surface rose, several small ponds appeared around pond #202, with surface flow occurring between them. During the summers of 1977 and 1978, the potentiometric surface dropped below the bottom of pond #202. A coating of an iron precipitate covers the bottom of the main pond and several of the small ponds. No vegetation grows in the pond and only a few grasses grow around it.

Pond #204 is one of several small ponds which were formed when the motorcycle racetrack was constructed. A bulldozer was used to build up certain parts of the track for jumps and banking for corners, and it formed depressions that fill with water when the potentiometric surface rose above the bottom depressions of the pond. The pond did not dry up during the study period and has no surface inflow or outflow. Vegetation does grow in and around pond #204. A staff gage was installed in pond #204 and water levels were recorded when the piezometers were measured. Water level information was not continuous during the study period, as the staff gage flooded out in early December 1977, and was not replaced

until April 1978. The hydrograph for the staff gage is presented in Figure 23 along with the hydrograph from 9W, a piezometer located 250 feet (75.1 meters) to the west and down gradient. The hydrographs are similar, indicating the pond is hydrologically connected to the upper aquifer. Piezometer 9W may be under confined conditions while pond #204 is under water table conditions, which might explain the difference in fluctuations.

Pond P13P, located by the Smelterville sewage lagoon has surface inflow and outflow. The main source of water for the pond is from a ditch that collects water from leaks in the fresh water line of the

FIGURE 23. Hydrographs of surface pond #204 and piezometer 9W, Smelterville Flats study area.

Bunker Hill Company that parallels the railroad tracks. Water is pumped from wells located near the Coeur d'Alene River upstream from its confluence with the South Fork. Surface water discharge from the pond flows along the railroad tracks towards the west end of the study area, either infiltrating into the surface material, or discharging into the South Fork of the Coeur d'Alene River. It is believed that the water level in this pond is above the local potentiometric surface. The pond probably does recharge the upper aquifer to some extent. The water quality data, which are presented later, tends to support this idea.

The swamp, (PWS) that surrounds the Page Wastewater Treatment Facility, receives surface inflow from the streams that drain the southern hillside. During the high water period (April to June) there was flow around the facility on the north side. Vegetation in the swamp is very thick and abundant.

Surface Water Quality

Water quality for the South Fork of the Coeur d'Alene River will be discussed in detail in the section on the interaction between the river and ground water . Water quality differs tremendously between the ponds (Table 2). Ponds #201 and #204 both support plant life and have similar water quality, with pond #204 having higher concentrations of Fe, Zn, Ca, and Ma. These differences in concentrations may have resulted because pond #201 is closer to the main source of recharge, while pond #204 is much farther away. This increased distance would allow time for the build-up of metal concentrations. Pond #202 does not support plant life and has iron concentrations higher that the rest of the ponds, as well as small amounts of lead and cadmium which were not detected in the water of the other ponds. Pond P13P has low

concentrations of the metals analyzed, but this is probably due to dilution with water from the fresh water line. The swamp (PWS), measured hydrologically down gradient from the sewage lagoons, is the only pond to have a pH greater than seven. This pH may have resulted due to dense vegetation in the area. The water quality of the ponds is affected by distance from the source of recharge, metal concentrations in the soils near each pond, and the chemical environment.

Table 3 presents water quality values for piezometers located near the ponds. The water quality in ponds #201 and #204 is very similar to the quality of the ground water measured near the ponds. Pond #202 has higher Fe, Pb, Cd, and Zn concentrations than the ground water in the nearby piezometers. Piezometer 13P has greater concentrations of Fe, Cd, Zn, and Ca than pond P13P. The swamp (PWS) has much lower concentrations of Fe, Zn, Ca, and Mn than piezometer 21P. The high concentrations of iron in the ground water indicates an anaerobic environment, since iron precipitates in the presence of free oxygen, such as in a pond.

Pond	Temp	pH	Fe	Pb	Cd	Zn	Ca	Mn		
	°C		Concentrations in PPM							
#201	20.7	6.5	0.00	0.00	0.00	5.60	46.5	0.78		
#202	18.0	6.0	9.80	0.01	0.24	24.80	58.0	9.80		
#204	18.0	6.2	0.05	0.00	0.00	33.20	63.3	8.90		
P13P	19.5	6.3	0.05	0.00	0.00	4.70	7.8	1.80		
PWS	16.0	7.3	0.05	0.00	0.00	0.82	11.0	0.37		

Table 2. Water quality on August 12, 1978 for ponds in the Smelterville Flats study area.

Table 3. Water quality values on August 12, 1978 for the ground water near the ponds in the Smelterville Flats study area.

Station	Near	Temp	рН	Fe	Pb	Cd	Zn	Ca	Mn	
	Pond	°C	•	Concentrations in PPM						
4XB	#201	15.5	6.3	0.00	0.0	0.00	7.6	28.0	0.54	
5YB	#202	18.0	6.0	0.00	0.0	0.00	10.5	82.6	43.00	
8YB	#204	14.0	6.1	0.00	0.0	0.00	3.3	50.9	30.00	
13P	P13P	16.5	6.0	0.24	0.0	0.54	47.2	54.5	1.40	
21P	PWS	13.7	6.6	70.90	0.0	0.00	14.5	149.0	20.40	

GROUND WATER

Aquifer Description

Based on available geologic logs and water level data, the ground water system is believed to consist of an upper and a lower aquifer separated by a discontinuous 25-foot (7.6 meters) thick clay layer. The mine wastes are mixed with the upper alluvial material; therefore the leaching and flushing of the metals into the ground water can occur only in the upper aquifer. The water from the lower aquifer contains heavy metals, but the concentrations are derived from the downward movement of water from the upper aquifer.

Based on the geology and the water level records, the lower aquifer is considered to be leaky artesian. The gradation and discontinuous nature of the separating clay layer probably allows some movement of water between the aquifers. The amount of inter-aquifer water movement within the study area is believed to be small for the following reasons: 1) the differences between the hydrographs from piezometers 6YA, 6YB, and 6YD, 2) the lack of responses in the shallow piezometers to pumping from the lower aquifer, and 3) the differences in water quality from piezometers penetrating the upper aquifer, the clay layer, and the lower aquifer. These reasons are discussed in detail on the following pages.

Piezometers 6YA, 6YB, and 6YD (Figure 11) obtain water from depths of 20 feet, 10 feet, and 50 feet, respectively (6.1, 3.0, 15.2 meters). The hydrograph for each piezometer is presented in Figure 24. Piezometer 6YD is open near the lower limit of the clay layer that separates the two aquifers and responds to the pumping from a nearby well (B. H. #10) which derives water from the lower aquifer. Piezometers 6YA and 6YB

FIGURE 24. Hydrographs for piezometers 6YA, 6YB, and 6YD, Smelterville Flats study area.

are open to the upper aquifer and do not show the affects of pumping from the lower aquifer. Bunker Hill well # 10 was pumped for approximately 40 days in October and November, 1977. Piezometer 6YD responded to the pumping with a drop in water level, then recovered to a water level higher than prepumping conditions. This indicates some recharge to the lower aquifer during the pumping period. During this time the upper aquifer was responding to a recharge event on December 2, 1977. Piezometer 6YD may have responded to the recharge event in the middle of March, which would indicate a delay in response time of three months. Detailed information on Bunker Hill Company pumping schedules were not available. Thus, it is possible that changes in the pumping schedule of the wellfield may be responsible for the apparent lag of the potentiometric surface in 6YD. On May 9, 1978 the head in 6YD was higher than the head in either 6YA or 6YB, and remained higher for the rest of the study period. This trend is a reversal of the water level relationships at the beginning of the study period. An upward direction of ground water movement would limit contamination of the lower aquifer within the Smelterville Flats area. The lower aquifer may have been discharging more before the study period than was being recharged, either through natural discharge or through pumping, which maintained the potentiometric surface in the lower aquifer below that of the upper aquifer. Possibly, the reversal of this trend may have been caused by increased recharge into the lower aquifer, which would cause an increase in head. Horizontal hydraulic conductivity is higher than vertical hydraulic conductivity because of the non-homogeneity and anisotropic conditions described for the ground water flow system. The chemical characteristics of the water from the lower aquifer are different from

those in the upper aquifer (Table 4).

Manganese is almost non-existent in the lower aquifer, while the upper aquifer has values that range from 0.54 to 43.0 parts per million (ppm). Calcium concentrations are also higher in the upper aquifer, while zinc concentrations can be higher in the lower aquifer than in the upper aquifer. Zinc concentrations in the upper aquifer vary a great deal and exceed the values of the lower aquifer in other parts of the study area. Concentrations of zinc range from 0.010 mg/l at 7XA to 132.0 mg/l at 4P for the upper aquifer, while the lower aquifer has concentrations that range from 25.8 mg/l to 26.2 mg/l. It should be noted that there were only two sampling points in the lower aquifer and they could only be sampled when the well was pumping. Based on the water quality differences, water levels, the probable permeability of the separating clay, and the lack of response in the upper aquifer to pumping from the lower aquifer, it is believed that the intermixing between the upper and lower aquifers is small in the study area.

The upper aquifer is extremely non-homogeneous and anisotropic with a higher horizontal than vertical permeability. Based on this and differences in water level fluctuations within the upper aquifer in different areas, the upper aquifer is considered to be an unconfined environment with locally confined areas due to the deposition of the low permeability, finer size fractions (slimes and rock powder) of the mine wastes below the potentiometric surface. The ability of the slimes to form a confining layer was demonstrated during the excavation of soil pits 6 and 8. Artesian flow was encountered upon entering the gravel layer beneath the mine waste, with water levels rising approximately 12 inches (0.3 meters) above the contact between the mine waste and

				Concentrations in PPM						
Station	Source of water*	Temp °C	рН	Fe	Pb	Cd	Zn	Ca	Mn	
A V A		15 0		0.40	0.93	0.25	16 5	50.0	6 6	
4XA 4VD	UGW		D.1	0.48	0.23	0.25		59.8 29.0	0.0	
47D BH#6	I GW	10.5	5.6	0.0	0.0	0.0	26.2	22.7	0.04	
Pond #201	SW	20.7	6.5	0.0	0.0	0.0	5.6	46.5	0.78	
	-									
	· •• •• ••									
B.H. #10	LGW	13.8	5.8	0.02	0.0	0.0	25.8	23.6	0.06	
6YA	UGW	19.2	5.4	0.0	0.0	0.0	18.5	43.0	4.0	
6YB	UGW	19.0	5.8	0.0	0.0	0.0	7.4	104.0	17.8	
6YD	UGW	18.5	6.4	0.0	0.0	0.0	0.04	35.1	2.2	
Pond #202	2 SW	18.0	6.0	9.8	0.01	0.24	24.8	58.0	9.8	

Table 4. Water quality values on August 12, 1978, comparing the surface water, and the ground water from both the upper and lower aquifers in the Smelterville Flats study area.

* SW - Surface water; LGW - Lower aquifer; UGW - Upper aquifer

gravel layer.

Ground Water Movement

The collection of data was concentrated in the upper aquifer because it is in contact with or is formed by the mine wastes deposited in the Smelterville Flats study area. Ground water flow though the upper aquifer would be the primary transporting agent for metals in solution. Unless otherwise stated, the following discussion will pertain to ground water flow in the upper aquifer. All of the piezometers were not installed at one time, but were put in over the study period after the initial drilling (July 1977). As gaps in the collection network were found or an interesting change in chemistry discovered, new piezometers were installed to better monitor the system. The last piezometers (P20 and P21) were installed on July 22, 1978. Consequently, there is more complete data presentation farther into the study period.

Contour maps and three-dimensional diagrams were drawn of the potentiometric surface in the Smelterville Flats study area with the use of the IBM 370/145 computer and the Calcomp 936 drum plotter at the Computer Center, University of Idaho. The program used for contour plotting is called STAMPEDE, and the program for three-dimensional diagrams is called BLOCK 2. STAMPEDE stands for <u>Surface Techniques</u>, <u>Annotation</u>, and <u>Mapping Program for Exploration</u>, <u>Development</u>, and <u>Engineering</u>. The package takes irregularly spaced data points that define a surface and produces values at the mesh points of a square grid system superimposed on the original surface. From that square grid, a contour map is produced for graphical display on the plotter. The degree of accuracy of the final map depends upon how closely the original data approximates the grid in their distribution over the surface.

BLOCK 2 is a three-dimensional plotting program accepting data in square grid form, in this case, the grid superimposed over the original irregularly spaced data by STAMPEDE. The surface may be viewed at any angle or distance and the surface itself may be tilted or viewed in stereo pairs. Any misrepresentation of the original surface by STAMPEDE will be carried over into BLOCK 2.

The deposition of sediments by the South Fork of the Coeur d'Alene River greatly affected the grain size distribution in the Smelterville Flats study area. The change in width of the valley floor is believed to have resulted in a distinct pattern of grain size distrubution. The coarsest sediments would be deposited in the narrow portion of the valley with the finer material being deposited in the wide area. This would result due to decreasing velocity of the water in the South Fork after passing through the constriction of the valley sides east of the study area. The average grain size of the material being deposited is believed to grade finer downstream in the wide section of the study area. This pattern of deposition is demonstrated by the mine waste deposited by the South Fork in the Smelterville Flats. Soil pit 1 (SP 1) has a greater percentage of large size fractions than SP 8 (Figure 16 A, 16 B).

The river is believed to lose water into the upper aquifer in the eastern portion of the Smelterville Flats. Profiles of the water level in the South Fork and of the potentiometric surface of the ground water system are plotted in Figure 25. Piezometers used in Figure 25 include: 7XB, 3W, 5W, 7YB, 9W, 10W, 12W, 13W, and 15W. Surface water elevations were taken during channel surveys in February, 1978. The potentiometric surface is below the surface of the South Fork in the eastern portion of the study area. The reverse occurs in the western

FIGURE 25. Plot of ground water elevation versus elevation of water level of the South Fork of the Coeur d'Alene River, Smelterville Flats study area.

portion of the study area with the river gaining water in this reach.

A large recharge event took place in early December 1977, which resulted in increases in ground water levels from 1.7 to 7.0 feet (0.52 to 2.33 meters). The recharge event consisted of a snow melt caused by a rise in temperatures coupled with a 2.52 inch (6.40 cm) rainfall event on December 2, 1977. Discharge in the South Fork of the Coeur d'Alene River at Kellogg increased from 294 cfs $(8.3 \text{ cm}^3/\text{sec})$ on December 1, 1977 to 1890 cfs $(53.5 \text{ cm}^3/\text{sec})$ on December 3, 1977 as a result of the snow melt and rainfall. The South Fork did not leave its channel, but water did cover most of it. Figures 26 and 27 are contour maps of the potentiometric surface on November 19, 1977 and December 4. 1977, respectively. Figure 28 is a contour map of the change in ground water levels between the two dates. The greatest water level change occurred in the eastern part of the study area. The changes along the X-Line, located on Figure 12, have been interpreted as indicating recharge occurring from the South Fork. The amount of change is even across the Y-Line, indicating that the river had little direct effect on the water table rise in this area. The contour lines then swing west, showing the effects of recharge from the creeks that drain the south hillside as well as leakage from the Page Wastewater Treatment Facility (Hitt, 1974, p. 46). The distribution of the change in water levels can be shown by the plot of water levels in relationship to cross sections Line X, Line Y, and Line W (Figures 29 and 30). The increase in the potentiometric surface is greatest at cross section X, with an increase in water level of 7.0 feet (2.1 meters) at 9X near the river, to 4.2 feet (1.3 meters) at AX near the center of the valley. This is interpreted as indicating that 9X is closer to the source of recharge

November 19, and December 4, 1977, Smelterville Flats study area.

FIGURE 29. Cross sections of Line X and Line Y, showing ground water elevations, Smelterville Flats study area.

FIGURE 30. Cross section of Line W, showing ground water elevations, Smelterville Flats study area.

than AX. The change in water level on the Y-Line is uniform except from 8Y to 10Y, where the gradient slopes towards the river, indicating ground water flow towards the South Fork. Water level changes along the W cross section indicate a greater rise in the potentiometric surface in the eastern end of the study area than in the western end. A change in the hydraulic gradient is also noted west of piezometer 7Y, which is due to a change in the permeability of the aquifer.

Recharge to the upper aquifer also occurs from direct precipitation on the surface material. Precipitation in the study area did not create major surface water runoff; much of the precipitation is believed to have infiltrated into the upper portion of the alluvial-mine waste material. The grain size of the soils would control the downward movement of water to the water table. The greatest recharge from precipitation would tend to occur where the surficial sediments are coarser. Recharge from precipitation would be restricted where the finer fraction of the mine wastes have been deposited at the surface.

Water quality data also indicates that ground water is recharged by surface water originating from the South Fork of the Coeur d'Alene River and from the swamp around the Page Wastewater Treatment Facility. Table 5 lists water quality data for several piezometers in the recharge zones. Stations 200 and 205 are surface water samples taken in the South Fork of the Coeur d'Alene River at the Smelterville Bridge and downstream near piezometer 9X, respectively. The values presented in Table 5 for piezometers 7X, 8X, and 9X exhibit similar trends between the two depths; "A" depth is open for a one foot (30.48 cm) interval, approximately 20 feet (6.1 meters) below the surface, and "B" depth is open for a one foot (30.48 cm) interval between 12 to 17 feet (3.7 to

Station	Temp °C	Ηα	<u> </u>	the second se	Concentrations in PPM							
station	Temp °C	F	Fe	РЬ	Cd	Zn	Ca	Mn				
7XA 7XB	5.2 4.9	6.7 6.6	-0.5* 0.0	0.0 0.09	0.0 0.037	11.03 5.1	64.6 27.0	16.8 0.05				
8XA 8XB	7.4 9.0	6.8 6.5	0.15 0.0	0.0 0.0	0.0 0.71	0.079 6.9	71.2 27.1	8.3 0.16				
9XA 9XB	7.0 7.0	6.8 6.4	0.57 -0.05	0.0 0.12	0.0 0.102	0.079 10.5	50.8 31.0	7.2 0.8				
200 205	6.0 7.0	6.5 6.6	0.37 0.28	0.0 0.0	0.022 0.02	1.9 1.8	16.1 14.4	0.40 0.36				
3W	5.5	6.4	-0.05	0.0	0.047	3.7	23.2	-0.04				
18P	9.0	6.3	-0.05	0.0	0.025	3.2	23.2	0.43				
4P	7.2	6.2	46.2	0.0	0.027	108.0	93.9	46.0				

Table 5. Water quality values for stations in ground water recharge zones, March 25, 1978, Smelterville Flats study area.

* (-) Metal was present but below accuracy of instrumentation.

_

-

5.2 meters) below the surface. The values measured at the "A" and "B" depths are measurements of the reaction products from acid water production and the metals taken into solution by the acid. Concentrations of metals for samples 7XB, 8XB, and 9XB are generally above the concentrations of the samples taken from the South Fork except for iron. The differences in metal concentrations between 7X, and 8X-9X can be explained in that 8X and 9X are located in the river channel where most of the mine waste has been carred away, while 7X penetrates the mine waste material.

The concentrations of zinc are related to their position within the ground water flow system (Figure 31). As water enters the waste, either through infiltration of precipitation or ground water level fluctuations, metals that have been weathered into a soluable state are leached. The water measured at 7X originated from up gradient in the ground water flow system and has been affected by more mine waste than the water measured at either 8X or 9X. The differences in zinc concentrations with depth are probably due to variations in the mineral content of the aquifer material that the water passed through prior to reaching the piezometer. This is discussed in more detail in the section on chemistry of water. Piezometer 18P is located hydraulically up gradient from the Page area, with concentration of zinc increasing down gradient, indicating that zinc is going into solution between piezometers 18P and 4P.

The average gradient of the potentiometric surface is about 0.0037 feet/feet (0.0011 meters/meters) from piezometer AX to piezometer 15W for both the "A" and "B" depths. The gradient steepens towards the west with a drop of 0.0052 feet/feet (0.0016 meters/meters) from

piezometer AY to piezometer 15W. The change in gradient is a function of a change in the amount of water in the system, the cross sectional area, or the properties of the soil that the water moves through as demonstrated by the Darcy equation (Todd, 1959, p. 46):

Q = KIA

- Where: Q = rate of flow through a cross sectional area in gallons per day (gpd),
 - K = hydraulic conductivity of the aquifer in gallons per day per square feet (gpd/ft²),
 - A = cross sectional flow area in square feet (ft^2) , and
 - I = hydraulic gradient in feet per feet (ft/ft).

FIGURE 31. Plot of zinc concentrations versus depth at piezometers 4X, 6X, 7X, 8X, and 9X on March 25, 1978, Smelterville Flats study area.

Assuming that the rate of flow (Q) and the cross sectional area (A) remain constant, then when the hydraulic conductivity (K) decreases, the gradient (I) increases. The cross sectional area (A) was approximated perpendicular to flow and where the contour lines were evenly spaces and constant.

The flow through cross section C-C' (Figure 5) was determined by Darcy's Law. The hydraulic conductivity for both the upper and the lower aquifers was estimated to be 1,000 gpd/ft (12.4 m²/day) each based on the grain sizes of which the aquifer is composed (Todd, 1959, p. 53). The cross sectional area is 130,000 square feet (12,000 square meters) for the upper aquifer and 270,000 square feet (25,000 square meters) for the lower aquifer at cross section C-C'. Only 15 feet (4.6 meters) of the upper aquifer is saturated, so the cross sectional area is only 90,000 square feet (8,400 square meters). The hydraulic gradient from piezometer AX to piezometer 15W is 0.0037 feet/feet (0.0011 meters/meters). The total flow through both aquifers is estimated to be 35,000 gallons per day (1.3 x 10⁵ liters per day). The flow of the South Fork of the Coeur d'Alene River at Kellogg averages between 3.8×10^7 gallons per day (1.4 x 10^8 liters per day) to 1.5×10^9 gallons per day (5.7 x 10^9 liters per day).

The response time of the ground water flow system to snow melt and precipitation events and changes in discharge of the South Fork of the Coeur d'Alene River and its tributaries is very short, generally less than twenty-four hours. Figure 32 shows daily values for precipitation, discharge of the South Fork, and ground water levels at soil pit 6 (SP 6). On December, 2, 1977, 2.52 inches (6.54 cm) of rainfall were recorded at Kellogg, Idaho. This precipitation, coupled with a

FIGURE 32. Daily values for precipitation, water level at Soil Pit 6, and discharge for the South Fork of the Coeur d'Alene River at Kellogg, Smelterville Flats study area.

snow melt at the higher elevations, caused the South Fork to rise and then fall very rapidly. The rapid response of the river to the rainfall event was probably due to the frozen condition of the soil and the melting of the snow pack. The ground water level rose almost as rapidly as the river. Additional rain fell during the middle of December, causing an increase in the discharge of the Coeur d'Alene River, thus, resulting in additional recharge to the aquifer. After the second recharge event, the ground water level declined again. The total accumulative rise in water level at SP 6 following the two recharge events was 4.8 feet (1.5 meters). The hydrograph from SP 6 only declined 1.5 feet (0.5 meters) over the next 30 days, then fluctuated within a twofoot interval (0.6 meters). The hydrograph began dropping in late May 1978, and continued to decline until the end of the data collection period on September 2, 1978, with only a couple of small recharge events (Figure 32). Ground water levels in August 1978, did not decline as low as they did in August 1977. For the water year 1978, ground water levels had increases ranging from 0.59 to 2.66 feet (0.18 to 0.81 meters). These increases in water levels for the year are the result of the recovery of the ground water system from a drought that affected most of the western United States from August, 1976 to July, 1977. The accumulative departure from mean monthly precipitation shows the drought period with the recovery beginning during the study period (Figure 33).

Continuous water level recorders were installed at three different locations in the study area to determine if there were differences in short term water level fluctuations between sites. A base recorder was installed at SP 6 so that the data from the other recorders could be compared to similar records. Two of the sites showed artesian

FIGURE 33. Accumulative departure from mean monthly precipitation, Smelterville Flats study area.

pressure while being constructed (SP 6 and SP 8), while SP 3 showed water table conditions. As water levels rose, SP 3 may have become semi-confined. Because the hydrographs of SP 3 and SP 6 responded similarly to changes in water level, only SP 6 was plotted on Figure 34. A general trend is shown by SP 8 that follows that of SP 6 (Figure 34). The hydrograph of SP 8 may be affected by wind, fluctuations in barometric pressure, and pressure applied by the loading of the aquifer by passing trains, and from seepage from the bottom of the two sewage lagoons located near the recorder. The water level fluctuations of SP 8 on April 12-23 and April 19-20 are not as evident at SP 6. Small precipitation events took place during these dates, and the discharge of the South Fork of the Coeur d'Alene River increased slightly. The surface water flow around the Page Wastewater Treatment Facility may be responsible for the larger increase in ground water level at SP 8. This difference in response of the water levels between the two locations (SP 6 and SP 8) demonstrates the complex nature of the ground water flow system in the Smelterville Flats.

Piezometer data also indicate that fluctuations of the ground water level are similar over the study area with the magnitude of the changes varying. Several hydrographs are presented in Figures 35 through 38. The largest fluctuations occur at piezometers in the eastern end of the study area, represented by piezometers 2XA, 2XB, and 9XA. The farther west, the less magnitude of the change that occurs in the water levels as shown by piezometers 2YA, and 2YB, 10YA and 10YB, 3W, 5W, 9W, and 1P-4P. The hydrographs for "A" and "B" depths are similar to each other for the X-Line and the Y-Line piezometers. The fluctuations follow seasonal trends and are in response to aquifer recharge

FIGURE 34. Hydrographs for SP 6 and SP 8 taken from water level recorders, Smeltervile Flats study area.

FIGURE 35. Hydrographs for piezometers 2XA, 2XB, and 9XA from July, 1977 to July, 1978, Smelterville Flats study area.

FIGURE 36. Hydrographs for piezometers 2YA, 2YB, 10YA, and 10YB from July, 1977 to July, 1978, Smelterville Flats study area.

FIGURE 37. Hydrographs for piezometers 3W, 5W, 9W, and 10W from July, 1977 to July, 1978, Smelterville Flats study area.

FIGURE 38. Hydrographs for piezometers 1P, 2P, 3P, and 4P from July, 1977 to July, 1978, Smelterville Flats study area.

and discharge and to precipitation. All of the hydrographs show an increase in the ground water level over the year from August of 1977 to August of 1978.

Chemistry of the Ground Water

by

Dale Marcy

The following material has been abstracted from a more complete discussion of the chemistry of the ground water prepared in this study (Marcy, 1979). The material presented here describes some of the reactions occurring in the mine waste and the removal of the reaction products to the river via the ground water system.

The water samples collected from the piezometers are assumed to be representative of the ground water in the sediments. The sample cannot be considered to be representative of all the water in the vertical section, but rather an average of the water contained in sediments sampled by the perforated interval of the piezometer. Locations of higher and lower concentrations must be assumed to be present.

The water chemistry discussed in this section is based on the observed concentrations at selected piezometer sites. Each piezometer is considered as a closed system, comprised of a piezometer and a cylindrical column of sediments surrounding the piezometer. No water movement across the system will be discussed. The relation of water quality to ground water flow will be discussed in the next chapter. Piezometers 2P and 4P

Water quality data from piezometers 2P and 4P near the Page Tailings pond are used to describe the chemical processes which are believed to occur in the abandoned mine waste. The primary reason for using these sites as the initial discussion is due to the high concentrations of metals found which allows easier discussion of the chemical reactions.

The general outline of this discussion will be the description of the environmental aspects of the metal concentrations and other parameters measured in the study. Then the proposed mechanisms of achieving the conditions measured will be discussed. Zinc will be the first metal addressed since the dissolution of sphalerite involves many of the important chemical reactions believed to be occurring in the Flats. Zinc

Zinc is an essential element in human metabolism; for preschoolaged children the daily requirement is 0.3 mg/kg body weight (Vallee, 1957). Community water supplies have been found to contain 11 to 27 mg/l without harmful effects (Bartow and Weigle, 1932). The quality of the water is poor since above 4 mg/l zinc, the water has an astringent taste. For this reason the maximum concentration recommended for domestic water supplies has been set at 5 mg/l (EPA, 1976).

Fish are not so tolerant as human beings when exposed to high concentrations of zinc. The toxicity is modified by several environmental factors, particularly hardness, dissolved oxygen, pH, and temperature (EPA, 1976). The most sensitive fish in the Smelterville Flats area is the rainbow trout, <u>Salmo gairdneri</u>. The acute toxicity TL_{50} 96 hour (toxic limit for 50% within 96 hours), ranges from 0.10 mg/l to 0.91 mg/l depending on the size of the fish and the other water quality parameters referred to above. The graphs of water quality (Figure 39) as a function of time indicate that much higher concentrations are possible in the ground water of the Smelterville Flats.

The table describing the mineralogical composition of the ore types found in the Bunker Hill Mine, Table 6, can be used as being indicative of the minerals deposited on the Flats. The zinc would have

FIGURE 39. Time plots of metal concentrations for piezometers 2P and 4P, Smelterville Flats study area.

Minerals	Bluebird (Flood Stanley Ore Body)	Bunker Hill (March Ore Body)	Jersy
Galena, PbS	A	А	A
Sphalerite, ZnS	А	R-P	А
Pyrite, FeS ₂	А	R-P	R
Arsenopyrite, FeAsS	Р	N	Ν
Chalcopyrite, CuFeS ₂	Р	Р	Ν
Tetrahedrite, (Cu, Fe, Zn, Ag) ₁₂ Sb ₄ S ₃	Р	Р	P-A
Siderite, FeCO ₃	А	А	P-A
Ferrodolomite, Ca(Mg, Fe)(CO ₃) ₂	А	А	P-A
Quartz, SiO ₂	А	Р	А
Bournonite, PbCuSbS ₃	R	Ν	Ν
Boalangerite, Pb ₅ Sb ₄ S ₁₁	R	Ν	N
Stibnite, Sb ₂ S ₃	R	N	N
Sericite, K Al ₂ (AlSi ₃ 0 ₁₀)(OH) ₂	Р	Р	Ρ
Chlorite, Mg ₃ (Si ₄ 0 ₁₀)OH ₂ -Mg(OH ₁₀) ₆	Р	Р	Ρ
Limonite, FeO(OH)n H ₂ O	А	N	Ν
Cerussite, PbCO ₃	R	Ν	N

Mineralogical composition of the ore types found in the Bunker Hill Company Mine (Ralston, 1973). Table 6.

A = Very Abundundant P = Present

- R = Rare

• .

N = None Noted

been deposited as tetrahedrite (Cu_{12} Sb₄ S₁₃) and sphalerite (ZnS (Fe, Mn, Cd)); the sphalerite will be used in the following discussion of chemistry. The sphalerite reached the Flats due to the incomplete separation of the mineral from the gangue in the concentration of the ore prior to smelting. As shown in the discussion of the Soil Pits, the zone of concentration for zinc in the waste varies with the bedding of the wastes. To start, look at the Figure 16 for soil pit 8, located near piezometers 2P and 4P and the graphs of metal concentration as a function of time for 2P and 4P (Figure 39). As can be seen from the graphs, high zinc concentrations are found in the sediments and the ground water. How did the zinc deposited as a solid in the sediments become dissolved in the ground water?

The dissolution of zinc is an important chemical reaction since it is necessary to weather the zinc into a soluble state for leaching. The simplest reaction would be the oxidation of sphalerite by molecular oxygen as shown in the reaction

$$ZnS_{(5)} + 20_2 = Zn^{2+} + S0_4^{2-}$$
 (EQ = 1)

Using Hesse's Law, the standard free energy formation can be calculated using data from the <u>Handbook of Chemistry</u> and Physics.

-177.34 - 35.184 - (-47.4) - 0 = -165.12 K cal/mole (EQ = 2)

This large negative value indicates that the reaction is spontaneous as written; it does not show the reaction rate.

Sphalerite in the presence of dry air undergoes neglible oxidation. The chances that two molecules of oxygen will collide with the sphalerite crystal with the energy necessary for reactions is too small. If the sphalerite is in the presence of water and oxygen, a mechanism

could be written as:

$$2H_20 + 2CO_2 = 2H_2CO_3$$
 (EQ = 3)

$$ZnS + 2H_2CO_3 = Zn^{2+} + 2HCO_3 + H_2S$$
 (EQ = 4)

$$H_2S + 20_2 = S0_4^{2-} + 2H^+$$
 (EQ = 5)

$$2H^{+} + 2HCO_{3}^{-} = 2H_{2}O + 2CO_{2}$$
 (EQ = 6)

When reactions 3 through 6 are added, the sum is the reaction written in equation 1. The conclusion is that water and carbon dioxide act as catalysts in the oxidation of sphalerite. The reactions could occur at the sphalerite crystal's surface so that very small amounts of the intermediate compounds, HCO_3^- and H_2S , could be present in the system and the reaction would still occur.

Another mechanism has been postulated for the oxidation of sulfide ore (Sato, 1960). In this mechanism, water and oxygen come from trace amounts of hydrogen peroxide which then acts as the oxidizing agent. The reactions may be written as:

$${}^{2H_20}(g) + {}^{0}_{2}(g) = {}^{2H_20}_{2+}(g)$$
 (EQ = 7)

$${}^{4H}_{2}{}^{0}_{2}(g) + {}^{Zn}(s) = {}^{Zn}{}^{2+} + {}^{S0}_{4} + {}^{4H}_{2}{}^{0}$$
 (EQ = 8)

Equation 7 was postulated as being rate controlling. Evidence supporting this mechanism has been provided by the observation that the redox potential for mine water lies in the vicinity of the $0_2 - H_2 0_2$ couple

 $H_2 O_2 = O_2 + 2H^+ + 2e^-$ Eh = 1.22 - 0.059 pH (EQ = 9) instead of the theoretical $O_2 - H_2 O$ couple

 $2H_20 = 0_2 + 4H^+$ Eh = 0.68 - 0.059 pH (EQ = 10)

Another possible mechanism could be formulated based on the generation of acid water from pyrite oxidation. The first two reactions could be those producing ferric ions from pyrite (FeS₂).

$$FeS_{2(s)} + 7/20_{2} + H_{2}0 = Fe^{2+} + 2S0_{4}^{2-} + 2H^{+} (EQ = 11)$$

$$Fe^{2+} + 1/40_{2} + H^{+} = Fe^{3+} + 1/2H_{2}0 (EQ = 12)$$

If before the ferric ion produced by equation 12 is hydrolyzed, the ferric ion contacts sphalerite, the following oxidation could occur:

 $ZnS + 8Fe^{3+} + 4H_20 = 8Fe^{2+} + SO_4^{2-} + 8H^+ \qquad (EQ = 13)$ The standard free energy for the reaction is:

$$8(-20.3) - 35.184 - 177.34 + 0 - -47.4 + 8(-2.52) +$$

 $4(-56.69) = -80.60 \frac{\text{Kcal}}{\text{mole}}$ (E0 = 14)

Once again, the negative value indicates the spontaniety of the reaction, not the rate. In this case the reaction will be kinetically controlled by the oxidation of ferrous to ferric ion, the oxidation of sphalerite by the ferric ion, and the diffusion of the ferric ion to the sphalerite surface where reaction 13 occurs.

If the environment were only controlled by physical chemistry, these mechanisms might suffice to describe dissolution of sulfide ores. The environment is an ecological system, though, so the organisms living in the sediments must also be considered.

The sphalerite could also be oxidized by chemautotrophic bacteria (Alexander, 1961). This group of bacteria obtain the energy necessary for growth and biosynthetic reactions from the oxidation of inorganic materials and the carbon required from the assimilation of carbon dioxide.

The genus <u>Thiobacillus</u> contains five species which have been the subject of considerable investigation. The <u>T</u>. <u>thiooxidans</u> and the <u>T</u>. <u>ferrooxidans</u> have been shown to be involved in the acid water production in coal mines (Silverman, 1967). These bacteria have an optimum growth

in a medium with a pH range from 2.0-3.5. This is in many cases the pH observed in gob pile drainage and coal mine drainage. However, in the soil water of the Smelterville Flats study area, the pH is sufficiently high to prevent these bacteria from playing a major role. This is not to say that these bacteria could not exist in the higher pH's found in the Smelterville Flats' sediments, it only indicates that the growth would not be rapid.

Other bacteria in the genera can exist in the near neutral range. The <u>T</u>. <u>novellus</u> and <u>T</u>. <u>thioparus</u> can oxidize inorganic sulfide compounds into sulfate. The presence of a particular species of <u>Thiobacillus</u> can be inferred from the pH developed in the media (Alexander, 1961). The genus <u>Thiobacillus</u> has been shown to be present in the Cataldo Flats (Galbraith, 1971). Since these bacteria are considered to be ubiquitous to sulfide containing soils, a safe assumption to make is that the <u>Thiobacillus</u> are also present in the sediments of the Smelterville Flats and that the organisms optimum in near neutral range are dominant in number.

The sphalerite is oxidized by one of the mechanisms just described in the aerobic zone of the sediments. The reactions will be limited by the diffusion of oxygen into the sediments where the sulfide ores exist. The rate of reaction will be the highest during low moisture content of the sediments since the diffusion of oxygen is much larger through soil air than through soil moisture. The major amount of oxidation will occur during the summer months.

The water movement in the zone of aeration can be represented by Figure 40. As late fall rains arrive and wash through the oxidized zone, the reaction products will be washed into the ground water. This
can be observed in the time plots of 2P and 4P (Figure 39). As the water levels rise on the plots from fall rains, the zinc concentration also rises. The change in zinc concentration in 4P is lower due to dilution, but considering the large rises in water quantity in the ground water system, the actual amount of zinc dissolved in the system actually increases. In piezometer 2P, even with the increase in water level, the concentration of zinc in the ground water increases.

FIGURE 40. Soil-moisture profiles of a hypothetical soil in a region having wet winters and dry summers (Davis and Deweist, 1966).

In addition to the washing of the reaction sites by rain moving through the sediments, the water levels rise into the zone of aeration. This also washes the oxidized layer from the sediment particles. The combination of rinsing and flooding of the oxidized zone causes the increase in dissolved zinc.

As the water level falls in the summer the reaction products are carried away and the concentration of zinc in the ground water decreases. Oxygen enters the sediments under a concentration gradient and the oxidation reactions begin again.

Calcium

Calcium is the principle cation in most natural water. It is not normally considered a pollutant as far as toxicology is concerned. The primary concern for calcium is related to hardness of the water which relates to the toxicity of other metals (EPA, 1976); see the discussion of zinc.

The calcium in the Smelterville Flats was probably deposited as silicates, such as feldspars $(CaAl_2Si_108)$ and as ferrodolomite, Ca(Mg,Fe) $(CO_3)_2$. Weathering of these minerals would increase the concentration of Ca^{2+} in the ground water. The reaction of feldspars, represented here by anorthite

 $CaAl_2Si_2O_8 + H_2O + 2H^+ = Al_2Si_2O_5(OH)_4 + Ca^{2+}$ (EQ = 15) is slow, and would not maintain a high Ca^{2+} concentration.

The Ca²⁺ ions in the ground water of the Flats were probably derived from dissolution of the ferrodolomite. For representation in this work, the formula used will be for calcite, since the consideration of equations and solubility are much the same.

The calcium carbonates react with acids according to

$$CaCO_3 + H_2CO_3 = Ca^{2+} + 2HCO_3^{-}$$
 (EQ = 16)

This reaction shows that the solubility of calcite will be pH dependent. At low pH the reaction will proceed as written, increasing Ca^{2+} concentration. At high pH the reverse reaction will predominate causing the precipitation of calcite.

SOLUBILITY EXPRESSED AS CALCIUM IN MILLIGRAMS PER LITER

FIGURE 41. Solubility of calcium carbonate (calcite) in water at 25°C in the presence of carbon dioxide (Hem, 1970).

The carbonic acid shown in the equation can be formed from carbon dioxide and water

$$H_20 + CO_2 = H_2CO_3$$
.

The dissolution of calcite is related to the partial pressure of carbon dioxide. Figure 41 (page 98) shows the solubility of calcite as related to the partial pressure of CO_2 .

The Ca²⁺ concentrations shown in piezometers 2P and 4P are probably not generated by reaction with the weak carbonic acid, but are due to the reaction with the acid waste generated by pyrite oxidation.

$$FeS_{2(s)} + 7/20_{2} + H_{2}0 = Fe^{2+} + 2S0_{4}^{2-} + 2H^{+}$$
 (EQ = 17)

The acid produced reacts with the calcite

$$CaCO_3 + H^+ = Ca^{2+} + HCO_3^-$$
 (EQ = 18)

The amount of carbonate minerals present in relation to the abundance of pyrite oxidized, will determine the acidity of the ground water. Such considerations have been explored in detail on the ores of the Bunker Hill Mine (Reece, 1974).

Equilibria involving carbonates are considered to be the major factor limiting the solubility of Ca^{2+} in natural water systems (Hem, 1970). A graphical relationship for equation 18 is shown in Figure 42. This graph allows a quick estimate of whether the ground water is supersaturated with respect to calcite. The calcium concentrations in 2P and 4P fluctuate between 90 and 100 mg/l at the maximum. From Figure 42, the values for 2P and 4P are well below the saturation level at the pH and alkalinity measured.

The Ca^{2+} concentration is probably controlled by the reactions 17 and 18 given above. The hydrogen ions produced by pyrite, then indirectly control the amount of Ca^{2+} observed in the ground water. As the time plots for metal concentrations show, the Ca^{2+} moved into the ground water increases. In 2P the concentration increases even with the increase in water quantity. In 4P the concentration fluctuates between 90 and 100 mg/l, even with the increase in water quantity. This indicates a washing of Ca^{2+} into the water. The hydrogen ions that are washed away from the pyrite reaction sites, encounter calcite or dolomite and react according to reaction 18 and produce an increase in Ca^{2+} in the ground water.

FIGURE 42. Equilibrium pH in relation to calcium and bicarbonate activities in solution in contact with calcite. Total pressure 1 atmosphere; temperature 25°C (Hem, 1970).

REFERENCES CITED BY DALE MARCY

- Alexander, M., 1961, Introduction to Soil Microbiology: John Wiley and Sons, Inc., New York and London.
- Bartow, E. and O. M. Weigle, 1932, Zinc in Water Supplies: Ind. Eng. Chem., 24:463.
- Davis, S. N. and R. J. M. DeWiest, 1966, Hydrogeology: John Wiley and Sons, Inc., New York.
- Environmental Protection Agency, 1976, Quality Criteria for Water: Washington, D. C..
- Galbraith, J. H., 1971, A Study of Mine Tailings and Associated Plants and Ground Water in the Coeur d'Alene District, Idaho: Master's Thesis, University of Idaho.
- Handbook of Chemistry and Physics, 1974-1975, Chemical Rubber Publishing Company, 55th Edition.
- Hem, J. D., 1970, Study and Interpretation of the Chemical Characteristics of Natural Water: Geological Survey Water Supply Paper 1473.
- Reece, D. E., 1974, A Study of Leaching of Metals from Sediments and Ores and the Formation of Acid Mine Water in the Bunker Hill Mine, M. S. Thesis, University of Idaho.
- Sato, M., 1960, "Oxidation of Sulfide Ore Bodies, II, Oxidation Mechanisms of Sulfide Minerals at 25°C," Econ. Geology, 55:1202.
- Silverman, M. P., 1967, "Mechanism of Bacterial Pyrite Oxidation", J. of Bacteriology, 1046-1051.
- Ralston, D. R., B. D. Trexler, and C. M. Wai, 1973, "Solutions to Problems of Pollution Associated with Mining in Northerh Idaho", U. S. Bureau of Mine Contract Report H0122070.
- Vallee, B. L., 1957, "Zinc and its Biological Significance", Arch. Indust. Health 16:147.

RELATIONSHIP OF WATER QUALITY TO THE MINE WASTE AND

WATER LEVEL FLUCTUATIONS

by

Dale Marcy and Marc Norton

In the previous chapter, the discussion on water quality changes as a function of time; the piezometer sites were considered as closed systems. In this section an attempt will be made to correlate water movement with changes in water quality of the entire Smelterville Flats study area. The discussion of water level fluctuation will only consider the upper aquifer as it is in contact with the mine wastes deposited in the study area and is believed to be the primary transporting system for metal movement through the ground water system and into the South Fork of the Coeur d'Alene River. Several statements about the hydrology and chemistry will be stated before the discussion on water quality movement in the study area.

The ground water flow system of the upper aquifer in the Smelterville Flats study area is a dynamic system in that there is recharge, lateral flow, and discharge. Recharge occurs from the South Fork of the Coeur d'Alene River, from Grouse and Humboldt Creeks which discharge into the swamp around the Page facility, and from direct precipitation on the surface. The water levels form a hydraulic gradient which slopes downward to the west, indicating ground water flow in the direction of decreasing head. The ground water level is below the level of water in the South Fork in the eastern part of the study area. This trend is reversed midway through the study area with the ground water level being higher in the western part of the study area than the level of the water in the South Fork. This indicates discharge of ground water into the South Fork of the Coeur d'Alene River in the western portion of the study area.

Direct recharge from the South Fork of the Coeur d'Alene River to the ground water flow system is believed to occur only in the eastern portion of the Smelterville Flats with most of the recharge occurring up gradient of the study area. The alluvial deposits are believed to grade finer toward the west with the large size fractions being deposited first, creating a very permeable zone for recharge. Hydrographs from piezometers show the greatest amount of fluctuation from the recharge event in early December 1977, are in the east (X-Line) with the decreasing amounts of fluctuation farther west except around the Page Wastewater Treatment Facility. The contour plot of the change in head after the recharge event supports the hypothesis that most of the recharge is occurring east of the study area. Water quality tends to support the recharge from the South Fork in the eastern part of the study area.

Recharge to the ground water flow system occurs from direct precipitation mainly in the eastern portion of the study area. Very little surface runoff occurs after rainstorms or after snowmelt. The surface material generally consists of silt, sand, and gravel, which allows the infiltration of the precipitation. Vertical permeability markedly decreases when the finer fractions of the mine waste (rock powder and slimes) are encountered. This would tend to create a temporary perched water table if the surface material becomes saturated. When the coarse fractions (jig tailings) are encountered, the precipitation is able to reach the ground water table. This is demonstrated by the concentrations of zinc in piezometers 4X, 3X, 2X, and 1X. The water level is below the

"zone of concentration" yet there are still considerable amounts of zinc in the ground water. The water level did not rise into the mine waste, but the metal concentrations were transported to the water table by precipitation moving through the waste.

From hydrologic and water chemistry points of view, the upper aquifer in the Smelterville Flats study area is isolated from the lower flow system. The geomorphology of the study area based on geologic history and well logs, indicates a fairly continuous 25-foot thick clay layer (7.6 meters) which separates the two aquifers. The water levels in piezometers 6YA, 6YB, and 6YD indicate separate systems. The piezometer in the lower portion of the clay layer (6YD) responds to pumping of a nearby well while the upper aquifer (6YA, 6YB) does not. The chemistry of the ground water from the upper aquifer, the lower aquifer, and the clay layer tend to support the hypothesis that there is very little interconnection between the two aquifers. One of the well logs indicates a buried river channel that penetrates the clay layer; and there are three abandoned wells that have collapsed, all of which would allow a vertical movement of water between aquifers.

The oxidation of zinc minerals (sphalerite and tetrahedrite) occurs very slowly in the presence of oxygen, but occurs more rapidly in the presence of water and carbon dioxide. Hydrogen peroxide can also act as the oxidizing agent. The formation of acid water from pyrite oxidation is another means of weathering the zinc material. Bacteria can play an important role in the rate of the above reactions (Marcy, 1979).

Calcium ions probably enter the ground water flow system through the dissolution of ferrodolomite. The reaction of the calcium mineral

is pH dependent; at low pH, Ca^{2+} concentration increases, and for high pH, the reaction is reversed with calcium precipitating out (Marcy, 1979).

The ground water quality as measured in individual piezometers is affected predominantly by the character of the material by the piezometer screen. The ground water chemistry is site specific; an example is the extreme differences between piezometers 6YA and 8YA. The anaerobic, or reducing environment of piezometer 8YA has lower concentrations than that of 6YA, which is aerobic, or an oxidizing environment. If there is ground water flow, then there will be transportation of metals in solution. After the metals have been transported to a new location, the metal concentrations are under the control of the geochemistry of the new site.

The total quantity of metals leached and transported by the upper aquifer of the ground water flow system in the Smelterville Flats study area is small when compared to the volume of metal transported by the South Fork of the Coeur d'Alene River. The upper aquifer discharges approximately 35,000 gallons per day $(1.0 \times 10^6$ liters/day) into the South Fork. With an average zinc concentration of 40 milligrams per liter, 5300 grams of zinc per day are transported into the South Fork. The river itself, with a flow of 60 cubic feet per second (1700 liters/ sec) on August 22, 1977, and a zinc concentration of 5.90 milligrams per liter, was transporting 8.7 x 10^5 grams per day. On May 20, 1978, with a high flow of 1270 cubic feet per second (36,000 liters/sec) and a zinc concentration of 1.2 milligrams per liter, the South Fork transports 3.7×10^6 grams per day. On August 22, 1977, the zinc concentration of the upper aquifer to the river would only be 0.61 percent of the zinc transported to the eastern boundary of the study area by the

South Fork for the same day. On May 20, 1978, the percentage is even less - only 0.14 percent. Therefore, the affect of ground water discharge from the Smelterville Flats upon the South Fork of the Coeur d'Alene River is minimal. As noted by Mink (1971, p. 25), the concentration of zinc in the South Fork drops with an increase in discharge, but the total volume of zinc transported is greater. This characteristic would tend to camouflage any affect of the study area on the South Fork.

The impact of the Smelterville Flats study area on the South Fork of the Coeur d'Alene River is demonstrated by the contour maps of calcium (Ca^{2+}) and zinc (Zn^{2+}) concentrations in the ground water for March, 1978 (Figure 43). Calcium and zinc were chosen for mapping because of their high mobility, single oxidation state, and in the case of Zn^{2+} , its toxicity to fresh water organisms. The map of Ca²⁺ concentrations shows the transport of the metal through the study area. A series of close contour intervals can be seen in the lower right hand corner of the map where the AX, 1X, and 2X piezometers are located. This area is one of the area with high acid water production and resulting netralization which generates high concentrations of Ca^{2+} . As the water flows to the west in the upper aquifer, the Ca^{2+} concentration decreases. This decrease could be due to dilution or to the removal of Ca^{2+} on the soil exchanger; or probably both. The decrease in Ca^{2+} concentrations at 6X, 7X, 8X, and 9X is caused by dilution from the recharge of water from the South Fork upstream.

As the water flows across the Y-Line from the east, the concentrations hold fairly constant. As the ground water enters the area adjacent to the South Fork of the Coeur d'Alene River, the concentrations

decrease again by removal.

A region of low concentrations of Ca^{2+} occurs from the dilution effect of the recharge from the swamp east of the Page Wastewater Treatment Facility. As the Ca^{2+} in the ground water moves northwest through the aquifer, the concentration increases due to mixing of this water with the water already high in Ca^{2+} concentration from the remainder of the study area. As the ground water encounters the mine waste described in the discussion of SP 8 near piezometers 2P and 4P, the concentration of Ca^{2+} changes rapidly and abruptly as shown by the closely spaced contour lines. This change in concentration indicates that the swamp at the west end of the Page Facility must cover material generating acid and hence cause neutralization and generation of high levels of Ca^{2+} . The concentration of Ca^{2+} decreases as the water moves towards the South Fork. For location of sample sites, see Figure 11.

Farther east near piezometers 2P and 4P, the concentration is once again high. Again, acid water neutralization is the probable explanation for the generation of high Ca^{2+} levels. Decrease in concentration once again occurs in the direction of the river by dilution and removal.

The contour plot for Zn^{2+} shows much the same general trends in concentration with water movement except for the area around the central Y-Line piezometers. Starting in the southeast section of the study area, the same decrease in concentration can be seen away from the AX piezometer. A rapid increase in concentration of Zn^{2+} occurs as the water enters the ground water flow system from the South Fork of the Coeur d'Alene River, and a decrease in concentration as the water moves across the study area. The same poor quality water can be seen emerging

from the recharge zone east of the Page Facility, which increases in concentration as it moves into the area where the mine waste is deposited, and helps remove Zn^{2+} as a reaction product in sequence of acid water production and resulting mine waste oxidation.

The Zn^{2+} concentration is shown to be rapidly increasing out of the swamp from the west end of the Page Facility as the mine waste in the area, described by SP 8, is encountered. These high concentrations then decrease as the water moves in the direction of the South Fork.

The only difference in trends from that described for Ca^{2+} occurs in the area surrounding the Y-Line. The concentrations fall to the 0.05 milligrams per liter (mg/l) level from a level of 20 mg/l. The movement of the water from the region of the X-Line (aerobic environment) into the higher S²⁻ containing area of the Y-Line (anaerobic environment) causes the decrease in Zn²⁺ levels. As the water moves from the area of the Y-Line into the area sampled by the W piezometers, the concentration rapidly increases again as the water moves out of the zone of S²⁻ concentration. By the time the water reaches the 18W piezometer, a concentration of approximately 80 mg/l is encountered. The concentration declines again as the water moves toward the river.

The three-dimensional diagrams of water level and of the Zn^{2+} and Ca^{2+} concentrations in the Smelterville Flats study area show, through vertical displacement, the same changes which were described for the contour maps (Figures 44, 45, and 46). Annotation of the threedimensional diagrams is not possible, but by comparing the contour map and the three-dimensional diagram, a close approximation for the location can be determined.

The same general trends just described for the March water samples and measurements can be observed for the samples and water levels taken and graphically displayed for January, May, and August (Figures 47, 48, and 49). These concentrations and water movements show that during the spring runoff the Smelterville Flats does have a small impact on the South Fork of the Coeur d'Alene River.

The water level and water quality data collected on August 12, 1978 will be used to describe the flow system for the discussion of the low water level period (July, August, September). This date, instead of August, 1977 values, will be used due to the greater number of sampling sites that were installed during the course of the study period. As the study proceeded, it became more apparent that a larger sampling base was required to adequately map the system. The main additions occurred on the west end of the study area which was expanded to include points on the south side of Interstate-90 and points farther west.

The water level countour maps indicate that the water movement in the system during low levels (Figures 47, 48, and 49) is much the same as the movement contoured for the high levels. The concentrations of Zn^{2+} and Ca^{2+} show the same general high spots at the south end of the X-Line, the 2P and 4P piezometers near the Page Facility, and an area surrounding the 9W and 18W piezometer sites. The zinc concentration throughout the study area appears to have decreased in value by as much as 10 mg/l in some of the locations. The general trend is still decreasing concentrations with movement toward the South Fork. The concentration distribution indicates a leveling effect across the study area with the decrease in water levels. Some of the steep contours are

smoothed showing a more even distribution of the Ca^{2+} . The general trend is a decrease in concentrations toward the South Fork of the Coeur d'Alene River.

POTENTIAL RECLAMATION PROCEDURES

The physical and chemical factors that can be influenced by reclamation procedures to limit the movement of heavy metals in the water resource system of the Smelterville Flats study area are:

- 1) the availability of mine waste,
- 2) the concentration of pyrite in the mine waste,
- 3) the availability of oxygen for chemical reactions,
- 4) the availability of water as a transporting mechanism,
- and5) the presence of microorganisms that regulate chemical kinetics.

The presence of mine waste, pyrite, oxygen, water, and microorganisms can be controllable variables to some degree depending on location. In some cases these variables can also be uncontrollable. Several potential reclamation procedures are described in the following pages based on the data collected during this and other studies. The physical and chemical factors described above will be used by themselves or in combination with each other to limit the movement of heavy metals. These procedures or methods for reclamation of the uncontrolled mine waste deposits in the South Fork of the Coeur d'Alene River valley have been grouped into three "Procedures" solely for the purpose of description. The methods described can be used by themselves or in combinations. The method or methods used may very depending on each deposit of mine waste.

The availability of mine waste and the concentration of pyrite can be addressed at the same time. If the mine waste was removed, leaching of heavy metals into the ground water system would not take place. Any practical method used to remove the mine waste would not be complete as mixing would occur with the soil below the mine waste. Mine waste would also be left in the environment under towns and other structures of the South Fork of the Coeur d'Alene River valley. If the mine waste were removed, most of the pyrite would also be removed. Because only a small amount of pyrite is needed in acid production, any pyrite left would continue to produce acid in the presence of oxygen and water. Manipulation of the supply of oxygen and water can also be used to limit heavy metals from going into solution or from leaving the reaction site. The presence of microorganisms can be indirectly controlled by limiting the energy source of the bacteria.

Procedure One

The heavy metals could be precipitated out of the ground water by passing the water through an anaerobic zone the width of the valley near the west end of the Shoshone County Airport runway. This zone, similar to that of the Y-Line, could be formed by adding microorganisms that use most of the available oxygen. Sealing the surface would prevent the diffussion of oxygen through the soil voids and stop the infiltration of precipitation from recharging the oxygen supply. A second method to minimize the usable oxygen would be to create a subsurface dam to inhibit ground water flow at the constriction in the valley sides at the west end of the Smelterville Flats study area. This would cause the ground water levels to rise, therefore minimizing the volume of sediments above the water table. Seasonal fluctuations would also be minimized.

Neither method to eliminate the supply of oxygen by itself would be sufficient and problems would arise. The addition of a microorganism to the system might create a larger problem if the microorganism were transported to the South Fork of the Coeur d'Alene River and were carried to Lake Coeur d'Alene. If a strip of surface material the width of the valley were sealed in combination with microorganisms, an

effective barrier to heavy metal movement might be created. The width of the strip of sealant would have to be determined based on the ability of the microorganisms to use the available oxygen.

Procedure Two

The availability of mine waste and pyrite can be reduced by surface mining methods where the mine waste can be removed. One major problem with this method is that not all of the mine waste can be mined. The Shoshone County Airport, Interstate-90, and a large percent of the buildings in the Smelterville Flats study area are built on the mine waste-native alluvium mix. The mine waste deposits that could not be mined in this manner would have to be treated with a different method or methods. Mining should start at the upper most section of each creek above where past mining practices took place. This is to prevent the movement of mine waste back over an area that had been reclaimed. The South Fork of the Coeur d'Alene River and its tributaries would have to be relocated and/or channelized to prevent the transport of the disturbed material downstream. In some places, the potentiometric surface would be above the post-reclamation ground surface. This could be a problem in some cases. Surface mining reclamation methods have been used in the past at the Smelterville Flats and at Canyon Creek. In both cases, it was the economic value of the mine waste that caused the mining activity.

This economic value can be used to help defray the costs of reclamation. The mine waste varies in mineral composition so the economic value will also vary. Based an an average price of \$0.59 a pound (\$1.30 per 1,000 grams) for lead and \$0.405 a pound (\$.89 per 1,000 grams) for zinc, the soil sampled at SP 1 is worth \$82.08 a cubic yard

(\$108.57 per cubic meter) for lead and \$22.41 a cubic yard (\$29.62 per cubic meter) for zinc. The soil sampled at SP 8 has the same value for lead as SP 1. The value of zinc is higher at \$32.94 a cubic yard (\$43.57 per cubic meter). With an estimated volume of mine waste in the Smelterville Flats study area of 3.7 million cubic yards (2.8 million cubic meters) the value of the lead is 303 million dollars, and the value of the zinc is 102.5 million dollars. These values assume an overall average metal concentration and do not take into account the cost of mining, smelting, or the reclamation of the land. The value of the mine waste would help to defray the cost of reclamation. Other valuable minerals may be present in the mine waste, but were not determined.

The mine waste deposits that could not be reclaimed by surface mining methods should be treated with a different method. The next alternative to be discussed could be used. This includes preventing precipitation from infiltrating into the mine waste and leaching the heavy metals down to the ground water system and maintaining the ground water level below the mine waste so as not to wash the heavy metals into solution.

Procedure Three

Limiting the transfer of heavy metals in the water resource system may be accomplished by isolating the mine waste from the transporting agent - water. This includes preventing infiltration of precipitation and surface water to the ground water system and/or controlling the lateral and vertical flow of the ground water system. By eliminating the recharge of water into the ground water system where acid production occurs, the leaching of heavy metals into solution could

be reduced. The South Fork of the Coeur d'Alene River should be lined to prevent leakage from the bottom and sides of the channel. Tributaries of the South Fork should also be controlled. The surface of the mine waste-native alluvium mix should be sealed to prevent infiltration of surface water and precipitation.

There are several methods that could be used to maintain ground water levels below the mine waste. Gravity drainage of the ground water by a field of ditches or buried perforated pipes to a collection point where the water collected would have to be pumped into the river or into a treatment plant. The South Fork should be lined to prevent increased leakage from the river into the aquifer. The perforated pipe used should be poly-vinyl chloride pipe to prevent the corrosive action of the acidic environment from destroying the drain field.

A network of large diameter, shallow wells could be installed to maintain the ground water level below the mine waste. The wells should penetrate the entire saturated thickness of the upper aquifer and be constructed with a gravel pack to prevent sand and silt from entering the well. Another method of lowering the potentiometric surface might be to lower the channel of the South Fork of the Coeur d'Alene River so that the upper aquifer would only discharge into the river.

Problems are inherent with any reclamation plan. The drainage ditches would have a bank stability problem and the presence of open ditches would be a health hazard and would prevent the development of the study area. Perforated PVC drainage pipe would have problems with sediment coming into the lines and maintenance could be high. Pumping of the water would be a continual cost which includes electricity for power, maintenance of the pump and discharge line, and the treatment of

the water if needed. Lowering of the South Fork of the Coeur d'Alene River channel would not be practical except at limited locations because the depth of the mine waste is too great. If the ground water level in the Smelterville Flats was lowered below the channel of the South Fork, it might increase the amount of seepage from the channel, therefore the South Fork should be lined to prevent leakage to the ground water system.

Lining the channel of the South Fork of the Coeur d'Alene River would solve the physical problem of bank erosion. Sealing the surface to prevent infiltration of precipitation would help to solve the blowing dust problem. Removal of the mine waste by surface mining methods would temporarily eliminate the need for revegetation. As part of the reclamation plan, vegetation of the new surface after mining should be considered. Because of water and soil quality, revegetation would be limited to selected plant types. Several vegetation test plots were planted in the Smelterville Flats study area with varying degrees of success (Gordon, 1977). One of the test plots involved the mixing of wood wastes from a nearby lumber yard with the surface material. Pine tree seedlings were planted in the test plot and later replanted on the hillsides around the Bunker Hill Company complex. In with the wood waste were clover seeds that began to grow with the spring rain. Several years later, the test plot has an extensive growth of clover through spring and early summer. The plant tops die as ground water levels drop below the root zone. The tops had turned brown by August, 1977 when the test plot was irrigated with water from the Bunker Hill Company wells. Within a week, the second crop of clover had begun to grow. The Bunker Hill Company has been given approval to build and operate a sawmill near Smelterville, Idaho, with the wood waste to be

used in reclamation activities. With planting, fertilizing, and watering, the Smelterville Flats could be turned green. It is doubtful if the clover could be harvested as cattle feed because the clover picks up metals in the soil through the plants' roots.

The Bunker Hill Company has projected a long-range plan for the possible construction of a tailings pond in the Smelterville Flats. This will have to be considered when reclamation plans are made for the Smelterville Flats. If the South Fork of the Coeur d'Alene River was channelized now, the river would probably be placed against the hillside to the north to minimize the space required. In addition, only one dike would be required. If the tailings pond is constructed, it probably would be placed against the north hillside with the South Fork channelized against it rather than have the river flowing on both sides of the pond.

The information gained from this study is transferable within the confines of the Coeur d'Alene Mining District. When augmented with site specific data, the reclamation procedures described in this section for the Smelterville Flats study area could be used throughout the valley of the South Fork of the Coeur d'Alene River. Some of the site specific data might include a detailed soil sampling pit with chemical analysis on the samples to correlate with the soil material of the Smelterville Flats. Other data might include the volume of mine waste, depth of mine waste, and potentiometric surface. This data along with the new sites' location in the valley would be used to determine which method or methods for reclamation would work the best for the site.

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

1. A pattern of deposition was observed in the mine wastes of the Smelterville Flats study area. Due to natural deposition and the constuction of a dam across the South Fork of the Coeur d'Alene River at the west end of the Smeltermille Flats, the coarser sediments were deposited out in the eastern position of the flats, grading finer towards the west.

2. Based on the logs from auger holes, wells, and soil pits, the lower limit of the mine wastes in the Smelterville Flats study area was determined to be the top of the river gravel which was generally encountered between five to ten feet (1.5 to 3.1 meters) below the surface.

3. Metal concentrations of the alluvium in the Smelterville Flats study area are not directly dependent on the soil type. One type of soil is a mixture of native alluvium and jig tailings, the coarser size fractions (silt, sand, and gravel). The second type is a mixture of native alluvium and the finer size fraction. The clay, silt, and sand which make up the finer size fraction have two sources; the flotation tailings and the rock powder from the jigging process.

4. A "zone of concentration" of metals was present in the soil of the Smelterville Flats study area. This zone was exhibited by most metals in most of the size fractions and extends six feet (1.8 meters) below the land surface. The lowest concentration for all metals was in the largest size fraction (>2.362). Metal concentrations are generally independent of the size fraction in that each size fraction has high metal concentrations. The smaller size fraction generally has a high percent of concentration for four of the seven metals sampled (Pb, Fe, Mn, and Mg) were in the size fraction .417 to .208 millimeters.

5. Erosion and deposition by the South Fork of the Coeur d'Alene River continues to rework and mix the mine waste along its channel. With time, the water quality of the river will continue to improve with more mine waste being carried farther downstream. This is not a solution, but a transfer of the problem.

6. Several surface ponds exist in the Smelterville Flats study area with each pond having different characteristics: source of water, water quality, plant growth, and degree of hydraulic connection to the upper aquifer.

7. The ground water flow system in the Smelterville Flats study area consists of an upper aquifer, a seperating discontinuous clay layer, and a lower aquifer. Ground water pollution as a result of the mine waste in the study area occurs only in the upper aquifer as the clay layer apparently provides adequate hydraulic seperation of the two aquifers to prevent significant degradation in water quality in the lower aquifer in the vicinity of the Bunker Hill well field. Upstream from the study area, the clay layer probably becomes thinner and sandier, which would facilitate water movement between the two aquifers.

8. The upper aquifer ground water flow system in the Smelterville Flats study area is a dynamic system in that there is recharge, lateral flow, and discharge.

9. Direct recharge from the South Fork of the Coeur d'Alene River to the upper aquifer occurs to the east of the study area and in the eastern portion of the study area.

10. Recharge to the upper aquifer of the ground water flow system occurs from direct precipitation. Surface materials have suf-

ficient permeability to preclude surface runoff during precipitation events provided the water table is below the land surface.

11. Water level contour maps of the potentiometric surface in the upper aquifer of the Smelterville Flats study area indicate the general direction of lateral flow is from east to west. A curving of the contour lines in the western portion of the study area is caused by recharge from the area around the Page Wastewater Treatment Facility and from the facility itself.

12. Based on water level contour maps, the upper aquifer of the ground water flow system in the Smelterville Flats discharges into the South Fork of the Coeur d'Alene River in the western portion of the study area.

13. The ground water quality as measured in individual piezometers is affected predominantly by the mineralogical character of the material in the vicinity of the piezometer screen.

14. The metals enter the ground water flow system by: 1) surface water and precipitation moving down through the "zone of concentration" leaching the metals down to the ground water; or 2) the water table rises and falls through the "zone of concentration" thereby leaching the metals from the reaction site.

15. The total quantity of metals leached and transported through the upper aquifer of the ground water flow system in the Smelterville Flats study area is small compared to the volume of metal transported by the South Fork of the Coeur d'Alene River. The upper aquifer transports 5300 grams per day into the South Fork at a flow of 35,000 gallons per day (1.0×10^5 liters/day) with a zinc concentration of 40 milligrams per liter. This is 0.61 percent of the zinc transported by the South

Fork at the eastern section of the study area during low flow. During high flow the precentage is even less (0.14%).

16. The only physical and chemical factors that may be influenced by reclamation procedures to limit the formation of acid water and the subsequent leaching and transfer of heavy metals from the Smelterville Flats study area are:

- a) the availability of mine waste,
- b) the availability of pyrite in the mine waste,
- c) the availability of oxygen for chemical reactions,
- d) the availability of water as a transporting mechanism, and
- e) the presence of microorganisms that regulate chemical kinetics.

Reclamation procedures were developed based upon these factors.

Recommendations

1. Future work in the Coeur d'Alene Mining District similar to this should spend a great deal of time and thought concerning the data collection network. Possible personnel to consult would be a hydrogeologist, a chemist, and a computer technician. The use of the computer to handle the data collected makes it manditory that a computer technician be consulted in the design of the collection system and the methods of data analysis. The student(s) involved should also be consulted.

2. It is the opinion of this writer that the best method of reclamation for the Smelterville Flats study area and the valley of the South Fork of the Coeur d'Alene River would be to mine as much of the mine waste-alluvial mix as physically and economically possible. Removal of the mine waste is permanent and the metals recovered from the mine wastes would help to defray the cost of reclaiming the land.

3. Data should be collected at each site within the valley to determine the mineral content of the mine waste, the depth of the mine waste and the possible depth to ground water. This information could be used to determine which reclamation method or combination of methods best suits each site. This will also keep the damage to the environment during reclamation at a minimum.

4. A more detailed study of the geochemical and geohydrologic data collected from June, 1977 through September, 1978 should be undertaken. Part of the new study should include a model of the study area to demonstrate ion movement through the system. The model could also be used to test the reclamation procedures.

5. The use of sewage sludge as a fertilizer and treated sewage effluent for irrigation purposes could be used with the reclamation

procedures previously mentioned. The discharge from the Page Wastewater Treatment Facility could be used for irrigation. The crops grown should be native to the valley or as suitable to the environment as possible.

REFERENCES CITED

Anderson, A. L., 1927, Some Miocene and Pleistocene Drainage Changes in Northern Idaho: Moscow, Idaho, Idaho Bureau of Mines and Geology Pamphlet 18, 29 p.

Bunker Hill Company, 1977 and 1978, data and personal communication.

Chaney, F. C., 1959, Geochemical Study of Soil Contamination in the Coeur d'Alene District, Shoshone County, Idaho: New York, American Institute of Mining, Metallurgical and Petroleum Engineers, Society of Mining Engineers of AIME, Transactions Volume 214, p. 120-203.

Clemets, Maidell, 1978, personal communication.

- Cook, E. F., and Others, 1963, The Coeur d'Alene Mining District in 1963: Moscow, Idaho, Bureau of Mines and Geology Pamphlet 133, 104 p.
- Ellis, M. M., 1940, Pollution of the Coeur d'Alene River and Adjacent Waters by Mine Waste: Special Scientific Report 1, U. S. Bureau of Fisheries, 61 p.
- Galbraith, J. H., 1971, A Study of Mine Tailings and Associated Plants and Ground Water in the Coeur d'Alene District, Idaho: Moscow, Idaho, University of Idaho, M. S. Thesis, 138 p.

Gordon, Roger, 1977, personal communication.

- Gross, M., 1979, Reclamation Plans for Abandoned Mill Tailing Impoundments in the South Fork of the Coeur d'Alene River Basin: Moscow, Idaho, University of Idaho, M. S. Thesis.
- Hitt, R. J., 1974, A Short Term Study of the Suitability of Locating a Sewage Lagoon on an Abandoned Tailings Pile: Moscow, Idaho, University of Idaho, M. S. Thesis, 86 p.
- Hobbs, S. W.; Griggs, A. B.; Wallace, R. E.; and Cambell, A. B., 1965, Geology of the Coeur d'Alene District, Shoshone County, Idaho: U. S. Geological Survey Prof. Paper 478, 137 p.
- Ioannou, C., 1979, Distribution, Transport, and Reclamation of Abandoned Mine Tailings Along the Channel of the South Fork of the Coeur d'Alene River and Tributaries, Idaho: Moscow, Idaho, University of Idaho, M. S. Thesis.
- Leopold, L. B.; Wolman, M. G.; and Miller, J. P., 1964, Fluvial Processes in Geomorphology: W. H. Freeman and Company, San Francisco, Calif., 522 p.
- Marcy, D., 1979, The Chemistry of Unconfined Mine Works: Moscow, Idaho, University of Idaho, M. S. Thesis.
- Maxfield, D.; Rodriques, J. M.; Buettner, M.; Davis, J.; Forbes, L.; Kovacs, R.; Russel, W.; Schultz, L.; Smith, R.; Stanton, J.; and Wai, C. M., 1974A, Heavy Metal Pollution in the Sediments of the Coeur d'Alene River Delta: Environmental Pollution, Applied Science Publishers Ltd, England, 6 p.
- Maxfield, D.; Rodriques, J. M.; Buettner, M.; Davis, J.; Forbes, L.; Kovacs, R.; Russel, W.; Schultz, L.; Smith, R.; Stanton, J.; and Wai, C. M., 1974B, Heavy Metal Content in the Sediments of the Southern Part of the Coeur d'Alene Lake: Environmental Pollution, Applied Science Publishers, Ltd, England, 4 p.
- Mink, L. L., 1971, Water Quality of the Coeur d'Alene River Basin 1969, 1970: Moscow, Idaho, University of Idaho, M. S. Thesis, 30 p.
- Mink, L. L., 1972, Evaluation of Settling Ponds as a Mining Wastewater Treatment Facility: Moscow, Idaho, University of Idaho, Ph. D. Dissertation, 143 p.
- Mink, L. L.; Williams, R. E.; and Wallace, A. T., 1971, Effect of Industrial and Domestic Effluents on the Water Quality of the Coeur d'Alene River Basin: Moscow, Idaho, Idaho Bureau of Mines and Geology Pamphlet 149, 130 p.
- Morilla, A. G., 1975, Hydrologic Analysis of an Abandoned Tailings Pile: Moscow, Idaho, University of Idaho, M. S. Thesis, 88 p.
- Norbeck, P. M., 1974, Water Table Configuration and Aquifer and Tailings Distribution, Coeur d'Alene Valley, Idaho: Moscow, Idaho, University of Idaho, M. S. Thesis, 45 p.
- Rabe, R. W.; and Flaherty, D. F., 1974, The River of Green and Gold: Moscow, Idaho, Idaho Research Foundation, Inc., Natural Resource Series, No. 4, 98 p.
- Trexler, B. D. Jr.; Ralston, D. R.; Reece, D. R.: and Williams, R. E., 1975, Sources and causes of Acid Mine Drainage: Moscow, Idaho, Bureau of Mines and Geology Pamphlet 165, 129 p.
- U. S. Environmental Protection Agency, 1976, Manual of Methods for Chemical Analysis of Water and Wastes, Environmental Monitoring and Support Laboratory, Environmental Research Center, Cincinnati, Ohio, 298 p.
- Williams, R. E., 1975, Waste Production and Disposal in Mining, Milling, and Metallurgical Industries: Miller Freeman Publications, Inc., San Francisco, Calif., 489 p.
- Williams, R. E.; Ortman, D.; Mabes, D.; Reece, D.; and Norman, L., 1976, Leakage and Seepage Control from Tailings Ponds: The Bunker Hill Co., Kellogg, Idaho: Moscow, Idaho, University of Idaho, College of Mines.

APPENDIX I Soil Profiles

Hollow Stem Auger

Symbol Explanation

- Ω = Probable type of mine waste in this zone is jig tailings.
- + = Probable type of mine waste in this zone is rock powder and flotation tailings (slimes).

Sample Location Thickness & Number Description of Material (feet) 0. 1 1 2.5 Brown sandy gravel. 2 3 2 2.5 Light brown silty sand and gravel. 4 Depth in Feet Split spoon sample. 5 5 5.0 - 5.8' Dark brown to black sand and gravel. 6 3 2.5 Light brown silty sand and gravel. 7 -8 4 2.5 Light brown silty sand and gravel. 9 Split spoon sample. 10-8

Alluvial Profiles of the Smelterville Flats

Station No.: AX Date: Ju Construction Method: Hollow stem auger July 8, 1977 Depth: 20 feet

Station No.: AX Date: July 8, 1977 Depth: 20 feet Construction Method: Hollow stem auger Construction Method: Hollow stem auger Sample Location Thickness & Number (feet) Description of Material 0 -1 1 Dark brown silty sand and small gravel, Ω 2.5 loose, wood. 2 3 · 2 Ω 2.5 Reddish brown silty sand, cohesive. 4 **Depth** in Feet Split spoon sample. 5 5 5.0 - 5.3' 5.3 - 5.6' Brown silt. Gray sand. 5.6 - 5.7' Brown silt. 5.7 - 6.1' 6.1 - 6.5' Red silt sand and gravel. 6 Gray sand. 3 Ω 2.5 Dark gray brown silty sand, cohesive. ? 8 -4 Dark gray brown silty sand, cohesive. Ω 2.5 g. Split spoon sample. 10-8

Alluvial Profiles of the Smelterville Flats

Station No.: 1X Date: July 8, 1977 Depth: 20 feet

Station No.: 1X Date: July 8, 1977 Depth: 20 feet Construction Method: Hollow stem auger

16

Depth: 20 feet Date: July 6, 1977 Station No.: 2X Construction Method: Hollow stem auger Sample Location Thickness Description of Material & Number (feet) 0 1 1 Ω 2.5 Brown silty sand with reddish brown lenses, loose. 2 3 -2 Ω 2.5 Brown silty sand, cohesive. 4 Depth in Feet Split spoon sample. 5.0 - 6.0' Brow 5 5 Brown gravel with a silty clay interbed. 6 3 2.5 Brown silty sand, cohesive. Ω 7. 8-4 2.5 Light brown sandy gravel. 9 Split spoon sample. 10 8

Alluvial Profiles of the Smelterville Flats

Station No.: 2X Date: July 6, 1977 Depth: 20 feet Construction Method: Hollow stem auger

Station No.: 3X Date: July 6, 1977 Depth: 20 feet Construction Method: Hollow stem auger

Station No.: 3X Date: July 6, 1977 Depth: 20 feet Construction Method: Hollow stem auger

1 10

Construction Method: Hollow stem auger Sample Location Thickness & Number (feet) Description of Material 0 4 1 1 Reddish brown silty sand with a few 3 2.5 gravels, loose. 2 3 2 2.5 Brownish red silty sand, dense, cohesive. Ω 4 Depth in Feet Split spoon sample 5 5 5.0 - 5.5' Dark gray sand. Dark gray silt. 5.5 - 5.9' 5.9 - 6.2' Dark gray sand. 6.2 - 6.5' Red stained gravel. 6 Gray brown silty sand, cohesive, dense. 3 Ω 2.5 7. 8 4 2.5 Brown silty sand with red staining, loose. 9. Split spoon sample. 10-8 -

Alluvial Profiles of the Smelterville Flats

Date: July 6, 1977

Depth: 20 feet

vial Profiles of the Smelterwi

Station No.: 4X

1 11

Station No.: 4X Date: July 6, 1977 Depth: 20 feet Construction Method: Hollow stem auger

Sample Location Thickness & Number (feet) Description of Material 0. 1 1 Ω 2.5 Dark brown silty sand and gravel. 2 3 -2 Brown sand and gravel. 2.5 4 Depth in Feet Split spoon sample. 5.0 - 5.6' Brow 5 -5 Brown silty sand and gravel. 6 -3 2.5 Brown silty sand and gravel. 7 -3-4 2.5 Brown silty sand and gravel. .9-10 8

Alluvial Profiles of the Smelterville Flats

Station No.: 6X Date: July 5, 1977 Depth: 20 feet Construction Method: Hollow stem auger

٠

Station No.: 6X Date: July 5, 1977 Depth: 20 feet Construction Method: Hollow stem auger

Station No.: 7X Date: July 5, 1977 Depth: 20 feet Construction Method: Hollow stem auger

Station No.: 7X Date: July 5, 1977 Depth: 20 feet Construction Method: Hollow stem auger

Station No.: 8X Date: July 5, 1977 Depth: 20 feet Construction Method: Hollow stem auger Sample Location Thickness Description of Material & Number (feet) 0. Brown small gravel with some sand, (less than .25'). 1 2.5] 2 -3 . Brown small gravel with some sand, (less than .25'). 2 2.5 4 Depth in Feet Split spoon sample. 5 5 5.0 - 6.0' Brown silty sand and gravel. 6 2.5 3 Brown silty sand, loose, soil like in texture. 7 -8 2.5 4 Brown silty sand and gravel. 9 Split spoon sample. 10-8

Alluvial Profiles of the Smelterville Flats

Station No.: 8X Date: July 5, 1977 Depth: 20 feet Construction Method: Hollow stem auger

Station No.: 9X Date: July 5, 1977 Depth: 20 feet Construction Method: Hollow stem auger

1 19

Station No.: 9X Date: July 5, 1977. Depth: 20 feet Construction Method: Hollow stem auger

		Sample Locati & Humb	on oer	Thickness (feet)	Description of Material
Depth in Feet	ر ٥		<u> </u>		
] -	1		2.0	Dark brown silty sand and gravels, loose.
	2 -		4-3- (
	3 -	2		1.5	Medium brown silty sand, loose, cohesive.
	4 -	. 11	 †	1.5	Dark gray silty clay, cohesive.
	5 -	5			Split spoon sample 5.0 - 5.5' Gray brown silt.
	6 -	3	+	2.5	5.5 - 6.0' Brown sandy gravel. Gray silty clay.
	7-				
	8-	-			
	9 -	4	Ω	2.5	Brown gray silt with a few gravels.
		8 -			Split spoon sample.

.

Alluvial Profiles of the Smelterville Flats

Station No.: AY Date: July 8, 1977 Depth: 20 feet

Station No.: AY Date: July 8, 1977 Depth: 20 feet Construction Method: Hollow stem auger

Station No.: 1Y Date: July 8, 1977 Depth: 20 feet Construction Method: Hollow stem auger

.

Station No.: 1Y Date: July 8, 1977 Depth: 20 feet Construction Method: Hollow stem auger

		Sample Location & Number	Thickness (feet)	Description of Material
Depth in Feet	<mark>ر</mark> ٥			
	2	1	2.5	Brown silty sand, loose, roots.
	3 - 4 -	2	Ω 2.5	Gray brown silty sand, cohesive, roots.
	5 -	5 —		Split spoon sample. 5.0 - 5.8' Brown sandy gravel, wood.
	6 - 7 -	3	2.5	Light brown silty sand, some gravels, roots.
	8- 9-	4	2.5	Light brown silty sand, some gravels, roots.
	10-	8		Split spoon sample.

.

Alluvial Profiles of the Smelterville Flats

Station No.: 2Y Date: July 7, 1977 Depth: 25 feet Construction Method: Hollow stem auger

Station No.: 2Y Date: July 7, 1977 Depth: 25 feet Construction Method: Hollow stem auger

Sample Location Thickness & Number (feet) Description of Material 0 1 1 2.5 Brown silty sand with a few gravels, loose, roots. 2 3 2 2.5 Brown silty sand, some iron staining, pieces of wood. 4 Depth in Feet Split spoon sample. 5 5 5.0 - 5.8' Brown silty sand and gravel. 6 3 2.5 Brown silty gravel, pieces of wood. 7. 8. 4 Brown silty gravel. 2.5 9 Split spoon sample. 8 10-

.

Alluvial Profiles of the Smelterville Flats

Station No.: 3Y Date: July 7, 1977 Depth: 20 feet Construction Method: Hollow stem auger

Station No.: 3Y Date: July 7, 1977 Depth: 20 feet Construction Method: Hollow stem auger

Station No.: 5Y Date: July 7, 1977 Depth: 20 feet Construction Method: Hollow stem auger

Station No.: 5Y Date: July 7, 1977 Depth: 20 feet Construction Method: Hollow stem auger

		Sample Location & Number	Thickness (feet)	Description of Material
	٦٩			
	1 -	1	Ω 1.7	Reddish brown silty sand and gravel, loose.
	2 -	2	† 1.8	Gray brown silty clay, cohesive.
	3 -			
Feet	4 -	2A	2.5	Light brown silty sand and gravel.
Depth in	5 -	5		Split spoon sample. 5.0 - 6.5' Red silty sand and gravel with wood.
	6 -			
	7 -	3	2.5	Brown sandy gravel.
	8-			
	9-	4	2.5	Brown sandy gravel.
		o		Split spoon sample.

Station No.: 6Y Date: July 7, 1977 Depth: 50 feet Construction Method: Hollow stem auger

Station No.: 6Y Date: July 7, 1977 Depth: 50 feet Construction Method: Hollow stem auger

Station No.: 6Y Date: July 7, 1977 Depth: 50 feet Construction Method: Hollow stem auger

÷

Station No.: 6Y Date: July 7, 1977 Depth: 50 feet Construction Method: Hollow stem auger

Station No.: 6Y Date: July 7, 1977 Depth: 50 feet
Station No.: 7Y Date: July 6, 1977 Depth: 20 feet Construction Method: Hollow stem auger

Station No.: 7Y Date: July 6, 1977 Depth: 20 feet Construction Method: Hollow stem auger

Station No.: 8Y Date: July 6, 1977 Depth: 20 feet Construction Method: Hollow stem auger

•

		Sample Locatio & Numbe	n r	Thickness (feet)	Description of Material
	0 -	-		•	
] -		Ω	0.9	Red silty sand, loose.
		11	†	0.9	Light brown silty clay.
	2 -				
	3 -	12	+	1.4	Dark gray silty clay.
	1 4 ·	2	÷	1.8	Dark gray silty clay, some brown silt.
ch in Fe	- 11 11 5	- 5 -			Split spoon sample.
(nep				lenses of silt and sand.
	6 -	3		2.5	Dark brown silty sand.
	7 -				
	8-	-			
	0	4		2.5	Brown silty sand, gravels near the bottom.
	5				
	10-	J 8 -			Split spoon sample.

Station No.: 8Y Date: July 6, 1977 Depth: 20 feet Construction Method: Hollow stem auger

1 40

Alluvial Profiles of the Smelterville Flats

Station No.: 9Y Date: July 6, 1977 Depth: 20 feet Construction Method: Hollow stem auger.

Station No.: 10Y Date: July 6, 1977 Depth: 20 feet Construction Method: Hollow stem auger

Station No.: 10Y Date: July 6, 1977 Depth: 20 feet Construction Method: Hollow stem auger

Backhoe

Symbol Exp;anation

- $\Omega~$ = Probable type of mine waste in this zone is jig tailings.
- t = Probable type of mine waste in this zone is rock powder and flotation tailings (slimes).

construction Methoa:			nod:	Backhoe,	dug to repair water line.		
		Sample Locatic & Numbe	on er	Thickness (feet)	. Description of Material		
	⁰ ٦	_					
	ן ן	7 6		1.0	Brown silty sand grades into light brown sand.		
		5	<u></u>	1.0	Dark to light brown silty sand and gravel.		
	2 -	4 -					
		3 -	†	0.5	Dark gray silty clay.		
	3 -	2	Ω	0.7	Dark brown silty sand.		
ı Feet	4 -	1	†	<u> </u>	Light gray silty clay.		
Depth i	5 -						
	6 -						
	7 -						
	8-						
	9-						
	107						

1 45

Alluvial Profiles of the Smelterville Flats

Station No.: 1A Date: June 21, 1977 Depth: 3.7 feet Construction Method: Backhoe, dug to repair water line.

Stat Cons	tion is struct	lo.: 1E tion Me	3 thod:	Da Backhoe,	te: June 21, 1977 Depth: 4.5 feet dug to repair water line.		
		Sample Locat & Numl	e ion ber	Thickness (feet)	Description of Material		
	ר 0						
		7		0.9	Reddish brown to dark brown sand.		
	1 -	6	+	0.4	Gray silty sand.		
	2 -	5	÷	0.8	Light red to tan silty sand.		
		4	+	0.3	Light gray silty clay.		
	3 -	3	+	0.6	Light red to tan silty sand.		
د	4 -	2	Ŧ	1.2	Dark gray silty clay, organics.		
epth in Fee	5 -	1	+		Light gray silty clay.		
	6 -						
	7 -						
	8-						
	9 -						
	10						

•

Alluvial Profiles of the Smelterville Flats

St Cc

· *

Station No.: SP-1 Date: October 1, 1977 Depth: 9.7 feet Construction Method: Soil pit - Backhoe.

	Sample Locatior & Number		Thickness (feet)	Description of Material
ר 0	20 —			
	19	ß	1.3	Dark gray to black silty sand and gravel, lenses of dark red sand, tree limbs.
	18			
2 -	17 16	Ω	1.5	Light red sand with a few pebbles, cross bedding, pebble lenses.
	15			
3 -	13			
	13	Ω		Red silty sand, dense, with purple crystal layers (small) which lay parallel and perpendicular to bedding, lenses of organic material.
teet-	12		2.3	
l in F	11			
)eptl	10 —			
	9			Gray brown silty sand with lenses of
D	8		2.8	
7-	7			organie materiar, rino at 7.4 reet.
	O			
8-	5	•		
Ũ	4		0.3	Gray brown sand, some iron staining.
9 -	3			Rnown cilty cand and lawse securit incom
-	2			staining.
10-	1			

.

Station No.: SP-2 Date: October 1, 1977 Depth: 7.9 feet Construction Method: Soil pit - Backhoe.

		Sample Locati & Numb	on er	Thickness (feet)	Description of Material
	ך ٥				
	1 -			1.4	Dark gray to black silty sand and gravel, lenses of red sand, roots and limbs.
	2 -	3	Ω	0.7	Orange-red medium dense silt to sand, coarser towards the top, alot of roots, poor lateral continuity.
	3 -	2		2.3	Brown medium dense silty sand, pockets of red-yellow to charcoal color around pieces of wood.
eet	4 -				· · ·
Depth in F	5 -	1			Light gray to light brown sand and gravel with pockets of iron staining and roots.
	0				
	7 -				
	8-				
	9-				
	10				

•

	Sample Locatio & Numbe	n T r	hickness (feet)	· Description of Material
07			0.3	Reddish brown silty sand.
] –	9 8	+	1.2	Tan sand and gray silty clay, organics.
2 -		+	0.9	Red dense sand, sparse organics.
3 -	5	+	0.8	Dark gray silty clay, tree limbs, thickness varies drastically.
Feet - 5	4 3 2			Brown silty sand and gravel, irregular thickness, significant lenses of iron staining.
Depth in	1			
6				
7-			Sample 7A	Deep red to purple - appears to be concentration gradient from medium red to purple at center.
			Sample 8	Sample for oxidation test by drying.
8-			Sample 11	Extra red concentration on opposite sid from sample profile, color appears to b mainly on rock surface, at about 3 feet deep.
9 -				

.

Alluvial Profiles of the Smelterville Flats

Station No.: SP-3 Date: October 1, 1977 Depth: 5.3 feet Construction Method: Soil pit - Backhoe.

Soil pit - Backhoe. Sample Location Thickness & Number (feet) Description of Material 0. 12 0.3 Medium red to dark brown silty sand. Brown sand and medium to light gray silty 11 + 0.8 clay, pockets or iron staining, organic material. 1 10 Tan to light gray silty sand, pockets of 9 1.1 + iron staining, organics. 2 8 Dark gray silty clay, fine black organic 7 + 1.1 material, few large roots. 3 6 5 4 Depth in Feet Medium gray silty sand, small amounts of 4 2.3 iron staining, small roots and other + organic matter. 3 5 2 1 Brown sandy gravel. 6 7. The bottom gravel layer appears to be an artesian aquifer due to considerable inflow of water 8 into the soil pit after penetrating the gravel layer. Water level was at a depth of 4.6 feet. 9 10

Alluvial Profiles of the Smelterville Flats

Station No.: SP-4 Date: October 1, 1977 Depth: 5.7 feet Construction Method: Soil pit - Backhoe.

Station No.: SP-5 Date: October 2, 1977 Depth: 6.0 feet Construction Method: Soil pit - Backhoe, river bank.

Sample Location Thickness & Number (feet) Description of Material 0 Reddish brown to medium dark brown silty 0.9 sand and gravel, organic material. 1 1.1 Brown transitional sand and gravel. 2 4 Light to medium brown sand which grades 1.4 Ω coarser upward. 3 Band of prominant iron staining on silty 3 4 0.4 clays, organic material. 4 Depth in Feet 5 Gray silty clay with pockets of iron staining, large gravel lense at a \dagger 3.7 depth of 5.5 feet, roots. 6 2 1 7 -8 9 Gray silty clay with gravels increasing + 2.4 in amount towards the bottom. 10

Alluvial Profiles of the Smelterville Flats

Station No.: SP-6 Date: October 2, 1977 Depth: 11.0 feet Construction Method: Soil pit - Backhoe.

Station No.: SP-6 Date: October 2, 1977 Depth: 11.0 feet Construction Method: Soil pit - Backhoe.

Construction Method: Soil pit - Backhoe. Sample Location Thickness & Number (feet) Description of Material 0 0.7 Dark brown sandy silt, organic material.] Light brown to reddish brown sand silt, Ω 0.8 very dense, iron staining. 2 0.4 Dark to medium brown silty sand, loam. 2 3 3 1 2.5 Light brown silty sand, organic matter. 4 Depth in Feet 5 Brown sandy gravel, small pockets of iron staining. 6 SP-7 3 Special sample, black and red material platted onto the surface of rocks, sample 7. is from near the bottom. 8 9 10

Alluvial Profiles of the Smelterville Flats

Station No.: SP-7 Date: October 2, 1977 Depth: 5.2 feet

Station No.: SP-8 Date: October 2, 1977 Depth: 7.8 feet Construction Method: Soil pit - Backhoe.

Shovel

Symbol Explanation

- $\Omega~$ = Probable type of mine waste in this zone is jig tailings.
- + = Probable type of mine waste in this zone is rock powder and flotation tailings (slimes).

1 59

Station No.: 6Y Date: June, 1977 Depth: 2.6 feet

Station No.: 8Y Date: June, 1977 Depth: 5.0 feet Construction Method: Soil pit - shovel

Station No.: 9Y Date: June, 1977 Depth: 3.1 feet Construction Method: Soil pit - shovel Sample Location Thickness & Number (feet) Description of Material ņ, 0 Reddish brown silty sand and gravel, 3 gravel less than .25', sample 2, iron staining. Black stain from Ω 1.4 1 2 .5 - .7', sample 3. 2 1 1.7 Brown fine sand, iron staining at the top, some wood at the bottom. 3 Brown silty sand and gravel. 4 Depth in Feet 5 6 7. 8 9. 10-

Alluvial Profiles of the Smelterville Flats

Date: August, 1977 Depth: 3.0 feet Station No.: 9W

Station No.: 10W Date: August, 1977 Depth: 6.5 feet Construction Method: Soil pit - shovel.

		Sample Locat & Num	e ion ber	Thickness (feet)	Description of Material
	٦				
		6		0.7	Brown silty sand.
	1 -	5	Ω	0.4	Gray silty sand and gravel.
	2 -	4	Ω	1.1	Red silty sand and gravel.
		3	+	0.2	Brown to gray to red silt.
	3 -	2	†	0.8	Gray silty clay, leaves, with black organic layer at the bottom.
Depth in Feet	4 -	1			Brown silty sand and gravel.
	5 -				
	6 -				
	7-				
	8-				
	9-				
	101				

Station No.: 11W Date: August, 1977 Depth: 4.0 feet Construction Method: Soil pit - shovel.

	Sample Location & Number	ן ר	Thickness (feet)	Description of Material
0]				
	1	Ω	0.8	Brown silty sand with dark red lenses.
1 -	2	†	0.6	Red silty sand & gray silty clay.
2 -	6	+	0.6	Red and gray silt layers, dense, wood.
3 -	4	†	1.4	Gray brown silty sand.
4 -	5			Brown silty sand and gravel.
5,-			·	
6 -				
7 -				
8-				%
9-				

-

Stat Cons	ion N truct	lo.: 13 ion Metl	W hod:	Da Soil pit -	te: August, 1977 Depth: 6.0 feet - shovel.
		Sample Locatio & Numbo	on T er	hickness (feet)	Description of Material
	0 -				
	1 -	6	Ω	1.1	, Dark red brown silty sand, degree of red varies, dense.
	2 -	5	+	1.4	Brownish red silty sands with lenses of gray silty clays and organics.
		4	+	0.5	Dark gray silt.
	3 -	3	Ŧ	0.2	Brown silt.
		2	+	0.3	Dark gray silt.
pth in Feet	4 - 5 -	1	+	а, улоница, на Аларија, уде у ла	Light gray silty sand with reddish
De	6 -	•			brownspots, very dense.
-	7 -				
	8-				
	9-				
	10				

Date: August, 1977 Depth: 5.0 feet Station No.: 14W

Station No.: P-21 Date: July 22, 1978 Depth: 3.6 feet Construction Method: Soil Pit - shovel

Station No.: 2Z Date: August, 1977 Depth: 6.0 feet Construction Method: Soil pit - shovel, river bank.

Alluvial Profiles of the Smelterville Flats

Date: August, 1977 Depth: 6.0 feet Station No.: 3Z

		Sample Locatio & Numbe	on er	Thickness (feet)	Description of Material
	ר 0	-			
		1		1.2	Gray silty sand and gravel.
	1 -	-		······	
		2	Ω	0.8	Red silty sand, wood, and leaves.
	2	3	Ω	1.0	Brown silty sand and gravel.
	3 -	-	Ω	0.5	Brown gravel, some silt and sand.
ı Feet	4 -	4	Ω	1.0	Brown silty sand with red stained gravel.
Depth ir	5	5			Brown silty sand and gravel.
	6 -				
	7 -				
	8-				
	9-				
	10-				

Alluvial Profiles of the Smelterville Flats

Station No.: 4Z Date: August, 1977 Depth: 5.5 feet Construction Method: Soil pit - shovel, river bank. APPENDIX II

Soil Chemistry

Sam	ple	Depth Below	0/ F	Percent			Concentratio	uns in Parts Pe	er Million		
Site	No.	(feet)	Size Fraction (mm)	of Sample by Weight	Cd	Zn	Pb	Fe	Mn	Ca	Ma
SP-1	1	9.7	> 2.362	57		550	3/1	21 000			
			2.362 > to > .417	29	2 4	520	J4 40	21,000	94	180	1,500
			.417 > to > .208	9	5.6	800	40	12,000	95	330	1,800
			.208 > to > .075	3	14	1 400	220 920	12,000	170	390	1,900
			.075 >	2	20	3,300	1,900	22,000	480 660	490 860	1,900 2,400
SP-1	2	9.2	> 2.362	76	7.8	390	19	16.000	95	130	3 400
			2.362 > to > .417	13	10	470	52	11.000	91	270	3,400
			.417 > to > .208	7	9.9	690	25	14,000	86	320	2 000
			.208 > to > .075	3		1,100	46	17.000	110	320	2,000
			.075 >	1	2.6	2,600	190	36,000	230	670	2,500
SP-1	3	8.7	> 2.362	70	6.2	12	10	2,900	21	90	41
			2.362 > to > .417	25		621	41	29,900	84	248	2.400
			.417 > to > .208	2		586	40	22,100	99	590	2,100
			.208 > to > .075	2		1,200	110	23,000	110	360	1.800
			.075 >	1		3,200	180	58,200	400	520	2,200
SP-1	4	8.2	> 2.362	1	122	37,500	170	8,300	810	2.400	1 400
			2.362 > to > .417	21	2.8	6,100	58	13,000	180	720	1,400
			.417 > to > .208	42		2,200	25	7,900	120	410	2 100
			.208 > to > .075	27		3,000	57	8,700	120	430	2,100
			.075 >	10	2.5	5,800	150	13,000	190	690	2,300
SP-1	5	7.7	> 2.362	1	No Sample						
			2.362 > to > .417	10	150	20,000	140	5,200	650	1 100	2 100
			.417 > to > .208	22	34	6,300	130	5,100	240	580	2,100
			.208 > to > .075	39	31	5,600	65	5,300	180	580	2,000
			.075 >	29	72	9,800	100	6,200	210	770	2,500

Appendix II. Soil chemistry data, Smelterville Flats study area.

Sa	mple	Depth Below	Sizo Exaction	Percent			Concentratio	ns in Parts P	er Million		
Site	No.	(feet)	(mm)	of Sample by Weight	Cd	Zn	Pb	Fe	Mn	Ca	Mg
SP-1	6	7.2	> 2.362	.3	No Sample		- -				
			2.362 > to > .417	4	95	24,000	117	4,900	630	1,200	2.200
			.417 > to > .208	15	9	4,700	50	6,600	150	470	2,400
			.208 > to > .075	50	2.8	3,400	39	5,600	100	310	2,100
			.075 >	30	8.2	6,000	75	7,000	160	500	2,300
SP-1	7	6.7	> 2.362		No Sample						
			2.362 > to > .417	3	65	11,000	120	7,500	490	700	2,500
			.417 > to > .208	9	32	8,600	120	11,000	290	860	3,500
			.208 > to > .075	50	2.8	3,600	54	6,700	130	310	2,100
			.075 >	38	14	5,800	100	8,100	200	590	2,400
P-1 8	6.2	> 2.362	1	No Sample							
			2.362 > to > .417	6	1,060	9,600	140	8,100	750	760	2,400
			.417 > to > .208	23	170	2,700	42	7,500	190	270	2,200
			.208 > to > .075	47	130	2,400	37	6,900	140	270	2.100
			.075 >	23	247	4,400	95	9,300	240	490	2,500
5P-1	9	5.7	> 2.362		No Sample						
			2.362 > to > .417	2	120	3,800	110	8,600	480	520	2.700
			.417 > to > .208	13	95	2,850	90	8,500	330	423	2.470
			.208 > to > .075	56	25	1,300	37	6,500	120	240	1,900
			.075 >	28	67	3,000	100	9,000	250	500	2,500
P-1	10	5.2	> 2.362	2	7,800	26,900	24,900	1,800	3,100	760	980
			2.362 > to > .417	14	85	3,800	6,800	11,000	1,300	550	2.500
			.417 > to > .208	10	83	3,800	7,360	12,000	1,100	601	2,730
			.208 > to > .075	36	40	2,600	3,900	10,000	610	410	2,500
			.075 >	38	43	3,000	4.450	13.000	710	560	2 700

Appendix II. Cont'd

Sam	ple	Depth Below		Percent			Concentratio	ns in Parts P	er Million		
Site	No.	L.S.D. (feet)	Size Fraction (mm)	of Sample by Weight	Cd	Zn	РЬ	Fe	Mn	Ca	Mg
SP-1	11	4.7	> 2.362	1	45	9,300	96,8 00	148,000	7,480	740	2,400
			2.362 > to > .417	11	40	8,500	106,000	135,000	18,800	600	2,300
			.417 > to > .208	20	24	5,700	60,900	95,60 0	7,980	530	2,300
			.208 > to > .075	39	34	4,700	38,900	73,600	5,700	490	2,300
			.075 >	29	41	8,100	42,900	122,000	7,670	630	2,200
SP-1	12	4.2	> 2.362	1	31	12,000	99,000	194,000	6,700	780	2,600
			2.362 > to > .417	14	40	11,000	96,900	168,000	5,770	700	2,400
			.417 > to > .208	10	33	9,200	98,800	161,000	7,570	770	2,900
			.208 > to > .075	29	25	7,100	71,800	147,000	7,310	740	3,000
			.075 >	46	35	10,000	53,200	157,000	5,800	740	2,600
SP-1	13	3.7	> 2.362	1	47	13,000	91,600	185,000	2,700	390	740
			2.362 > to > .417	13	48	10,000	96,900	152,000	4,800	410	660
			.417 > to > .208	11	39	9,200	111,000	139,000	11,000	430	790
			.208 > to > .075	28	26	7,200	78,000	110,000	7,120	390	9 20
			.075 >	47	33	8,800	53,300	133,000	5,230	410	950
SP-1	14	3.2	> 2.362	1	No Sample						
			2.362 > to > .417	2	160	10,000	85,200	120,000	9,770	1,100	1,800
			.417 > to > .208	6	69	7,700	94,700	137,000	7,630	820	2,000
			.208 > to > .075	48	20	4,500	60,700	87,800	3,300	550	1,600
			.075 >	44	35	7,300	51,200	132,000	3,000	610	1,700
SP-1	15	2.7	> 2.362	12		470	1,200	23,000	2,400	410	820
			2.362 > to > .417	36	15	1,300	3,580	65,000	6,940	1,000	2,200
			.417 > to > .208	18	110	13,000	20,000	179,000	18,900	2,300	6,700
			.208 > to > .075	30	260	32,000	28,100	211,000	23,000	2,700	7,000
			.075 >	5	230	24,000	53,800	202,000	19,200	2,200	5,800

-

Sam	hje	Depth Below		Percent			Concentratio	ons in Parts I	Per Million		
Site	No.	(feet)	Size Fraction (mm)	of Sample by Weight	Cd	Zn	РЬ	Fe	Mn	Ca	Mg
S₽-1	16	2.2	> 2.362	47	4.7	520	950	55,500	4,400	620	1,400
			2.362 > to > .417	25	20	2,700	19,000	182,000	20,000	2,500	6,700
			.417 > to > .208	11	91	11,000	23,000	219,000	24,100	2,900	8,100
			.208 > to > .075	12	130	16,000	26,100	211,000	23,000	2,500	7,900
			.075 >	6	38	7,000	33,800	182,000	16,400	1,900	6,000
SP-1	17	1.7	> 2.362	18	2.5	1,700	850	30,000	950	550	5,000
			2.362 > to > .417	8	5.6	2,500	13,000	70,600	7,660	2,000	4,200
			.417 > to > .208	18	70	12,000	16,000	227,000	29,400	2,800	8,400
			.208 > to > .075	49	130	18,000	21,000	220,000	23,000	2,500	7,200
			.075 >	6	220	32,900	55,700	214,000	18,200	2,000	5,800
SP-1	18	1.2	> 2.362	73	2	380	430	6,900	490	260	1,300
			2.362 > to > .417	19	13	1,500	1,200	30,000	2,900	590	3,000
			.417 > to > .208	2	30	4,900	9,900	133,000	12,600	1,100	2,200
			.208 > to > .075	5	52	7,500	11,000	170,000	17,700	1,500	2,500
			.075 >	2	56	8,700	13,000	142,000	12,800	1,400	2,100
SP-1	19	.7	> 2.362	63		270	470	4,300	270	290	2,000
			2.362 > to > .417	23	2.5	760	1,900	53,300	3,300	560	2,100
			.417 > to > .208	8	25	4,400	6,500	96,900	7,280	890	2,200
			.208 > to > .075	6	61	8,600	11,000	213,000	20,900	1,200	2,400
			.075 >	1	75	11,000	15,000	174,000	17,900	1,400	2,600
SP-1	20	0.0	> 2.362	65	1.9	210	1,400	19,000	110	96	840
			2.362 > to > .417	16	60	11,000	2,000	31,000	1,600	500	1,500
			.417 > to > .208	5	34	4,200	7,500	91,100	8,960	780	2,300
			.208 > to > .075	9	64	7,100	15,000	174,000	16,500	730	2,600
			.075 >	5	87	8,000	15,012	123,000	11,900	770	2,300

Sam	ple	Depth Below		Percent	·····	·····	Concentrati	ons in Parts I	Per Million		
Site	No.	(feet)	Size Fraction (mm)	of Sample by Weight	Cd	Zn	РЬ	Fe	Mn	Ca	Mg
SP-2	ı	5.5	> .180	97		500	650	19,000	550	300	1.600
			.180 >	3	41	1,500	2,100	24,000	1,500	240	3,000
SP-2	2	2.9	> .180	18	39	1,000	250	21,000	950	620	3 300
			.180 >	82	35	1,100	240	21,000	630	540	3,300
SP-2	3	1.8	> .180	13	53	6,000	47,100	90.700	22,200	1 100	3 000
			.180 >	87	47	9,000	41,900	152,000	10,200	1,200	3,800
SP-2	4	.7	> .180	88	88	12.000	27.000	149 000	16 400	1 400	2 600
			.180 >	12	200	31,100	33,600	251,000	23,400	1,400	2,800
SP-3	1	4.8	> .180	99	5 2	210	160	12 000			
			.180 >	1	26	1,500	3,530	23,000	6,600	300	2,100
SP-3	2	4.3	> .180	98	25	, 210	100	10,000			_,
			.180 >	2	16	1,700	2,200	28,000	350 3.100	300	1,000
SP-3	3	3.8	> .180	85	47	200	200	10,000	000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2,000
			.180 >	15	10	1,300	280 770	23,000	380 570	390 850	1,700
SP-3	4	3.3	> .180	89	A 7	470	660	16,000		000	2,200
			.180 >	11	8.9	470	660 1,300	16,000 29,000	640 570	390 920	1,900
SP-3	5	2.8	> .180	7	205	25 000	50,000	,		520	2,100
			.180 >	93	226	25,000	58,000 45,800	88,000 93,700	6,880 9,200	2,300	3,400
SP-3	6	2.3	> 100	24	120		,	55,750	3,200	3,200	4,100
-	ũ	L .J	.180 >	24 76	130 190	15,000 20,000	29,900 32 100	115,000 87,600	7,200	1,700	4,200
SP-3	6	2.3	.180 > > .180 .180 >	93 24 76	226 130 190	29,300 15,000 20,000	45,800 29,900 32,100	93,700 115,000 87,600	9,200 7,200 8,650	3,2 1,7 2,5	200 700 500

Sam	ple	Depth Below		Percent			Concentratio	ons in Parts F	Per Million		
Site	No.	(feet)	Size Fraction (mm)	of Sample by Weight	Cď	Zn	Pb	Fe	Mn	Ca	Mg
SP-3	7	1.8	> .180	27	52	6,400	14.000	67,000	2.100	1 100	4 400
			.180 >	73	44	7,000	19,000	124,000	9,460	1,300	4,000
SP-3	8	1.3	> .180	16	484	15,000	32,900	91,000	8,830	2,600	4.600
			.180 >	84	396	15,000	29,500	96,400	9,360	2,600	4 ,800
SP-3	9	,8	> .180	6	190	13,000	31,300	46,900	5,850	1,600	2,800
			.180 >	94	59	6,900	18,000	118,000	12,000	1,800	4,970
SP-3	10	0.0	> .180	4	63	6,300	12,000	37,000	7,300	890	2,100
			.180 >	96	90	12,000	19,000	132,000	13,400	1,800	5,000
SP-3	11	2.0	> .180	9 8		270	260	14,000	200	220	820
<u> </u>			.180 >	2	26	2,600	4,230	211,000	9 90	780	1,100
SP-4	1	5.7	> .180	90	2.1	350	290	7,400	78	193	990
			.180 >	10	19	3,300	2,800	32,000	1,800	830	2,600
SP-4	2	5.2	> .180	17		1,100	97	8,700	150	820	2,500
			.180 >	83		9 60	85	9,900	170	990	3,200
SP-4	3	4.7	> .180	16	2.5	790	86	8,9 00	140	690	2,500
			.180 >	84		850	89	9,400	160	710	2,400
SP-4	4	4.2	> .180	13		2,800	210	26,000	862	880	2,500
			.180 >	87		1,800	100	14,000	210	800	2,400
SP-4	5	3.7	> .180	25	21	2,400	68	10,000	180	760	2,300
			.180 >	75	4.9	2,100	68	11,000	180	730	2,300

Sam	ple	Depth Below	Cite Further	Percent			Concentrati	ons in Parts I	Per Million		
Site	No.	(feet)	Size Fraction (mm)	of Sample by Weight	Cd	Zn	Pb	Fe	Mn	Ca	Mg
SP-4	6	3.2	> .180	40	**	5,000	78	14.000	420	1 000	2 600
			.180 >	60		3,800	96	14,000	294	1,300	2,500
SP-4	7	2.7	> .180	63	9.5	15,000	11,000	25,000	2,100	1 900	2 700
			.180 >	37	9	12,000	15,000	39,000	2,900	2,500	3,000
SP-4	8	2.2	> .180	50	1,600	39,900	63,600	99,800	9,200	2 800	4 100
			.180 >	50	380	42,400	47,100	139,000	13,400	2,800	5,500
SP-4	9	1.7	> .180	26	93	9,300	35,300	124.000	13,200	2.400	5 500
			.180 >	74	219	30,900	33,700	162,000	16,600	2,900	6,100
SP-4	10	1.2	> .180	4	540	13,200	56,800	113,000	10,300	1.650	3 430
			.180 >	96	120	17,900	30,900	149,000	15,000	2,000	4,660
SP-4	11	.7	> .180	22	94	9,000	37,000	105,000	12.700	1.500	4 200
			.180 >	78	94	10,000	24,600	158,000	16,200	2,000	5,100
SP- 4	12	.2	> .180	14	66	8,300	15,000	87,600	12,600	1.200	3 600
			.180 >	86	65	10,000	19,000	175,000	18,000	1,900	5,100
SP-6	1	6.9	> .180	30	5.6	5.100	110	7 100			
			.180 >	70	6.9	5,300	120	6,900	240	850 850	2,900
SP-6	2	6.3	> .180	21	16	2.800	480	34 000	950	720	2 000
			.180 >	79	15	2,900	400	29,000	460	730 780	3,000 2,900
SP-6	3	3.8	> .180	12	440	13,000	113 000	106 000	F 700	1 600	1,000
			.180 >	88	371	22,000	63,500	106,000	9,890 9,790	1,000	1,800

Appendix II. Cont'd

Sam	ple	Depth Below		Percent			Concentratio	ons in Parts F	Per Million		
Site	No.	(feet)	Size Fraction (mm)	of Sample by Weight	Cd	Zn	РЬ	Fe	Mn	Ca	Mg
SP-6	4	2.7	> .180	42	58	6,800	13,000	119,000	12,400	1,800	5,070
			.180 >	58	120	14,000	31,500	210,000	23,300	2,520	7,600
SP~7	1	3.3	> .180	15	34	480	92	15,000	1,510	690	2,700
			.180 >	85	28	490	110	17,000	1,140	810	2,800
SP-6	2	1.7	> .180	4	48	6,100	74,300	121,000	22,600	2,600	2,700
			.180 >	96	31	5,100	34,800	126,000	8,460	1,900	3,100
SP-8	1	6.8	> 2.362	46	11	28	14	3,300	33	67	1,100
			2.362 > to > .417	19	10	38	25	4,500	58	351	1,800
			.417 > to > .208	14	9.6	48	12	3,800	67	326	1,600
			.208 > to > .075	13	10	50	30	5,000	80	371	1,800
			.075 >	8	23	127	93	9,300	170	650	2,300
SP-8	2	6.1	> 2.362	5	12	800	70	8,900	360	560	2,500
			2.362 > to > .417	18	9.2	740	58	9,700	330	650	2,500
			.417 > to > .208	15	10	560	62	7,800	233	490	2,300
			.208 > to > .075	24	12	463	52	7,300	220	480	2,200
			.075 >	38	10	76 0	89	12,000	390	730	2,700
SP-8	3	5.3	> 2.362	8	12	2,800	6,500	30,000	2,200	710	1,230
			2.362 > to > .417	11	49	7,400	17,000	68,000	7,060	1,800	3,670
			.417 > to > .208	24	41	8,200	19,000	136,000	13,600	2,500	6,000
•		٩	.208 > to > .075	39	180	29,200	18,000	189,000	20,200	2,100	7,700
			.075 >	17	230	35,300	63,300	125,000	12,000	3,200	5,100
SP-8	4	4.8	> 2.362	16	1.5	360	810	18,000	1,200	280	780
			2.362 > to > .417	26	4.9	1,100	12,000	44,000	4,000	980	2,100

Appendix II. Cont'd

Sam	ple	Depth Below		Percent			Concentratio	ons in Parts P	Per Million		
Site	No.	L.S.D. (feet)	Size Fraction (mm)	of Sample by Weight	Cd	Zn	РЬ	Fe	Mn	Ca	Mg
SP-8	4		.417 > to > .208	26	56	10,000	14,000	172,000	17,400	2,800	7,290
			.208 > to > .075	22	200	30,200	20,000	199,000	20,300	3,200	8,100
			.075 >	9	253	34,500	61,500	125,000	12,600	3,100	5,300
SP-8	5	4.3	> 2.362	0	No Sample						
			2.362 > to > .417	0	No Sample						
			.417 > to > .208	1	110	12,000	27,900	95,700	9,780	3,000	4,400
			.208 > to > .075	9	180	24,000	37,500	141,000	14,600	3,700	4,700
			.075 >	91	200	37,700	63,200	122,000	12,200	2,900	5,200
SP-8	6	3.4	> 2.362	0	No Sample						
			2.362 > to > .417	2	260	24,000	37,900	83,600	6,120	1,600	2,600
			.417 > to > .208	4	110	15,000	20,000	130,000	11,700	1,900	5,100
			.208 > to > .075	16	160	24,000	26,500	165,000	16,400	2,700	6,500
•		•	,075 >	78	88	16,000	18,000	129,000	12,100	3,500	5,300
SP-8	7	2.5	> 2.362	0	No Sample						
			2.362 > to > .417	1	130	15,000	56,400	131,000	5,590	1,400	2,500
			.417 > to > .208	3	120	13,000	38,000	75,900	6,810	1,600	3,200
			.208 > to > .075	50	96	14,000	16,000	99,300	9,630	1,620	4,100
			.075 >	47	71	10,000	19,000	105,000	9,000	1,800	4,200
SP-8	8	1.4	> 2.362	0	No Sample						
			2.362 > to > .417	1	66	7,300	16,000	62,000	5,800	880	2,600
			.417 > to > .208	4	52	7,700	35,600	95,600	11,700	1,200	3,500
			.208 > to > .075	26	25	4,400	14,000	140,000	7,630	1,128	3,300
<u></u>			.075 >	68	38	6,600	14,000	74,800	5,460	1,170	3,100

.

FI 10

-- below detection

APPENDIX III

Water Levels

Date	Computer Number	Date	Computer Number
Elevation of	100	January, 1978	
<u>July, 1977</u>		10 28	375 (W.Q.) 393
7	188*	February, 1978	
18 25	192 199 206	11 25	407 421
August, 1977		March, 1978	
2 8	214 220	10 25	434 449 (W.Q)
22	227 234 (W.Q. only)	April, 1978	
September, 1977		8 22	463 477 (W.O.)
2 16	245 259	May, 1978	
<u>October, 1977</u>		9	494 505 (H. O.)
2 5 15	275* 278 288	June, 1978	505 (W.Q.)
22 28	295 301 (W.Q.)*	2 16 29	518 532 (W.Q.) 545
November, 1977	200	July, 1978	
19	308 323	14	560
December, 1977		August 1978	500
4 29	338* 363	12	589 (W.Q.)
		September, 1978	
		2	610

Appendix III.	Dates used for computer Printouts of water level and water
	quality - Smelterville Flats study area.

Computer Dates start from January 1, 1977.

* Partial data for the date.

(W.Q.) Water level and water quality samples taken on this date.

Appendix III. Water level data for 1977 - 1978, Smelterville Flats study area.

S	TATION	DATE	WATER LEVEL	STATION	DATE	WATER LEVEL	STATION	DATE	WATER LEVEL
	AXA	100	2220.18	AXB	100	2220.18	1 X A	100	221 2 23
	AXA	192	2209.02	AXB	338	2212.46	1 X A	192	2268 74
	AXA	199	2208.13	АХВ	375	2213.37	1 X A	199	2208 51
	AXA	206	2203.65	4X3	393	2212.97	1×4	206	2238 39
	AXA	214	2208.62	AXB	407	2213.59	1 X A	214	2200-34
	AXA	220	2208.52	AXB	421	2212.77	1 X A	220	2200.41
	ΑΧΑ	227	2208.35	AXB	434	2212.73	1×4	227	2208-14
	ΑΧΑ	245	2203.31	AXB	449	2213.19	1 X A	245	2208.06
•	AXA	259	2208.29	AXB	477	2212.99	1 X A	259	2203.00
	AXA	278	2208.03	Ахв	494	2212.99	1 X A	278	2200.01
	ΑΧΑ	238	2208.64	AXB	505	2213.87	1 X A	288	2200+31
	ΑΧΑ	295	2208.44	AXB	518	2213.43	1 X A	295	2208.10
	AXA	308	2209.29	AXB	532	2212.99	1 × 4	308	2203-15
	AXA	323	2209.11	AXB	545	2212.37	1×4	323	2208 66
	ΑΧΑ	338	2213.11	AXB	560	2211.97	1 × A	338	2212 57
	AXA	375	2213.18	AXB	568	2211.53	1 X A	363	2213-00
	ΑΧΑ	393	2212.99				1 X A	375	2213.05
	AXA	407	2213.55				LXA	393	2212 84
	AXA	421	2212.82				1 X A	407	2213.40
	AXA	434	2212.68				1 X A	421	2212.59
	AXA	449	2213.17				1 🗙 🖌	434	2212.54
	A X A	477	2213.06				1 X A	449	2213.05
	AXA	494	2213.16				1 X A	463	2213.40
	ΑΧΛ	505	2213.61				1 X A	477	2212.84
	AXA	518	2213.41				1×A	494	2212.92
	AXA	532	2212.96				1 X A	505	2213.67
	AXA	545	2212.37				1 X A	518	2213.29
	AXA	560	2212.01				1 X A	532	2212.86
	AXA	568	2211.53				1 X A	545	2212.30
	AXA	589	2210.63				1 X A	560	2211.94
	AXA	610	2210.42				1 X A	568	2211.44
							1 X A	589	2210.49
							1 X A	610	2210.24

STATION	DATE	WATER LEVEL	STALIGN	DATE	WATER LEVEL	STATION	DATE	WATER LEVEL
1 XB	100	2219.13	2 X A	100	2221.64	2XB	100	2221.64
1 X B	338	2212.54	2 X A	138	2208.65	2 X B	192	2208.64
1 X B	363	2212.80	2XA	192	2208.63	2X8	199	2208.64
1 X B	375	2213.03	2 X A	199	2208.47	2 X B	278	2208.41
1 X B	393	2212.80	2 X A	206	2208.33	2 X B	338	2212.54
1×B	407	2213.45	2 X A	214	2208.29	2 X B	363	2212.77
1 X B	421	2212.62	2 X A	220	2208.18	2 X B	375	2212.97
1 X B	434	2212.56	2 X A	227	2203.07	2 X B	393	2212.74
LXB	449	2213.03	2 X A	245	2207.85	2 X B	407	2213.33
1 X B	463	2213.41	2 X A	259	2207.87	2 X 8	421	2213.04
1X8	477	2212.82	2XA	278	2208.41	2 X B	434	2212.52
1 X B	494	2212.86	2 X A	288	2208.30	2 X B	449	2213.05
1 X B	505	2213.46	2XA	295	2208.13	2 X B	463	2213.90
1 X B	518	2213.27	2XA	308	2208.35	2 X B	477	2212.82
1 X B	532	2212.80	2XA	323	2208.47	2 X B	494	2212.84
1 X B	545	2212.22	2XA	338	2212.48	2 X B	505	2213.43
1 X B	560	2211.80	≈ 2XA	363	2213.35	2XU	518	2213.23
1 X B	568	2211.38	2 X A	375	2212.84	2 X B	532	2212.77
1 X B	589	2210.43	2 X A	393	2212.76	2 X 3	545	2212.19
1 X B	610	2210.20	2 X A	407	2213.22	2 X B	560	2211.75
			2 X A	421	2212.69	2 X B	568	2211.30
			2XA	434	2212.42	2X8	589	2210.34
			2 X A	449	2212.77	2 X 8	610	2210.08
			2XA	463	2213.39			
			2 X A	477	2212.92			
			2XA	494	2212.95			
			2 X A	505	2213.44			
			2XA	518	2213.26			
			284	532	2212.92			
			2 X A	545	2212.26			
			2XA	560	2211.88			
			2 X A	568	2211.48			
			2 X A	589	2210.43			
			2 X A	610	2210.07			

STATION	DATE	WATER LEVEL	STATION	DATE	WATER LEVEL	STATION	DATE	WATER LEVEL
3 X A	100	2222.48	ЗХВ	100	2222.43	4 X A	100	2221.09
3 X A	188	2208.78	3XB	188	2208.11	4 X A	188	2208.54
3 X A	192	2208.62	3 X B	192	2208.63	4 X A	192	2208.43
3 X A	199	2208.35	3XB	199	2203.24	4 X A	199	2208.19
3 X A	206	2208.21	3XB	206	2208.24	4 X A	206	2207.97
3XA	214	2208.20	3X8	214	2208.14	4 X A	214	2207.95
3 X A	220	2208.09	3 X B	278	2208.36	4 X A	220	2207.92
3XA	227	2207.96	3X8	295	2208.14	4 X A	227	2207.76
3 X A	245	2207.87	3XB	308	2203.44	4 X A	245	2207.64
3 X A	259	2208.14	3 X B	323	2208.45	4 X A	259	2207.60
3 X A	278	2208.43	3X8	338	2212.78	4 X A	275	2208.07
3 X A	288	2208.19	3X8	363	2212.99	4 X A	278	2203.25
3 X A	295	2207.97	3×8	375	2213.16	4 X A	288	2208.00
3 X A	308	2208.47	3XB	393	2212.92	4 X A	295	2207.74
3 X A	323	2208.47	ЗХВ	407	2213.57	4 X A	308	2208.36
3XA	338	2212.69	3XB	421	2212.98	4 X A	323	2208.27
3 X A	363	2212.90	3X8	434	2212.72	4 X A	338	2212.98
3XA	375	2213.08	3X8	449	2213.38	4 X A	363	2213.14
3 X A	393	2212.85	3X8	463	2213.72	4 X A	375	2213.25
ЗХА	407	2213.48	3×8	477	2213.11	4 X A	393	2213.16
3XA	421	2212.68	3 X B	494	2213.16	4 X A	407	2213.63
3 X A	434	2212.63	3 X B	505	2214.02	4XA	421	2213.00
3XA	449	2213.28	3XB	518	2213.52	4 X A	434	2212.70
3 X A	463	2213.58	3XB	532	2213.06	4 X A	449	2213.62
ЗХА	477	2212.98	3 X B	545	2212.48	4 X A	463	2213.99
3 X A	494	2213.03	3X8	560	2211.94	4 X A	-477	2213.40
3 X A	505	2213.62	3X8	568	2211.43	4 X A	494	2213.42
3 X A	518	2213.47	ЗХВ	589	2210.43	4 X A	505	2213.91
3 X A	532	2212.95	3XB	610	2210.12	4 X A	518	2213.73
3 X A	545	2212.33				4 X A	532	2213.39
3XA	560	2211.84				4 X A	545	2212.69
3XA	568	2211.39	*			4 X A	560	2212.16
3 X A	589	2210.40				4 X A	568	2211.65
3XA	610	2210.08				4 X A	589	2210.56
						4 X A	610	2210.08

STATION	CATE	WATER LEVEL	STATION	DATE	WATER LEVEL	STATION	DATE	WATER LEVEL
4XB	100	2221.09	6XA	100	2220.82	6 X B	100	2220.82
4XB	188	2208.52	6XA	188	2207.92	6 X B	192	22 68.06
4X8	192	2268.42	6XA	192	2207.60	6ХВ	199	2207.96
4XB	199	2208.08	6XA	199	2207.43	6XB	338	2213.38
4 X 8	206	2207.97	6 X A	206	2207.30	6 X B	363	2213.12
4X8	214	2207.95	6XA	214	2201.30	- 6XB	375	2213.26
4X8	220	2207.86	6XA	220	2207.21	6 X B	393	2212.96
4XB	227	2207.72	6XA	227	2207.07	6XB	407	2213.62
4XB	245	2207.70	6XA	245	2207.01	6 X B	421	2212.71
4 X B	259	2207.59	6 X A	259	2206.93	6XB	434	2213.01
4 X B	275	2208.17	6XA	278	2207.54	6XB	449	2215.00
4XB	278	2208.22	6XA	288	2207.21	6 X B	463	2214.08
4 X B	286	2207.95	6XA	295	2206.99	6XB	477	2213.43
4 X B	295	2207.74	6XA	308	2207.90	6 X B	494	2213.56
4X8	308	2208.33	6 X A	323	2207.70	6XB	505	2214.11
4XB	323	2208.26	6XA	338	2213.35	6 X B	518	2213.68
4XB	338	2212.97	6XA	363	2213.15	6 X B	532	2213.29
4XB	363	2213.11	A XA	375	2213.21	6X8	545	2212.65
4XB	375	2213.27	6XA	393	2213.73	6XB	560	2211.78
4 X B	393	2212.99	6XA	407	2213.58	6XB	568	2211.29
4 X B	407	2213.65	6XA	421	2212.68	6XB	589	2210.13
4XB	421	2212.76	6XA	434	2213.02	6 X B	610	2209.56
4XB	434	2212.82	6XA	449	2213.98	~ ,		
4XB	449	2213.69	6XA	463	2213.94			
4X8	463	2213.89	6XA	477	2213.40			
4XB	477	2213.28	6XA	494	2213.47			
4XB	494	2213.33	6XA	505	2213.92			
4 X B	505	2213.89	6XA	518	2213.70	-		
4XB	518	2213.61	6XA	532	2213.25			
4 X B	532	2213.18	6 X A	545	2212.65			
4XB	545	2212.56	6XA	560	2211.79			
4X8	560	2211.43	6XA	568	2211.31			
4X8	568	2211.44	6XA	589	2210.15			
4XB	589	2210.38	6XA	610	2209.59			
4 X B	610	2209.96						

III 7

STATION	DATE	WATER LEVEL	STATION	DATE	WATER LEVEL	STATION	DATE	WATER LEVEL
7 X A	100	2220.26	7XB	100	2220.26	8 X A	100	2215.95
7 X A	188	2207.75	788	278	2209.02	8×A	183	2297.16
7 X A	192	2207.55	7 X B	338	2213.88	axe	192	2207.53
7XA	199	2207.44	7×8	363	2213.03	8XA	199	2207.26
7 X A	206	2207.13	7X8	375	2213.18	8 X A	206	2207.13
7 X A	214	2207.14	7×8	393	2212.80	8 X 8	214	2207.14
7XA	220	2207.07	7X8	407	2213.47	θ×A	220	2207.07
7 X A	227	2206.93	7XB	421	2212.61	8 X A	227	2206.92
7 X A	245	2206.86	7 X B	434	2213.06	8XA	245	2206.89
7 X A	259	2206.77	7×8	449	2214.08	8XA	259	2205.18
7 X A	278	2207.42	7 X B	463	2213.92	AX8	278	2207.45
7 X A	288	2207.12	1X3	471	2213.40	8×A	288	2207.11
7 X A	295	2206.84	7XB	494	2213.45	8 X A	295	2236.83
7 X A	30d	2207.78	7×8	505	2213.93	8 X A	308	2207.82
7 X A	323	2207.48	7 X B	518	2213.66	8 X A	323	2207.44
7 X A	338	2213.44	7 X B	532	2213.21	8 X A	338	2213.86
7 X A	363	2212.98	7 X B	545	2212.64	AXB	363	2213.14
7XA	375	2213.15	7X8	560	2211.73	BXA	375	2213.35
7 X A	393	2212.75	7×8	568	2211.24	8XA	393	2212.87
7XA	407	2213.54	7XB	589	2210.08	8XA	407	2213.81
7XA	421	2212.09	7XB	610	2209.47	8 X A	421	2212.68
7 X A	434	2213.00				8 X A	434	2213.40
7 X A	449	2213.99				8 X A	449	2214.35
7 X A	463	2213.86				AX6	463	2214.12
7 X A	477	2213.37				AX6	417	2213.65
7 X A	494	2213.42				8×A	494	2213.73
7 X A	505	2213.87				8 X A	505	2214.20
7 X A	518	2213.60				8 X A	518	2213.88
7 X A	532	2213.19				8 X A	532	2213.42
7 X A	545	2212.61				8XA	545	2212.83
7 X A	560	2211.69				8 X A	560	2211.85
7 X A	568	2211.21				AXA	568	2211.36
7 X A	589	2210.04				8×A	589	2210.13
7XA	610	2209.46				AX8	610	2209.50

STATION	DATE	WATER LEVEL	STATION	DATE	WATER LEVEL	STATION	DAFE	WATER LEVEL
8XB	100	2215.95	9XA	100	2216.89	9X8	100	2216.89
8 X B	188	2207.69	9XA	188	2207.71	9 X B	308	2201.77
8 X B	192	2207.50	9XA	192	2207.50	9XB	338	2214.47
8 X B	199	2207.22	9XA	199	2207.60	9XB	363	2213.52
8 X B	206	2207.09	9XA	206	2207.09	9XB	375	2213.87
8 X 8	214	2207.09	9XA	214	2207.13	9X8	393	2213.21
8X8	220	2207.04	9XA	220	2207.08	9XB	407	2214.20
8XB	227	2206.85	9XA	227	2206.89	9XB	421	2213.07
8 X B	245	2206.79	9XA	245	2206.88	9X8	434	2213.73
8 X B	259	22.06.70	9XA	259	2206.83	9X8	449	2215.02
8X8	278	2207.39	9XA	278	2207.44	9XB	463	2214.62
8X8	288	2207.08	9XA	288	2207.13	ЭХВ	477	2213.99
вхв	295	2206.75	9XA	295	2206.63	9X8	494	2214.10
8 X B	308	2201.83	9XA	50£	2207.86	9XB	505	2214.69
8 X B	323	2207.45	9XA	323	2207.39	ЭХВ	518	2214.27
8×8	338	2213.77	9XA	.338	2214.39	9XB	532	2213.78
8XB	363	2213.36	9XA	363	2213.44	9XB	545	2213.13
8 X B	375	2213.38	9X A	375	2213.74	9XB	560	2212.05
8XB	393	2212.89	9XA	393	2213.09	9XB	568	2211.55
8 X B	407	2213.85	9XA	407	2214.12	эхв	589	2210.23
8X8	421	2212.14	9XA	421	2212.88	9XB	610	2209.54
8 X B	434	2213.37	9XA	434	2213.67			
8X8	449	2214.38	9XA	449	2214.79			
BXB	463	2214.13	9XA	463	2214.41			
8XB	477	2213.64	9XA	477	2213.94			
8¥8	494	2213.53	9XA	494	2214.18			
8X8	505	2214.20	9XA	505	2214.62			
8XB	518	2213.86	9XA	518	2214.21			
8 X B	532	2213.41	9XA	532	2213.75			
8X8	545	2212.77	984	545	2213.08			
8 X B	560	2211.89	9X A	560	2212.01			
8X8	568	2211.33	9XA	5ó8	2211.54			
8XB	589	2210.09	9XA	589	2210.23			
8X8	610	2209.47	9XA	610	2209.54			

STATION	DATE	WATER LEVEL	STATION	DATE	WATER LEVEL	STATION	DATE	WATER LEVEL
ΑΥΑ	100	2208.42	AYB	100	2208.42	1 Y A	100	2209.44
AYA	192	2202.20	AYB	192	2202.31	1¥A	192	2201.51
AYA	199	2202.16	AYB	199	2202.16	1 Y A	199	2201.47
AYA	206	2202.05	AYB	206	2202.07	1¥A	206	2201.34
AYA	214	2202.06	AYB	214	2202.03	1 Y A	214	2201.29
AYA	220	2201.97	AYB	220	2201.97	144	220	2201.16
AYA	227	2201.86	AYB	227	2201.84	1 Y A	227	2201.09
ΑΥΑ	245	2201.80	AYB	245	2201.84	144	245	2201.08
AYA	259	2201.94	AYB	259	2201.77	144	259	2201.00
AYA	278	2202.19	AYB	278	2202.22	144	278	2201.40
AYA	288	2202.05	AYB	288	2202.05	174	288	2201.25
AYA	295	2201.92	AYB	295	2201.88	144	295	2201.12
AYA	308	2202.31	AYB	308	2202.36	1 Y A	308	2201.55
AYA	323	2202.33	AYB	323	2202.41	1 YA	323	2201.60
AYA	338	2204.92	AYB	338	2205.02	144	338	2204.27
AYA	375	2204.79	AYB	375	2204.84	144	363	2203.75
AYA	393	2204.56	AYB	393	2204.45	1YA	375	2203.93
AYA	407	2205.00	АҮВ	407	2205.16	1YA	393	2203.68
AYA	421	22 C4 . 49	AYB	421	2204.45	144	407	2204.17
AYA	434	2204.41	AYB	434	2204.60	144	421	2203.63
AYA	449	2204.86	AYB	449	2205.02	1 Y A	434	2203.70
AYA	463	2204.57	AYB	463	2205.11	144	449	2204.17
AYA	477	2204.16	AYB	477	2204.80	1 Y A	463	2204.30
AYA	494	2204.82	AYB	494	2204 . 84	1 4 4	477	2203.95
AYA	505	2205.11	AYB	505	2205.13	144	494	2203.98
AYA	518	2205.00	АУВ	518	2205.03	1 Y A	505	2204.08
AYA	532	2204.87	AYB	532	2204.82	144	518	2204.20
AYA	545	2204.50	AYB	545	2204.48	1 Y A	532	2203.97
AYA	560	2204.32	AYB	560	2204.29	144	545	2203.60
AYA	568	2204.58	AYB	568	2203.49	144	560	2203.43
AYA	589	2203.52	AYB	589	2203.44	1 YA	568	2203.14
AYA	610	2203.42	AYB	610	2203.41	1 Y A	589	2202.59
						1 Y A	610	2202.52

STATION	CATE	WATER LEVEL	STATION	DATE	WATER LEVEL	STATION	DATE	WATER LEVEL
1 Y B	100	2209.44	2¥A	100	2208.10	278	100	2203.10
178	192	2201.52	2 Y A	183	2185.41	2 Y B	188	2199.18
1 YB	199	2201.36	2YA	192	2200.93	278	192	2201.68
1 Y B	206	2201.26	2 Y A	199	2201.05	2 Y B	199	2201.35
1 Y B	214	2201.21	2 Y A	206	2201.23	2YB	206	2201.24
1YB	220	2201.14	2 Y A	214	2201.20	278	214	2201.17
178	227	2201.16	2 Y A	220	2201.05	2 Y B	220	2201.11
1¥8	245	2201.03	2 Y A	227	2201.00	248	227	2201.02
1 Y B	259	2200.99	2 Y A	245	2201.01	248	245	2201.60
1 Y B	278	2201.38	2 Y A	259	2200.95	2¥8	259	2200.94
1 Y B	288	2201.22	244	275	2201.39	2YB	275	2201.40
LYB	295	2201.08	2 Y A	278	2201.35	2Y8	278	2201.35
1 Y B	308	2201.57	2 Y A	288	2201.19	278	288	2201.19
1YB	323	2201.59	2 Y A	295	2201.20	248	295	2201.05
1 Y B	338	2204.22	2 Y A	308	2201.50	2YB	308	2201.51
1YB	363	2203.59	2¥A	323	2201.49	2YB	323	2201.54
1 48	375	2203.93	2YA	338	2204.15	2YB	338	2204.19
1 Y B	393	2203.53	2 Y A	363	2203.54	2 Y B	363	2203.55
148	407	2204.56	2¥A	375	2203.86	2YB	375	2203.89
1 Y B	421	2203.52	2 Y A	393	2203.44	2 Y B	393	2203.46
148	434	2203.70	2¥A	401	2204.08	2¥B	407	2204-14
178	449	2204.14	244	421	2204.02	278	421	2203.47
1 Y B	463	2204.17	2 Y A	434	2203,60	2 Y B	434	2203.64
1 Y B	477	2203.89	2 Y A	449	2204.10	2 4 8	449	2204.10
LYB	494	2203.94	2 Y A	463	2204.15	2 Y B	463	2204.12
1 Y B	505	2204.27	2YA	477	2203.87	249	477	2203.84
1 Y B	518	2204.14	2 Y A	494	2203.89	248	494	2203.93
149	532	2203.91	2¥A	505	2204.27	2Y8	505	2204.28
1 Y B	545	2203.52	244	518	2204.11	2 Y B	518	2204.09
1 Y B	560	2203.25	244	532	2203.90	278	532	2203.87
1 Y B	568	2203.03	244	545	2203.43	2YB	545	2203.45
178	589	2202.54	244	560	2203.23	2 Y B	560	2203.19
1 Y B	610	2202.50	244	568	2202.99	2 Y B	568	2202.97
			2 Y A	589	2202.50	2 Y B	589	2202.48
			2 Y A	610	2202.50	2 Y B	610	2202.45

STATION	DATE	WATER LEVEL	STATION	DATE	WATER LEVEL	STATION	DATE	WATER LEVEL
3YA	100	2208.79	ЗҮВ	100	2208.79	5 Y A	100	2204.80
374	192	2201.43	348	192	2201.53	5YA	188	2200.79
3YA	199	2201.48	378	199	2201.50	5 Y A	192	2201.03
3YA	206	2201.40	3 Y B	206	2201.41	5¥A	199	2201.14
3YA	214	2201.30	348	214	2201.26	5YA	206	2201.12
3YA	220	2201.23	378	220	2201.16	5 Y A	214	2201.14
3Y A	227	2201.03	378	227	2201.06	5YA	220	2201.17
3YA	245	2201.20	3YB	245	2201.07	5 Y A	227	2201.13
3YA	259	2201.00	3 Y B	259	2201.00	5¥A	245	2200.91
3YA	275	2201.43	3¥B	275	2200.46	5YA	259	2200.91
3YA	278	2201.38	378	278	2201.39	5YA	278	2201.18
3YA	283	2201.27	378	288	2201.28	5 Y A	288	2201.22
3YA	295	2201.12	378	295	2201.10	5YA	295	2201.18
344	308	2201.57	349	308	2201.58	5 Y A	308	2201.21
3 Y A	323	2201.60	378	323	2201.58	5 Y A	323	2201.39
3YA	338	2204.26	378	338	2204.22	5YA	338	2204.00
3YA	363	2203.69	З Ү В	363	2203.58	5 Y A	363	2203.51
3YA	375	2203.89	3YB	375	2203.89	5¥A	375	2203.85
3YA	393	2203.55	3YB	393	2203.50	5YA	393	2203.81
3YA	407	2204.14	3YB	407	2204.16	5 Y A	407	2203.62
3YA	421	2203.51	3YB	421	2203.48	5 Y A	421	2203.60
3YA	434	2203.64	348	434	2203.65	5 Y A	434	2203.55
3YA	449	2204.14	3 Y B	449	2204.14	5YA	449	2203.68
3YA	463	2204.25	348	463	2204.16	5 Y A	463	2204.29
3YA	477	2203.89	378	477	2203.84	5 Y A	477	2204.08
3YA	494	2203.92	378	494	2203.89	5 Y A	494	2204.06
3YA	505	2204.34	3YB	505	2204.30	5 Y A	505	2204.30
3YA	518	2204.16	348	518	2204.14	5YA	518	2204.33
3YA	532	2203.95	3YB	532	2203.88	5YA	532	2204.14
3YA	545	2203.53	378	545	2203.48	5 Y A	545	2203.64
3YA	560	2203.25	348	560	2203.22	5 Y A	560	2203.45
3YA	568	2203.01	378	568	2202.99	5 Y A	568	2203.26
3YA	589	2202.51	348	589	2202.52	5 Y A	589	2202.12
-3YA	610	2202.49	3Y8	610	2202.49	5 Y A	610	2202.56

STATION	DATE	WATER LEVEL	STATION	DATE	WATER LEVEL	STATION	GATE	WATER LEVEL
5 Y B	100	22 04 . 80	6YA	100	2205.03	6¥B	100	2205.03
5Y8	188	2201.63	6YA	188	2201.58	6YB	188	2201.41
578	192	2201.51	6 Y A	192	2201.40	6 Y B	192	2201.74
5YB	199	2201.39	6¥A	199	2201.31	6YB	199	2201.48
578	206	2201.30	6 Y A	206	2201.24	6 Y B	206	2201.29
5YB	214	2201.24	6¥ A	214	2201.14	6YB	214	2201.23
5YB	220	2201.15	6YA	220	2201.06	6 Y B	220	2201.18
5Y8	227	2201.06	GYA	227	2201.01	6 Y B	227	2201.09
5YB	245	2201.04	6 Y A	245	2200.91	6үв	245	2201.02
5YB	259	2200.96	úΥA	259	2200.89	6¥B	259	2200.94
5YB	278	2201.34	6 Y A	278	2201.25	6YB	278	2201.30
5Y8	288	2201.20	6YA	288	2201.11	6YB	288	2201.18
5 Y B	295	2201.00	6 Y A	295	2200.98	6YB	295	2201.03
5YB	308	2201.55	6 Y A	308	2201.46	6YB	308	2201.52
5YB	323	2201.52	6YA	323	2201.41	6 Y B	323	2201.55
5YB	338	2204.35	6YA	338	2204.23	6YB	338	2204.26
5 Y B	363	2203.61	6 Y A	375	2203.66	6 Y B	375	2203.68
5YB	375	2203.86	6YA	393	2203.30	6¥ B	393	2203.45
5 Y B	393	2203.54	6 Y A	407	2204.00	6YB	407	2203.90
5YB	407	2204.13	6 Y A	421	2203.35	6YB	421	2203.43
5YB	421	2203.00	6¥A	434	2203.53	6YB	434	2203.49
5YB	434	2203.68	6 Y A	449	2204.15	6 Y B	449	2204.09
5YB	449	2204.19	6YA	463	2204.10	6 Y B	463	2204-26
5YB	463	2204.18	6YA	477	2203.75	6YB	477	2203.76
5YB	477	2203.85	6YA	494	2203.85	6YB	494	2203.88
5YB	494	2203.92	6 Y A	505	2204.33	6 YB	505	2204.37
5 Y B	505	2204.41	6YA	518	2204.06	6YB	518	2204.10
5 Y B	518	2204.13	6YA	532	2203.78	6YB	532	2203.87
5YB	532	2203.87	6YA	545	2203.41	678	545	2203.49
5¥B	545	2203.60	6YA	560	2203.11	6 Y B	560	2203.24
5YB	560	2203.27	6YA	568	2202.88	6YB	568	2202.97
5 Y B	568	2203.05	6YA	589	2202.46	6 Y B	589	2202.49
548	589	2202.57	6YA	610	2202.36	6 Y B	610	2202.41
5 Y B	610	2202.50						

:

III 13

STATION	DATE	WATER LEVEL	STATION	DATE	WATER LEVEL	STATION	DATE	WATER LEVEL.
6 YD	100	2205.03	7 Y A	100	2205.32	748	100	2205.32
6¥D	188	2175.39	7 Y A	188	2201.78	7 Y B	188	2201.72
6YD	192	2200.60	7 Y A	192	2201.79	7 Y B	192	2201.81
6YD	199	2200.56	7¥A	199	2201.70	7 Y B	199	2201.70
6YD	206	2200.51	7 Y A	206	2201.59	7 Y B	205	2201.56
6 Y Ð	214	2200.57	7YA	214	2201.53	7YB	214	2201.52
6YD	220	2200.68	7 Y A	220	2201.47	7YB	220	2201.42
6YD	227	2200.68	7 Y A	227	2201.41	7YB	227	2201.43
6YD	245	2200.46	7 Y A	245	2201.36	7 Y B	245	2201.34
6¥D	259	2200.40	7 Y A	259	2201.27	7YB	259	2201.26
6YD	278	2200.78	7YA	278	2201.65	7 Y B	278	2201.61
6YD	288	2200.87	7 Y A	288	2201.52	7Y8	288	2201.48
6YD	295	2200.76	7 Y A	295	2201.36	7YB	295	2201.34
6YD	308	2199.78	7 Y A	308	2201.86	7YB	308	2201.82
6YD	323	2199.65	7¥A	323	2201.82	7YB	323	2201.79
6YD	338	2201.42	7 Y A	338	2204.68	7¥B	338	2204.61
6YD	375	2201.59	7YA	375	2204.07	7YB	375	2204.03
6YD	393	2201.48	7YA	393	2203.75	7YB	393	2203.74
6YD	407	2201.50	7YA	407	2204.39	7 Y B	407	2204.38
640	421	2201.37	7YA	421	2203.75	7YB	421	2203.75
6YD	434	2201.33	7¥A	434	2203.91	7 Y B	434	2203.93
6YD	449	2201.86	7YA	449	2204.57	748	449	2204.55
6YD	463	2203.62	7 Y A	463	2204.50	7YB	463	2204.60
6YD	477	2203.41	7YA	477	2204.20	7YB	477	2204.18
6YD	494	2203.94	7 Y A	494	2204.31	7YB	494	2204.28
6YD	505	2204.41	7YA	505	2204.73	7 YB	505	2204.11
6YD	518	2204.25	7 Y A	518	2204-49	749	518	2204.47
6YD	532	2204.24	7 Y A	532	2204.22	7 Y B	532	2204.21
6YD	545	2203.62	7YA	545	2203.88	7YB	545	2203.82
6YD	560	2203.38	7¥A	560	2203.52	7 Y B	560	2203.52
6YD	568	2203.27	7 Y A	568	2203.30	748	568	2203.31
6YD	589	2202.69	7 Y A	589	2202.87	7Y8	589	2202.23
6YD	610	2202.63	7 Y A	610	2202.34	7YB	610	2202.31

STATION	DATE	WATER LEVEL	STATION	DATE	WATER LEVEL	STATION	DATE	WATER LEVEL
844	100	2205.07	8 Y B	100	2205.87	3YC	100	22 05.70
8YA	188	2201.14	8YB	188	2201.01	9.4.R	199	2201.57
AYB	192	2201.31	8YB	192	2201.31	8YC	206	2201.48
£ΥA	199	2201.54	8¥B	199	2201.56	8YC	214	2201.41
BYA	206	2201.45	8YB	206	2201.46	8YC	220	2201.33
8YA	214	2201.40	8 Y B	214	2201.39	8YC	227	2201.25
8 Y A	220	2201.39	8YB	220	2201.32	8¥C	245	2201+22
BYA	227	2201.31	878	227	2201.27	8 Y C	259	2201.16
8YA	245	2201.22	8¥8	245	2201.22	840	275	2201.51
8 Y A	259	2201.15	8¥8	259	2201.16	8YC	278	2201.46
8YA	275	2201.44	8YB	275	2201.50	8YC	288	2201.35
8¥A	278	2201.47	8 Y B	278	2201.47	8YC	295	2201.21
874	288	2201.39	ŝγB	288	2201.36	346	308	2201.70
8YA	295	2201.24	8YB	275	2201.21	840	323	2201.62
8 Y A	308	2201.57	848	308	2201.68	8 Y C	338	2204.37
8¥A	323	2201.63	848	323	2201.62	8 Y C	375	2203.82
8 Y A	338	2204.44	8 Y B	338	2204.41	8YC	393	2203.49
AY8	375	2203.14	8YB	375	2203.77	8YC	407	2204.19
BYA	393	2203.53	8 Y B	393	2203.41	8YC	421	2203.52
8 Y A	407	2204.41	8 Y B	407	2204.10	8YC	434	2203.68
8¥A	421	2203.47	8YB	421	22 03 . 49	8¥C	449	2204.11
8 Y A	434	2203.52	8YB	434	2203.66	8YC	403	2204.21
8YA	449	2204.13	878	449	2204.09	8YC	471	2203.94
BYA	463	2204.44	8YB	463	2204.31	8 Y C	494	2204.09
8YA	464	2204.12	878	477	2203.93	8 Y C	505	2204.50
8YA	477	2203.98	8YB	494	2204.01	9 Y C	518	2204.13
BYA	505	2204.48	8YB	505	2204.47	8YC	532	2203.94
8¥A	518	2204.36	8YB	518	2204.21	8YC	545	2203.58
8YA	532	2204.22	8YB	532	2203.94	840	560	2203.27
8¥8	545	2204.65	8YB	545	2203.50	BYC	568	2203.07
8YA	560	2203.44	878	560	2203.30	8 Y C	589	2202.11
8YA	568	2203.23	8YB	568	2203.07	8YC	610	2202.57
8YA	589	2202.78	8YB	589	2202.62			
8YA	610	2202.65	8YB	610	2202.59			

.

STATION	DATE	WATER LEVEL	STATION	DATE	WATER LEVEL	STATION	DATE	WATER LEVEL
9YA	100	2204.28	9YB	100	2204-50	1074	100	2206.80
9YA	188	2191.58	9YB	Ldd	2201.68	1074	188	2193.84
9YA	192	2201.22	978	192	2201.54	LOYA	192	2200.49
9YA	199	2201.26	9YB	199	2201.44	10YA	199	2200.45
9 Y A	206	2201.16	9YB	206	2201.37	LOYA	206	2200.38
9 YA	214	2201.09	9YB	214	2201.25	1074	214	2200.34
9 YA	220	2201.05	9YB	275	2201.40	LOYA	220	2200.33
9YA	227	2200.98	9¥B	278	2201.34	10YA	227	2200.29
9YA	245	2200.96	9YB	308	2201.57	10YA	245	2200.31
9YA	259	2200.90	9YB	323	2201.47	10YA	259	2200.30
9YA	275	2201.19	9YB	338	2204.32	10 4 4	278	2200.36
9 Y A	278	2201.13	9YB	375	2203.56	10YA	288	2200.36
9YA	288	2201.05	9YB	393	2204.04	LOYA	295	2200.34
9YA	295	2200.95	9 Y B	401	2203.97	10YA	308	2200.46
9 Y A	308	2201.36	978	421	2203.25	LOYA	323	2200.44
9YA	323	2201.28	9 Y B	434	2203.52	10YA	338	2202.43
9YA	338	2204.01	9YB	449	2204.17	10 Y A	375	2201.64
9YA	375	2203.07	9 Y B	463	2203.98	IOYA	393	2201.41
9YA	393	2202.18	9YB	477	2203.73	10YA	407	2201.92
9 7 8	407	2203.39	9YB	494	2203.89	10YA	421	2201.52
9YA	421	2202.87	9YB	505	2204.33	LOYA	434	2201.86
9YA	434	2202.99	948	518	2204.00	10YA	449	2202.67
9 Y A	449	2203.75	948	532	2203.71	10YA	463	2202.34
9 Y A	463	2203.85	9¥B	545	2203.36	10YA	477	2202.13
9YA	477	2203.39	9YB	560	2203.06	10YA	494	2202.40
9YA	494	2203.53	9YB	568	2202.87	LOYA	505	2202.92
9YA	505	2203.95	9YB	589	2202.57	10YA	518	2202.49
9YA	518	2203.68	9Y8	610	2202.42	10YA	532	2202.01
9 YA	532	2203.47				10YA	545	2201.65
9 YA	545	2203.06				10YA	560	2201.29
9 Y A	560	2202.76				1044	568	2201.19
9YA	568	2202.56				1074	589	2201.06
9YA	589	2202.20				1044	610	2201.21
9YA	610	2202.09						

STATION	DATE	WATER LEVEL	STATION	DATE	HATER LEVEL	STATION	DATE	WATER LEVEL
10YB	100	2206.80	3W	100	2213.58	5 W	100	2203.02
10YB	188	2200.66	3 W	245	2204.45	5 W	227	2202.95
LOYB	192	2200.61	3W	259	2204.36	5 W	245	2203.07
1048	199	2200.64	3 W	278	2204.79	5 h	259	2202.94
TOAB	206	2200.61	3 W	288	2204.57	5 W	278	2203.30
LOYB	214	2200.51	3 W	295	2204.34	5 W	288	2203.14
1048	220	2200.52	3 W	308	2205.05	5W	295	2202.96
10YB	227	2200.50	З ж	323	2204.91	5W	308	2203.53
10YB	245	2200.42	3 W	338	2209.17	5 W	323	2203.44
1048	259	2200.48	З	363	2208.51	5 W	338	2206.63
1048	278	2200.52	3 W	375	2208.68	5 W	363	2205.84
10YB	288	2200.55	3 W	393	2208.28	5 W	375	2206.24
1048	295	2200.49	3₩	407	2209.00	5 W	373	2205.17
1048	308	2200.66	3W	421	2203.30	5 w	407	2206.41
10YB	323	2200.59	34	434	2208.70	5W	421	2205.81
10YB	338	2202.62	314	449	2209.31	5W	434	2206.09
10YB	315	2201.84	ЗW	463	2208.96	5 W	449	2206.63
1048	393	2201.63	3 W	477	2208.63	5 W	463	2206.51
LOVB	407	2202.14	3 W	494	2208.70	5 W	477	2206.29
LOYB	421	2201.75	3 W	494	2145.70	5h	494	2206.33
LOYB	434	2202.10	3 W	505	2209.16	5W	505	2206.71
10YB	449	2202.88	3₩	518	2208.88	5 W	518	2206.50
1048	463	2202.57	3 W	532	2208.58	រី អ	532	2206.24
10YB	477	2202.34	3 h	545	2208.24	5W	545	2205.91
10YB	494	2202.57	3W	560	2207.82	5 W	560	2205.60
10YB	505	2203.10	ЗW	568	2207.56	5W	568	2205.37
1048	518	2202.66	3 W	589	2207.01	5 W	539	2204.99
1048	532	2202.20	3 W	610	2206.62	5W	610	2204.75
1078	545	2201.85						
1048	560	2201.49						
LOYB	568	2201.38						
10YB	589	2201.27						
1048	610	2201.25						

III ٦٢

STATION	DATE	WATER LEVEL	STATION	DATE	WATER LEVEL	STATION	DATE	WATER LEVEL
9W	100	2203.42	1 OM	100	2202.19	12W	100	2200.40
9W	227	2198.73	LOW	227	2197.30	12.1	227	2193.95
9W	245	2198.68	100	245	2197.23	12W	245	2194.27
9W	259	2198.60	100	259	2197.26	12W	259	2193.97
9W	278	2138.89	LOW	278	2197.55	12W	278	2194.14
aw	288	2198.78	100	288	2197.46	124	288	2194.05
9 W	295	2198.69	LOW	295	2197.40	12W	295	2194.01
9W	308	2199.13	100	303	2197.79	12W	308	2194.41
9 N	323	2199.44	10₩	323	2197.83	L2W	323	2194.35
9 W	338	2201.46	10W	338	2199.98	1 2 W	333	2196.30
9W	375	2200.62	1 OW	375	2199.47	12W	375	2195,32
9 W	393	2200.35	10W	393	2199.19	12W	393	2195.07
9W	401	2201.02	10₩	407	2199.80	120	407	2195.67
9 W	421	2200.41	1 O W	421	2199.38	128	421	2195.15
9W	4 3 4	2200.66	10₩	434	2199.47	12W	434	2195.49
9W	449	2201.33	10W	449	2199.73	121	449	2196.35
9W	463	2201.25	LOW	463	2199.75	12W	463	2196.04
9W	471	2200.94	100	477	2149.52	121	477	2195.69
9 H	494	2201.01	LOM	494	2199.42	124	494	2195.84
9W	505	2201.49	100	505	2199.86	120	505	2196.33
9W	518	2201.25	10W	518	2199.64	120	518	2196.04
9W	532	2200.93	100	532	2199.27	12W	532	2195.60
9 W	545	2200.49	10W	545	2198.83	12W	545	2195.21
9W	560	2200.15	10W	560	2198.60	12₩	560	2194.84
ЭW	563	2199.98	10W	568	2198.40	12W	563	2194.65
9W	589	2199.69	10W	589	2197.99	128	589	2194.47
91/	610	2199.59	10W	610	2198.05	1 2 W	610	2194.36

STATION	DATE	WATER LEVEL	STATION	GATE	WATER LEVEL	STATION	DATE	WATER LEVEL
1 3W	100	2197.59	15W	100	2197.77	16W	100	2196.23
13W	227	2192.38	15W	227	2191.60	16W	434	2190.48
13W	245	2192.53	15W	245	2191.73	160	449	2191.19
13W	259	2192.48	15W	259	2191.58	1.6W	463	2191.06
13W	278	2192.69	15W	278	2191.87	16W	471	2190.90
13W	238	2192.63	150	283	2191.79	160	494	2191.09
1 3W	295	2192.57	15W	295	2191.73	16W	505	2191.25
13W	303	2193.00	15W	308	2192.13	16W	518	2191.18
13W	323	2192.92	15W	323	2192.12	1.6W	532	2191.10
13W	338	2195.18	15W	338	2193.77	16W	545	2190.92
13W	375	2193.87	15W	375	2192.88	160	560	2190.33
13W	393	2193.62	15W	393	2192.69	16W	568	2190.71
1 3 W	407	2194-11	15W	407	2193.13	16W	589	2190.57
13W	421	2193.64	15W	421	2192.14	16W	610	2190.15
13W	434	2193-72	1.5W	434	2192.92			
13W	449	2194.51	15W	449	2193.50			
1 3W	463	2194.62	1 5 W	463	2193.32			
13W	477	2194.07	15₩	477	2193.12			
13W	494	2194.29	1.5W	494	2193.20	STATICN	CATE	WATER LEVEL
13W	505	2194.70	15W	505	2193.60			
13W	518	2194.44	15W	518	2193.41	178	100	2201.23
13W	532	2194.22	1.5W	532	2193.18	17W	434	2196.95
13W	545	2193.77	15W	545	2192.95	17W	449	2197.59
1 3W	560	2193.52	1.5W	560	2192.68	1 7 W	463	2197.60
1 3W	568	2193.33	1.5W	568	2192.51	17₩	477	2197.14
13W	589	2192.94	15W	589	2192.23	17W	494	2197.25
1 3 W	610	2193.04	15W	610	2192.32	17w	505	2197.69
						17W	518	2197.42
						17W	532	2197.08
						17W	545	2196.72
						17W	560	2196.43
						174	568	2196.25
						17W	589	2195.96
						17W	610	2195.90

.

STATION	GATE	WATER LEVEL	STATION	DATE	WATER LEVEL	STATION	DATE	WATER LEVEL
18W	100	2207.25	2P	100	2196.31	JP	100	2192.44
18W	449	2200.80	28	245	2190.46	30	245	2168.53
18W	463	2200.86	2P	259	2190.46	38	259	2188.61
18W	477	2200.83	2P	275	2199.90	38	278	2188.82
1 3 W	494	2200.52	2 P	273	2190.70	3P	268	2103.71
18₩	505	2200.96	2 P	288	2190.56	3P	245	2183.65
184	518	2200.15	2P	295	2190.51	3P	308	2188.91
18W	532	2200.46	2 P	303	2190.96	3P	323	2186.85
1 8 W	545	2200.10	2 P	323	2191.05	3P	375	2190.13
184	560	2199.84	2P	338	2192.84	3P	407	2193.67
1 8 W	568	2199.66	2 P	375	2193.01	3P	421	2187.74
18W	589	2199.31	2P	407	2192.68	39	434	2139.90
1 8 W	610	2199.32	2P	421	2192.36	3P	449	2190.28
			2 P	434	2192.41	3P	463	2193.22
			2P	44.)	2192.69	38	417	2190.02
STATION	DATE	WATER LEVEL	2 P	463	2192.71	3P	444	2190+11
3	DATE		2 P	477	2192.56	3P	505	2190.55
10	100	2204-54	2P	494	2192.59	3P	518	2140.37
10	245	2200.21	2 P	505	2192.91	3 P	532	2190.17
10	259	2200-22	2 P	518	2192.91	3P	545	2189.70
10	278	2200-86	2 P	532	2192.58	38	560	2189.62
10	288	2200.54	2 P	545	2192.22	3 P	568	2189.39
19	295	2200-43	2P	560	2192.09	38	589	2189.10
1P	308	2200.87	2 P	568	2191.87	3P	610	2189.37
10	324	2200.87	2P	589	2191.09			
10	3.4.8	2202.66	2 P	610	2191.37			
1 P	375	2202.52						
19	407	2202-67						
10	421	2202-36						
10	434	2202-35						
10	449	2202.61						
1 P	46.3	2202-66						
10	417	2202.40						
19	494	2204-44						
19	505	2202.75						
10	518	2202.69						
1P	532	2202.47						
10	545	2202.22						
10	560	2202-07						
I P	568	2201.97						
10	589	2201-56						
10	610	2201.63						
4 F	010	2201.03						

STATION	DAlt	WATER LEVEL	STATION	DATE	WATER LEVEL	STATION	DATE	WATER LEVEL
4 P	100	2195.54	5P	100	2194.11	6 P	100	2193.05
4P	161	2191.02	5P	161	2190.41	6P	161	2190.51
4 P	245	2193.18	5P	245	2139.66	6P	245	2139.67
4 P	259	2190.24	5P	259	2187.66	6 P	259	2189.65
4P	275	2190.47	5 P	278	2189.95	éP	278	2190.10
4P	278	2190.40	5P	288	2189.81	6 P	288	2189.89
4P	288	2190.30	5 P	295	2189.71	68	295	2187.14
4 P	295	2190.24	5 P	308	2190.00	6P	50£	2190.04
4 P	308	2190.60	5P	323	2190.00	6 P	323	2189.89
4P	323	2190.70	5 P	338	2193.42	6P	407	2192.24
4 P	338	2192.14	5P	407	2193.29	6 P	421	2192.07
4 P	375	2192.58	5P	421	2193.11	6 P	434	2192.14
4P	407	2192.24	5P	434	2193.09	бР	518	2192.33
4 P	421	2191.90	5P	449	2193.16	6 P	532	2192.01
4 P	434	2191.95	5P	477	2192.90	6 P	545	2191.50
4 P	449	2192.09	5P	505	2193.11	6P	560	2191.31
4 P	463	2192.12	5P	518	2193.00	69	568	2190.86
4P	477	2191.97	5P	532	2192.50	6P	589	2190.26
4 P	494	2191.93	5 P	545	2191.75	68	610	2190.91
4Ρ	505	2192.30	5P	560	2191.48			
4 P	518	2192.20	5 P	563	2191.01			
4 P	532	2191.92	5P	589	2190.23			
4P	545	2191.57	58	610	2191.31			
4 P	560	2191.53						
4 P	568	2191.26						
4 P	589	2190.70						
4 P	610	2191.30						

•

III 21

•

STATION	DATE	WATER LEVEL	STATION	DATE	WATER LEVEL	STATION	DATE	WATER LEVEL
7P	100	2196.63	8P	100	2195.63	10P	-100	2194.37
7P	161	2193.30	8P	161	2192.82	1 O P	161	2192.35
7 P	245	2191.53	8P	245	2191.81	10P	245	2191.41
7P	259	2191.73	89	259	2191.79	100	259	2191.39
7 P	278	2193.15	8P	278	2192.44	10P	278	2192.02
7 P	288	2192.90	8P	288	2191.89	10P	288	2191.51
7P	295	2192.50	8 P	295	2191.72	10P	295	2191.36
7 P	308	2193.49	88	308	2191.73	10P	308	2191.41
7 P	323	2193.33	8P	323	2191.25	10P	323	2190.97
7 P	407	2196.01	8P	407	2193.53	1 O P	407	2193.20
7 P	421	2195.68	8P	421	2193.30	10P	421	2193.05
7P	434	2195.37	8 P	434	2193.40	10P	434	2193.09
7P	518	2195.17	8P	518	2194.44	10P	449	2193.23
7P	532	2194.26	88	532	2194.12	10P	477	2193.75
7P	545	2193.61	9.6	545	2193.76	10P	505	2194.02
79	560	2194.27	88	560	2193.63	102	518	2193.95
7P	568	2193.62	8P	568	2193.38	10P	532	2193.67
7P	589	2192.47	8 P	589	2192.76	102	545	2193.30
7 P	610	2194.54	8P	610	2193.33	102	560	2193.14
						108	568	2192.88
						10P	589	2192.33
						10P	610	2192.83

III 22

STATION	DATE	WATER LEVEL	STATION	DATE	WATER LEVEL	STATION	DATE	MATER LEVEL
11P	100	2193.82	130	100	2199.42	16P	100	2204.46
11P	161	2192.15	13P	434	2197.91	1.6P	245	2203.02
110	245	2199.99	13P	449	2198.04	161	278	2203.97
11P	259	2190.99	13P	463	2198.40	16₽	283	2203.97
11P	273	2191.65	13P	477	2198.09	16P	295	2203.72
112	233	2191.18	13P	494	2198.06	16P	308	2204.30
11P	295	2191.01	13P	505	2193.62	16P	323	2203.58
11P	308	2191.13	1 3 P	513	2198.34	160	407	2204+33
11P	323	2190.65	1 3P	532	2193.13	168	434	2204.50
11P	407	2193.03	13P	545	2197.78			
11P	421	2192.92	1.3P	560	2197.92			
119	434	2192.98	1 3 P	563	2197.70	STATION	DATE	WATER LEVEL
11P	449	2193.08	139	539	2190.93			
11 P	532	2193.28	13P	610	2196.99	179	100	2204.66
1 1 P	545	2192.85				172	161	2204.52
11P	560	2192.70				17P	278	2204.30
110	568	2192.43	CTATION	CALC	HATED LEVEL	179	283	2204.36
11P	589	2191.97	STATION	DATE	WATER LEVEL	170	295	2204.29
11P	610	2192.38	14.0	1.00	2120 20	1 7P	308	2204.48
			148	141	2199.30	17P	323	2204.51
			140	245	2133.04	179	407	2204.85
STATION	DATE	WATER LEVEL	140	247	2199.00	17P	434	2204.78
			140	273	21 97.00	172	532	2204.73
129	100	2197.28	140	288	2198.87			
120	161	2196.15	140	295	2198.86			
129	245	2194.32	149	308	2198.99	STATION	DATE	WATER LEVEL
12P	259	2194.24	140	323	2199.01	3141100	13ATE	
12P	278	2193.87	14P	407	2199-82	182	100	2210.39
1.2P	288	2194.12	140	434	2199.69	189	449	2209.87
12P	295	2193-44	148	532	2199.68	189	463	2209.99
120	308	2194.74				182	471	2209.31
12P	323	2194.58				182	494	2209.16
12P	407	2196.56				182	505	2209.87
12P	434	2196.31				1 8 P	513	2210.04
12P	532	2196.48				188	532	2209.94
						18P	545	2209.64
						188	560	2209.62
						18P	568	2209.52
						LAP	589	2209.05
						188	610	2208.45

•

51A116/1	DATE	WATER LEVEL	STATION	DATE	WATEP LEVEL	STATION	DATE	WATER LEVEL
19P	190	2204.22	SC1	259	220.). 36	SPó	295	2204.02
199	161	2203.95	SG1	278	2200.36	596	301	2203.95
190	245	2201+21	S61	288	2200.36	SP6	308	2204.77
19P	259	2201.00	SG 1	295	2200.36	SP 6	323	220+.61
1.9P	278	2204-14	SG 1	308	2200.50	SP6	338	2208.61
19P	238	2204.22	561	323	2200.39	SP6	356	2208.40
19P	295	2204.13	561	518	2202.51	SP6	363	2207.99
195	308	2204.13	SG1	532	2201.93	SP6	375	2208.18
198	323	2204.37	SG1	545	2201.54	5P6	393	2207.87
192	407	2204.67	SG1	500	2201.18	SP6	407	2203.40
19P	434	2204.66	SGL	568	2201.07	S.P.6	421	2207.80
19P	505	2205.67				SP6	434	2203.13
192	518	2204.84				SP6	449	2203.60
198	532	2204.57	STATION	LVIE	SATED LEVEL	526	46.3	2203.54
			3141104	DATE	WATER LEVEL	SP6	471	2208.24
			\$62	25.9	2201 49	SP6	494	2208.30
STATION	CATE	WATER LEVEL	562	278	2201+47	SP6	505	2208.79
••••••	Ditte		562	288	2201.11	<u>Տ</u> ዮ 6	518	2203.48
2 O P	100	2139.54	562	245	2201.00	SP6	532	2203.23
20P	568	2187.54	\$62	308	2202.02	SF 6	545	2207.85
20P	589	2187.07	562	323	2201 98	SP6	560	2207.44
20P	610	2187.24	562	463	2202 57	SP6	568	2207.13
-			562	494	2202 53	SP6	589	2236.51
			562	518	2202 10			
			562	532	2202 51			
STATION	DATE	WATER LEVEL	562	545	2202 11			
			\$62	560	2201 81			
219	100	2192.24	562	568	2201.01			
21P	568	2186.05	562	589	2201+01 2202 0R			
21P	589	2185.61	502	101	2247 . 70			
21P	610	2185.16						

•
APPENDIX IV Water Quality

,

Appendix IV. Water quality data for 1977 - 1978, Smelterville Flats study area.

STATION	9 AT E	TE MP	PH	εc	FC	64	СÐ	ZN	C A	etin	ИG
AXA	234	16.3	6.4	1070	0.0	0.010	0.0	60.600	128.100	25.400	43.000
AXA	234	15.9	6.5	1070	0.0	0.010	0.0	62.100	130.200	24.200	43.700
AXA	234	15.0	6.0	1070	0.0	0.0	0.0	63.200	133.400	23.400	44.000
AXA	*234	15.7	6.5	1070	0.0	0.007	0.0	62.170	131.000	24.530	43.570
AXA	375	9.0	6.1	867	0.360	0.063	Ü.O	41.200	138.000	43.100	43.100
AX A	449	9.8	6.0	949	-0.050	0.059	0.0	41,000	173.000	47.000	43.000
AXA	477	9.0	5.1	898	0.240	Ŭ•Ũ	0.0	39.600	173.000	46.700	43.000
AXA	505	12.0	6.0	1929	0.150	0.0	0.031	40.950	0.0	45.200	0.0
AXA	532	11.5	5.7	970	0.0	0.180	0.050	42.300	145.700	43.000	44.100
AXA	589	12.7	٤.١	0	0.0	0.010	0.0	37.100	152.000	48.200	0.0
STATION	DATE	ТЕМР	РН	EC	FE	PB	CD	Zti	C A	MN	Mu
AXIS	449	10.0	5.0	1010	-0.050	0.240	6.800	53.100	158.000	23.109	52.009
AXR	471	9.0	5.1	806	0.0	0.280	0.640	41.500	121.000	18.400	39.000
AX 8	505	12.0	5.2	780	0.0	0.160	0.520	35.700	0.0	14.500	0.0
AХıз	ነጋረ	12.5	5.5	730	0.0	0.0	0.540	35.100	97.000	13.100	30.900
STATICN	DATE	TEMP	РН	EC	FE	PB	CÜ	ZI	CA	МГ.	អច
184	234	12.2	6.3	1030	0.0	0.530	0.0	44.700	160.000	37.300	46.200
1 X A	234	12.8	6.3	1120	0.0	0.540	0.0	44.900	166.000	37.300	46.500
12.4	234	12.5	6.3	1140	0.0	0.550	0.0	45.100	161.000	36.900	46.300
LXA	*234	12.5	6.3	1097	0.0	0.540	0.0	44.900	162.000	37.170	46.330
1 X A	375	8.5	6.6	938	-0.050	0.120	0.010	16.100	151.000	16.100	42.200
1 X A	449	8.3	6.2	898	0.064	0.0	0.0	13.400	158.000	76.700	42.000
1 X A	477	3.4	6.2	898	0.260	0.0	0.0	14.000	188.000	67.400	40.000
1 X A	505	11.1	5.9	1000	0.260	0.0	0.030	11.550	0.0	62.600	0.0
1 X A	532	12.8	5.9	950	0.0	0.0	0.050	10.300	125.600	54.100	35.100
1 X A	589	14.0	6.1	J	0.0	0.0	0.0	11.200	120.000	54.100	0.0

STATION	DATE	TLHP	PH	23	FE	PB	CD	ZN	LA	MN	HG
183	375	8.5	5.2	622	0.053	0.430	0.480	39.100	107.000	8.000	30.300
1X5	449	8.3	5.2	683	-0.050	0.330	0.550	40.700	109.000	12.300	38.000
188	477	3.2	5.3	485	0.0	0.450	0.360	30.100	78.000	7.400	27.000
1 X 4	505	10.3	5.7	410	0.0	.0.290	0.240	19.950	49.200	4.000	17.200
1X8	532	12.9	5.7	405	0.0	0.360	0.240	20.400	42.600	34.600	18.300
STATION	DATE	1 EMP	РН	EC	FE	РВ	CD	ZN	CA	MN	MG
284	234	15.0	6-6	989	0.061	0.390	0.0	48.600	151.000	23.400	44.400
2 X A	234	14.7	6.6	1020	0.065	0.530	0.0	45.100	150.000	20.100	43.600
2 X A	234	16.3	6.5	1020	0.044	0.540	0.0	45.100	152.000	20.100	44.100
2×4	*234	15.3	6.0	1010	0.057	0.487	0.0	46.270	151.000	21.200	44.030
2XA	375	8.7	6.5	806	-0.050	0.0	0.011	7.500	118.000	86.100	37.500
2 X A	449	7.4	6.5	196	0.049	0.0	0.015	6.700	119.000	88.200	39.000
2X A	477	7.3	6.3	755	0.290	0.0	0.0	6.500	113.000	71.200	35.000
284	505	9.0	6.2	790	0.0	0.0	0.018	5.800	110.200	58.700	28.100
2XA	532	10.7	6.1	750	0.0	0.0	0.020	5.700	91.400	55.600	30.400
2 X A	589	12.1	6.5	0	0.0	0.0	0.0	4.500	89.800	57.400	0.0
STATION	DATE	TEMP	РН	EC	FE	PB	CD	ZN	CA	MN	MG
2X6	449	7.2	6.0	592	- 0.050	0.150	0.400	32.600	89.300	22.600	37.000
2 X B	477	7.1	6.0	383	0.0	0.0	0.210	22.600	57.200	10.500	23.000
2 X B	505	9.9	6.0	340	0.0	0.060	0.190	16.800	41.600	5.500	16.600
2X3	532	11.1	6.0	315	0.0	0.050	0.160	16.300	32.800	43.000	15.300

•

.

.

STATION	DATE	TE MP	РН	ΕL	FE	د 4	60	Z14	CA	Ais	MG
ЗХА	234	13.0	6.4	832.0	0.0	0.400	0.0	46.000	111.000	9.000	37.200
AXE	234	12.5	6.5	806.0	0.0	0.390	0.0	45.400	114.000	9.800	37.200
3 X A	234	12.8	6.5	836.0	0.0	0.380	0.0	44.900	113.000	9.800	37.300
3XA	#234	12.3	6.5	824.7	0.0	0.390	0.0	45.433	112.667	9.535	37.233
3XA	375	0.5	5.7	326.0	-0.050	0.0	0.190	18.300	49.400	2.000	16.900
3XA	449	6.2	5.8	309.0	0.0	0.0	0.130	16.300	48.000	1.100	17.000
3XA	477	6.5	6.3	214.0	0.0	0.0	0.074	11.200	29,100	0.980	12.000
ЗХА	505	10.0	6.0	210.0	0.050	0.0	0.074	9.100	22.000	0.300	8.600
ЗХA	532	13.9	6.1	210.0	0.0	0.0	0.070	9.200	19.700	0.350	8.000
i X A	539	13.8	5.9	0.0	0.0	0.0	0.0	9.900	24.500	0.370	0.0
STATION	DATE	темр	211	۲۲	F F	PB	C I)	7N	CA	MN	MG
3141104	0416	1 12110		20		• •			0		
3X3	477	6.7	6.1	1040	1.600	0.100	0.0	17.300	136.000	145.000	67.000
3 X B	50.5	10.9	6.0	1100	C.940	0.0	0.034	17.800	0.0	114.000	0.0
3XB	532	12.8	6.0	830	C.840	0.0	0.032	16.300	78.500	81.900	44.300
STATION	DATE	TEMP	PH	EC	FE	P8	CD	ZN	LA	MI.	MG
4 X A	234	12.8	6.7	867	0.0	0.940	0.0	46.700	121.000	13.400	42.000
4 X A	234	13.0	6.5	903	0.0	0.960	0.0	47.300	123.000	13.400	42.000
4 X A	234	13.0	6.6	841	0.0	0.730	0.0	49.900	118.000	14.000	42.000
4 X A	*234	12.9	6.6	874	0.0	0.877	0.0	47.970	121.000	13.600	42.000
4XA	407	3.0	6.3	473	-0.050	0.190	0.110	33.200	98.000	15.000	28.000
4XA	449	5.0	6.2	490	0.0	0.280	0.140	28.900	88.200	13.300	26.000
4 X A	471	8.7	6.0	435	0.050	0.320	0.180	20.000	79.700	11.000	23.000
4 X A	505	11.5	5.9	520	0.0	0.210	0.230	22.100	68.000	9.600	18.500
4XA	532	14.2	6.1	435	0.0	0.320	0.230	18.900	58.400	0.0	16.303
4 X A	589	15.0	6.1	0	0.480	0.230	0.250	16.500	59.800	6.600	0.0

.

STATION	DATE	TEMP	РН	LC.	FE	PU	(U	ZH	6A	141 e	MG
4XB	375	5.8	6.2	398.0	~0.050	0.083	0.160	39.000	111.000	17.900	33.400
4XB	407	2.2	6.5	273.0	-0.050	0.120	0.240	17.300	47.300	2.700	11.000
4 X .)	449	5.0	0.2	272.0	0.0	0.0	0.110	15.400	41.400	1.500	16.000
4X8	477	8.6	5.9	192.0	0.0	0.0	0.061	8.900	24.000	0.910	9,900
4X8	505	11.7	5.8	203.0	0.0	0.0	0.074	8.000	22.000	0.260	7.900
4 X B	532	14.3	6.3	185.0	0.0	0.0	0.060	6.700	18.300	0.26)	6.900
4 X 3	589	15.5	0.3	0.0	0.0	0.0	0.0	7.000	28.000	0.540	0.0
STATION	DATE	теми	PH	EC	FE	РВ	CD	Z14	CA	MN	MG
					0.070	0)	0.0	15 600	78 600	5.700	21.000
6XA	234	13.0	6.9	571	0.270	0.0	0.0	15 000	79 300	6.300	21,100
6XA	234	12.5	7.0	551	0.330	0.0	0.0	16 400	14 200	6.800	21.100
6XA	234	12.4	1.1	530	0.290	0.0	0.0	15 970	77.200	6.210	21.070
6 X A	#234	12.6	1.0	551	0.213	0.0	0.0	6 870	65.100	17.900	22.100
6 X A	375	4.0	6.6	365	-0.050	0.0	0.0	2 200	62.400	14.200	21.000
6XA	449	5.0	1.0	347	0.0	0.0	0.0	2.200	54,900	13.100	21.000
6 X A	411	0.8	5.9 ()	321	0.0	0.0	0.011	2.000	50.400	12.300	10.200
6 X A	505	11.0	0.3	40.5	0.0	0.0	0.0	2.300	48.500	9.400	15.800
6XA 6XA	532 589	14.3	5.9 6.3	0	0.0	0.0	0.0	2.100	44.100	8.100	0.0
								N	<i>с.</i> •		
STATION	DATE	E C MP	рн	EC	FE	РВ	CD	211	LA	PHN	1 0
6 X B	375	4.0	6.3	350	-0.050	0.120	0.150	13.300	66.200	3.800	19.700
6X3	449	5.0	6.0	217	0.0	0.0	0.069	8.200	33.200	1.300	12.000
6XB	471	1.0	6.2	122	0.0	0.0	0.040	4.700	10.400	0.100	F 000
6X8	505	11.9	6.3	168	0.0	0.0	0.046	4.300	16.800	0.140	5.900
6X3	532	11.0	6.1	135	0.0	0.0	0.050	4.600	17.000	0.120	5.100

STATION	DATE	TEMP	PH	ēC	FE	P3	сu	ZN	CA	MN	MG
7 X A	234	13.3	6.9	411	0.0	6.0	0.0	8.100	61.600	1.600	12.600
7XA	234	14.0	7.1	413	0.0	0.0	0.0	8.100	000.60	1.400	12.300
7 X A	234	13.3	7.1	412	0.0	0.0	0.0	9.300	62.800	2.000	12.600
7 X A	*234	13.9	7.0	414	0.0	0.0	0.0	8.500	62.000	1.670	12.500
7 X A	375	5.0	6.3	314	0.970	0.0	0.0	0.047	59.300	16.900	13.800
7 X A	407	2.0	.6.5	275	0.230	0.0	0.0	0.270	58.600	16.600	14.000
7 X A	449	5.2	6.7	328	-0.050	0.0	0.0	0.103	64.600	16.800	11.000
7 X A	477	6.0	6.4	311	0.0	0.0	0.0	0.120	60.000	15.800	14.000
7 X A	505	11.3	6.2	41 8	0.0	0.0	0.018	0.120	56.900	16.200	13.300
7 X A	532	9.3	6.0	J3 0	0.0	0.0	0.0	0.070	53.400	13.100	13.600
7XA	589	14.2	6.2	0	0.0	0.0	0.0	0.020	61.500	15.300	0.0
STAFIUN	DATE	FEMP	Рн	£C	FE	₽B	Cir	211	LA	NIL	МС
							0.017	5 1 0)			
7×3	449	4.9	6.0	173.0	0.0	0.090	0.037	5.100	27.100	0.050	8.900
7XB	477	6.0	6.5	112.0	0.0	0.088	0.020	3.300	16.700	0.050	6.100
7 X 5	505	10.3	6.4	140.0	0.0	0.040	0.032	2.800	14-100	0.080	4.900
788	532	9.0	6.1	103.0	0.0	0.000	0.020	2.900	12.600	0.100	4.000
STATION	DATE	тенр	PH	EC	FE	рв	CD	ZN	CA	ма	MG
8 X A	23.4	14.9	7.2	452.0	0.0	0.0	0.0	L.000	10.200	0.420	15.100
BXA	234	14.5	7.3	441.0	0.0	0.0	0.0	0.360	69.300	0.410	15.200
SXA	234	14.8	7.3	442.0	0.0	0.0	0.0	0.560	11.500	0.400	15.303
8 X A	*234	14.7	1.3	444.0	0.0	0.0	0.0	0.570	10.015	0.410	15.200
8 X A	375	2.8	6.5	284.0	0.720	0.0	0.0	0.088	60.400	8.600	16.300
BXA	449	7.4	6.8	337.0	0.150	0.0	0.0	0.079	71.200	8.300	16.000
AX6	417	7.5	6.6	304.0	0.690	0.0	-0.010	0.065	61.600	8,400	16.000
ыXA	505	12.0	6.3	413.0	0.720	0.0	0.010	0.032	60.200	1.080	15.300
SXA	532	12.4	5.8	330.0	0.520	0.0	0.0	0.050	61.300	6.500	12.800
8 X A	589	15.3	6.5	0. 0	0.470	0.0	0.0	0.010	66.300	1.903	0.0

STATION	DATE	темр	PH	EC	f E	РВ	CD	ZN	C A	мн	MG
ахв	375	3.0	6.3	469	-0.050	0.0	0.032	1.050	98.500	31.500	28.900
dXũ	449	8.0	6.5	194	0.0	0.0	0.071	6.900	27.100	0.160	7.900
8 X 3	477	7.5	6.3	128	0.0	0.0	0.040	4.600	19.000	0.060	6.100
вхв	505	14.0	6.1	175	0.0	0.0	0.044	4.200	17.000	0.090	4.800
8X6	532	12.4	6.0	120	0.0	0.0	0.030	4.600	15.500	0.030	4.600
зхз	589	15.8	6.3	0	0.0	0.0	0.0	3.500	28.000	2.400	u . 0
~ * 4 * • • • • • •				5 13		-					
STATION	DATE	TENP	PH	EC	FE	ЪВ	C ()	ZN	LA	MUN	MG
9XA	234	16.0	1.4	365	0.0	0.0	0.0	0.150	54.000	0.530	11.100
9×A	234	16.0	7.5	356	0.0	0.0	0.0	0.720	54.800	0.590	11.000
9XA	234	16.0	7.1	375	0.0	0.0	0.0	1.200	56.600	0.590	11.100
9 X A	#234	16.0	7.3	365	0.0	0.0	0.0	0.890	55.000	0.590	11.070
9 X A	375	2.5	6.7	238	0.092	0.0	0.0	0.084	54.400	6.900	17.600
9XA	449	7.0	6.8	268	0.570	0.0	0.0	0.079	50.800	7.200	12.000
9 X A	477	7.4	6.3	245	0.830	0.0	0.0	0.027	47.000	7.700	12.000
9 X A	50 5	12.4	6.3	345	0.060	0.0	0.0	0.016	45.200	6.660	10.800
9XA	532	12.8	5.8	255	0.520	0.0	0.0	0.040	45.600	6.500	10.900
ЭХА	589	18.0	6.2	0	0.070	0.0	0.0	0.030	36.900	7.500	0.0
CTATION	DATE	TERD	()) (10	EK.	to a	6.0	7 61	6.4	1 4 1.	MIT
51A1100	DATE	I C mr	rn	EC	F E.	PO	CD	211	ι.A.	1984	ri G
9X3	375	2.0	6.3	243	0.063	0.220	0.200	20.000	42.290	1.800	13.200
ЭХЗ	449	7.0	6.4	206	- 0.050	0.120	0.102	10.500	31.000	0.800	8.400
9X (i	477	7.0	6.3	150	0.0	0.070	0.078	10.200	20.200	1.300	6.500
9X8	505	12.6	6.2	157	0.050	0.0	0.044	4.500	15.000	0.740	4.000
9XB	532	12.4	6.2	110	0.0	0.0	0.020	3.900	15.500	0.410	3.600

IV 7

STATION	DATE	T E MP	PH	E.C.	FE	PB	CÐ	Ziv	CA	Mri	MG	
			• •	207	Λà	0.0	(u - O	004.8	29.400	11.800	13.300	
AYA	234	16.0	1.0	200	0.0	0.0	0.0	8.300	29.200	11.600	13.400	
ΑΥΑ	234	16.2	0.9	20.9	0.0	6.0	0.0	8.500	29.400	11.600	13.300	
ΑγΛ	- 34	12-0	6.8	370	0.0	0.0	0.0	8.630	29.000	11.670	13.330	
AYA	4234	14.1	6.9	312	U.U.	0.0	0.0	1,500	25.700	15.800	12.600	
AYA	375	4.5	6.4	204	2.300	0.0	0.0	0.049	41.200	16.000	12.000	
AY7.	449	8.3	6.4	286	2.000	0.0	0.0	0.073	30.600	16.300	12.000	
AYA	477	7.3	6.2	230	3.500	0.0	0.034	0.021	30.700	10.300	12.700	
AYA	50.5	11.0	6.5	297	2.000	0.0	0.033	0.021	32.800	15.000	13.600	
AYA	532	12.5	5.9	295	3.200	0.0	0.0	0.180	42.100	16.400	0.0	
AYA	539	15.0	6.7	U	1.200	0.0		0.100				
	DATE	TEMP	L#14	EC	f F	PB	CD	ŹN	CA		MG	
STATION	DAIL	1		20	• •••							
AY B	234	17.3	6.9	350.0	1.760	0.0	0.0	7.000	29.200	18.300	17.000	
AYA	234	17.5	6.8	340.0	0.880	0.0	0.0	7.200	28.000	16.600	16.500	
AV (1	2.34	17.3	6.9	356.0	1.390	0.0	0.0	8.130	20.800	18.300	16.600	
ATO	* 234	17 4	6.9	348.7	1.343	0.0	0.0	7.633	28.667	17.733	16.700	
ATD	375	5 2	5.4	243.0	0.280	0.0	0.0	7.200	35.900	11.000	14.700	
AY 8	240	7 1	6.1	355.0	1.420	0.0	0.0	10.500	54.300	12.600	16.000	
410			0.1	377.0								
AVIS	417	8.0	6.0	408-0	13,000	0.0	0.0	16.100	56.000	16.300	23.000	
A Y 11	505	11.8	6.1	480.0	2,500	0.0	0.060	14.700	59.700	15.800	22.900	
AVB	532	11.9	5.8	530.0	12,600	0.0	0.0	20.000	56.900	14.703	29.400	
ΔΥΒ	589	15.0	5.2	0.0	13.300	0.0	0.0	19.200	65.100	15.800	0.0	
510			0.1									
STATION	DATE	темр	211	εL	F E	PB	CD	Z11	C A	Mt	216	
174	234	15-5	6.5	298	0.0	0.0	0.0	8.500	26.500	5.290	12.800	
1 Y A	234	14.5	6.6	291	0.0	0.0	U.O	8.000	26.200	5,200	13.000	
1.7.4	23	13.8	6.1	274	·) • 0	0.0	0.0	6.500	25.600	5.600	13.000	
17.5	*/34	14.6	6.6	283	0.0	0.0	0.0	1.170	∠6.000	5.330	12,930	
1 1 1	176	7.0	ö.4	224	-0.050	0.0	0.0	6.000	29.200	6.700	12.700	
IY \	440	7.H	6.5	242	0.570	0.0	0.0	6.600	33.100	6.600	13.000	
1 1 1	417	1.5	6.6	255	0.410	0.0	0.0	6.800	34.800	7.000	13.000	
1 4 4	535	9.8	6.3	278	0.370	Ú.)	0.028	6.800	33.600	6.300	12.700	
1 1 1	53.7	11.7	6.4	312	0.320	0.0	0.0	5.300	34.000	6.400	13.000	
1 Y A	ے د ر 11 این	13.8	5.0	0	0.450	0.0	0.0	6.200	40.300	6.999	0.0	
£ 1/1	, , , ,		~ • • •									

STATION	OATE	теир	PH	EC	FL	РБ	CD	ZN	CA	MN	MG
I YB	234	14.0	6.7	406	0.0	6. 0	0.0	7.100	28.203	25.000	20.800
148	234	13.3	6.6	375	0.0	0.0	0.0	6.200	25.700	22.300	20.400
173	234	14.0	6.7	417	J.O	0.0	0.0	7.400	32.200	25.600	20.600
1 Y B	*234	13.2	6.7	399	0.0	0.0	0.0	6.900	29.000	24.300	20.600
1 YP	375	7.0	6.4	243	-0.050	0.0	0.120	10.500	28.900	5.800	16.200
1Y3	449	7.0	6.4	290	0.200	0.0	0.046	10.000	33.100	11.000	19.000
1 ¥3	477	8.6	6.5	328	0.100	0.0	0.051	10.200	38.100	15.800	20.000
113	505	10.5	6.1	385	0.050	0.0	0.084	11.200	39.700	14.700	21.800
146	532	12.0	0.1	405	0.0	0.0	0.060	15.000	34.000	10.500	24.200
1Y3	589	14.0	6.0	0	0.330	0.0	0.0	14.500	36.900	9.400	0.0
ST 4T 1 (12)	DATE	тсмр	<u>он</u>	c r	EE	DA	C D	7.51	C A	MN	MG
2141104	DATE	I C MP	211		FL	FD	CD	ZN -	CA	1111	
2 Y 1	234	13.0	7.1	411	0.052	0.0	0.0	0.095	65.400	4.200	20.000
244	234	13.2	7.1	430	0.094	0.0	0.0	0.036	67.000	4.000	20.500
274	#234	13.1	7.1	421	0.073	0.0	0-0	0.070	66.000	4.100	20.250
244	375	8.0	6.4	355	0.500	0.0	0.0	0.084	66.200	5.600	20.000
27.4	449	7.5	6.6	365	0.470	0.0	0.0	0.029	66.800	6.900	20.000
274	477	8.2	6.7	377	0.320	0.0	0.0	0.030	66.600	8.100	20.000
244	505	10.0	6.2	367	0.320	0.0	0.030	0.030	55.900	6.800	18.200
244	532	11.6	6.3	400	0.470	0.0	0.0	-0.040	49.800	7.000	20.000
2 Y A	589	12.8	5.9	0	0.740	0.0	0.0	0.050	57.100	7.700	0.0
STATION	DATE	темр	PH	EC	FE	PB	CD	ZN	CA	MN	MG
278	234	13.0	7.1	270	0.0	0.0	0.0	1.400	20.000	18.600	14.100
278	234	13.0	1.2	254	0.0	0.0	0.0	0.410	16.800	17.800	13.000
278	234	11.0	6.9	278	0.0	Ú.0	0.0	0.560	18.500	18.600	13.800
2 Y B	+234	13.0	7.1	267	0.0	0.0	0.0	0.790	18.000	18.330	13.630
273	375	8.0	6.6	221	0.053	0.0	0.0	0.890	24.700	20.000	14.400
2Y8	449	8.0	6.8	263	0.0	0.0	0.012	1.500	28.800	21.700	15.000
278	417	8.4	6.6	302	0.096	0.0	-0.010	1.600	34.800	24.200	17.000
2Y U	505	10.2	6.4	348	0.0	0.0	0.029	1.000	29.900	34.000	19.100
2YB	532	10.8	0.4	395	0.500	0.0	0.0	0.980	34.000	29.900	21.400
2YB	589	13.0	5.9	0	C.750	0.0	0.0	0.730	35.900	33.000	0.0

STATIGA	0ATE	TEHP	PH	EC	F Ł.	ΡB	CU	Zit	C A	Mia	MĞ
344	234	15.0	6.8	306	0.0	0.0	0.0	5.500	23.900	18.600	13.300
344	234	15.0	6.8	311	:).0	0.0	0.0	5.300	22,200	18.200	14.000
3 Y A	234	14.0	6.9	291	0.0	0.0	0.0	5.900	23.000	18.600	12.900
3YA	*234	14.7	6.3	303	0.0	0.0	υ.Ο	5.570	23.000	14.470	13.070
3YA	375	3.3	6.5	221	-0.050	0.0	U.O	4.300	25.200	18,900	11.800
3YA	449	8.3	6.4	235	0.0	0.0	0.0	4.300	25.500	19,400	10.000
3 Y A	477	8.9	6.1	243	0.0	0.0	0.0	4.300	30.200	19.400	12.000
3YA	505	11.0	6.3	280	0.0	0.0	0.043	4.400	26.200	20.000	10,900
3Y A	532	11.3	6.4	298	0.0	0.0	0.0	4.700	28.400	17.800	13.600
3YA	539	13.0	5.8	0	0.0	0.0	0.0	4.100	31.500	20.700	0.0
STAFIND	ΟΔΤΓ	темр	PH	FC	5.5	D.G	C 10		<i></i>		
	0.110	1.0.1		L ()	1 4	rb	τυ	2.14	U A	54 I V	MG
3¥ (5	234	17.0	6.8	315	0.0	0.0	н <u>о</u>	6 3/10	24 203	36 333	17 . 30
3YB	234	17.1	6.9	3.28	0.0	0.0	0.0	2 600	23.203	22.100	17.500
3Y 8	234	17.8	6.8	291	0.0	0.0	0.0	1 300	20.000	23.400	17.200
3YE	*234	17.3	6.8	311	0.0	0.0	0.0 0.0	3 400	20.000	23.000	10.700
3Y B	375	8.0	6.4	179	-0.050	6.0	0.027	3 600	22.000	15 900	10 300
3¥ 3	449	3.0	6.4	224	9.0	0.0	0.032	2 800	26 500	22 1 1	10.300
3Y3	477	9.0	6.7	277	0.0	0.0	0.042	4 600	29.700	22.00	15 000
3Y (3	505	11.0	6.2	315	0.0	0.0	0.063	4 400	28 700	25.000	15 600
3¥8	532	11.9	6.3	360	0.0	4.0	0.020	5.300	29 800	25 700	18 900
3YB	589	13.0	5.8	о	0.0	0.0	0.0	6.100	38.600	29.700	0.0
									50.000	276100	0.0
STATION	DATE	ТЕМР	9H	EC	FE	64	CD	ZI4	CA	MIA	MG
5YA	234	20.1	0.0	Ð	0.0	0.0	0.0	17.400	79 700	a ann	76 200
5YA	234	21.2	6.5	847	0.0	0.0	0.0	17.100	79.300	31.200	26 600
5 Y A	234	20.7	6.5	836	0.0	0.0	0.0	17.300	80.200	31.300	26.700
5Y 4	¥234	20.7	4.3	561	0.0	0.0	0.0	17.270	30,000	31.470	26.700
5 Y A	375	3.0	6.2	444	0.440	0.060	0.0	12.600	67.200	43.100	23 100
5YA	449	7.4	6.4	490	0.084	0.0	0.0	11,900	72.800	44.900	23 000
5 Y A	477	9.0	0.6	551	0.072	0.0	0.0	12.100	13.300	44.100	22.000
5YA	505	13.0	6.4	580	0.0	0.0	0.041	10.900	75.400	43.100	22.900
ρΥA	532	15.4	6.3	650	U.0	0.0	0.0	10.300	72.700	42.000	23.100
5YA	589	18.0	6.0	0	0.0	0.0	0.0	10.500	82.000	43.000	0.0

٠

STATION	DATE	ТЕЙР	Pit	EC	ιE	69	CD	Z14	C A	MI	MG
5YB	375	5.0	6.2	31.6	0.050	0.150	0.130	12.100	42.000	13.600	28.400
5Y3	449	7.4	6.4	421	0.110	0.140	0.150	19.400	40.700	15.400	37.000
5YB	477	7.8	6.3	52 0	0.200	0.220	C.170	23.100	62.200	15.400	44.000
5Y8	505	13.3	6.2	62.0	0.180	0.130	0.200	21.000	65.600	11.600	52.100
5Y8	532	10.3	6.1	730	0.0	0.0	0.170	19.200	69.900	9.400	53.600
5Y8	589	19.4	5.9	J	0.0	0.0	0.240	26.500	83.600	15.800	0.0
STATION	DATE	темр	РН	EC	FE	PB	Cυ	Z †4	C A	MM	MG
	2.1			1000	0.0	0 0	0.076	26 830	126 000	12 200	32.700
6 Y A (V A	234	22.0	0	1000	0.0	0.0	0.075	26.300	121.000	12.100	32.000
61A 4 V A	234	22.07	0•0 ((1020	0.0	0.0	0.080	26.300	118.000	11.800	32,900
6 T A	4-2-2-4 4-2-2-4	22.0	0•" 6 4	102.0	0.0	0.0	0.677	26.470	120.000	12.030	32.830
614	224	3 0	5 8	337	-0.050	0.056	0.220	20.500	56.500	5,100	16.200
6YA 6YA	212	2.0	5.9	323	-0.050	0.0	0.240	22.500	60,900	5,300	17.000
674	401	2U B. J	5.8	423	0.00	0.102	0.250	23,100	67.800	5.500	16.000
674	677	9 4 U	6.0	428	0.0	0.093	0.230	23.100	66.900	5.800	18.000
6 Y A	50.5	14.0	5.0	420	0.0	0.0	0.280	25.200	60.500	5.700	19.600
6.74	532	153	6.0	420	0.0	0.0	0.230	23.200	48.300	4.500	18.900
6¥A	589	19.2	5.4	0	0.0	0.0	0.190	18.500	43,000	4.000	0.0
STATION	DATE	темр	РН	f. L	F E	PB	CD	214	ĊA	Mt.	M 0
4 V H - 1	234	23.0	67	1071	6 700	0.0	0.0	5.700	119.000	25.500	35.500
EYR .	234	22 2	6.6	946	8,300	0.0	0.0	10.700	103.000	24.400	37.300
678	234	22.2	£.7	1030	6.800	0.0	0.0	8.000	116.000	25.700	37.100
6Y8	*234	22.5	6.7	101.6	7.267	0.0	0.0	8.130	114.000	25.200	37.130
678	375	3.5	6.6	592	6.400	0.0	0.0	3.200	109.000	23.100	36.900
649	407	2.1	6.5	492	3.130	0.0	0.0	4.600	116.000	23.600	37.000
6YB	449	9.2	6.3	724	0.0	0.0	0.0	5.000	123.000	23.100	39.000
6Y8	471	8.5	6.7	104	2.200	0.0	-0.010	7.500	118.000	21.000	37.000
6YB	505	14.0	6.4	730	0.050	0.0	0.040	9.000	110.200	19.700	35.000
6YB	532	15.0	6.4	730	0.0	0.0	0.0	6.900	168.600	16.800	34.400
6ҮЬ	509	19.0	5.8	0	0.0	0.0	0.0	7.400	104.000	17.800	0.0

,

STATION	DATL	TENP	PH	сC	F E	PB	CD	274	CA	ма	46
	13 M K	2.2	7 /	30.6	0.0	0.0	0.0	0.460	34.600	2.700	7.700
649	234	20.0	7 5	290	0.0	0.0	0.0	0.370	34.900	2.600	7.600
6YU	234	19.3	7.0	207	0.0	0.0	0.0	0.460	35.700	2.700	7.700
640	234	21-0	1.4	202	0.0	0.0	0.0	0.430	35.000	2.670	7.670
6Y.J	*234	20.5	I • 4	2 7 4	0.140	0-0	0.0	0.140	0.0	2.300	0.0
6Y9	301	11.0	0.0	17/	0.140	0.0	0.0	0.120	34.500	2.400	7.600
6¥9	375	4.0	0.0	150	0.041	0.0	0.0	0.035	33.600	2.300	7.400
640	407	4.0	0.0	100	0.052	0.0	0.0	0.049	34.100	2.300	7.000
649	449	1.9	0.n	190	0.0320	0.0	0.0	0.037	35.300	2.300	7.400
6 Y D	411	8.8	0.0	201	0.050	0.0	0.020	0.030	33.100	2.300	7.400
6YD	505	13.5	0.4	202	0.0	0.0	0.0	-0.040	31.300	2.100	5.200
6Y D	532	15.5	0.0	217	0.0	0.0	0.0	0.040	35.100	2.200	0.0
GYD	589	18.5	6.4	0	0+11	0.0	0.0	5.010			
١											
STATION	ΩΔ Τ Ε	TEMP	PH	EC	FE	PB	CD	Zhi	C A	МI .	MG
31711070	L7771 L.							20.020	70 100	14 000	23.400
7 Y A	234	19.5	6.7	714	0.980	0.0	0.0	20.000	77.100	12 000	23 100
77.4	234	20.0	6.7	714	0.930	0.0	0.0	20.200	77.400	12 000	23 300
744	234	20.8	6.7	724	0.810	0.0	0.0	19.800	76.000	12.030	23.270
744	#234	20.1	6.7	717	0.907	0.0	0.0	20.000	77.000	12.20	26 800
TYA	375	5.3	6.4	457	-0.050	0.0	0.011	14.600	19.200	25.000	26.000
IYA	449	8.9	6.4	551	-0.050	0.0	0.0	14.700	88.900	24.400	25.000
7 Y A	477	8.7	6.4	581	0.0	0.0	0.0	14.700	92.300	24.400	20.000
7 Y 4	505	13.8	6.2	620	0.0	0.0	0.044	21.000	80-800	21.190	21.500
IYA	532	15.0	6.2	600	0.0	0.0	0.0	20,000	75.600	24.200	20.00
IYA	589	18.0	5.8	0	0.0	0.0	0.0	18.500	10.400	23.103	0.0
		-1			67	D N	60	7 14	(A	1414	MG
STATION	DATE	TEMP	PH	EU	τ.	rJ	00	• • •			
8 . 7 ¥3	234	27.3	6.8	745	0.230	0.0	0.043	13.100	v6 . 800	34.000	25.300
7 8 15	234	20.0	6.7	175	0.120	0.0	0.042	14.500	65.300	33.600	25.300
110	234	21.9	6.7	765	0.090	0.0	0.040	11.200	63.100	35.100	25.000
778	*234	21.2	6.7	762	0.147	0.0	0.042	12.930	65.000	34.230	25.200
7 V K	375	5.0	6-4	478	0.230	0.170	0.021	15.800	73.200	41.000	28.600
778	477	8.7	6.3	612	0.0	0.120	0.083	24.200	87.900	28.900	30.000
776	505	13.3	6.0	600	0.050	0.190	0.150	25.200	81.900	23.900	27.500
· · · · · / ¥8	532	15.0	6.1	600	0.0	0.240	0.130	23.600	74.300	17.800	27.800
783	589	17.6	5.9	0	0.0	0.230	0.120	21.100	70.400	19.000	0.0

•	STATION	DATE	TEMP	РН	EC	₽E	PB	CD	Zit	CA	MN	MG
	3 Y A	234	15.7	7.1	449	0.0	0.0	0.0	9.700	51.400	10,900	16.200
	dYA	234	16.9	7.1	461	0.0	0.0	0.0	9.100	51.100	10.700	15.900
	AY 6	234	15.0	7.1	435	0.0	0.0	0.0	9.600	51.000	10.900	16.200
	A Y 6	*234	15.6	7.1	448	0.0	0.0	0.0	9.670	51.000	10.830	16.100
	BYA	375	5.8	6.5	306	0.650	0.0	0.0	2.600	48.300	17.300	15.200
	8YA	407	3.5	6.8	279	0.710	0.0	0.0	0.049	49.600	18.990	15.000
	dYA	449	7.8	6.6	32.6	0.990	0.0	0.0	1.300	50.200	20.000	15.000
	BYA	477	7.4	6.6	321	1.400	0.0	0.0	0.030	48.700	20.000	15.000
	8 Y A	505	11.2	6.5	361	0.500	0.0	0.010	0.026	48.300	24.200	16.300
	BYA .	532	10.4	6.5	392	C.740	0.0	0.0	-0.040	47.000	24.200	16.400
	BYA	589	14.0	6.0	0	0.780	0.0	0.0	0.040	50,900	27.000	0.0
	STATION	DATE	TEMP	PH	EC	FE	Po	CU	Zti	C A	MN	MG
	aYB	234	16.5	6.9	734	0-0	0.0	0.0	15.200	10.400	27.500	24.700
	8YB	234	15.8	6.9	714	0.0	0.0	0.0	14.400	69.900	31.500	25.000
	8Y3	234	17.2	7.9	745	0.0	0.0	0.042	16.600	72.600	25.700	24.500
	6YB	*234	16.5	7.2	731	0.0	0.0	0.014	15.400	71.000	28.230	24.730
	BY3	375	6.0	6.5	409	0.250	0.0	0.0	6.800	61.400	36.100	22.400
	äΥß	449	7.2	6.5	444	0.290	0.0	0.0	6.200	68.500	37.300	22.000
	8YB	417	7.7	6.5	439	C.400	0.0	-0.010	5.400	63.800	36.300	21.000
	3 Y B	505	10.7	6.5	44()	0.0	0.0	0.021	4.400	55.900	34.500	20.200
	878	532	12.7	6.4	430	0.0	0.0	0.0	4.600	52.700	26.200	17.800
	333	589	14.0	6.1	O	0.0	0.0	0.0	3.300	50.900	30.000	0.0
	STAT1011	DATE	ТЕМР	6 H	EC	FE	Pß	CD	ZN	CA	MN	MG
	BYC	50 5	11.3	6-4	1000	0,280	1.700	0.150	142,800	0.0	54,400	0.0
				~ • •							2.1100	3.0

STATION	DATE	TEMP	РН	EC	FE	РБ	CD	ZN	C A	MN	MG
9YA	234	16.0	7.9	427	U.0	0.0	0.110	10.600	57.000	4.900	13.900
9YA	234	14.0	7.8	427	0.0	0.0	0.100	10,800	53.000	4.900	14.200
944	234	17.0	7.7	427	0.0	0.0	0.092	10.100	57.400	5.000	14.200
944	*234	16.3	7.8	427	0.0	0.0	0.101	10.500	51.000	4.930	14.100
JYΛ	375	4.5	6.4	329	0.102	0.0	0.027	4.700	63.500	11.200	14.200
9YA	449	9.0	6.7	350	0.370	0.0	0.0	0.580	66.000	12.300	13.000
9 Y A	477	8.0	6.7	349	0.430	0.0	0.0	J.250	66.600	12.600	14.000
947	505	12.0	6.4	368	0.320	0.0	0.013	0.100	61.500	12.100	13.900
9YA	532	14.0	6.5	370	0.100	0.0	0.0	0.070	56.900	8.400	13.200
9¥A	589•	14.0	6.0	0	0.810	0.0	0.0	0.030	60.100	11.800	0.0
STATION	DATE	теир	PH	EC	FΕ	PB	CD	ZN	CA	MN	MG
9Y'}	505	12.5	6.2	570	0.180	0.0	0.078	5.000	55.600	8.900	59.500
949	532	15.0	6.3	570	0.0	0.0	0.120	5.400	47.000	12.200	58.800
STATION	DATE	темр	PH	EC	FE	PB	CD	ZN	CA	KN	MG
1044	234	12.1	6.9	359	0.0	0.0	0.043	7.600	45.200	5.000	13.000
10YA	234	13.1	6.9	376	0.0	0.0	0.026	7.200	41.200	5.200	13.300
10YA	234	12.9	6.9	367	0.0	0.0	0.047	7.600	44.400	4.900	13.000
10YA	*234	12.7	6.9	367	0.0	0.0	0.039	1.470	46.000	5.030	13.100
1014	449	7.9	6.6	260	-0.050	0.0	0.0	0.750	37.200	12.100	11.000
AY61	477	7.5	6.5	262	0.0	0.0	0.0	0.830	37.300	12.100	11.000
1 Ο Υ Α	50.5	8.4	6.3	275	0.0	0.0	0.021	0.620	34.00	13.000	12.100
LUYA	532	10.5	6.7	280	0.0	0.0	0.0	0.500	34.000	12.600	11.600
LOYA	55.9	12.0	6.4	0	0.0	0.0	0.0	0.770	35.100	13.800	0.0

~,

STATION	DATE	TEMP	РН	EC	FE	РВ	CO	ZN	CA	MN	MG
LOVA	234	13.1	7.1	430	0.0	0.0	0.034	3.400	51.100	25.200	18.800
1010	234	13.0	7.0	441	0.0	0.0	0.045	5.500	55.600	20.700	17.000
TOYS	234	13.1	7.1	393	0.0	0.0	0.040	2.900	46.600	24.800	18.500
1078	*234	13.1	7.1	421	0.0	0.0	0.040	3.930	51.000	23.573	18.370
10 Y 2	375	8.0	6.3	277	-0.050	0.0	0.0	4.100	40.000	15.200	14.700
LOYB	449	7.7	6.5	294	-0.050	0.0	0.039	4.900	40.100	16.600	14.000
1048	477	8.0	6.1	291	0.0	0.0	0.020	2.800	41.000	21.000	14.000
1078	505	8.5	6.3	312	0.0	0.0	0.043	2.400	40.000	20.000	13.900
1013	532	11.0	6.7	265	0.0	0.0	0.030	5.500	28.400	10,500	10.100
1043	589	12.5	6.4	0	0.0	0.0	0.0	1.900	33.300	17.800	3.0
STATIO	DATE	T E MP	PH	EC	FE	РЬ	CD	ZN	LA	ам	MG
JUATION	UNIT L										
39	234	16.5	6.3	452	0.0	0.0	0.100	11.000	62.500	0.270	18.100
۶W	234	15.9	6.5	439	0.0	0.0	0.088	10.600	63.300	0.610	18.000
36	234	15.7	6.5	435	0.0	0.0	0.089	10.500	65.100	0.740	17.600
3.17	*234	16.9	6.4	442	0.0	0.0	0.092	10.700	64.000	0.540	17.900
3.9	375	3.5	6.2	156	-0.050	0.0	0.039	4.600	25.000	-0.049	7.400
3.4	449	5.5	6.4	154	-0.050	0.0	0.047	3.700	23,200	-0.040	7.100
1.1	477	6.8	6.6	102	0.0	0.0	0.010	2.300	15,900	-0.040	4.500
3.8	505	10.0	6.4	120	0.0	0.0	0.039	2.400	15.800	0.0	4.800
3.4	532	11.0	ó. 2	115	0.0	0.0	0.020	2.000	13.400	0.050	4.200
34	589	17.0	6.1	0	0.0	0.0	0.0	2.700	19.200	0.010	0.0
							6.0		C A	AIN,	MG
STATION	DATE	TEMP	PH	ΕC	FE	P 0	LU	211	C A		
					• •	0 0	0.052	7 800	51.400	0.810	11.200
51/	234	17.5	6.9	352	0.0	0.0	0.074	9 700	46.900	0.840	10.900
59	234	. 19.0	6.1	337	0.0	0.0	0.074	5 20.)	57.600	0.660	11.900
54	234	17.0	6.9	369	0.0	0.0	0.056	7 570	52.000	0.770	11.300
5 W	*234	17.8	6.3	353	0.0	0.0	0.055	7 700	76.400	1.400	13.000
511	375	7.0	6.2	353	-0.050	0.0	0.000	0 700	79.600	1.100	14.000
5 W	449	5.7	£.5	367	~0.050	0.0	0.071	3.100	75.700	0.760	15.000
511	477	6.8	6.4	360	0.0	0.0	0.001	11 0000	52.000	0.510	14.700
517	505	11.3	6.3	390	0.0	0.0	0.089	10 300	55.400	0.460	13.000
5N	532	10.7	6.0	330	0.100	0.0	0.070	10.500	57,100	0.670	0.0
59	589	14.5	6.2	0	0. 0	0.0	0.0	10.000	210100		

STATEST	DATE	TEAP	PH	ЕC	₽ L	8.9	66	Z14	U.A.	2484	MC
-214	234	14.0	6.2	612	0.0	0.290	J.250	37.000	87.100	9.300	25.200
G R	234	15.8	6.2	612	0.0	0.260	0.200	37.800	ថា • 400	9.200	25.400
	234	15.0	6.2	612	0.0	0.290	0.250	33.900	87.700	9.700	25.000
	*234	15.3	6.2	612	0.0	6.280	0.233	36.230	6000.85	9.400	25.200
545 5454	101	12.2	6.6	516	0.053	0.0	0.210	26.700	0.0	10.700	U.O
ر ا ر	375	1.5	t 4	337	-0.050	ü.0	0.100	16.800	61.400	7.000	13.600
1994 1994	449	9.4	6.2	393	- 0.0	6.0	0.170	17.600	60.100	7.600	15.000
1.1	471	8.7	5.2	405	0.0	0.0	0.180	18.900	61.300	7.400	10.000
41-4	505	11.3	5-3	6.00	0.050	Û.U	0.350	34.600	79.500	7.200	27.500
9.1 9.1	(3)	12.0	5_9	670	0.100	0.0	6.400	43.000	84.900	7.200	31.500
974	539	13.0	5-1	Ĵ	0.020	0.0	0.370	38.100	SC+209	7.900	(۱ ـ ل
STATEON	DALE	T GP	PH	ΕĊ	ſE:	PB	Cΰ	Zii	C A	Mix	MG
1.25	234	15.2	6.0	291	0.0	0.0	0.054	15.000	38.100	3.760	11.400
12.1	234	18.0	6.5	254	0.0	0.0	0.064	10.200	41.000	0.823	11.600
129	234	13.0	6.6	314	0.0	0.0	0.076	18.800	35.700	0.850	11.700
1.2:4	*214	17.4	6.6	296,	0.0	0.0	0.068	16.679	33.000	0.810	11.570
120	375	7.2	6.2	199	-0.050	0.063	0.120	19.100	23.700	0.420	11.600
1.21	407	5.0	6.1	204	-0.050	0.0	0.130	20.300	26.200	0.540	15.000
12%	449	d . 0	6.0	236	-0.050	0.0	0.160	26.300	34.100	0.070	17.000
E. M	477	8.5	6.3	337	0.0	0.083	0.200	38.300	36.400	0.930	22.000
124	505	11.0	5.9	393	0.050	0.0	U.230	41.000	36.400	1.000	25,200
1.2%	532	10.9	6.0	375	0.0	0.0	0.230	45.200	32.800	0.840	24.400
1.21	539	12.5	5.3	.)	0.030	0.0	0.200	39.800	36.900	0.840	0.0
							6		<i>(</i>)	140	MC
STATION	DAFE	TEBP	+PH	£:C	int	PB	ςυ	214	LA	1711	no
134	234	16.7	6.0	431	0.0	0.0	0.210	31.500	48.100	7.000	25.000
1.3%	234	16.2	u _6	489	0.0	0.0	0.250	29.200	49.800	6.800	25.003
1.30	234	15.2	6.6	377	0.0	0.0	0.160	22.900	37.900	6.300	20.100
134	* 234	16.0	6.6	449	0.0	0.0	0.207	27.970	45.000	8.100	23.510
1 3 W	375	ύ.0	6.5	268	2.603	0.063	0.077	17.600	41.000	6.300	14.400
1.311	449	7.5	6.4	316	1.000	6.U	0.017	21.000	46.200	6.100	16.000
134	477	3.8	6.1	347	1.800	0.)	0.100	32.000	42.200	6.300	21.000
131	505	11.5	5.9	405	0.0	0.0	0.220	44.100	34-100	4.700	23.100
13W	532	11.5	5.9	390	0.100	0.0	0.270	46.300	34.000	0.400	23.100
134	589	14.2	5.7	0	1.600	0.0	0.220	44.300	36.900	3,800	0.0

STATION	DATE	темр	РН	ΓC	ΕE	PB	ίJ	Z14	CA	西島	MG
158	114	11.0	ó. 7	136	0.0	0.0	0.047	15.500	5. 300 د	3.500	14.700
164	234	18.4	0.7	14 5	0.0	0.0	0.052	15.400	32.600	2.500	15.100
151	234	19.0	6.7	34.5	Ú.O	0.0	0.067	15.900	35.300	2.600	15.400
150	2.2.7 2.2.2	19.1	6. 7	14.1	0.0	0.0	0.055	15.600	34.000	2.870	15.070
156	376	1.04 4	6.5	34.2	0.012	0.0	0.015	15.800	63.500	5.600	19.700
1.60	569	6.5	6.4	498	3.520	0.0	0.0	19.400	67.000	7.900	25.000
1.50	477	8 1 8 1	4.3	449	7,900	0.0	-0.010	27.000	63.400	660.8	34.000
1	532	12.8	5.9	540	4.700	0.0	0.050	39.200	51.200	5.900	37.800
151	539	16.0	5.8	0	7.900	0.0	0.0	35.200	44.700	5.900	0.0
STATION	DATE	ТЕМР	PH	EC	FE	۴u	CD	ZN	(A	MN	Mú
	14.0	0 6	:)	520	2 570	0 - 0	0.150	45.500	75.800	10.500	44.000
165	44.9	8.9	6.1	520	12 000	0.0	0.055	42.000	75.700	10.000	40.000
164	411	12.0	0.L 5 0	690	10.500	0.0	0.076	39.900	70.400	8.030	37.100
100	202	12+3	5.0	610	8 700	0.0	0.070	40.200	67.000	0.100	35.700
101	204 600	14.5	5.0 6.3	010	5.400	0.0	0.0	36.400	67.700	8.100	0.0
10A	101	14.7	0.0	U.			•••				
STATION	DATE	TEMP	211	EC	FE	PB	CD	ZN	CA	24 Na	MG
175	449	6.1	5.9	367	-0.050	0.150	0.240	51.500	35.300	2.300	26.000
175	477	5.7	5.8	357	C.140	0.094	0.220	45.500	30.800	1.800	24.000
17.0	505	11.0	5.7	317	0.180	0.070	U.220	43.000	26.800	1.500	23.100
1.79	532	12.1	5.8	353	0.100	0.180	0.220	44.600	26.900	1.000	22.000
17W	589	15.0	5.2	0	0.010	0.030	0.170	35.800	31.500	1.200	0.0
				r c			63	71:	C A	64 Fu	MG
STATION	DATE	TETAP	141	£.C.	r L	PD	CU	214	CA		
18.9	444	6.8	6.1	408	0.110	0.090	0.350	54.400	44.200	2.900	27.000
185	417	8.0	6.0	530	0.0	0.983	0.400	71.400	57.800	4.800	32.000
168	505	10.9	5.9	620	0.100	0.0	0.390	72.400	62.600	4.600	32.900
184	532	11.2	6.0	530	0.0	0.0	0.350	64.000	56.900	4.000	29.000
187	589	14.0	6.0	0	0.280	0.0	0.280	58.400	58.900	4.200	0.0

71 VI

STATION	DAFE	TEMP	Pit	i C	FE	PB	CD	Z1:	C A	нп	MG
19	234	20.0	ύ.ε	130	0.770	0.0	0.0	4.300	14.300	5.600	7.600
1.0	234	29.4	6.1	207	1.060	0.0	0.0	11.800	16.600	5.600	8.000
10	234	21.8	7.1	207	0.550	6.0	0.0	9.100	16.200	5.400	8.000
1P	*234	20.1	6.8	158	0.793	0.0	0.0	8.570	17.000	5.530	7.870
10	375	0.9	0.0	157	0.350	0.063	0.027	6.100	24.200	6.300	11.300
112	449	8.3	5.4	204	6.050	0.130	0.033	4.900	26.000	5.500	14.000
1P	471	9.0	6.5	196	0.0	0.088	0.020	4.100	25.700	5.000	13.000
1.0	505	13.0	6.3	196	0.100	0.0	0.032	3.500	22.009	4.200	12.600
12	532	15.2	6.4	220	C.160	0.0	0.0	3.400	21.205	3.900	11.600
1.2	509	20.0	6.2	0	0.230	0.0	0.020	2.600	24.500	4.000	0.0
STATIUII	DATE	T E 14P	РН	£C	£E	Pb	CD	ZN	LA	Mia	MG
20	234	15.9	6.7	53()	26.800	00	0.0	21.300	49.000	12.900	19.400
10	234	10.0	6.7	505	29,400	0.0	0.0	21.000	50.400	12.800	20.000
20	234	15.7	5.6	530	27.800	U.O	0.0	22.100	50.600	14.300	23.600
20	* 7 A G	15.9	6.7	522	28.000	0.0	0.0	21.670	50.000	13.330	21.000
20	375	4 5	5 3	42.8	2,500	0.0	0.055	42.500	64.600	17.900	31.400
20	401	1.5	6.0	492	9,500	0.0	0.170	83.000	76.100	31.800	55.000
20	444	6.5	0.2	1040	28.700	0.0	0.220	126.000	11.400	48.300	117.000
20	477	7.5	5.9	1163	36.000	0.0	0.230	122.000	89.800	52.000	113.000
20	505	10.1	5.9	1460	69.300	0.0	0.170	83.200	0.0	48,390	0.0
20	532	12.0	6.0	1470	63.000	0.0	0.120	84.600	84.200	42.000	120.000
232	539	14.3	6.2	C	16.200	1°0	0.060	56.300	87.000	41.709	0.0
CTATI	DATC	717140		r.c	СГ		C D	7.51	C A	MIJ	MC
2141103	DATE	1 C	111	LL	r.	r U	¢υ	211	C/		
зp	234	17.3	6.4	765	21.400	0.080	0.0	47.700	63.000	10.600	44.100
30	234	16.5	6.5	796	28.400	0.060	0.0	45.800	65.100	11.000	42.500
40	234	16.4	6.6	755	27.100	0.380	0.0	46.200	66.100	10.900	43.500
3P	+234	16.9	6.5	712	27.633	0.073	0.0	46.570	65.000	10.830	43.370
513	175	4.0	5.3	479	0.0	0.0	0.103	61.200	54.900	6.900	54.100
312	449	6.8	6.2	837	0.0	0.0	0.370	78.200	73.600	3.600	128.000
312	471	9.0	6.1	94.9	0.100	0.0	0.550	66.200	78.500	1.600	113.000
312	50.5	12.3	5.8	1100	0.0	0.0	0.660	59.800	0.0	0.190	6.0
11,	532	14.0	6.0	1180	0.0	0.0	0.670	56.700	68.500	0.230	126.000
3₽	569	10.5	6.0	0	0.240	0.0	0.540	+7.200	54.500	1.400	0.0

STATION	1) AT L	TEHP	PH	EC	f t:	PB	CD.	Zíž	CA	MN	246
40	214	21.3	6-5	1430	44.000	0.0	0.0	112.000	96.600	33.800	81.900
6. P	244	18-5	0.6	1350	46.400	0.0	0.0	112.000	100.800	54.100	81.900
40	234	17.7	6.6	1370	44.100	0.0	0.0	110.000	98.200	34.100	82.400
40	#234	19.2	ú. U	1303	44.833	0.0	0.0	111.330	99.000	34.000	82.070
ч. 19	301	19.1	6.2	1061	88.000	0.083	0.045	118.000	0.0	42.000	0.0
4.3	575	4.0	6.0	785	44.000	0.074	0.015	103.400	9000.68	41.000	71.400
4,2	407	3.0	5.9	165	45.800	0.369	0.027	103.100	92.300	43.100	01.000
49	44.)	7.2	6.2	95.9	46.200	0.0	0.627	103.000	93.900	46.000	77.00ů
4.32	477	8.2	5.9	1000	0.550	0.0	0.020	112.000	89.600	46.200	68.000
4	505	10.2	5.0	1130	48.300	0.0	0.042	124.000	97.300	46.200	71.400
	532	12.5	6.9	1340	42.000	0.0	0.050	132.000	91.400	48.300	75.060
41°	587	14.3	6.0	e)	45.200	0.0	0.620	121.000	96,800	50.609	0.0
STATEUD	JAFL	темя	P11	εC	۴Ĺ	P 3	CD.	7 • • •	CA	M14	43.° 152
52	234	17.0	6.0	1040	0.810	0.0	0.250	26.800	156.000	1.700	52.500
5 P	234	17.5	6.0	1050	0.600	0.0	0.270	26.000	152.000	1.600	51.600
50	234	16.8	6.1	1040	0.33.0	6 . 0	0.240	20.300	158.000	1.700	52,500
52	*234	17.1	ύ.Ο	1043	0.697	0.0	0.253	20.570	195.000	1.670	52+200
5.5	301	4.6	6.1	959	0.250	0.063	0.350	33.300	0.0	1.690	0.0
52	449	7.3	δ.Β	184	0.064	0.0	0.031	5.100	21.000	0.160	1.400
50	477	10.0	6.7	164	0.0	0.0	0.040	5.000	26.900	0.273	1.700
5.	505	14.0	6.3	225	0.0	0.0	0.063	5.000	13.600	0.590	7.900
SP	532	17.3	6.4	243	0.0	0.0	J.050	4.dui)	26.900	1.700	1.400
STATION	GATE	T E (4P	РН	EC	FE	Рь	CD	214	CA	МИ	14G
103	127	16 0	4 3	1710	78 400	0.0	0.0	4 - 300	233.009	13.200	52.700
1.00	204	15.6	0 U U	1010	77 500	0.0	0.0	3.500	229.000	18.300	52.700
191	204 017	1.4.0	6.9 6.ii	1 1 1 0	77 200	0.0	0.0	3.100	233.000	18.100	52.500
1.11	とうみ とうえん	17.0	0.0 6.0	1570	77.700	0.0	0.0	3.000	232.000	18.200	52.630
1.010	ም ረ ጋጣ ፈፈ በ	14.9	6.5	1438	78.800	6.0	3.0	4.400	331.000	28.000	64.000
1 3-2	477	ر ب ب د د د	6. ú	1663	131,000	0.130	-0.010	3.600	0.0	31.700	73.000
1.30	505	12 6	6.4	1930	5.800		0.0	1.400	0.0	32.600	12.400
1/142	543	14-1	6.3	1970	39,900	0.0	0.0	1.000	357.000	25.700	13.500
L 71	116	A + + · /	U . J								

.

STATIGA	UATE.	TEMP	PH	EC	· Ft.	Рð	CD	214	(^	- tra	MG
110	234	16.9	7.0	836	41.500	0.0	0.0	0.900	109.000	1.700	11.100
11P	234	15.5	1.0	336	45.100	0.0	0.0	0.540	118.000	7.700	31.900
11.2	234	15.0	7.0	816	48.300	0.0	0.0	0.170	116.000	7.400	30.600
112	#234	15.3	1.0	829	45,300	0.0	υ.Ο	0.540	114.000	7.000	31.470
118	+4 4	7.5	U. I	592	0.032	0.0	0.0	1.300	127.000	1.200	27.000
STATION	DALE	TEMP	211	EC	FC	PB	CD	711	CA	141 a	Mu
1.12	+4 9	7.5	4.4	520	16,100	0.0	0.0	12,900	69.200	8.500	37.000
139	471	8.5	6.3	551	21.000	0.0	-0.010	13.600	70.700	18.400	39.000
138	505	13.0	6.2	600	23.100	0.0	0.0	13.000	59.300	5.300	35.700
130	532	15.0	6.1	640	23.100	6.0	0.0	14.000	56.900	9.100	38.000
130	589	19.5	6.3	0	23.100	0.0	0.0	12,500	56.300	9.400	0.0
STALLOH	DATE	TEMP	РН	ĔĊ	FE	មក	CD	214	C A	9414	MG
18P	449	9.0	6.3	163	-0.050	0.0	0.025	3.200	23.200	0.430	6.300
182	477	10.2	6.8	203	0.0	0.0	0.010	2.500	35.300	0.640	7.400
186	505	15.2	د و ن	210	0.050	0.0	0.021	2.300	29.900	0.840	6.500
188	532	15.5	5 ,5	220	0.0	0.0	0.0	1.600	31.300	0.840	6.100
1 517	509	14.0	6.5	()	0.070	0.0	0.0	1.400	30.700	1.300	0.0
STATI04	DATE	TEMP	PE	EC	FC	PB	CÐ	Z14	C A	1414	MĠ
202	589	18.0	6.5	0	3.900	0.0	0.0	7.000	68.600	4.300	0.0
						•					
STATION	DATE	1 E MP	PH	EC	FL	PB	CÐ	ZN	ĊA	1475	MG
212	589	13.7	6.6	0	70.900	0.0	0.0	14.500	149.000	20.400	0.0

.

IV 20

STATION	DALE	TEMP	Ph	EC	£E	РĞ	CD	Z14	LÀ	A11	MG
200	234	16.0	7.1	354.0	2.700	0.0	0.0	5.800	40.700	4.300	13.300
200	234	16.0	7.2	354.0	2.700	0.0	0.0	5.800	41.300	4.800	12.700
200	234	16.0	7.0	354.0	2.800	0.0	0.0	5.900	40.800	4.100	13.300
200	*234	16.0	7.1	354.0	2.733	0.0	0.0	5.833	40.933	4.767	13.100
200	375	4.0	6.5	170.0	0.820	Ű.Ũ	0.110	4.300	32.600	1.700	7.900
200	449	6.0	0.5	105.0	0.370	0.0	0.022	1.900	16.100	0.409	4.400
200	471	6.2	6.6	133.0	0.600	0.0	-0.010	1.800	23.500	0.550	5.500
200	505	10.0	6.0	107.0	0.0	0.0	J.028	1.200	15.100	0.320	2.700
200	532	11.1	5.9	145.0	0.440	0.0	0.020	1.600	24.200	0.400	4.200
200	584	15.5	6.0	0.0	1.700	0.0	0.0	4.500	59.800	2.00)	0.0
STATIG	DATL	TEMP	PH	LC	FE	Pb	CD	Ziv	C A	7474	MG
201	234	18.2	6.9	592.0	0.0	0.0	0.051	14.900	76.600	0.570	22.900
201	234	10.2	7.0	002.0	0.0	0.0	0.051	14.000	77.100	J.560	23.100
201	234	18.2	1.0	592.0	0.0	0.0	0.042	14.600	75.700	0.570	22,900
201	*234	18.2	1.0	595.3	0.0	0.0	0.048	14.700	76.467	0.567	22.967
201	375	0.0	6.5	56.0	-0.050	1.400	0.160	4.300	7.700	-0.040	2.500
201	449	9.5	6.6	201.0	0.0	0.0	0.049	7.800	27.300	0.070	10.200
201	477	9.8	6.7	151.0	0.0	0.0	0.0	5.400	20.400	0.050	7.900
201	505	11.5	6.3	170.0	0.0	0.0	0.032	4.400	18.800	0.040	6.500
201	532	14.1	6.2	143.0	0.0	0.0	0.020	4.300	17.000	0.050	6.100
201	539	20.7	6.5	0.0	0.0	0.0	0.0	5.000	46,500	0.780	0.0
STATION	DATL	ТЕМР	Pti	F (.	FF	PA	C D	76'	C A	f4 (.	M. 1
				2.0		15	20	2.14	CA	1412	110
202	375	3.7	5.9	469.0	6.100	0.960	0.320	36.500	69.000	11.600	29.400
202	449	9.0	6.0	612.0	2.200	0.610	0.360	41.500	81.800	10.200	40.000
202	477	10.1	6.Ū	683.0	4.400	0.550	0.430	43.600	90.300	12.600	28.000
202	505	10.3	5.9	550.0	2.500	0.510	0.300	29.400	56.100	6.300	22.009
202	532	16.8	5.7	530.0	4.200	0.230	0.280	31.000	61.300	7.700	25.200
202	589	18.0	6.0	0.0	9.800	0.010	U.240	24.000	58.000	¥.300	0.0

STATION	DATE	ТЕМР	РН	50	FE	P B	CD	ZN	C A	Mis	MG
203	234	21.0	6.8	390	0.460	0.0	0.0	5,200	43.200	2.700	13.600
203	234	21.0	6.8	387	9.480	0.0	0.0	6.200	43.600	2.700	13.600
203	234	21.0	6.8	190	0.470	0.0	0.0	6.200	44.000	2.600	13.800
203	#234	21.0	6.8	389	0.477	0.0	0.0	6.200	44.000	2.670	13.670
203	449	9.8	6.7	107	0. 260	0.0	0.022	2.100	14.900	0.420	4.400
203	505	11.9	6.5	108	0.0	0.0	0.020	1.500	12.700	0.320	0.0
203	532	11.7	6.1	153	0.200	0.0	0.0	2.000	22.700	0.430	4.600
203	589	14.8	6.5	0	0.760	0.0	0.0	5.800	58.000	2.000	0.0
									<i>.</i> .		
STATION	DATE	TEMP	PH	EC	FE	PB	CD	ZN	ĹĂ	MN	HG
204	589	18.0	6.2	0	0.050	0.0	0.0	33.200	63.300	8.900	9.0
STATION	DAT E	TENP	PH	EC	FE	PB	CD	ZN	εa	Miši	MG
205	234	17.0	7.1	376	1.600	0.0	-0-020	5.300	40.700	2.700	13.200
205	234	17.0	7.0	376	1.700	0.0	0.022	5.200	40.700	2.700	13.200
205	234	17.0	7.1	376	1.600	0.0	-0-020	5.400	41.400	2.600	13.200
205	#234	17.0	7.1	376	1.633	0.0	-0.006	5.300	41.000	2.670	13.200
205	375	4.0	6.5	166	0.680	0.0	0.120	3,500	31,500	1.600	7.900
205	449	7.0	5-6	102	6.280	0.0	0.020	1,800	14.400	0.360	4.200
205	477	4.5	6.4	112	C. 190	0.0	0.0	1.800	20.400	0.490	4.900
205	505	10.5	6.5	110	0.0	0.0	0.022	0.900	13,600	0.280	3.200
205	532	13.0	6.0	136	0,100	0.0	0.0	1.200	21,200	0.380	4.200
205	589	15.5	6.7	0	1.200	0.0	0.0	4.300	58.000	2.000	0.0

.

STATION	DATE	TEMP	141	LC	FE	РВ	CD	Z14	CA	<i>i</i> 4ti	ИĞ
206	234	21.5	7.0	375	0.089	0.0	0.0	3.100	40.400	2.200	12.700
205	234	21.5	6.9	367	0.081	0.0	0.0	3.100	42.100	2.200	12.400
206	234	21.5	7.0	378	0.053	0.0	0.0	2.700	39.700	2.100	12.900
205	*234	21.5	7.0	373	0.074	0.0	0.0	2.970	41.000	2.170	12.670
206	375	5.0	6.4	194	0.560	0.0	0.084	4.300	32.600	1.700	8.400
296	447	7.2	6.6	105	0.270	U. 0	0.0	1.900	14.400	0.410	4 • 4 0 ú
206	471	5.0	6.4	130	0.390	0.0	-0.010	1.800	21.200	0.520	5.200
206	505	6.5	6.5	8.5	0.0	0.0	0.032	1.300	12.000	0.290	3.200
206	532	11.3	6.2	135	C.26J	0.0	0.0	1.700	21.200	0.420	4.200
204	રુ છે છે	15.8	6.7	0	0.890	0.0	0.0	4.300	58.000	1.900	0.0
STATION	DALL	TE MP	PH	£ſ.	ft	PB	GD	21.	Ć.A	PA 14	rtG
207	505	13.3	6.3	225	0.0	0.0	0.040	6.600	21.000	1.600	a.700
207	532	14.0	6.0	227	0.740	0.0	0.0	4.400	22.700	0.833	8.000
207	589	17.0	6.9	0	0.090	0.0	0.0	0.930	19.200	0.470	0.0
S1AT104	JATE	темр	PH	εc	FE	РIJ	CD	ZH	ĹĂ	ММ	MG
2074	283	20.0	9.0	0	0.070	0.0	0.0	0.040	16.600	0.0t)	0.0
STATION	ÐATE	тема	PH	EC	FŁ	Pu	CD	214	СA	MN	MG
2078	589	15.0	6.2	0	0.240	0.0	0.0	2.200	13.900	0.300	0.0
STATION	0415	теме	20	EC	FE	РВ	CĐ	7 14	ſA	мi	MG
								• • •	0,,		, .
203	505	10.0	6.5	25	0.0	0.0	0.035	1.400	12.100	0.290	3.600
208	532	11.3	6.2	149	0.200	0.0	U.0	1.800	21.200	0.430	4.600
208	589	14.9	0.6	U	0.540	0.0	0.0	5.400	58.000	2.000	0.0

. .

IV 23

N.C.	0°0	МĞ	0.0
15	0.370	NW	1.600
C.A	000-111	CA	7.800
47	0.320	7N	4.700
L L	0.0	ιIJ	0.0
ΡĿ	0.0	βı	0•0
ц т	050.0	Li L	0.050
ЧC	0	EC	C
на	1.3	He	Ç• 3
1146	10	TEAP	10.5
Los I L	5 84	DATE	589
51A1100	244	5147104	6130

•

APPENDIX V

Plant List and Survey Notes

Appendix V. Plant List

Smelterville Flats Study Area

	Scienti			
	Genu	Species	Common Name	Abundance
Con	ifers			
1.	Pinus	monlicola	White Pine	S
2.			Brislecone Pine- Monteray Jack	S
Dec	iduous			
3.	Betala	occidentalis	Birch	А
4.	Populus	angustifolia	Cottonwood	VA
5.	Crataequs	douglasii	Black Hawthorn	А
6.	Salix	amydalaicles(?)	Willow	А
Shr	ubs and Grasses			
7.	Pranis	americana	Bitter Cherry	А
8.	Artemesia		Sage	S
9.	Apocynum	androsaemifolium	Doglane	А
10.	Equisetum	arriense		VA
11.	Phragmittes	communis		А
12.	Pachistima	myrsinites		А
13.	Agrostis	alba	Red Top	VA
14.	Agropyron	repens	Quack Grass	VA
15.	Linaria	vulgaris	Toadflax	А
16.			Clover	А

S = Scarce A = Abundant VA = Very Abundant

Station	+ Sight	Instrumental Height	Sight	Elevation	Remarks	Station	+ Sight	Instrumental Height	- Sight	Elevation	Remarks
BM-1				2223,98	E. Run	8X G.L.			7.67	2215.95	
	3.50	2227.48				8X-A M.P.			4.92	2218.70	
AX G.L.			6.70	2220.78		8X-B M.P.			3.36	2220.26	
AX-A M.P.			5.27	2222.21		9X G.L.			6.73	2216.89	
AX-B M.P.			6.03	2221.45		Stake @ 9X			6.28	2217.34	
Stake @ AX			5.64	2221.84		9X-A M.P.			1.34	2222.28	
1X G.L.			7.75	2219.73		9X-B M.P.			1.40	2222.22	
1X-A M.P.			4.74	2222.74		Т.Р.			5.75	2217.87	
1X-B M.P.			5.38	2222.10			9.18	2227.06		2217107	
Stake @ 1X			7.23	2220.25		Stake @ Staff			11 59	2215 47	By Pond
2X G.L.			5.84	2221.64			12.21	2227.69	11135	2210,47	bj rona
2X-A M.P.			2.93	2224.55		BM-1	12.21	2227.09	3 71	2223 98	
2X-B M.P.			2 04	2225 44					5.71	2223.30	
Stake @ 2X			5 29	2222 19							
SP #2 G L			5 81	2221 67		RM-2				2200 72	
SP #2 M P			2 62	2221.07		DIT	8 34	2217 06		2200.72	
31 6 1			5 00	2224.00		34 6 1	0.54	2217.00	0 27	2200 70	
3Y_A M D			3.00	2222.40		3V_A M D			0.27	2208.79	
3Y_R M D			2.00	2224.03					5.18	2211.88	
Stake A 2V			2.30	2225.12		31-0 M.F.			0.12	2210.94	
			4.45	2223.03		21 U.L.			8.96	2208.10	
Dm-1			3,505	2223.9/5		21-A M.P.			6.43	2210.63	
						ZY-B M.P.			6.84	2210.22	
DH 1						Stake @ 2Y			9.23	2207.83	
DM-1	2 20	0007 07		2223 .9 8		IY G.L.			7.62	2209.44	
	3.39	2227.37				IY-A M.P.			4.51	2212.55	
4X G.L.			6.28	2221.09		1Y-B M.P.			4.72	2212.34	
4X-A M.P.			3.84	2223.53		AY G.L.			8.64	2208.42	
4X-B M.P.			4.41	2222.96		AY-A M.P.			4.84	2212.22	
Stake @ 4X			5.98	2221.39		AY-B M.P.			5.42	2211.64	
SP #1 G.L.			6.11	2221.26		TBM-2			4.74	2212.32	South Side
SP #1 M.P.			4.14	2223.23							1-90
Stake @ 6X			5.33	2222.04		BM-2			8.34	2208.72	
	3.35	2225.40			-						
6X G.L.			4.58	2220.82							
6X-A M.P.			1.30	2224.10		BM-2				2208 72	
6X-B M.P.			1.24	2224 16			2 58	2211 30		2200.72	
7X G.L.			5.14	2220.26		Т.Р.	L ,00		3 36	2207 04	
7X-A M.P.			2 86	2222 54			2 65	2210 50	3.30	LLU1.34	
7X-B M.P.			2 95	22222 45		5Y 6 1	2.03	4210.39	5 70	2204 00	
Stake @ 7X			<u> 4</u> 61	2220 76		5Y-A M P			2 71	2207 00	
Stake @ 8X			9 90	2216 51		SY_R M P			2.71	2207.00	
	7 10	2222 62	0.07	2210.31		Staka 0 5V			4.03	7207.90	
	7.10	2223.02				SLAKE @ ST			4.92	2205.67	

Appendix V. Plant list and survey notes, Smelterville Flats study area.

Appendix V. Cont'd

Station	+ Sight	Instrumental Height	Sight	Elevation	Remarks	Station	+ Sight	Instrumental Height	- Sight	Elevation	Remarks
6Y G.L.			5.56	2205.03		TBM-1			6.81	2205.96	
			2.58	2208.01							
			2.39	2208.20							
Stake G EV			2.70	2207,89		TBM-1		_		2205.97	
			5.10	2205.49		~ ~	3.99	2209.96			
			5.27	2205.32		I.P.			5.47	2204.49	
71-A M.P.			1.52	2209.07			4.76	2209.25			
71-0 M.P.			1.88	2208.71		9W G.L.			5.83	2203.42	
1 BM-1	2.20	0000 07	4.62	2205.97		9W M.P.			3.62	2205.63	
01/ 01	3.30	2209.27				SP #3 G.L.			5.58	2203.67	
			3.40	2205.87		SP #3 M.P.			2.52	2206.73	
8Y-A M.P.			0.51	2208.76		Stake @ 9W			5.52	2203.73	
8Y-8 M.P.			1.16	2208.11		10W G.L.			6.46	2202.79	
81-1 6.1.			3.57	2205.70		IOW M.P.			3.13	2206.12	
Stake @ 8Y			3.02	2206.25		Stake @ 10W			5.96	2203.29	
SP #4 G.L.			3.42	2205.85			3.39	2206.68			
SP #4 M.P.			0.58	2208.69		12W G.L.			6.28	2200.40	
9Y-A G.L.			4.99	2204.28		12W M.P.			3.74	2202.94	
9Y-A M.P.			3.12	2206.15		Stake @ 12W			6.14	2200.54	
9Y-B G.L.			4.77	2204.50			3.43	2203,97			
9Y-B M.P.			2.03	2207.24		13W G.L.			6.38	2197.59	
Stake @ 9Y			3.71	2205.56		13W M.P.			3.95	2200.02	
10Y G.L.			2.47	2206.80		Stake @ 13W			5.79	2198.18	
10Y-A M.P.			1.53	2207.74		15W G.L.			6.20	2197.77	
10Y-B M.P.			1.60	2207.67		15W M.P.			3.19	2200 78	
Stake @ 10Y			2.65	2205.62		Stake @ 15W			6.00	2197 97	
TBM-1			3.30	2205.97		Т.Р.			2.37	2201 60	
							5.09	2206.69	4.07	2201100	
						Τ.Ρ.			0 71	2205 98	
TBM-1				2205.97			6.35	2212.33	0.71	2203.90	
	6.85	2212.82				BM-2			3.57	2208 76	
5W G.L.			4.00	2208.82		_			0.07		
5W M.P.			1.49	2211.33							
Stake @ 5W			3.33	2209.49		TBM-A				2197 97	Stake @ 15!
	6.75	22.6.24					5.01	2202.98		L []].]	Stake @ 15
3W G.L.			2.66	2213.58		TP-1		2202100	5.81	2197.17	
3W M.P.			0.54	2215.70			4.84	2202.01	0.01		
Stake @ 3W			2.47	2213.77		TP-2			6 36	2195 65	
SP #6 M.P.			2.80	2213.44			4.50	2200.15	3.00	2133.03	
Stake @ SP #6			2.53	2213.71		16W G.L.			3 92	2196 23	
T.P.			6.75	2209.49		16W M.P.			0.55	2199 60	
	3.28	2212.77				Stake @ 16W			3 44	2196 71	

Station	+ Sight	Instrumental Height	- Sight	Elevation	Remarks	Station	+ Sight	Instrumental Height	Sight	Elevation	Remarks
TP-3			2.64	2196.51					5.92	2203.43	
TO 4	5.67	2202.18	C 01	0107.17					6.66	2202.69	
18-4	6 22	2202 50	5.01	2197.17					7.35	2202.00	
TBM-A	0.55	2203.30	5.54	2197.96	Stake @ 15W	10Y-A			1.61	220/./4	
TDM D						TBM-2				2212.32	
I RW-R	6 12	2200 41		2203.29	Stake @ 10W	TD 3	.88	2213.20			
TP-1	5.12	2208.41	1 10	2203 02		18-1	E 40	2212 07	6.55	2206.65	
•••••	5.39	2209.31	7.15	2203.92		1P G I	5.42	2212.07	7 5 3	2204 54	
18W G.L.			2.06	2207.25		1P M.P.			4 51	2207 56	
18W M.P.			3.19	2210.44	Measured	TP-2			6.72	2205.35	
					from ground		6.64	2211.99	••••	2200.00	
TD 0					level	17P G.L.			7.33	2204.66	
1P-2			6.35	2202.96		17P M.P.			5.35	2206.64	
TD 0	4.59	2207.55				19P G.L.			7.77	2204.22	
19-3	1 05		6.01	2201.54		19P M.P.			4.08	2207.91	
174 0 1	4.85	2206.39	e 11	0001 00		16P G.L.			7.53	2204.46	
17W U.L. 17M M D			5.11	2201.28		16P M.P.			4.24	2207.75	
			2.04	2203.75		I BM-A			4.21	2207.78	
) (- 4	A 97	2206 71	4.55	2201.84							
TBM-C	4.07	2200.71	2 75	2202 04	124 405 05	TON D				0106 66	
			3.75	2202.90	IZW LOP OF	I DM-D	F 06	2202 62		2196.66	
TBM-A TBM-B TP-1 8 18W G.L. 8 18W M.P. 1 TP-2 4 TP-3 4 17W G.L. 1 17W G.L. 1 17W G.L. 4 TP-4 4 TP-1 5 TP-2 9					r lezometer	T0_0	5.90	2202.02	2 46	2200 36	
						11-0	2 76	2202 02	2.40	2200.16	
9W	4.32	2209.95		2205.63		12P G.L.	3.70	2203.32	6 64	2107 28	
TP-1			5.31	2204.64		12P M.P.			4 16	2199.76	
	5.41	2210.05				TP-9			2.37	2201.55	
			8.18	2201.87	at Pond #204		3.87	2205.42	2707	2201100	
			6.79	2203.26		14P G.L.			6.04	2199.38	
			7.01	2203.04		14P M.P.			3.54	2201.88	
			6.52	2203.53		TP-10			4.15	2201.27	
12-2 04			5.71	2204.34			3.78	2205.05			
9W			4.43	2205.62		Reference Stake			5.03	2200.02	At 13P
10Y-A	1.61	2209.35		2207.74		TBM-B				2196 66	
			4.49	2204.86	at 10Y River		6.94	2203.60		2150.00	

Station	+ Sight	Instrumental Height	- Sight	Elevation	Remarks	Station	+ Sight	Instrumental Height	 Sight	Elevation	Remarks
5P G.L. 5P M.P.			9.49 5.89	2194.11 2197 71		TBM-2		0010 76		2212.32	
TP-B-1	5 82	2200 22	9.20	2194.40		TP-1	.44	2212.76	4.88	2207.88	
7PGL.	3.02	2200,22	3.59	2196.63		TP-2-TBMA	3.95	2211.83	4.04	2207 79	
8P G.L.			3.12 4.59	2197.10 2195.63		TP-3	1.48	2209.27	5 11	2204 16	
8P M.P. 10P G.L.			3.14 5.85	2197.08 2194 37		τρ. Α	3.76	2207.92	5.11	2204.10	
10P M.P. 11P G.L			4.31	2195.91		18-4	3.35	2205.40	5.87	2202.05	
11P M.P.			3.12	2193.82		13P G.L. 13P M.P.			5.98 2.91	2199.42 2202.49	
	3.93	2198.20	5.95	2194.27		Reference Stake			5.36	2200.04	
6P G.L. 6P M.P. TP-B-3			5.15 0.39	2193.05 2197.81		TP-5	3.48	2202.65	6.23	2199.17	
20-0-1	3.85	2200.04	2.01	2196.19		TP-6	3.84	2200 96	5.53	2197.12	
3P G.L. 3P M.P. Reference Stake			7.60 4.57 6.66	2192.44 2195.47 2193.38		4P G.L. 4P M.P. SP #8		2200,50	5.42 .83 3.47	2195.54 2200.12 2197.49	
TBM-B			3.39	2196.65		2P G.L. 2P M.P. TBM-B			4.65 .78 4.30	2196.31 2200.18 2196.66	
TBM-2	01			2212.32		TP-7	4.30	2200.96	3 84	2107.10	
AY-A	.81	2213.13	.90	2212.23	Ton of	TP_8	6.45	2203.57	5.04	2197.12	
TP-1			4 71	2208 42	Piezometer		6.86	2204.93	5.50	2198.07	
TP-2	6.32	2214.74	A 65	0010.10		18-9	6.93	2207.73	4.13	2200.80	
18P.G.F	6.85	2217.04	4.00	2210,19		19-10	5.98	2209.85	3.86	2203.87	
18P M.P.			6.65 3.93	2210.39 2213.11		TP-11	7 20	2211 70	5.35	2204.50	
1F-J	4.62	2214.50	7.16	2209.88		TP-12	6 70	2211.70	5.52	2206.18	
12-4	3.86	2212.76	5.50	2208.90		TBM-2	0.79	2212.9/	0.64	2212.33	
TBM-2			0.44	2212.32		TBM-W	2.50	2197.97		2195.47	P3 top of

.

.

Piezometer

Appendix V. Cont'd

Station	+ Sight	Instrumental Height	Sight	Elevation	Remarks	Station	+ Sight	Instrumental Height	- Sight	Elevation	Remarks
A	2.25		3.67	2194.30			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
	3.35	2197.05	4.27	2193.38							
	J.04 A 90	2197.22	6.00	2191.22							
P-1	4.09 2.15	2190.11	4.17	2191.94							
take 3 P-2		2194.09	1.52 5.58	2192.57 2188.51							
•	9.42	2192.50	3.99 3.22	2188.51 2189.28							
	7.27	2198.70	7.27	2191.43 2191.43							
	2.96	2192.24	9.42	2189,28							
	5.24	2193.75	3.73	2188.51							
	3.19	2195.76	1.18	2192.57							
	5.27	2196.49	4.54	2191.22							
	4.38	2197.75	3.12	2193.37							
M - W	4.52	2198.81	3.46 3.34	2194.29 2195.47	P3 Top of Piezometer						
ake 3 PG.L. PM.P. ake 3	3.19	2195.76	6.22 2.98 3.19	2192.57 2189.54 2192.78 2192.57							
ake 6 PG.L. PM.P. ake 6	3.73	2195.16	3.92 1.13 3.73	2191.43 2191.24 2194.03 2191.43					-		

۷ 7