# Metal(loid) Cycling in Mine-Impacted Sediments of the Northern Idaho Coeur d’Alene River Basin 

A Dissertation<br>Presented in Partial Fulfillment of the Requirements for the<br>Degree of Doctor of Philosophy<br>with a<br>Major in Soil Science<br>in the<br>College of Graduate Studies<br>University of Idaho

by

Gordon R. Toevs

August 2006

Major Professor: Matthew Morra, Ph.D.

## AUTHORIZATION TO SUBMIT DISSERTATION

This dissertation of Gordon R. Toevs, submitted for the degree of Doctor of Philosophy with a major in Soil Science and titled "Metal(loid) Cycling in Mine-Impacted Sediments of the Northern Idaho Coeur d'Alene River Basin," has been reviewed in final form. Permission, as indicated by the signatures and dates given below in now granted to submit final copies to the College of Graduate Studies for approval.

Major Professor

$$
\begin{aligned}
& \text { Date } 2 / 1 / 10
\end{aligned}
$$

Matthew J. Morra

Committee Members
$\frac{\text { Date__ }}{\text { Daniel G. Strawn }}$ Date

Barbara Cy Williams


Scott A. Wood

Department Administrator


College Approval, Academic Dean
John Foltz
Final Approval and Acceptance by the College of Graduate Studies



#### Abstract

Mining activity along the South Fork of the Coeur d'Alene (CDA) River in northern Idaho has resulted in mine tailings enriched in $\mathrm{Pb}, \mathrm{As}, \mathrm{Ag}, \mathrm{Sb}, \mathrm{Hg}, \mathrm{Cd}$, and Zn that have contaminated broad areas of the CDA River floodplain and Lake CDA. Without a clear understanding of contaminant redistribution, tailings transport, and metal cycling within this region, sound management decisions to protect environmental quality are difficult. Our objective was to better define the biogeochemical reactions controlling toxic metal cycling within sediments of Lake CDA and wetlands in the Basin. Sediment from contaminated sites in the Lake and Basin wetlands were collected as cores and interstitial water samples obtained using equilibrium dialyzers. Solid phase associations of $\mathrm{Fe}, \mathrm{S}$, and As were probed using x-ray absorption (XAS) spectroscopy. In Lake CDA sediments we identified a gradient from oxic conditions at the sediment-water interface to anoxic conditions below 10 cm , thus creating a dynamic redox environment that controls metal(loid) sorption and solubility. The oxic cap at the sediment-water interface traps many of the contaminant metal(loids) decreasing their flux into the overlying water column. However, flood events bury the oxic cap materials transitioning them to a suboxic zone in which reductive dissolution of the oxides releases metal(loid)s into the sediment interstitial water. High Fe:S ratios inhibit the formation of metal(loid)-containing sulfide precipitates in the anoxic zone, thus resulting in chronically and acutely toxic concentrations of soluble metals within the sediment interstitial water. In contrast, constantly saturated wetlands within the Basin do not maintain an oxic sediment cap and concentrations of metal(loid)s in sediment interstitial waters are consequently much lower than those in Lake CDA sediments. This series of reactions and processes presents a dilemma for lake management since promoting reduced conditions at the


sediment-water interface in Lake CDA is an unacceptable method to decrease porewater metal(loid) concentrations. Decreased soluble metal(loid) concentrations in the sediments will only occur by minimizing the transport of contaminated materials to Lake CDA.

## ACKNOWLEDGEMENTS

I would like to acknowledge people who have made this PhD project one of the great experiences of my life. Dr. Matthew Morra has been a person of integrity and a wonderful mentor. I will miss working with him. Matt has facilitated and encouraged me to embrace this project as a collaborative effort. Matt's contacts included Dr. Scott Fendorf at Stanford University and Laurie Balistrieri with the USGS. Matt, Scott, and Laurie have been tremendous inspiration and incredible sources of knowledge. They have encouraged and inspired me to carefully examine the details, appreciate the complexity of natural systems, and have given me a respect for scientific investigation for which I am grateful. I count it a privilege to call them my friends.

My committee members, Dr. Daniel Strawn, Dr. Barbara Williams, and Dr. Scott Wood have also been tremendous help and encouragement. Dr. Benjamin Bostick was another collaborator who was just completing his PhD at Stanford University as I began this project. His excitement was very encouraging to someone who did not have any idea of what lies ahead and his help with data analysis was a key component of my success. Matthew Polizzotto began his PhD at Stanford University about the same time I began at the University of Idaho. We have had some terrific times together collecting and analyzing data and also enjoying the sites of Northern Idaho and Central California. Thank you Matt.,I hope our paths will cross many times in the future.

The professors and staff within the Soil and Land Resource Division have been a tremendous wealth of knowledge and help. Dr. Daniel Strawn, Dr. Markus Tuller, Dr. Jodi Johnson-Maynard, and Dr. Paul McDaniel I want to thank you very much for your dedication to teaching and research. You have been an inspiration. Dr. Vladimir Borek, Karl Umiker,
and Anita Falen have assisted me countless times in the laboratory for which I am very thankful. Dr. Jim Kuwabara and Dr. Paul Woods of the USGS have been very gracious in sharing their knowledge and encouraged me to build on their experience in the Coeur d'Alene Basin. My fellow graduate students have been tremendous help, willingly participated in many discussions, and helped me laugh at myself when I really did not have a clue. Leigh Winowiecki introduced me to this project and helped get me started on the adventure of being a research assistant. Doug Finkelnburg was tremendous help during this project in the field and in the lab. I certainly appreciate all of you.

And, I have saved the very best for the last. My dear wife Brenda has been a source of strength and encouragement. She has accommodated my schedule at every possible turn, she is a wonderful wife and mother, and is also a terrific friend. Our three children, Ian, Natalie, and Elliott have been tremendous encouragement as Brenda and I followed them to school. Thank you very much for your love and support. My brothers and sisters have been another source of encouragement and strength, as well as other family members and friends. I also want to thank my mother, Patty and late father, Gordon who have placed an inquisitive desire in me, the confidence to pursue my dreams, and to whom I have the privilege of sharing this success. I am truly blessed.

## TABLE OF CONTENTS

AUTHORIZATION TO SUBMIT DISSERTATION ..... ii
ABSTRACT ..... iii
ACKNOWLEDGEMENTS ..... v
TABLE OF CONTENTS ..... vii
LIST OF FIGURES ..... xii
LIST OF TABLES ..... xx
CHAPTER 1
Metal(Loid) Diagenesis In Mine-Impacted Sediments Of Lake
Coeur d'Alene, Idaho
ABSTRACT ..... 1
INTRODUCTION ..... 2
MATERIALS AND METHODS ..... 4
Sample Sites ..... 4
Materials. ..... 5
Sampling Devices. ..... 5
Sample Retrieval and Preservation. ..... 5
Analytical Methods. ..... 6
RESULTS AND DISCUSSION ..... 9
Element Abundance. ..... 9
Redox Conditions ..... 10
Sediment Sulfur. ..... 14
Sediment Iron ..... 18
ACKNOWLEDGEMENTS ..... 22
SUPPORTING INFORMATION ..... 22
REFERENCES ..... 23
SUPPORTING INFORMATION ..... 28
CHAPTER 2
Arsenic Cycling In Freshwater Sediments Of Lake Coeur d'Alene,
Idaho
ABSTRACT ..... 33
INTRODUCTION ..... 34
MATERIALS AND METHODS ..... 36
Sample Sites ..... 36
Materials. ..... 37
Sampling Devices ..... 37
Sample Retrieval and Preservation. ..... 37
Particle Size Analysis. ..... 38
Analytical Methods ..... 39
RESULTS AND DISCUSSION ..... 41
Element Abundance. ..... 41
Sediment Redox ..... 45
Porewater Arsenic ..... 49
Site Factors ..... 52
X-ray Absorption Spectroscopy ..... 55
ACKNOWLEDGEMENTS ..... 61
REFERENCES ..... 62
SUPPORTING INFORMATION ..... 67

## CHAPTER 3

# Internal Cycling And Benthic Flux Of Trace-Metals In Mine-Waste Impacted Sediments Of Lake Coeur d'Alene, Idaho 

ABSTRACT ..... 68
INTRODUCTION ..... 69
MATERIALS AND METHODS ..... 72
Sample Sites. ..... 72
Materials. ..... 72
Equilibrium Dialyzers and Sediment Cores. ..... 72
Analytical Methods. ..... 74
RESULTS AND DISCUSSION ..... 76
Element Abundance ..... 76
Dissolved Trace Metal Concentrations. ..... 77
Diagenetic Processes ..... 80
Molecular Diffusion ..... 87
ACKNOWLEDGEMENTS ..... 92
REFERENCES ..... 93

## CHAPTER 4

# Seasonal Redox Changes And Impact On Stability Of Mine-Waste, <br> Lower Coeur d'Alene River, Idaho 

ABSTRACT ..... 97
INTRODUCTION ..... 98
MATERIALS AND METHODS ..... 100
Sample Site. ..... 100
Materials. ..... 100
Equilibrium Dialyzers and Overlying Water Samples ..... 101
Sediment Cores. ..... 102
Analytical Methods. ..... 104
Seasonal Deployments. ..... 105
RESULTS AND DISCUSSION ..... 106
Element Abundance. ..... 106
Seasonal Redox Environment. ..... 107
Dissolved Trace Metal Profiles. ..... 111
Surface and Bottom Water Dissolved Metals. ..... 116
Schlepp Pond and Lake Coeur d'Alene Comparisons. ..... 118
ACKNOWLEDGEMENTS ..... 119
REFERENCES ..... 120

## APPENDIX

FIGURES FOR LAKE COEUR D'ALENE ..... 122
Redox Elements ..... 122
Redox Element Profiles, Averaged Data ..... 129
Dissolved Metal(loids), ICP-MS ..... 131
FIGURES FOR SCHLEPP POND ..... 140
Redox Elements ..... 140
Redox Element Profiles, Averaged Data ..... 155
Dissolved Constituents Schlepp Pond, ICP-AES ..... 159
Dissolved Constituents, Schlepp Pond ICP-MS ..... 184
TABLES OF DATA ..... 187
Sediment Digest, Lake Coeur d'Alene ..... 187
Sediment Carbon, Nitrogen, and Sulfur ..... 190
Particle Size Analysis, Lake Coeur d'Alene ..... 191
Sediment Porosity ..... 192
ICP-AES Data, Lake Coeur d'Alene ..... 196
IC Data, Lake Coeur d'Alene ..... 202
IC Data, Schlepp Pond ..... 208

## LIST OF FIGURES

Figure 1.1. Location of the study area in northern Idaho (upper right), Coeur d'Alene (CDA) mining district (inside dotted line), Bunker Hill Superfund Site (inside shaded box), CDA River, two mine waste-impacted sites (HP and PP), and the non-impacted site (SJ) within Lake CDA.

Figure 1.2. Concentrations of redox sensitive species in Lake Coeur d'Alene sediment interstitial water at the control site (SJ) and the two contaminated sites (PP and HP). Each point is an average of two samples obtained from adjacent equilibrium dialyzers in May 2002. Depth increments less than zero (0) indicate concentration above the sediment-water interface. Refer to Supporting Information Figure 1.5 for sample variability.13

Figure 1.3. Comparison of S species as determined by S-XANES analyses of Lake Coeur d'Alene sediments at the contaminated sites ( PP and HP ) and the control site (SJ). Data shown for each depth are an average of two spectra from adjacent cores collected May 2002 and have a fitting accuracy of $\pm 5 \%$. Maximum total sulfur within all sediments was less than $0.5 \%$ by weight.15

Figure 1.4. Iron XANES analyses of Lake Coeur d'Alene sediments as determined from linear combination fittings of Fe (II) and Fe (III) proxies and illite. Data are from cores collected May 2002 at the control site (SJ) and two contaminated sites (PP and HP). Iron comprised up to $10 \%$ of the sample by weight at the contaminated sites19

Supporting Information Figure 1.5. Replicates of redox sensitive species from the
Harlow Point site, May 2002 deployment, indicating the consistency of the
trends and reproducibility of dialyzer samples. These trends are consistent with
those found during four deployments from 2000 to 2002. Depth increments less
than zero ( 0 ) indicate concentrations above the sediment-water interface. ..... 28

Supporting Information Figure 1.6. Total S concentration of Lake Coeur d'Alene
sediments in the control site (SJ) and the two contaminated sites (PP and HP).
Total S determined by ICP analysis of sediment microwave digestions. Each
point is an average of two samples from adjacent cores collected May 2002. ..... 29
Supporting Information Figure 1.7. Total Fe concentrations of Lake Coeur d'Alene sediments in the control site (SJ) and the two contaminated sites (PP and HP). Total Fe determined by ICP analysis of sediment microwave digests. Each point is an average of two samples from adjacent cores collected May 2002 ..... 29
Supporting Information Figure 1.8. S XANES standards and spectra of Lake Coeur d'Alene sediments. Data are from cores collected May 2002 and analyzed at the Brookhaven advanced light source. The dashed lines are representative fitting curves. ..... 30

# Supporting Information Figure 1.9. Iron-EXAFS linear combination fitting for spectra from Harlow Point (HP) indicating the increase in siderite with depth. Minerals other than siderite and illite have not been verified by an additional independent technique. Data are from a core collected May 2002. 

Supporting Information Figure 1.10. XRD patterns identifying the presence of various minerals at Peaceful Point, Lake Coeur d'Alene. Data are from a core collected May 2002

Supporting Information Figure 1.11. Fe XANES standards and spectra of Lake Coeur d'Alene sediments. Data are from a core collected May 2002.32

Figure 2.1, A-H. Sediment concentrations of $\mathrm{Mn}, \mathrm{Fe}, \mathrm{S}$, and As at the contaminated sites, Harlow Point (HP) and Peaceful Point (PP). Results are shown for the total element digests of sub-sampled sections of duplicate cores analyzed on ICP-AES. The cores were collected in May of 2002.42

Figure 2.2, A-D. Sediment concentrations of $\mathrm{Mn}, \mathrm{Fe}, \mathrm{S}$, and As at the contaminated sites, Harlow Point (HP) and Peaceful Point (PP). Results are shown for the total element digests of sub-sampled sections of duplicate cores analyzed on ICP-AES. The cores were collected in May of 200244

Figure 2.3, A-H. Aqueous concentrations of $\mathrm{As}, \mathrm{Mn}, \mathrm{Fe}$, and $\mathrm{SO}_{4}{ }^{2-}$ in the sediments and overlying water column from duplicate dialyzers placed at the two contaminated sites, HP and PP. The data points less than zero depth represent the overlying water. The samples were collected in May of 2002. Manganese and Fe were analyzed by ICP-AES, $\mathrm{SO}_{4}{ }^{2-}$ by IC, and As by ICP-MS. Notice As abscissa is in units of $\mu \mathrm{M}$47

Figure 2.4. A representative redox profile for Lake Coeur d'Alene sediments and overlying water column. Seasonal and site differences were minimal. The dashed lines indicate the operationally defined redox boundaries.48

Figure 2.5. This is an illustration of two sediment profiles with similar redox conditions but differing sedimentation rates. Site 1 receives 4 times the sediment as Site 2 . The arrows joining the two profiles correspond to similar age deposits and demonstrate the time difference the sediments remain in the oxic and suboxic zones prior to transition by burial to the anoxic zone.49

Figure 2.6, A-B. Arsenic-XANES spectra (solid lines) for sub-samples of cores from Harlow Point (A) and Peaceful Point (B) with the Least Square Fitting (LSF) curves (dotted lines) superimposed. The vertical dashed lines represent the inflection energy, from left to right, for $\mathrm{FeAsS}, \mathrm{As}(\mathrm{III})$ and $\mathrm{As}(\mathrm{IV})$, respectively. The percentages of $\mathrm{FeAsS}, \mathrm{As}(\mathrm{III})$, and $\mathrm{As}(\mathrm{V})$ were quantified from the LSF results. Principle Component Analysis was used to reduce the number of fitting spectra. The cores were collected in May of 2002
Figure 3.1, A-E. Duplicate profiles of trace metals found in the interstitial water at HP. The samples were collected by equilibrium dialyzers in May of 2002 and analyzed by ICP-MS. The dashed line represents the sediment-water interface.78

Figure 3.2, A-E. Duplicate profiles of trace metals found in the interstitial water at PP. The samples were collected in equilibrium dialyzers in May of 2002 and analyzed by ICP-MS. The dashed line represents the sediment-water interface.80
Figure 3.3, A-C. Average interstitial water profiles of redox sensitive species from HP and PP indicating the transition from oxic to anoxic sediments. The inserts allow for a precise identification and comparison of the redox boundary between the two sites. The samples were collected in equilibration dialyzers in May of 2002. Iron and Mn were analyzed by ICP-AES and $\mathrm{SO}_{4}{ }^{2-}-\mathrm{S}$ was analyzed by IC. ..... 82
Figure 4.1, A-F. Profiles from averaged concentrations of redox sensitive species present in the interstitial water from six seasonal deployments in Schlepp Pond during 2004. Nitrate and $\mathrm{SO}_{4}{ }^{2-}-\mathrm{S}$ were analyzed by IC and Mn and Fe were analyzed by ICP-AES. The average is from three equilibrium dialyzers. ..... 108
Figure 4.2, A-F. Profiles of dissolved metal concentrations in the interstitial water from Schlepp Pond. Figures A-E are from June 2004 and June 2005 samples analyzed by ICP-MS. Figure F is the average dissolved Zn concentration for six seasonal deployments in 2004 analyzed by ICP-AES. The averages in Figure F are from three equilibrium dialyzers from each deployment. ..... 112
Figure 5.1. Replicate samples of nitrate-nitrogen from the control site, SJ. Samples are from May 2002 and analyzed by IC. ..... 122
Figure 5.2. Replicate samples of nitrate-nitrogen from the two contaminated sites, HP and PP. Samples are from May 2002 and analyzed by IC. ..... 123
Figure 5.3. Replicate samples of Mn from the control site, SJ and the contaminated, HP. Samples are from May 2002 and analyzed by ICP-AES. ..... 124
Figure 5.4. Replicate samples of Mn from one contaminated site, PP and Fe from the control site, SJ. Samples are from May 2002 and analyzed by ICP-AES. ..... 125
Figure 5.5. Replicate samples of Fe from the two contaminated sites, HP and PP. Samples are from May 2002 and analyzed by ICP-AES. ..... 126
Figure 5.6. Replicate samples of Fe from the two contaminated sites, HP and PP.
Samples are from May 2002 and analyzed by ICP-AES. ..... 127
Figure 5.7. Replicate samples of Fe from the two contaminated sites, HP and PP. Samples are from May 2002 and analyzed by ICP-AES. ..... 128
Figure 5.8. Redox profile of the control site, SJ , established from the presence or absence of TEA. The data are the average of replicate samples collected in May 2002. ..... 129
Figure 5.9. Redox profile of the two contaminated sites, HP and PP, established from the presence or absence of TEA. The data are the average of replicate samples collected in May 2002. ..... 130
Figure 5.10. Replicate samples of As and Cd from the control site, SJ. Samples are from May 2002 and analyzed by ICP-MS. ..... 131
Figure 5.11. Replicate samples of Cu and Ni from the control site, SJ. Samples are from May 2002 and analyzed by ICP-MS ..... 132
Figure 5.12. Replicate samples of Pb and Zn from the control site, SJ. Samples are from May 2002 and analyzed by ICP-MS ..... 133
Figure 5.13. Replicate samples of As and Cd from one contaminated site, HP. Samples are from May 2002 and analyzed by ICP-MS. ..... 134
Figure 5.14. Replicate samples of Cu and Ni from one contaminated site, HP. Samples are from May 2002 and analyzed by ICP-MS ..... 135
Figure 5.15. Replicate samples of Cu and Ni from one contaminated site, HP. Samples are from May 2002 and analyzed by ICP-MS. ..... 136
Figure 5.16. Replicate samples of As and Cd from one contaminated site, PP. Samples are from May 2002 and analyzed by ICP-MS. ..... 137
Figure 5.17. Replicate samples of Cu and Ni from one contaminated site, PP. Samples are from May 2002 and analyzed by ICP-MS. ..... 138
Figure 5.18. Replicate samples of Cu and Ni from one contaminated site, PP. Samples are from May 2002 and analyzed by ICP-MS ..... 139
Figure 5.19. Triplicate samples of nitrate-nitrogen from the March, 2004 deployment in Schlepp Pond ..... 140
Figure 5.20. Triplicate samples of nitrate-nitrogen from the April and May, 2004 deployments in Schlepp Pond. ..... 141
Figure 5.21. Triplicate samples of nitrate-nitrogen from the June and August, 2004 deployments in Schlepp Pond. ..... 142
Figure 5.22. Triplicate samples of nitrate-nitrogen from the November 2004 and June 2005 deployment in Schlepp Pond. ..... 143
Figure 0.23. Triplicate samples of Mn from the March and April, 2004 deployment in Schlepp Pond ..... 144
Figure 5.24. Triplicate samples of Mn from the May and June, 2004 deployment in Schlepp Pond. ..... 145
Figure 5.25. Triplicate samples of Mn from the August and November, 2004 deployment in Schlepp Pond. ..... 146
Figure 5.26. Triplicate samples of Mn from the June, 2005 deployment in Schlepp Pond. ..... 147
Figure 5.27. Triplicate samples of Fe from the March, 2004 deployment in Schlepp Pond. ..... 147
Figure 5.28. Triplicate samples of Fe from the April and May, 2004 deployments in Schlepp Pond. ..... 148
Figure 5.29. Triplicate samples of Fe from the June and August, 2004 deployments in Schlepp Pond. ..... 149
Figure 5.30. Triplicate samples of Fe from the November, 2004 and June, 2005 deployments in Schlepp Pond. ..... 150
Figure 5.31. Triplicate samples of sulfate-sulfur from the March and April, 2004 deployments in Schlepp Pond. ..... 151
Figure 5.32. Triplicate samples of sulfate-sulfur from the May and June, 2004 deployments in Schlepp Pond. ..... 152
Figure 5.33. Triplicate samples of sulfate-sulfur from the August and November, 2004 deployments in Schlepp Pond. ..... 153
Figure 5.34. Triplicate samples of sulfate-sulfur from the June, 2005 deployment in Schlepp Pond. ..... 154
Figure 5.35. Redox profiles from the March and April, 2004 deployments in Schlepp Pond. The data are the average of triplicate samples with reduction potential determined by presence or absence of TEA. ..... 155
Figure 5.36. Redox profiles from the May and June, 2004 deployments in Schlepp Pond. The data are the average of triplicate samples with reduction potential determined by presence or absence of TEA. ..... 156
Figure 5.37. Redox profiles from the August and November, 2004 deployments in Schlepp Pond. The data are the average of triplicate samples with reduction potential determined by presence or absence of TEA. ..... 157
Figure 5.38. Redox profile from the June, 2005 deployment in Schlepp Pond. The data are the average of triplicate samples with reduction potential determined by presence or absence of TEA. ..... 158
Figure 5.39. Triplicate samples of dissolved Ca in interstitial water from Schlepp Pond samples collected in March and April, 2004. ..... 159
Figure 5.40. Triplicate samples of dissolved Ca in interstitial water from Schlepp Pond samples collected in May and June, 2004. ..... 160
Figure 5.41. Triplicate samples of dissolved Ca in interstitial water from Schlepp Pond samples collected in August and November, 2004 ..... 161
Figure 5.42. Triplicate samples of dissolved Ca in interstitial water from Schlepp Pond samples collected in June 2005 ..... 162
Figure 5.43. Triplicate samples of dissolved K in interstitial water from Schlepp Pond samples collected in March, 2004 ..... 162
Figure 5.44. Triplicate samples of dissolved K in interstitial water from Schlepp Pond samples collected in April and May, 2004 ..... 163
Figure 5.45. Triplicate samples of dissolved K in interstitial water from Schlepp Pond samples collected in June and August, 2004 ..... 164
Figure 5.46. Triplicate samples of dissolved K in interstitial water from Schlepp Pond samples collected in November, 2004 and June, 2005 ..... 165
Figure 5.47. Triplicate samples of dissolved Mg in interstitial water from Schlepp Pond samples collected in March and April, 2004. ..... 166
Figure 5.48. Triplicate samples of dissolved Mg in interstitial water from Schlepp Pond samples collected in May and June, 2004 ..... 167
Figure 5.49. Triplicate samples of dissolved Mg in interstitial water from Schlepp Pond samples collected in August and November, 2004 ..... 168
Figure 5.50. Triplicate samples of dissolved Mg in interstitial water from Schlepp Pond samples collected in June, 2005. ..... 169
Figure 5.51. Triplicate samples of dissolved Na in interstitial water from Schlepp Pond samples collected in March, 2004 ..... 169
Figure 5.52. Triplicate samples of dissolved Na in interstitial water from Schlepp Pond samples collected in April and May, 2004 ..... 170
Figure 5.53. Triplicate samples of dissolved Na in interstitial water from Schlepp Pond samples collected in June and August, 2004. ..... 171
Figure 5.54. Triplicate samples of dissolved Na in interstitial water from Schlepp Pond samples collected in November, 2004 and June, 2005. ..... 172
Figure 5.55. Triplicate samples of dissolved $P$ in interstitial water from Schlepp Pond samples collected in March and April, 2004. ..... 173
Figure 5.56. Triplicate samples of dissolved $P$ in interstitial water from Schlepp Pond samples collected in May and June, 2004 ..... 174
Figure 5.57. Triplicate samples of dissolved $P$ in interstitial water from Schlepp Pond samples collected in August and November, 2004. ..... 175
Figure 5.58. Triplicate samples of dissolved $P$ in interstitial water from Schlepp Pond samples collected in June, 2005 ..... 176
Figure 5.59. Triplicate samples of dissolved $S$ in interstitial water from Schlepp Pond samples collected in March, 2004 ..... 176
Figure 5.60. Triplicate samples of dissolved S in interstitial water from Schlepp Pond samples collected in April and May, 2004 ..... 177
Figure 5.61. Triplicate samples of dissolved $S$ in interstitial water from Schlepp Pond samples collected in June and August, 2004. ..... 178
Figure 5.62. Triplicate samples of dissolved $S$ in interstitial water from Schlepp Pond samples collected in November, 2004 and June, 2005. ..... 179
Figure 5.63. Triplicate samples of dissolved Zn in interstitial water from Schlepp Pond samples collected in March and April, 2004 ..... 180
Figure 5.64. Triplicate samples of dissolved Zn in interstitial water from Schlepp Pond samples collected in May and June, 2004 ..... 181
Figure 5.65. Triplicate samples of dissolved Zn in interstitial water from Schlepp Pond samples collected in August and November, 2004 ..... 182
Figure 5.66. Triplicate samples of dissolved Zn in interstitial water from Schlepp Pond samples collected in June, 2005 ..... 183
Figure 5.67. Dissolved As and Cd in interstitial water from Schlepp Pond. Sample 1404 was collected in June of 2004 and 0405 and 1205 were collected in June of 2006. Samples were analyzed by ICP-MS ..... 184
Figure 5.68. Dissolved Cu and Ni in interstitial water from Schlepp Pond. Sample 1404 was collected in June of 2004 and 0405 and 1205 were collected in June of 2006. Samples were analyzed by ICP-MS ..... 185

Figure 5.69. Dissolved Pb and Zn in interstitial water from Schlepp Pond. Sample 1404 was collected in June of 2004 and 0405 and 1205 were collected in June of 2006. Samples were analyzed by ICP-MS186

## LIST OF TABLES

Table 1.1. Mean and standard error ( $\mathrm{n}=2$ ) of select element concentrations in Lake Coeur d'Alene near surface sediments collected in May of 2002. ..... 11
Supporting Information Table 2.1. A summary of present and prior concentrations of $\mathrm{Fe}, \mathrm{As}$, and S in the sediments at or near Harlow Point (HP) and Peaceful Point (PP). The data indicate agreement of As enrichment and $S$ depletion in the surface sediments at PP when compared with HP. ..... 67
Table 3.1. The elemental range, median, mean, and standard deviation of depth averaged duplicate cores, 30 cm in length. The cores were taken from a non- mine impacted site (St. Joe) and from two mine waste-impacted sites (Harlow Point and Peaceful Point). The cores were collected in May of 2002 and the data is from microwave digestions analyzed on ICP-AES ..... 76
Table 3.2. Summary of molecular diffusive benthic fluxes from HP and PP based on molecular diffusion coefficients from Li and Gregory (1974). The samples used for calculations were collected by equilibrium dialyzers in May of 2002 ..... 91
Table 4.1. Elemental analysis of acid-digested sediments from 2, depth averaged Schlepp Pond cores and averaged concentrations from two Lake Coeur d'Alene mine-waste impacted sites. The cores from Schlepp Pond were collected in April of 2004 and Lake Coeur d'Alene cores were collected in May of 2002. Analyses were performed using ICP-AES. ..... 107
Table 4.2, A-B. Dissolved trace metal concentrations in the surface water and the bottom water in Schlepp Pond. Table 4.2, A displays averaged values of each seasonal deployment in 2004 for Pb and Zn analyzed by ICP-AES. Table 4.2, B displays the averaged values for five trace metals from the June 2004 and the June 2005 deployments analyzed by ICP-MS ..... 117
Table 5.1. Total digest of two St. Joe site cores collected in May, 2002. Solution analyzed with ICP-AES. ..... 187
Table 5.2. Total digest of two Harlow Point site cores collected in May, 2002. Solution analyzed with ICP-AES. ..... 188
Table 5.3. Total digest of two Peaceful Point site cores collected in May, 2002.
Solution analyzed with ICP-AES ..... 189
Table 5.4. Total $\mathrm{C}, \mathrm{N}$, and S , organic $\mathrm{C}(\mathrm{C}($ org $))$ after treatment with HCl , and inorganic C (C(inorg)) by difference. Samples are from cores collected at the sites, May 2002 and analyzed by dry combustion. ..... 190
Table 5.5. Particle Size Analysis by ultrasonic separation, centrifuge and hydrometer method on cores collected from the three sample sites, St. Joe, Harlow Point and Peaceful Point, in May, 2002. ..... 191
Table 5.6. Porosity of cores from the St. Joe site collected May, 2002. The particle density was assumed at $2.65 \mathrm{~g} \mathrm{~cm}^{-3}$ to calculate the solids volume. Two cores were done to validate the method and precision. ..... 192
Table 5.7. Porosity of core \#11 from the St. Joe site collected May, 2002. The particle density was assumed at $2.65 \mathrm{~g} \mathrm{~cm}^{-3}$ to calculate the solids volume. Two cores were done to validate the method and precision. ..... 193
Table 5.8. Porosity of a core from the Harlow Point site collected in May, 2002. The particle density was assumed at $2.65 \mathrm{~g} \mathrm{~cm}^{-3}$ to calculate the solids volume. ..... 194
Table 5.9. Porosity of a core from the Peaceful Point site collected in May, 2002. The particle density was assumed at $2.65 \mathrm{~g} \mathrm{~cm}^{-3}$ to calculate the solids volume. ..... 195
Table 5.10. ICP-AES data from the St. Joe site, May 2002. Samples are from dialyzer \#2. ..... 196
Table 5.11. ICP-AES data from the St. Joe site, May 2002. Samples are from dialyzer \#5. ..... 197
Table 5.12. ICP-AES data from the Harlow Point site, May 2002. Samples are from dialyzer \#9 ..... 198
Table 5.13. ICP-AES data from the Harlow Point site, May 2002. Samples are from dialyzer \#12 ..... 199
Table 5.14. ICP-AES data from the Peaceful Point site, May 2002. Samples are from dialyzer \#13 ..... 200
Table 5.15. ICP-AES data from the Peaceful Point site, May 2002. Samples are from dialyzer \#17 ..... 201
Table 5.16. IC data from the St. Joe site, May 2002. Samples are from dialyzer \#2. The data were converted to elemental concentrations in the right hand columns and $S$ and $P$ are compared to ICP totals ..... 202
Table 5.17. IC data from the St. Joe site, May 2002. Samples are from dialyzer \#5. The data were converted to elemental concentrations in the right hand columns and $S$ and $P$ are compared to ICP totals. ..... 203
Table 5.18. IC data from the Harlow Point, May 2002. Samples are from dialyzer \#8.
The data were converted to elemental concentrations in the right hand columns. No corresponding ICP data was available for S and P comparison. ..... 204
Table 5.19. IC data from the Harlow Point site, May 2002. Samples are from dialyzer \#12. The data were converted to elemental concentrations in the right hand columns and $S$ and $P$ are compared to ICP totals. Bold numbers indicate ICP totals.205
Table 5.20. IC data from the Peaceful Point site, May 2002. Samples are from dialyzer \#13. The data were converted to elemental concentrations in the right hand columns and S and P are compared to ICP totals. Bold numbers indicate ICP totals. ..... 206
Table 5.21. IC data from the Peaceful Point site, May 2002. Samples are from dialyzer \#17. The data were converted to elemental concentrations in the right hand columns and S and P are compared to ICP totals. Bold numbers indicate ICP totals. ..... 207
Table 5.22. IC data from the Schlepp Pond, March 2004. Samples are from dialyzer \#5. The data were converted to elemental concentrations in the right hand columns and $S$ and $P$ are compared to ICP totals. ..... 208
Table 5.23. IC data from the Schlepp Pond, March 2004. Samples are from dialyzer \#6 and \#7. The data were converted to elemental concentrations in the right hand columns and $S$ and $P$ are compared to ICP totals. ..... 209Table 5.24. IC data from the Schlepp Pond, April 2004. Samples are from dialyzer \#8and \#9. The data were converted to elemental concentrations in the right handcolumns and $S$ and $P$ are compared to ICP totals.210
Table 5.25. IC data from the Schlepp Pond, April and May 2004. Samples are from dialyzer \#12 (April) and \#1 (May). The data were converted to elemental concentrations in the right hand columns and $S$ and $P$ are compared to ICP totals. ..... 211
Table 5.26. IC data from the Schlepp Pond, May 2004. Samples are from dialyzer \#2 and \#3. The data were converted to elemental concentrations in the right hand columns and S and P are compared to ICP totals. ..... 212
Table 5.27. IC data from the Schlepp Pond, June 2004. Samples are from dialyzer \#15 and \#16. The data were converted to elemental concentrations in the right hand columns and $S$ and $P$ are compared to ICP totals. ..... 213
Table 5.28. IC data from the Schlepp Pond, June and August 2004. Samples are fromdialyzer \#17 (June) and \#2 (August). The data were converted to elementalconcentrations in the right hand columns and $S$ and $P$ are compared to ICPtotals.214
Table 5.29. IC data from the Schlepp Pond, August 2004. Samples are from dialyzer \#8and \#12. The data were converted to elemental concentrations in the right handcolumns and $S$ and $P$ are compared to ICP totals.215
Table 5.30. IC data from the Schlepp Pond, November 2004. Samples are from dialyzer \#4 and \#5. The data were converted to elemental concentrations in the right hand columns and S and P are compared to ICP totals ..... 216
Table 5.31. IC data from the Schlepp Pond, November 2004 and June 2005. Samples are from dialyzer \#6 (November) and \#1 (June). The data were converted to elemental concentrations in the right hand columns and S and P are compared to ICP totals ..... 217
Table 5.32. IC data from the Schlepp Pond. Samples are from dialyzer \#5 (November) and \#7 (June). The data were converted to elemental concentrations in the right hand columns and $S$ and $P$ are compared to ICP totals ..... 218
Table 5.33. ICP-AES data from the Schlepp Pond, March 2004. Samples are from dialyzer \#5 and \#6. ..... 219
Table 5.34. ICP-AES data from the Schlepp Pond, March and April 2004. Samples are from dialyzer \#7 (March) and \#8 (April). ..... 220
Table 5.35. ICP-AES data from the Schlepp Pond, April 2004. Samples are from dialyzer \#9 and \#12 ..... 221
Table 5.36. ICP-AES data from the Schlepp Pond, May 2004. Samples are from dialyzer \#1 and \#2. ..... 222
Table 5.37. ICP-AES data from the Schlepp Pond, May and June 2004. Samples are from dialyzer \#3 ( May) and \#15 (June). ..... 223
Table 5.38. ICP-AES data from the Schlepp Pond, June 2004. Samples are from dialyzer \#16 and \#17. ..... 224
Table 5.39. ICP-AES data from the Schlepp Pond, August 2004. Samples are from dialyzer \#2 and \#8 ..... 225
Table 5.40. ICP-AES data from the Schlepp Pond, August and November 2004. Samples are from dialyzer \#12 (August) and \#4 (November). ..... 226
Table 5.41. ICP-AES data from the Schlepp Pond, November 2004. Samples are from dialyzer \#5 and \#6. ..... 227
Table 5.42. ICP-AES data from the Schlepp Pond, June 2005. Samples are from dialyzer \#1 and \#5 ..... 228
Table 5.43. ICP-AES data from the Schlepp Pond, June 2005. Samples are from dialyzer \#7 ..... 229
Table 5.44. ICP-MS data from the Schlepp Pond, June 2004. Samples are from dialyzer \#14. ..... 230
Table 5.45. ICP-MS data from the Schlepp Pond, June 2005. Samples are from dialyzer \#4 and \#12231

## CHAPTER 1

# Metal(loid) Diagenesis in Mine-Impacted Sediments of Lake Coeur d'Alene, Idaho ${ }^{1}$ 


#### Abstract

Mining activity along the South Fork of the Coeur d'Alene River in northern Idaho has resulted in fluvial mine tailings enriched in $\mathrm{Pb}, \mathrm{As}, \mathrm{Ag}, \mathrm{Sb}, \mathrm{Hg}, \mathrm{Cd}$, and Zn deposited on the lakebed of Lake Coeur d'Alene, thus serving as a potential benthic source of inorganic contaminants. Our objective was to characterize the dominant solid phase materials and diagenetic processes controlling metal(loid) solubilities, and thus their potential release to the overlying water column. Aqueous and solid concentrations of metal(loid) contaminants were examined along with distinct species of Fe and S within sediments and interstitial water. A gradient from oxic conditions at the sediment-water interface to anoxic conditions below 15 cm exists at all sites, resulting in a dynamic redox environment that controls the partitioning of contaminants. Fluvial deposition from frequent seasonal flood events bury ferric oxides residing at the sediment-water interface leading to reductive dissolution as they transition to the anoxic zone, consequently releasing associated metal(loids) to the interstitial water. Insufficient sulfur limits the formation of sulfidic minerals, but high carbonate content of this mining region buffers pH and promotes formation of siderite. Diagenetic reactions create


[^0]chemical gradients encouraging the diffusion of metal(loids) toward the sediment-water interface, thereby increasing the potential for release into the overlying water.

## INTRODUCTION

During the first two-thirds of the 20th century mining in northern Idaho produced over 31100 metric tons of silver and 7.26 million metric tons of lead (Hoffman 1995), with much of this activity taking place along the South Fork of the Coeur d'Alene (CDA) River in a region known as the Silver Valley (Figure 1.1). Wastes from mining and ore-processing activities were disposed directly into the South Fork of the CDA River, resulting in discharge estimates of mine and mill slimes of over 2000 metric tons per day in 1964. Until the establishment of tailings ponds in 1968, mine tailings containing high concentrations of Pb , Zn , As, and other trace elements accumulated in stream banks or bars along the river. This material was subsequently transported by river flow and flood events, and distributed throughout the lower CDA River floodplain (Bender 1991). Although mining activities and mining discharges are minimal today, erosion and flood events continue to suspend and transport contaminated material throughout the floodplain and into Lake CDA.

Extensive sampling has confirmed that sediments within Lake CDA are enriched in $\mathrm{Ag}, \mathrm{As}, \mathrm{Cd}, \mathrm{Hg}, \mathrm{Pb}, \mathrm{Sb}$, and Zn with contamination varying in thickness from a minimum of 17 to a maximum of 119 cm (Horowitz et al. 1992; Horowitz et al. 1993b). In spite of this contamination, lake water quality typically meets state and federal guidelines. The USGS analyzed samples from the euphotic zone and lower hypolimnion collected during a 4 -year study that began in 1990 (Woods et al. 1997), finding that concentrations of $\mathrm{As}, \mathrm{Cd}, \mathrm{Hg}, \mathrm{Cu}$, Pb , and Zn never exceeded aquatic, primary contact for recreation, or domestic water supply criteria. The Idaho Department of Environmental Quality continued to monitor the euphotic
zone for $\mathrm{Cd}, \mathrm{Pb}$, and Zn and found similar results (Rothrock 2004). However, the median concentrations of $\mathrm{Cu}, \mathrm{Pb}$, and Zn in the interstitial water of the sediments were considered chronically or acutely toxic, suggesting dynamic redox-induced cycling of contaminants within the sediments.


Figure 1.1. Location of the study area in northern Idaho (upper right), Coeur d'Alene (CDA) mining district (inside dotted line), Bunker Hill Superfund Site (inside shaded box), CDA River, two mine waste-impacted sites (HP and PP), and the non-impacted site (SJ) within Lake CDA.

Prior research to characterize sediment geochemistry has produced inconsistent and contradictory results (Horowitz et al. 1999). Surface sediment grab samples collected in Lake CDA and analyzed using selective sequential extraction indicate $95 \%$ of the $\mathrm{Pb}, 90 \%$ of the $\mathrm{Cd}, 80 \%$ of the $\mathrm{Zn}, 75 \%$ of the As , and $55 \%$ of the Cu are associated with an operationally defined iron oxide phase (Horowitz et al. 1993b). Selective sequential extractions performed on gravity cores from a variety of depositional environments indicated only minor association of metal(loids) with sulfide minerals (Horowitz et al. 1993a). However, others have identified
sulfide minerals in sediment cores from Lake CDA and found $50 \%$ of the $\mathrm{Pb}, 63 \%$ of the Zn , and $73 \%$ of the As are associated with an operationally defined sulfidic phase (Harrington et al. 1998).

One factor contributing to this controversy is the lack of definitive data concerning sediment diagenesis as related to redox changes and sediment depth. Our objective was to characterize Lake CDA sediments using spectroscopic techniques combined with in situ interstitial water data, thereby identifying the dominant solid phase minerals and diagenetic processes controlling interstitial water metal(loid) concentrations. This is crucial given that recent studies have confirmed that the sediments are a significant source of contaminant flux (Balistrieri 1998; Kuwabara et al. 2003). Ultimately, our results will facilitate the prediction of contaminant release from the sediments to the overlying water column occurring as a result of redox changes. This is especially important given that increased use of local water resources and population growth in the watershed will likely augment nutrient loading to the Lake.

## MATERIALS AND METHODS

## Sample Sites.

Two sample sites, Harlow Point (HP) and Peaceful Point (PP), were located in the southern portion of Lake CDA within 1 km of the mouth of the CDA River in an area highly impacted by heavy metals and metalloids (Horowitz et al. 1992; Horowitz et al. 1993a). Since the dominant flow of the Lake is north, a control site was established at the uncontaminated southern end of Lake CDA near the mouth of the relatively pristine St. Joe (SJ) River (Figure 1.1). The water depths at SJ, PP, and HP averaged 6, 19, and 15 m , respectively. Although only data from the May 2002 deployment are presented, similar trends in interstitial water
constituents were observed in five additional dialyzer deployments performed from 2001 to 2002.

## Materials.

All chemicals were reagent grade and used without further purification. Solutions were prepared using distilled, deionized water. All sampling containers and labware were cleaned with $2 \% \mathrm{HNO}_{3}$ and thoroughly rinsed with deionized water prior to use. Analytical standards and quality assurance standards for ion chromatography (IC) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) were purchased from Spex CertiPrep (Metuchen, NJ). Standard Reference Material 2711 from the National Institute of Standards and Technology (Gaithersburg, MD) was used as the total metals standard. Acids used for total metals were all trace-metal grade (Fisher Scientific, Pittsburgh, PA).

## Sampling Devices.

Interstitial water was collected in situ utilizing Plexiglas equilibrium, dialysis samplers (Hesslein 1976). The dialyzers contained two rows of 25, 10-mL compartments milled on $1.5-\mathrm{cm}$ centers. The compartments were covered with $0.2-\mu \mathrm{m}$ Osmonics nylon membrane (Westborough, MA), nylon tulle netting, and a matching cover plate held in place with nylon screws. Cores were collected in polycarbonate tubes 10 cm in diameter and 50 cm in length, which upon sample collection were immediately capped on one end with a size 10 rubber stopper and the other with a Fernco style Quickcap (Davison, MI).

## Sample Retrieval and Preservation.

Scuba divers inserted the dialyzers vertically into the sediment where they were allowed to equilibrate for 4 weeks, a time deemed appropriate based on field and laboratory studies (Balistrieri 1998: La Force et al. 2000; Winowiecki 2002). Upon retrieval, they were
immediately transferred to a boat waiting at the sample site, where interstitial water for anion analysis was removed from the dialyzer cells using a $10-\mathrm{mL}$ syringe and preserved in a sample vial under anaerobic conditions at $4{ }^{\circ} \mathrm{C}$. Interstitial water for cation analysis was removed in a similar fashion and placed in a sample vial containing 4 drops of trace metal grade $\mathrm{HNO}_{3}$ to maintain a pH of less than 2.5. Cores obtained at the same time were sealed to prevent leaks and oxidation, packed in an airtight container with ice packs, and purged with $\mathrm{N}_{2}$.

Once in the laboratory, the sediment cores were transferred to an $\mathrm{N}_{2}$-filled glove box and extruded from the coring tubes with care taken to avoid compaction or elongation. Cores were sub-sectioned at the appropriate depths and homogenized samples placed in vials. The vials were frozen until analysis by X-ray absorption spectroscopy (XAS). Sub-samples for total metals were thawed, transferred to acid-washed crucibles, and dried at $90^{\circ} \mathrm{C}$ until a stable weight was achieved. The dry samples were cooled in desiccators, ground with a mortar and pestle, transferred to $10-\mathrm{mL}$ polyethylene vials, and stored in desiccators until analyses were performed.

## Analytical Methods.

Samples were microwave-digested with a 9:2:3 ratio of $\mathrm{HNO}_{3}, \mathrm{HCl}$, and HF in accordance with EPA method 3052 (Staff 1994). Recovery precision and accuracy, performed in triplicate on the Standard Reference Material 2711, indicated a relative standard deviation (RSD) of less than $3 \%$ and an extraction efficiency greater than $90 \%$ for all elements. Triplicate unknown samples were run in each batch digestion and the RSD was generally less than $5 \%$. The digest was filtered using a $0.2-\mu \mathrm{m}$ Gelman IC Acrodisc syringe filter (Ann Arbor, MI) and volumetrically diluted to 50 mL in preparation for analysis.

Interstitial water anion analyses were performed on a Dionex 500DX Ion Chromatograph fitted with an AS11 Ion Pac column, an AG11 4-mm guard column, and a MFC-1 Metal Trap. The flow rate was $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$ of a 50 mM NaOH eluent. Interstitial water metal(loid) analyses were performed on a Thermal Jarrell Ash ICP-AES. The RSD, as determined by running a standard 10 times, calculating the average, and dividing it into the standard deviation, was less than $4 \%$ across all analyses.

Powder XRD patterns were obtained with a Siemens D5000 Diffraktometer system using $\mathrm{CuK} \alpha$ radiation operated at $40 \mathrm{kV}, 30 \mu \mathrm{~A}$ with a fixed $1.0-\mathrm{mm}$ slit and solid-state detector. XRD measurements were taken from 5 to $65^{\circ} 2 \theta$ and a step size of $0.02^{\circ} 2 \theta 8.2$ $\sec ^{-1}$. The Siemens Diffrac ${ }^{\text {Plus }}$ Standard (Bruker AXS Inc., Madison, WI) program V2.30 was used for processing data.

Sulfur X-ray absorption near-edge structure (XANES) spectroscopy analyses were conducted at the National Synchrotron Light Source (NSLS) Brookhaven National Laboratory, NY on beamline X-19A under ambient (moist, He-purged) conditions using similar methods to those of Bostick et al. (2005). Homogenized samples from each depth, which had been stored at $4{ }^{\circ} \mathrm{C}$, were mounted onto Glass-fiber filter paper (sulfur-free) and spectra were collected in fluorescence mode using a 1 -element PIPS detector. Chemical speciation of sulfur was determined by comparing the spectra of unknowns with reference materials including $\mathrm{FeS}, \mathrm{FeS}_{2}$, methionine, elemental sulfur, thiosulfate, sulfite, cysteic acid, and sulfate (Bostick et al. 2005). Sulfur species were quantified using WinXAS (Ressler 1998), linear combination, and peak fitting (Huffman et al. 1991; Waldo et al. 1991; Beauchemin et al. 2002). Prior to the fitting, the spectral background was removed and the spectra were normalized to the post edge. Initially, all reasonable sulfur standards were
included in fitting; standards that were consistently fit with negative or zero fractional contributions were removed from the standard set to reduce the number of variables employed in fitting. Only the XANES region of the spectrum ( 2465 to 2490 eV ) was used in fitting. The quality of fit was inferred from both $\chi^{2}$ statistics between 200 and 300 and residuals between 5 and 10 . The resulting quantification error was $\pm 5 \%$.

Iron XANES and extended X-ray absorption fine structure (EXAFS) spectroscopy analyses were conducted at the Stanford Synchrotron Radiation Laboratory, Menlo Park, CA on beamline 4-3 (8 pole wiggler). Sediments were thawed in an $\mathrm{N}_{2}$-filled glovebox, packed into Teflon sample holders, and covered with Kapton® tape. Energy selection was maintained by a Si (220) monochromator and energy calibration was performed by assigning a $\mathrm{K}_{\alpha}$ edge position of 7111.0 eV to an in-line $\mathrm{Fe}(0)$ metal foil standard. The incident beam was detuned $\sim 50 \%$ to reduce contributions from upper-order harmonic energies. Energy scans for XANES analyses were collected from 7050 eV to 7300 eV and energy scans for EXAFS analyses were collected from -200 to +1000 eV about the Fe foil edge; 5 to 6 scans were averaged per sample. Sample EXAFS fluorescence spectra were averaged, background subtracted, and normalized. A spline function was fit through the absorption envelope and subtracted from each spectrum. The resulting EXAFS function $(\chi)$ was transformed from eV to $k$-space $\left(\AA^{-1}\right)$ and weighted by $k^{3}$.

Iron EXAFS and XANES spectra of model compounds were obtained and analyzed in the same manner as unknowns. Known samples included ferrihydrite, goethite, hematite, lepidocrocite, magnetite, green rust-sulfate, green rust-chloride, green rust-carbonate, siderite, vivianite, biotite, hornblende, mackinawite, pyrrhotite, and pyrite. Iron XANES linear combination fitting was performed to determine $\mathrm{Fe}(\mathrm{II}): \mathrm{Fe}$ (III) ratios in the unknown samples.

The accuracy of mineral quantification in natural sediments using linear combination fitting of $\mathrm{Fe}-\mathrm{XANES}$ and $\mathrm{Fe}-\mathrm{EXAFS}$ spectra is dependent on the ratio of those minerals having differing densities and mass absorptions, such as Fe-containing sulfides and phyllosilicates. The ratio becomes problematic only when these two fractions have similar abundances in total Fe , but is minimal when one fraction greatly exceeds the other (O'Day et al. 2004). The use of linear combination fitting for mineral quantification in CDA sediments is thus valid as phyllosilicate Fe is 20 times the concentration of sulfidic Fe (Supporting Information Figure 1.9 and Figure 1.3). XRD patterns and EXAFS spectra were used to constrain components for XANES linear combination fitting. Ferrihydrite was used as a proxy for Fe (III) and illite for Fe-phyllosilicate minerals in all sediment samples. Siderite was used as a proxy for Fe (II) in PP and HP sediments and vivianite in SJ sediments. These proxies were used to fit the firstderivative Fe XANES spectra and the Fe (II) to Fe (III) ratio was then determined after subtracting any contribution of the less reactive Fe phyllosilicates.

## RESULTS AND DISCUSSION

## Element Abundance.

Cores collected near the mouth of the CDA River were substantially enriched in As, $\mathrm{Cd}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Fe}, \mathrm{Mn}$, and S as compared to the non-mining-impacted SJ site (Table 1.1). Measured concentrations of these elements ( $\mathrm{mmol} \mathrm{kg}{ }^{-1} \pm \mathrm{SE}$ when available, $\mathrm{n}=2$ for this study) fell within the range of previously reported concentrations for Lake CDA sediments:

As 1.37 (Horowitz et al. 1995) and $2.68 \pm 0.15$ (Harrington et al. 1998); Cd 0.222 (Horowitz et al. 1995) and $0.383 \pm 0.15$ (Maxfield et al. 1974); Pb 15.44 (Horowitz et al. 1995), 18.33 $\pm 1.16$ (Harrington et al. 1998), and 17.86 $\pm 4.39$ (Maxfield et al. 1974); and Zn 36.72 (Horowitz et al. 1995), $45.82 \pm 1.91$ (Harrington et al. 1998), and $58.13 \pm 6.58$ (Maxfield et al. 1974).

## Redox Conditions.

Identifying the exact sample-cell location at which the sediment-water interface occurs is difficult because it is typically a diffuse and variably stratified boundary (Koschorreck et al. 2003). Lake CDA presents an additional challenge since limited visibility exists on the lake bottom and intermittently aggressive currents are experienced during sampler placement and retrieval. Approximate location of the interface as marked by divers prior to removing the dialyzers and visual signs of sediment contact on the dialyzers upon examination at the surface helped identify the position of the sediment-water interface. Nitrate was only detected in the overlying water column or occasionally in interstitial water near the sediment-water interface (Figure 1.2). Manganese reduction commenced at or just below the sediment-water interface. Interstitial water Mn reached its near-maximum concentration by 5 cm and remained relatively constant with increasing depth. Interstitial water Fe concentrations increased throughout the entire $36-\mathrm{cm}$ profile from the initial detection depth at or within a few centimeters of the sediment water interface. Sulfate concentrations fell below detection limits within 10 cm of the sediment-water interface at PP and HP and within 15 cm at SJ (Figure 1.2). The data in Figure 1.2 are an average of two cells in adjacent dialyzers. In order to indicate the consistency of the trends and variability of the data, both data points for the HP site are shown in Supporting Information Figure 1.5.
Table 1.1. Mean and standard error $(n=2)$ of select element concentrations in Lake Coeur d'Alene near surface sediments collected in
May of 2002.
Site/Depth (cm)
Sit
St. Joe
3-6
12-18
$24-30$
Peaceful Point
$0-3$
$3-6$
$6-12$
$12-18$
18-24
Harlow Point
$0-3$
$3-6$
$6-12$
$12-18$
24-30

Several notable differences in chemical composition exist between interstitial water samples obtained from the non-impacted site (SJ) when compared to the contaminated sites ( PP and HP ). Maximum $\mathrm{SO}_{4}{ }^{2-}{ }^{-} \mathrm{S}$ concentrations in the contaminated sites ( $0.059-0.066 \mathrm{mmol}$ $\mathrm{L}^{-1}$ ) were higher than those measured in interstitial water samples from the SJ site (0.012 $\mathrm{mmol} \mathrm{L} \mathrm{L}^{-1}$. Manganese concentrations in the contaminated sites were also elevated with HP and PP showing maximum Mn concentrations $\left(0.15 \mathrm{mmol} \mathrm{L}^{-1}\right.$ and $0.38 \mathrm{mmol} \mathrm{L}^{-1}$, respectively) 2.6 and 6.6 times greater than those measured in SJ interstitial water ( 0.058 mmol $\mathrm{L}^{-1}$ ). In contrast, Fe concentrations in SJ interstitial waters exceeded those of the contaminated sites, despite its having sediment Fe concentrations one-half those of the contaminated sites (Table 1.1).

Redox profiles indicate suboxic conditions exist within the top few centimeters of the sediment-water interface at all sites and that sediments become increasingly anoxic in the remainder of the profiles (Figure 1.2). This is significant, since it is in the suboxic zone (Froelich et al. 1979) that metals coprecipitated with oxyhydroxides are released into the interstitial water through the process of reductive dissolution. Prior research conducted on Lake CDA sediments has variously identified the suboxic zone to occur between 10 and 15 cm from the interface (Horowitz et al. 1993b), within 5 cm of the interface (Balistrieri 1998; La Force et al. 1999), and at the interface (Harrington et al. 1998). Our research confirms that the suboxic zone occurs within 5 cm of the sediment-water interface, indicating that redox conditions control the release of metal contaminants associated with those minerals undergoing reductive dissolution.


Figure 1.2. Concentrations of redox sensitive species in Lake Coeur d'Alene sediment interstitial water at the control site (SJ) and the two contaminated sites (PP and HP). Each point is an average of two samples obtained from adjacent equilibrium dialyzers in May 2002. Depth increments less than zero ( 0 ) indicate concentration above the sediment-water interface. Refer to Supporting Information Figure 1.5 for sample variability.

## Sediment Sulfur.

Total sulfur concentrations in sediments obtained at the two contaminated sites (PP and HP) are approximately three to nine times higher than those of the control-site (SJ) (Table 1.1, Supporting Information Figure 1.6). This dissimilarity is expected given the difference in land-use practices occurring within the respective watersheds. Agriculture and logging impact sediment loads in drainages of the SJ watershed, whereas mining activity is the principal determinant of sediment quality for those materials deposited at PP and HP (Horowitz et al. 1993b). The main economic minerals have historically been galena ( PbS ), sphalerite $(\mathrm{ZnS})$, and argentiferous tetrahedrite $\left[(\mathrm{Cu}, \mathrm{Fe}) 12 \mathrm{Sb}_{4} \mathrm{~S}_{13}\right]$. Most veins contained small amounts of chalcopyrite $\left(\mathrm{CuFeS}_{2}\right)$, but pyrite $\left(\mathrm{FeS}_{2}\right)$ varied among mineral veins (Balistrieri et al. 1999).

Sediment sulfur was speciated in an attempt to identify specific components of the sediment solid phase that potentially participate in metal(loid) retention. XANES data clearly indicate that pyrite was the principle S mineral detected at the contaminated sites (Figure 1.3, Supporting Information Figure 1.8). Although a detrital origin of pyrite is possible (Moore 1994), its presence is more likely explained by diagenetic processes occurring within the sediments. This conclusion is supported by the fact that the control site (SJ) sediments, which are not influenced by mining activity, also contain pyrite at all depths. Other investigators have measured pyrite in the top 0 to 3 cm of lake sediments not subjected to the deposition of mine tailings, although to our knowledge only indirect methods involving selective extraction or dissolution were used (Nriagu et al. 1985; Rudd et al. 1986; Huerta-Diaz et al. 1998).


Figure 1.3. Comparison of $S$ species as determined by S-XANES analyses of Lake Coeur d'Alene sediments at the contaminated sites (PP and HP) and the control site (SJ). Data shown for each depth are an average of two spectra from adjacent cores collected May 2002 and have a fitting accuracy of $\pm 5 \%$. Maximum total sulfur within all sediments was less than $0.5 \%$ by weight.

Differences in sedimentation rates and pyrite concentrations with depth also point to diagenetic pyrite formation. The sedimentation rate at HP is approximately $0.95 \mathrm{~cm} \mathrm{yr}^{-1}$, but only $0.26 \mathrm{~cm} \mathrm{yr}^{-1}$ at PP (Horowitz et al. 1993a). These sedimentation rates indicate that the top 6 cm of sediment at PP was deposited during the same time period as 24 cm of sediment at HP. This is consistent with the observation that sediment pyrite within these depths comprises 20 to $30 \%$ of the total S pool at both sites (Figure 1.3). Greater amounts of pyrite representing between 40 and $50 \%$ of the total S occur at depths greater than 6 cm at PP and 24 cm at HP. Such a relationship is anticipated if pyrite is indeed of diagenetic origin, since its production and ultimate distribution within the sediments will be a function of burial time. This trend in pyrite concentration with depth is indeed observed at the PP and HP sites, but is lacking at the uncontaminated SJ site possibly as a result of bioturbation (Boudreau et al. 2001).

Ester bound sulfate decreased with depth at all sites from a high of $34 \%$ in the 0 - to 3cm SJ sample to a low of $0.1 \%$ in the $30-$ to $36-\mathrm{cm}$ sample from HP (Figure 1.3). Sulfur in oxidation states consistent with thiols and sulfones showed relatively small changes in percentages of the total sulfur with depth at each site. Increased pyrite percentages with depth are consistently accompanied by a corresponding decrease in organic ester sulfate species. Thus, diagenetic alteration of ester-bound sulfate may be important in the generation of pyrite in these sediments.

Ester sulfate is the most transitory of the organic S pools in sediments and soils (Nriagu et al. 1985; Groscheova et al. 2000), supporting our observation that its contribution to sediment $S$ decreases with depth. Two possibilities exist to explain its disappearance; both pathways ultimately resulting in reduced products potentially involved in $\mathrm{FeS}_{2}$ formation. In
the first of these pathways, ester sulfate is first hydrolyzed by sulfatase enzymes releasing $\mathrm{SO}_{4}{ }^{2-}$ that is subsequently used as a terminal electron acceptor (King et al. 1980; Nriagu et al. 1985; Groscheova et al. 2000). Alternatively, organic oxysulfur compounds such as ester sulfates may serve directly as terminal electron acceptors, generating HSㅇ or organic sulfides (Altschuler et al. 1983). Although the pathways by which $\mathrm{FeS}_{2}$ is ultimately formed remain unresolved (Wilkin et al. 1996; Butler et al. 2000), our data indicate that at least a portion of $S$ contained in this mineral originates from the ester sulfate pool.

XANES data indicate the mean value of pyrite in the 30 to $36-\mathrm{cm}$ samples at PP and HP is $50 \%$ of the total S (Figure 1.3), which is 34 and $42 \mathrm{mmol} \mathrm{FeS}_{2} \mathrm{~kg}^{-1}$ sediment, respectively. The mean Fe concentration at this depth is $1700 \mathrm{mmol} \mathrm{Fe} \mathrm{kg}^{-1}$ sediment (Supporting Information Figure 1.7), thus leading to the conclusion that only 2 to $2.5 \%$ of the Fe within these samples is associated with pyritic materials. This is surprising given previous investigations using selective sequential extractions indicated that 60 to $70 \%$ of the Fe in Lake CDA sediments was associated with an operationally defined sulfidic phase (Harrington et al. 1998). Our results call to question the accuracy of selective sequential extractions and their value in predicting phase partitioning of metal(loid)s. It has been acknowledged that selective sequential extractions are often subject to reprecipitation or readsorption (Belzile et al. 1989), and misinterpretation of results (La Force et al. 2002). This conclusion has significant implications since such extractions also indicated that 60 to $80 \%$ of the As, 60 to $70 \%$ of the Zn , and 40 to $60 \%$ of the Pb are also associated with sulfidic materials (Harrington et al. 1998). Metal(loid) partitioning into and on sulfidic minerals in Lake CDA sediments must be reevaluated given the high Fe to S ratios of the sediments.

## Sediment Iron.

The speciation of sedimentary iron, achieved with XAS spectra, offers additional evidence for the diagenesis of sedimentary Fe and S . We chose a conservative approach of fitting the Fe-XANES spectra, relying on XRD and EXAFS (Supporting Information Figures $1.9,1.10$ and 1.11 ) to constrain the data, and using the minimum number of proxy minerals necessary to quantify Fe (II) and Fe (III) content. Definitive mineral identification is only offered when Fe -EXAFS data were corroborated by Fe-XANES and XRD.

Contaminated sites show an obvious trend in the speciation of solid-phase Fe that reflects changes in sediment redox potentials with depth, with both sites displaying a decrease in Fe (III) minerals below the suboxic boundary and a concomitant increase in Fe (II) solids (Figure 1.4, Supporting Information Figure 1.11). These trends are in agreement with the reducing potential of the sediments as inferred from redox sensitive species in the interstitial water (Figure 1.2). The precipitation of Fe (III) at the sediment-water interface is consistent with an environment of circumneutral pH and oxic conditions (Stumm et al. 1996). The oxic interface is well documented (Horowitz et al. 1993b; Woods et al. 1997) and also supported by our data, as is the circumneutral pH which ranged from 6.0 to 7.4. The pH of the water within this mining district results from a low pyrite to carbonate ratio that buffers the waters of the CDA Basin from the effect of acid-mine drainage (Balistrieri et al. 1999; La Force et al. 2002).


Figure 1.4. Iron XANES analyses of Lake Coeur d'Alene sediments as determined from linear combination fittings of Fe (II) and Fe (III) proxies and illite. Data are from cores collected May 2002 at the control site (SJ) and two contaminated sites (PP and HP). Iron comprised up to $10 \%$ of the sample by weight at the contaminated sites.

The Fe (II) to Fe (III) ratio in the sediments at PP and HP increased with depth from 41 to $74 \%$ and 52 to $84 \%$ of the total iron, respectively (Figure 1.4). A lower deposition rate of $0.26 \mathrm{~cm} \mathrm{yr}^{-1}$ at PP as compared to $0.95 \mathrm{~cm} \mathrm{yr}^{-1}$ at HP (Horowitz et al. 1993a) prolongs the residence time of minerals at specific depths in PP sediments, leading to a more distinct demarcation in $\mathrm{Fe}(\mathrm{II})$ : Fe (III) ratios between sediment samples obtained nearest the sedimentwater interface as compared to those secured from lower depths (Figure 1.4 and Supporting Information Figure 1.7). Linear combination of Fe-EXAFS spectra from these sites indicated the majority of the Fe (II) increase was in the form of siderite (Supporting Information Figure 1.9), the presence of which was verified by XRD (Supporting Information Figure 1.10) and XANES (Supporting Information Figure 1.11). Equilibrium speciation performed using

Minteq Visual (USEPA 2004) confirmed siderite was oversaturated below 6 cm at PP and HP. The reduced subsurface environment, high aqueous Fe concentrations (Figure 1.2), and presence of bicarbonate facilitates this precipitation. Dissimilatory metal reducing bacteria (DMRB) have been found in Lake CDA sediments and biological reduction of Fe (III) minerals in the sediments has been verified (Cummings et al. 1999; Cummings et al. 2000). Thus, a cycle of Fe-diagenesis is established where Fe(III) minerals buried by depositional events undergo reductive dissolution in the suboxic and anoxic sediments, forming Fe (II) that precipitates as siderite or diffuses to the oxic zone and reprecipitates as an Fe (III) mineral.

The presence of siderite in surface samples is consistent with its predominance as a gangue mineral in the CDA mining district (Balistrieri et al. 1999) and as such, siderite-rich materials were deposited directly in or nearby the CDA River and its tributaries. Resistance to dissolution is due to circumneutral pH (Duckworth et al. 2004) and active iron cycling which increases the stability field of siderite in oxic environments (Whittemore et al. 1975). This mine-waste material continues to be distributed throughout the basin during flood events, enriching the near-surface sediments with detrital siderite. Thus, continued fluvial deposition accounts for siderite in surface samples at PP and HP and precipitation explains its increase in the anoxic sediments.

Although diagenesis results in a dominance of $\mathrm{Fe}(\mathrm{II})$ minerals in the anoxic, contaminated sediments, some Fe (III) minerals persist throughout the sediment cores even at depths of 18-24 cm (Figure 1.4). Bioturbation was not evident at the contaminated sites (Horowitz et al. 1993b) so it is improbable that incorporation of Fe (III) is occurring as a result of this mechanism. However, differential reduction potentials of iron minerals (Stumm et al. 1996), surface passivation (Moore 1994; Roden et al. 1996; Benner et al. 2002), and the
inhibitory effect of co-reacted ions, particularly heavy metals on Fe (III), affect its availability for reduction both abiotically and by DMRB (Zachara et al. 2002).

Similar evidence of an oxic sediment-water interface containing the maximum amount of Fe (III) transitioning to suboxic and then anoxic sediments having decreased Fe (III) and increased $\mathrm{Fe}(\mathrm{II})$, was obtained for non-mine-impacted SJ sediments (Figure 1.4). However, bioturbation evident at this site (Horowitz et al. 1993a) most likely causes redistribution of solid phase minerals (Boudreau et al. 2001). Although Fe(III) minerals persist in the suboxic and anoxic zones, Fe (III) reduction is extensive, resulting in interstitial water Fe concentrations that are higher than those in contaminated sediments (Figure 1.2) despite the fact that total sediment iron concentrations are lower (Table 1.1). Deposition of mine-impacted sediments at the contaminated sites has thus altered sediment mineralogy such that resulting diagenetic reactions significantly modify interstitial water chemistry as compared to the non-impacted site.

Many diagenetic reactions involving Fe include dissolution (Bingham et al. 2002) such that coprecipitated or sorbed metal(loids) are released into the interstitial water where they become more bioavailable (Di Toro et al. 1992) and free to diffuse into the overlying water column (Balistrieri 1998). Alternatively, these ions may be scavenged by oxides (Benner et al. 2002; Zachara et al. 2002) or precipitate as sulfides at the anoxic boundary (Di Toro et al. 1992), the later being unlikely in Lake CDA sediments because of high Fe to S ratios. Ferric (hydr)oxides at the sediment water interface thus restrict contaminant migration, but diagenetic reactions that occur during sediment burial and exposure to reducing conditions release metal(loid)s into the interstitial water. Metal(loid) cycling between the
solid and aqueous phases in Lake CDA is thus a dynamic process intimately tied to diagenetic reactions involving Fe minerals within the sediments.

## ACKNOWLEDGEMENTS

This work was supported by funding from the Idaho Water Resources Research Institute, Idaho Agricultural Experiment Station, Inland Northwest Research Alliance, EPASTAR Fellowship Program, and the NSF-Environmental Molecular Science Institute. Portions of this research were carried out at the National Synchrotron Light Source (operated by Brookhaven National Laboratory) and Stanford Synchrotron Radiation Laboratory (operated by Stanford University), national user facilities supported by the U.S. Department of Energy, Office of Basic Energy Sciences with additional funding from the National Institutes of Health.

## SUPPORTING INFORMATION

Figures of Replicate samples of redox sensitive elements; total sulfur and total iron by weight, S-XANES spectra, Fe-EXAFS fitting from the HP site, XRD fitting from the PP site and the Fe-EXAFS spectra are available immediately following the References for Chapter 1.

## REFERENCES

Altschuler, Z. S., M. M. Schnepfe, C. C. Silber and F. O. Simon (1983). Sulfur diagenesis in Everglades peat and origin of pyrite in coal. Science (Washington, D. C., 1883-) 221: 221-227.

Balistrieri, L. (1998). Preliminary estimates of benthic fluxes of dissolved metals in Coeur d'Alene Lake, Idaho. U.S. Geological Survey USGS Open-File Report.98-793, 40

Balistrieri, L., S. E. Box, A. A. Brookstrom and M. Ikramuddin (1999). Assessing the influence of reacting pyrite and carbonate minerals on the geochemistry of drainage in the Coeur d'Alene Mining District. Environmental Science and Technology 33: 33473353.

Beauchemin, S., D. Hesterberg and M. Beauchemin (2002). Principal component analysis approach for modeling sulfur K-XANES spectra of humic acids. Soil Science Society of America Journal 66: 83-91.

Belzile, N., P. Lecomte and A. Tessier (1989). Testing readsorption of trace elements during partial chemical extractions of bottom sediments. Environmental Science and Technology 23: 1015-1020.

Bender, S. F. (1991). Investigation of the chemical composition and distribution of mining wastes in Killarney Lake, Coeur d'Alene Area, Northern Idaho. Geology. Moscow, Idaho, University of Idaho. M.S.: 98.

Benner, S. G., C. M. Hansel, B. W. Wielinga, T. M. Barber and S. E. Fendorf (2002). Reductive dissolution and biomineralization of iron hydroxide under dynamic flow conditions. Environmental Science and Technology 36: 1705-1711.

Bingham, J. M., R. W. Fitzpatrick and D. G. Schulze (2002). Iron oxides. Soil Mineralogy with Environmental Applications. L. Al-Amoodi. Madison, WI, Soil Science Society of America, Inc.: 323-366.

Bostick, B. C., K. M. Theissen, R. B. Dunbar and M. A. Vairavamurthy (2005). Record of redox status in laminated sediments from Lake Titicaca: A sulfur K-edge X-ray absorption near edge structure (XANES) study. Chemical Geology 219: 163-174.

Boudreau, B. P. and B. B. Jorgensen (2001). Diagenesis and Sediment-Water Exchange. The benthic boundary layer: Transport processes and biogeochemistry. Oxford; New York, Oxford University Press: 404.

Butler, I. B. and D. Rickard (2000). Frambodial pyrite formation via the oxidation of iron(II) monosulfide by hydrogen sulphide. Geochimica et Cosmochimica Acta 64: 26652672.

Cummings, D. E., F. Caccavo, Jr., S. Fendorf and R. F. Rosenzweig (1999). Arsenic mobilization by the dissimilatory Fe (III)-reducing bacterium Shewanella alga BrY . Environmental Science and Technology 33: 723-729.

Cummings, D. E., A. W. March, B. C. Bostick, S. Spring, F. Caccavo, Jr., S. Fendorf and R. F. Rosenzweig (2000). Evidence for microbial Fe(III) reduction in anoxic, mining impacted lake sediments (Lake Coeur d'Alene, Idaho). Applied and Environmental Microbiology 66: 154-162.

Di Toro, D. M., J. D. Mahony, K. Hansen, J. Scott, A. R. Carlson and G. T. Ankley (1992). Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environmental Science and Technology 26: 96-101.

Duckworth, O. W. and S. T. Martin (2004). Role of molecular oxygen in the dissolution of siderite and rhodochrosite. Geochimica et Cosmochimica Acta 68: 607-621.

Froelich, P. N., G. P. Klinkhammer, M. L. Bender, N. A. Luedtke, G. R. Heath, D. Cullen, P. Dauphen, D. Hammond, B. Hartman and V. Maynard (1979). Early oxidation of organic matter in pelagic sediments of the Eastern Equatorial Atlantic: Suboxic diagenesis. Geochimica et Cosmochimica Acta 43: 1075-1090.

Groscheova, H., M. Novak and C. Alewell (2000). Changes in the $\delta^{34}$ S ratio of pore-water sulfate in incubated sphagnum peat. Wetlands 20: 62-69.

Harrington, J. M., M. J. La Force, W. C. Rember, S. E. Fendorf and R. F. Rosenzweig (1998). Phase associations and mobilization of iron and trace elements in Coeur d'Alene Lake, Idaho. Environmental Science and Technology 32: 650-656.

Hesslein, R. H. (1976). An in situ sampler for close interval pore water studies. Limnology and Oceanography 21: 921.

Hoffman, M. L. (1995). Characterization of heavy metal contamination in two lateral lakes of the lower Coeur d'Alene River Valley, Northern Idaho. Geology and Geologic Engineering. Moscow, ID, University of Idaho. M.S.: 76.

Horowitz, A., K. Elrick and R. Cook (1993b). Effect of mining and related activities on the sediment trace element geochemistry of Lake Coeur d'Alene, Idaho, USA, Part I Surface sediments. Hydrological Processes 7: 403-423.

Horowitz, A., K. A. Elrick and R. B. Cook (1999). Comment on "Phase associations and mobilization of iron and trace elements in Coeur d'Alene, Idaho". Environmental Science and Technology 33: 201-202.

Horowitz, A. J., K. A. Elrick and R. B. Cook (1992). Effect of mining-related activities on the sediment-trace element geochemistry of Lake Coeur d'Alene, Idaho, USA--Part 1:Surface sediments. USGS Open-File Report.92-109, 30

Horowitz, A. J., K. A. Elrick, J. A. Robbins and R. B. Cook (1993a). The effect of mining and related activities on the sediment-trace element geochemistry of Lake Coeur d'Alene, Idaho Part II: Subsurface sediments. USGS Open-File Report.93-656, 32

Horowitz, A. J., K. A. Elrick, J. A. Robbins and R. B. Cook (1995). A summary of the effects of mining and related activities on the sediment-trace element geochemistry of Lake Coeur d'Alene, Idaho, USA. Journal of Geochemical Exploration 52: 135-144.

Huerta-Diaz, M. A., A. Tessier and R. Carignan (1998). Geochemistry of trace metals associated with reduced sulfur in freshwater sediments. Applied Geochemistry 13: 213-233.

Huffman, G. P., S. Mitra, F. E. Huggins, N. Shan, S. Vaidya and F. L. Lu (1991). Quantitative-analysis of all major forms of sulfur in coal by X-ray absorption finestructure spectroscopy. Energy \& Fuels 5: 574-581.

King, G. M. and M. J. Klug (1980). Sulfhydrolase activity in sediments of Wintergreen Lake, Kalamazoo County, Michigan. Applied and Environmental Microbiology 39: 950956.

Koschorreck, M., I. Brookland and A. Matthias (2003). Biogeochemistry of the sedimentwater interface in the littoral of an acidic mining lake studied with microsensors and gel-probes. Journal of Experimental Marine Biology and Ecology 285-286: 71-84.

Kuwabara, J. S., J. L. Carter, B. R. Topping and S. V. Fend (2003). Importance of sedimentwater interactions in Coeur d'Alene Lake, Idaho: Management implications. Environmental Management 32: 348-359.

La Force, M. J., S. Fendorf, L. Guangchao and R. F. Rosenzweig (1999). Redistribution of trace elements from contaminated sediments of Lake Coeur d'Alene during oxygenation. Journal of Environmental Quality 28: 1195-1200.

La Force, M. J., C. M. Hansel and S. Fendorf (2000). Constructing simple wetland sampling devices. Soil Science Society of America Journal 64: 809-811.

La Force, M. J., C. M. Hansel and S. E. Fendorf (2002). Seasonal transformations of manganese in a palustrine emergent wetland. Soil Science Society of America Journal 66: 1377-1389.

Maxfield, D., J. M. Rodriguez, J. Buettner, J. Davis, L. Forbes, R. Kovacs, W. Russel, L. Schultz, R. Smith, J. Stanton and C. M. Wai (1974). Heavy metal pollution in the sediments of the Coeur d'Alene River Delta. Environmental Pollution 7: 1-6.

Moore, J. N. (1994). Contaminant mobilization resulting form redox pumping in a metalcontaminated river-reservoir system. Environmental Chemistry in Lakes and Reservoirs, Atlanta, GE, American Chemical Society.

Nriagu, J. O. and Y. K. Soon (1985). Distribution and isotopic composition of sulfur in lake sediments of northern Ontario. Geochimica et Cosmochimica Acta 49: 823-834.

O'Day, P. A., N. J. Rivera, R. Root and S. A. Carroll (2004). X-ray absorption spectroscopic study of Fe reference compounds for the analysis of natural sediments. American Mineralogist 89: 572-585.

Ressler, T. (1998). WinXAS: a program for X-ray absorption spectroscopy data analysis under MS-Windows. Journal of Synchrotron Radiation 5: 118-122.

Roden, E. E. and J. M. Zachara (1996). Microbial reduction of crystalline Iron(III) Oxides: Influence of oxide surface area and potential for cell growth. Environmental Science and Technology 30: 1618-1628.

Rothrock, G. (2004). Water quality data, Lake Coeur d'Alene, Idaho. G. R. Toevs. Coeur d'Alene, Idaho.

Rudd, J. W. M., C. A. Kelly and A. Furutani (1986). The role of sulfate reduction in long term accumulation of organic and inorganic sulfur in lake sediments. Limnology and Oceanography 31: 1281-1291.

Schecher, W. D. and D. C. McAvoy (1998). MINEQL+ chemical equilibrium modeling system. Hallowell, ME, Environmental Research Software.

Staff. (1994, 10 March 2003). Method 3052: Microwave assisted acid digestion of siliceous and organically based matrices. 3. Retrieved 01 January 2004, 2004, from http://www.epa.gov/epaoswer/hazwaste/test/pdfs/3052.pdf.

Stumm, W. and J. J. Morgan (1996). Aquatic chemistry: Chemical equilibria and rates in natural waters, John Wiley \& Sons.

Waldo, G. S., R. M. K. Carlson, J. M. Moldowan, K. E. Peters and J. E. Pennerhahn (1991). Sulfur speciation in heavy petroleums: Information from X-ray absorption near-edge structure. Geochimica et Cosmochimica Acta 55: 801-814.

Whittemore, D. O. and D. Langmuir (1975). The solubility of ferric oxyhydroxides in natural waters. Ground Water 13: 360-365.

Wilkin, R. T. and H. L. Barnes (1996). Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. Geochimica et Cosmochimica Acta 60: 4167-4179.

Winowiecki, L. (2002). Geochemical cycling of heavy metals in the sediment of lake Coeur d'Alene, Idaho. Soil Science. Moscow, Idaho, University of Idaho. M.S. Soil Science: 196.

Woods, P. F. and M. A. Beckwith (1997). Nutrient and trace-element enrichment of Coeur d'Alene Lake, Idaho. U.S. Geological Survey USGS Water-Supply Paper.2485, 129

Zachara, J. M., R. K. Kukkadapu, J. K. Fredrickson, Y. A. Gorby and S. C. Smith (2002). Biomineralization of poorly crystalline Fe (III) oxides by dissimilatory metal reducing bacteria (DMRB). Geomicrobiology Journal 19: 197-207.Altschuler, Z. S., M. M. Schnepfe, et al. (1983). "Sulfur diagenesis in Everglades peat and origin of pyrite in coal." Science (Washington, D. C., 1883-) 221(4607): 221-227.

## SUPPORTING INFORMATION



Supporting Information Figure 1.5. Replicates of redox sensitive species from the Harlow Point site, May 2002 deployment, indicating the consistency of the trends and reproducibility of dialyzer samples. These trends are consistent with those found during four deployments from 2000 to 2002. Depth increments less than zero (0) indicate concentrations above the sediment-water interface.


Supporting Information Figure 1.6. Total S concentration of Lake Coeur d'Alene sediments in the control site (SJ) and the two contaminated sites (PP and HP). Total S determined by ICP analysis of sediment microwave digestions. Each point is an average of two samples from adjacent cores collected May 2002.


Supporting Information Figure 1.7. Total Fe concentrations of Lake Coeur d'Alene sediments in the control site (SJ) and the two contaminated sites (PP and HP). Total Fe determined by ICP analysis of sediment microwave digests. Each point is an average of two samples from adjacent cores collected May 2002.


Supporting Information Figure 1.8. S XANES standards and spectra of Lake Coeur d'Alene sediments. Data are from cores collected May 2002 and analyzed at the Brookhaven advanced light source. The dashed lines are representative fitting curves.


Supporting Information Figure 1.9. Iron-EXAFS linear combination fitting for spectra from Harlow Point (HP) indicating the increase in siderite with depth. Minerals other than siderite and illite have not been verified by an additional independent technique. Data are from a core collected May 2002.


Supporting Information Figure 1.10. XRD patterns identifying the presence of various minerals at Peaceful Point, Lake Coeur d'Alene. Data are from a core collected May 2002.


Supporting Information Figure 1.11. Fe XANES standards and spectra of Lake Coeur d'Alene sediments. Data are from a core collected May 2002.

## CHAPTER 2

# Arsenic Cycling in Freshwater Sediments of Lake Coeur 

d'Alene, Idaho


#### Abstract

Lake Coeur d'Alene (CDA), Idaho has been the collecting bed for significant quantities of As resulting from upstream mining activities, yet little is know about the geochemical cycling of this toxic element in these fresh-water sediments or its potential to pollute the overlying water of this heavily used recreational lake. Our objective was to determine the biogeochemical processes controlling solid and aqueous phase As concentrations within Lake CDA sediments. Sediment cores from two contaminated sites were collected by divers and interstitial water samples obtained using equilibrium dialyzers. Total solid phase and interstitial water concentrations of As and other elements were determined, and solid phase As associations probed using x-ray absorption near edge structure (XANES) spectroscopy. Maximum dissolved As concentrations in the sediment porewater ( $7.34 \mu \mathrm{M}$ at Harlow Point and $15.38 \mu \mathrm{M}$ at Peaceful Point) exceeded the EPA Criterion Continuous Concentration by $367 \%$ and $768 \%$, respectively, yet diffusion to the overlying water column was mitigated by sorption to iron oxyhydroxides at the oxic sediment-water interface. However, As-bearing sulfidic gangue minerals that have been transported to the lake by flood events undergo dissolution at the oxic interface and the


 concomitant efflux of sulfate from the sediments exacerbates the high $\mathrm{Fe}: \mathrm{S}$ ratio that has beenpreviously reported. This high $\mathrm{Fe}: \mathrm{S}$ ratio limits the formation of sulfides in the anoxic zone allowing As to remain in solution at these dangerously elevated levels. Depositional events bury oxides containing sorbed As transitioning them to suboxic or anoxic regions where they undergo dissolution, releasing As to the interstitial water. As a result of continuous As trapping at the sediment-water interface and its release upon burial from additional sediments transported by flood events, decreased concentrations of interstitial water As in Lake CDA sediments are not likely to occur unless As-bearing mineral inputs are eliminated.

## INTRODUCTION

Lake Coeur d'Alene (CDA) is a natural lake of glacial origin located in Northern Idaho, USA. The two main rivers feeding the lake are the St. Joe River that lies within a relative pristine watershed and the CDA River, the receiving water body for the South Fork of the Coeur d'Alene River drainage (Woods et al. 1997). The world-class mining district known as the Silver Valley is located within this South Fork drainage. During the first 70 years of the $20^{\text {th }}$ century, mining in this district produced over 1 billion troy ounces of silver and 8 million tons of lead (Hoffman 1995). As a result of this activity, mine tailings and mill slurries contaminated with $\mathrm{Pb}, \mathrm{As}, \mathrm{Cd}, \mathrm{Zn}$, and other metal(loid)s have accumulated throughout the flood plain of the CDA River and in the sediments of Lake CDA. Annual and episodic flood events continue to resuspend, transport, and redeposit these sediments both in the river and in the lake (Bender 1991; Box et al. 2005).

In 1993, Horowitz (1993a) estimated that contamination within the lake sediments exceeded 75 million metric tons and covered $85 \%$ of the lakebed. Although these lake sediments are heavily contaminated, the overlying water column, with the exception of Zn , generally meets EPA standards for primary contact, recreation (Woods et al. 1997). However,
this is not the case for the highly bioavailable, dissolved trace metals such as $\mathrm{Cu}, \mathrm{Pb}$ and Zn (Di Toro et al. 1992; Ruby et al. 1996) found in the sediments at concentrations that exceed the Criterion Maximum Concentration (CMC) or the Criterion Continuous Concentration (CCC) for (Woods et al. 1997; Balistrieri 1998). Although As is an element of extreme importance globally because of its toxicity and mobility, it has received little attention in these highly contaminated sediments.

Arsenic is a metalloid that contaminates soils, sediments, and aquifers and is toxic to both plants and animals (Eisler 1994; Morton et al. 1994). In 1993, Horowitz (1993a) estimated that 11500 metric tones of As had been transported to Lake CDA and deposited to the sediments. Inorganic As is often released through the oxidation of sulfide-bearing materials, such as those found in the CDA mining district (Fryklund 1961; Fryklund 1964; Gott et al. 1980), and can persist as an oxyanion in its trivalent, arsenite, and pentavalent, arsenate forms. Arsenite is considered the more toxic of the two anions (Hindmarsh et al. 1986), having adverse effects on aquatic species at concentrations of $0.25 \mu \mathrm{M}$ (Eisler 1994). In oxic conditions both arsenate and arsenite sorb to iron and manganese oxyhydroxides (Mok et al. 1990; Waychunas et al. 1993; Manning et al. 1996; Fendorf et al. 1997), limiting their diffusion into the overlying water (Brannon et al. 1987; De Vitre et al. 1991). Arsenite will also precipitate as an arsenic-sulfide in anaerobic zones where adequate sulfur and carbon sources exist (Rittle et al. 1995; O'Day et al. 2004). Increased concentrations of As at redox boundaries have been repeatedly observed in stratified water columns and sediments (Kuhn et al. 1993; Azcue et al. 1995). Redox transformations and adsorption processes thus control the fate, transport, and bioavailability of arsenic in many environments, and have
been identified as potential contributors to As geochemical cycling in CDA sediments (Cummings et al. 1999).

Prior As research on Lake CDA sediments has been limited to quantifying As in the sediments (Horowitz et al. 1992; Horowitz et al. 1993a); bench studies to determine the potential for As release under changing redox conditions (Harrington et al. 1998; Cummings et al. 1999); and characterization of sediment interstitial water concentrations as part of a larger study (Woods et al. 1997). Unfortunately, we lack a comprehensive understanding of the biogeochemical processes governing As cycling within these sediments, thus limiting our predictive capabilities and ability to make informed management decisions. Our objective was to delineate the biogeochemical processes controlling solid and aqueous phase As concentrations within Lake CDA sediments by quantitatively and qualitatively characterizing As distributions. Processes controlling the release and accumulation of As in natural systems such as Lake CDA are of tremendous importance given the widespread nature of As contamination within the environment.

## MATERIALS AND METHODS

## Sample Sites.

Two sample sites, Harlow Point (HP) and Peaceful Point (PP), were established in the southern portion of Lake CDA, within 1 km of the mouth of the CDA River, in an area highly impacted by heavy metals and metalloids (Horowitz et al. 1992; Horowitz et al. 1993a).

Horowitz (1993a) took cores from this same general area in 1990 and reported that contaminated sediments extended to 119 cm near HP and 41 cm near PP. The water depths at PP and HP averaged 19 and 15 m , respectively. Although only data from the May 2002
deployment are presented, four deployments were performed from 2001 to 2002 yielding similar results. For a map of the greater study area, please refer to Figure 1.1.

## Materials.

All chemicals were reagent grade and used without further purification. Solutions were prepared using distilled, deionized water. All sampling containers and labware were cleaned with $2 \% \mathrm{HNO}_{3}$ and thoroughly rinsed with deionized water prior to use. Analytical standards and quality assurance standards for ion chromatography (IC) and inductively coupled plasma (ICP) spectroscopy were purchased from Spex CertiPrep (Metuchen, NJ).

## Sampling Devices.

Interstitial water was collected in situ utilizing Plexiglas equilibrium dialysis samplers (Hesslein 1976). The dialyzers contained two rows of $25,10-\mathrm{ml}$ compartments milled on 1.5cm centers. The compartments were covered with $0.2-\mu \mathrm{m}$ Osmonics nylon membrane (Westborough, MA), nylon tulle netting, and a matching cover plate held in place with nylon screws. Cores were collected in polycarbonate tubes 10 cm in diameter and 50 cm in length, which upon sample collection were immediately capped on one end with a size 10 rubber stopper and the other with a Fernco style Quickcap (Davison, MI).

## Sample Retrieval and Preservation.

SCUBA divers inserted the dialyzers vertically into the sediment where they were allowed to equilibrate for 4 weeks, a time deemed appropriate based on field and laboratory studies (Balistrieri 1998; La Force et al. 2000; Winowiecki 2002). Upon retrieval, they were immediately transferred to a boat waiting at the sample site, where interstitial water for anion analysis was removed from the dialyzer cells using a $10-\mathrm{mL}$ syringe and preserved in a sample vial under anaerobic conditions at $4{ }^{\circ} \mathrm{C}$. Interstitial water for cation analysis was
removed in a similar fashion and placed in a sample vial containing 4 drops of trace metal grade $\mathrm{HNO}_{3}$ to maintain a pH of less than 2.5. Cores obtained at the same time were sealed to prevent leaks and oxidation, packed in an airtight container with ice packs, and purged with $\mathrm{N}_{2}$.

Once in the laboratory, the sediment cores were transferred to an $\mathrm{N}_{2}$-filled glove box and extruded from the coring tubes with care taken to avoid compaction or elongation. Cores were sub-sectioned at the appropriate depths and homogenized samples placed in vials. The vials were frozen until analysis by X-ray absorption spectroscopy (XAS).

## Particle Size Analysis.

Particle size analysis (PSA) was performed on sub-samples of core sections dried at $90^{\circ} \mathrm{C}$ until a stable weight was achieved. The dry samples were cooled in a vacuum desiccator and stored there until removal for weighing. The particle size analysis procedure included sample dispersion using sodium hexametaphosphate (SHMP) and sonification (Gee et al. 1986). The sand and silt fractions were separated from the clay fraction by centrifugation, pouring off the supernatant containing the clay fraction after each sonification/centrifugation sequence. The sequence was repeated until the supernatant was clear. The supernatant was filled to volume in a sedimentation cylinder, stirred, and an aliquot was removed by pipette and dried to determine the clay fraction. Separation of the sand and clay was accomplished by wet sieving and subsequent drying of the two fractions. Accuracy as determined by totaling the fractions and comparing to the original sample weight exceeded $95 \%$.

## Analytical Methods.

Core sub-sections were thawed, transferred to acid-washed crucibles, and dried at 90 ${ }^{\circ} \mathrm{C}$ until a stable weight was achieved. The dry samples were cooled in a vacuum desiccator, ground with a mortar and pestle, transferred to $10-\mathrm{mL}$ polyethylene vials, and stored in a vacuum desiccator except when removed to transfer an accurately weighed sample to a digestion container. Samples were microwave-digested with a 9:2:3 ratio of $\mathrm{HNO}_{3}, \mathrm{HCl}$, and HF in accordance with EPA method 3052 (Staff 1994). Recovery precision and accuracy, performed in triplicate on the Standard Reference Material 2711, indicated a relative standard deviation (RSD) of less than $3 \%$ and digestion recovery efficiency greater than $90 \%$ for the data presented. Triplicate unknown samples were run in each batch digestion and the RSD was generally less than $5 \%$. The digest was filtered using a $0.2-\mu \mathrm{m}$ Gelman IC Acrodisc syringe filter (Ann Arbor, MI) and volumetrically diluted to 50 mL in preparation for analysis.

Total C, N, and S were determined by dry combustion on an Elementar VarioMax elemental analyzer (Elementar, Germany). Dried sub-samples of the homogenized core sections were weighed into crucibles and combusted at $1100^{\circ} \mathrm{C}$ for total $\mathrm{C}, \mathrm{N}$, and S (Nelson et al. 1996). Organic carbon was determined from similar subsamples after the inorganic carbon was removed by treatment with $\mathrm{FeCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Loeppert et al. 1996). After treatment, the crucibles were dried at $105{ }^{\circ} \mathrm{C}$ overnight and then analyzed for organic C by combustion at $1050^{\circ} \mathrm{C}$. Inorganic C was determined by difference. Standards were run every 10 samples to verify calibration and duplicate unknowns were included to determine precision.

Anion analyses on interstitial water were performed on a Dionex 500DX Ion Chromatograph fitted with an AS11 Ion Pac column, an AG11 4-mm guard column, and a

MFC-1 Metal Trap. The flow rate was $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$ of a 50 mM NaOH eluent. Dissolved metal(loid) analyses were performed on a Thermal Jarrell Ash ICP-AES. The reported values are the average of duplicate samples. Arsenic analysis was performed on a HP 4500 ICP-MS with a flow rate of $0.5 \mathrm{~mL} \mathrm{~min}^{-1}$ after a $5: 1$ dilution accomplished by a peristaltic pump. Reported concentrations are the average of three replicate measurements of each sample. In order to avoid airborne contamination, ICP-MS sample preparation was performed in a positive pressure clean hood and the auto-sampler was housed in a HEPA enclosure. Detection limits were calculated at two times the standard deviation of the low standard and are as follows: $\mathrm{Mn}, 0.0001 \mathrm{mM}$ and $\mathrm{Fe}, 0.0007 \mathrm{mM}$ (ICP-AES); $\mathrm{SO}_{4}{ }^{2-}, 0.005 \mathrm{mM}$ (IC); and As, $0.006 \mu \mathrm{M}$ (ICP-MS). Detection limits for the total metal digest elements in $\mathrm{mmol}^{-1} \mathrm{~kg}^{-1}$ were: As, $0.0004 ; \mathrm{Mn}, 0.0221 ; \mathrm{Fe}, 0.1025$; and $\mathrm{S}, 0.0540$ (ICP-AES).

Arsenic X-ray absorption near edge structure (XANES) spectroscopy was performed at the Stanford Synchrotron Radiation Laboratory on beamline 11-2. The storage ring was operated at 3.0 GeV and at currents between 40 and 100 mA . Incident and transmitted intensities were measured with $15-\mathrm{cm} \mathrm{N}_{2}$-filled ionization chambers. Sample fluorescence was measured with a 13 -element Ge detector containing a $6-\mu \mathrm{m}$ Ge filter. The incident beam intensity was detuned approximately $50 \%$ to reject higher order harmonic frequencies and to prevent detector saturation. Arsenic K-edge spectra were internally calibrated with sodium arsenate ( 11874 eV ). The spectra were collected from 200 eV below the K-edge ( 11867 eV ) to 1000 eV above the edge. The spectral processing and data analyses were done with the program SixPack (Webb 2002). The background was removed from the spectra and then normalized using a Gaussian fit for the pre-edge and a quadratic fit for the post-edge. The first derivatives were used for principle component analysis (PCA) and target transformation.
 arsenite (as $\mathrm{NaHAsO} \mathrm{O}_{2}$ ), realgar ( AsS ), orpiment $\left(\mathrm{As}_{2} \mathrm{~S}_{3}\right)$, and arsenopyrite ( FeAsS ) were obtained and analyzed in the same manner as the unknowns.

PCA has proven to be a successful method to determine the statistical variance within an experimental data set composed of a group of unknown samples (Ressler et al. 2000; Beauchemin et al. 2002). Instead of using a priori information for fitting unknown spectra, this method reduces the data set to a significant number of components. The number of components necessary to reconstruct the sample spectra from HP and PP was determined from the PCA indicator value, which reaches a minimum between primary components and experimental noise (Beauchemin et al. 2002). After PCA analysis, the spectra were compared to the standards using target transformation. Target transform fits of standards with spoil values of less than 2.5 were selected as good fits. Based on these criteria, arsenopyrite, arsenite, and arsenate were selected as standards, and were subsequently used for least square fitting of the unknown spectra to quantify the proportion of each As species in the samples.

## RESULTS AND DISCUSSION

## Element Abundance.

The sediments were substantially enriched in $\mathrm{Mn}, \mathrm{Fe}, \mathrm{S}$, and As (Figure 2.1, A-H) when compared to the previously reported concentrations of these elements $\left(\mathrm{mmol} \mathrm{kg}^{-1}\right)$ in non-mine impacted sediments of Lake CDA: Mn 9.101 (Horowitz et al. 1992), 6.353 (Harrington et al. 1998), 7.857 (Toevs et al. 2006); Fe 608.81 (Horowitz et al. 1992), 494.96 (Harrington et al. 1998), 590.26 (Toevs et al. 2006); As 0.053 (Horowitz et al. 1992), 0.160 (Harrington et al. 1998), 0.202 (Toevs et al. 2006); and S 19.413 (Toevs et al. 2006). Our measured concentrations of $\mathrm{Mn}, \mathrm{Fe}, \mathrm{S}$, and As in Lake CDA sediments generally fell within
the ranges previously reported for these elements (Horowitz et al. 1992; Harrington et al. 1998; La Force et al. 1999).


Figure 2.1, A-H. Sediment concentrations of $\mathrm{Mn}, \mathrm{Fe}, \mathrm{S}$, and As at the contaminated sites, Harlow Point (HP) and Peaceful Point (PP). Results are shown for the total element digests of sub-sampled sections of duplicate cores analyzed on ICP-AES. The cores were collected in May of 2002.

Sediment concentrations of total Mn and Fe vary with depth at both HP and PP, but the trends of such changes differ dramatically between the sites (Figure 2.1, A-D). This apparent inconsistency is a function of differing sedimentation rates at the two sites, with HP receiving approximately four times the deposition load of PP (Horowitz et al. 1993a). Valid comparisons in total Mn and Fe therefore, require consideration of depositional differences. For example, the $33-\mathrm{cm}$ data points from HP in Figure 2.1, A and C (sub-sample taken from 30 to 36 cm ) correspond to the $9-\mathrm{cm}$ data points in Figure 2.1, B and D from PP (sub-sample taken from 6 to 12 cm ), because less sediment is deposited on an annual basis at PP. In order to facilitate comparison of corresponding depths, depth normalized-profiles for $\mathrm{Mn}, \mathrm{Fe}, \mathrm{S}$ and As are shown in Figure 2.2, A-D. When the normalized depths are compared, changes in Mn concentrations are quite similar. Trends in total Fe for the two sites do not follow as closely in absolute concentrations as Mn , but minima and maxima are present near the same respective normalized depths. Thus, total elemental concentrations of Mn and Fe reflect a historical record of the material originally deposited. Post-depositional remobilization may modify but does not completely erase the original deposition signature, an observation in agreement with Horowitz et al. (1993a).


Figure 2.2, A-D. Sediment concentrations of $\mathrm{Mn}, \mathrm{Fe}, \mathrm{S}$, and As at the contaminated sites, Harlow Point (HP) and Peaceful Point (PP). Results are shown for the total element digests of sub-sampled sections of duplicate cores analyzed on ICP-AES. The cores were collected in May of 2002.

Total S concentrations increase with depth for both sites, but PP sediments contain only about half the amount of total S as HP sediments (Figure 2.2, C) indicating that diagenetic reactions are occurring, and these reactions strongly influence total $S$ concentrations. Similarly, diagenetic processes are obvious for As at the normalized depths of 1.5 cm where enrichment is evident at PP ( $4.00 \mathrm{mmol} \mathrm{As} \mathrm{kg}^{-1}$ ) when compared to HP ( 1.76 mmol $\mathrm{kg}^{-1}$ ) (Fig. 2.2, D). This observation is in agreement with other reports that found As enrichment at PP (Horowitz et al. 1992; Nicholas et al. 2003). Unlike S, such diagenetic changes do not completely obscure As depositional trends occurring deeper in the sediment profile (Figure 2.2, D).

Differences in S solid phase concentrations and surface enrichment of As at PP
indicate diagenetic reactions are occurring in these sediments, thus supporting our previous
work where Fe and S diagenetic processes were identified (Toevs et al. 2006). Diagenetic reactions are active in altering total concentrations of some elements, but are not as obvious in total Fe and Mn profiles because large sediment concentrations mask our ability to detect relatively small amounts of mobilization and reprecipitation. Diagenetic reactions, depositional events, and their influence on As cycling are the seminal issues to be discussed in the ensuing sections.

## Sediment Redox.

Changes in sediment redox potential with depth control many diagenetic processes that affect As cycling. Therefore, identifying the proximity of redox boundaries to the sediment-water interface is an important parameter to determine zones where redox-initiated, diagenetic reactions occur. The exact location of these zones is often difficult to determine as this interface is typically a diffuse and variably stratified region (Koschorreck et al. 2003). The $1.5-\mathrm{cm}$ resolution of the dialyzer cells permits the relative spatial determination of aqueous concentrations and gradients. However, insertion into the lake sediments occurs under zero visibility preventing divers from identifying the exact location of any one individual sample-cell.

We used various parameters observed during dialyzer retrieval and sample analyses to establish the sediment-water interface, including the: approximate depth of insertion marked by a clip placed on the dialyzer by divers prior to removal from the sediment; cell where iron oxidation occurred after sample removal and exposure to oxygen; and cell where Mn concentrations increased. Collectively, this information was used to establish and verify the sediment-water interface, which is referred to as a depth of zero in all figures displaying
aqueous concentrations of constituents in sediment porewaters. Negative depths refer to the overlying water column.

Duplicate samples of aqueous concentrations for $\mathrm{Mn}, \mathrm{Fe}$, and $\mathrm{SO}_{4}{ }^{2-} \mathrm{S}$, all redox sensitive species, are presented in Figure 2.3, A-F. Nitrate-N was detected at the sedimentwater interface indicating oxic conditions prevail in the surface sediments. Manganese was detected within 4 cm of the sediment-water interface at both sites (Figure 2.3, A-B) indicating suboxic conditions had been established, and $\mathrm{SO}_{4}{ }^{2-}-\mathrm{S}$ decreases to background concentrations by 10 cm indicating anoxic conditions (Froelich et al. 1979). These general redox boundaries were confirmed throughout the course of this project, which spanned two years and four seasonal dialyzer deployments. Figure 2.4, shows a representation of these redox boundaries.


Figure 2.3, A-H. Aqueous concentrations of As, $\mathrm{Mn}, \mathrm{Fe}$, and $\mathrm{SO}_{4}{ }^{2-}$ in the sediments and overlying water column from duplicate dialyzers placed at the two contaminated sites, HP and PP. The data points less than zero depth represent the overlying water. The samples were collected in May of 2002. Manganese and Fe were analyzed by ICP-AES, $\mathrm{SO}_{4}{ }^{2-}$ by IC, and As by ICP-MS. Notice As abscissa is in units of $\mu \mathrm{M}$

Thus, redox processes in the sediments at HP and PP change from oxic to anoxic in a narrow zone near the sediment-water interface (Figure 2.3, A-F). Since the elements of interest with respect to As cycling (i.e., Fe and S) are redox sensitive, geochemical cycling of As would be expected to occur in this dynamic region. The oxic zone promotes oxyhydroxide formation, metal(loid) sorption, and sulfidic mineral dissolution; the suboxic zone promotes dissolution of oxyhydroxides and release of sorbed metal(loids); and the anoxic zone is the location of sulfidic mineral precipitation (Froelich et al. 1979; Manning et al. 1996; Fendorf et al. 1997; Wilkin et al. 2006).


Figure 2.4. A representative redox profile for Lake Coeur d'Alene sediments and overlying water column. Seasonal and site differences were minimal. The dashed lines indicate the operationally defined redox boundaries.

Although the redox reactions are well defined, common depositional events increase the complexity of this system. Additionally, HP has a sediment accumulation rate that is four times greater than PP (Horowitz et al, 1993) which has dramatic implications as to the length of time sulfidic minerals remain in an unstable environment. Figure 2.5 is an illustration that demonstrates this difference where a sedimentation rate of $2 \mathrm{~cm} \mathrm{yr}^{-1}$ (Site 1 ) is compared to $0.5 \mathrm{~cm} \mathrm{y}^{-1}$. The illustration indicates it takes sediments less than 8 years to transition by burial
below the suboxic/anoxic boundary at Site 1, but at Site 2 those same sediments remain in the upper suboxic zone. Thus, Lake Coeur d'Alene sediments have well defined redox boundaries, but because of frequent depositional events, the redox cycle and particularly the As cycle is dramatically different between the two sites.


Figure 2.5. This is an illustration of two sediment profiles with similar redox conditions but differing sedimentation rates. Site 1 receives 4 times the sediment as Site 2. The arrows joining the two profiles correspond to similar age deposits and demonstrate the time difference the sediments remain in the oxic and suboxic zones prior to transition by burial to the anoxic zone.

## Porewater Arsenic.

Arsenic appears in the interstitial water of HP at 5 cm , showing a continuous increase to approximately 25 cm where the maximum concentration of $8.4 \mu \mathrm{M}$ was detected (Figure $2.3, \mathrm{G})$. The trend at PP is very different, as after the first detection of As in the interstitial water at 5 cm , the maximum concentration of $16.2 \mu \mathrm{M}$ was measured within the next few centimeters (Figure 2.3, H). Once this maximum is established, the remainder of the profile has some variation, but the aqueous concentrations of As always exceed those found at HP.

Interstitial concentrations of As at HP are $367 \%$ and PP $768 \%$ of the Criterion Continuous Concentration (CCC) of $2.0 \mu \mathrm{M}$ adopted for the protection of freshwater biota (Whitman 2002), thus creating a significant threat to this ecosystem (Di Toro et al. 1992; Eisler 1994). A clear understanding of the processes that promote As release and maintain such high dissolved As concentrations in the porewater is required for making management decisions that will decrease the threat As poses to lake biota and water quality.

The dissolution of Fe -oxyhydroxides containing sorbed As appears to be responsible for the observed increase in dissolved As concentrations with depth in the sediment (Figure 2. 3, G-H), consistent with results from other investigators (Cummings et al. 1999; Matin et al. 2002). In the anoxic zone, we would expect the reduction of $\mathrm{SO}_{4}{ }^{2-}$ and the precipitation of $\mathrm{FeS}_{2}$ or other sulfides containing the appropriate stoichiometric ratios of metal(loids) from the aqueous phase (Rittle et al. 1995). These sulfidic minerals normally sorb, coprecipitate, or precipitate As from solution (Morse 1994), thereby decreasing dissolved concentrations. However, in previous studies we concluded that high Fe:S ratios greatly limit the percentage of metal(loid)s precipitated as sulfidic minerals in Lake CDA (Toevs et al. 2006). This limitation supports our present data indicating that without precipitation of As-bearing sulfidic minerals in the anoxic zone, concentrations of dissolved As in the sediments of Lake CDA will remain at these toxic levels.

Even with these high concentrations of As in the interstitial water, both sites indicate As diffusion to the overlying water column is minimal as the concentration falls to less than $0.01 \mu \mathrm{M}$ within the upper 3 cm of the sediments. Arsenic sorption occurs on oxyhydroxides at both HP and PP as indicated by the simultaneous decline of Fe and As in the interstitial water near the oxic interface (Figure 2, C-D and G-H). Oxic sediments at the sediment-water
interface are known to promote the formation of Fe -oxyhydroxides having a high sorption capacity for As (Waychunas et al. 1993; Manning et al. 1996; Fendorf et al. 1997; Manning et al. 1998; Raven et al. 1998). Arsenic sorbed at the oxic sediment-water interface will thus transition to the anoxic region, with the deposition of additional sediment, where reductive dissolution releases soluble As to the porewater, effectively trapping As in an environment where limited $S$ prevents precipitation.

Reactions whereby As is released and remains in soluble form in the anoxic region of the sediment are further enhanced by oxidative reactions occurring at the sediment-water interface, through possibly two mechanisms. Oxic environments promote the dissolution of arsenic sulfides and the concomitant release of $\mathrm{SO}_{4}{ }^{2-}$ and As to the aqueous phase (Morse 1994). Thus, As-bearing sulfidic minerals transported to Lake CDA and deposited to the oxic surface layer of sediment may undergo dissolution, simultaneously losing $\mathrm{SO}_{4}{ }^{2-}$ and further exacerbating the already high $\mathrm{Fe}: \mathrm{S}$ ratios in this system. This efflux of $\mathrm{SO}_{4}{ }^{2-}$ has also recently been observed in As-contaminated sediments in Bangladesh (Polizzotto et al. 2006). Upon dissolution, released As would sorb and concentrate on the oxides in this oxic zone and therefore be readily available for release by way of reductive dissolution when the sediments are buried by additional depositional events. This two-step process in which As trapped in the oxic zone is released in soluble form in an anoxic, S-limited environment virtually ensures that soluble As in the sediment porewaters of Lake CDA will remain at toxic levels. Support for the proposed pathways involving oxidative and reductive processes is offered in the following sections in which reactions and depositional events at HP and PP sites are compared and contrasted. The differences between the two sites are important because they
reflect the consequences of dissimilar rates of sediment deposition and how such variation impacts As cycling.

## Site Factors.

The distinct As profiles and differences in maximum As concentrations between the sites indicate reactions occurring at PP are more conducive to As release and accumulation in the interstitial water than HP (Figure 2.3, G-H). We have already established that redox boundaries are similar at HP and PP , making it clear other factors are responsible for the difference in dissolved As concentrations. One factor potentially responsible for this difference is the concentration of total As in the sediments. The highest total As concentrations do indeed occur at the lower depths in HP sediment (Figure 2.1, G), the approximate region in which the highest soluble As concentrations occur (Figure 2.3, G). Likewise, if the surface enrichment zone is excluded from the PP comparison, the highest total As concentrations (Figure 2.1,H) occur near the same sediment depths as the maximum porewater concentrations (Figure 2.2,H). However, there are no consistent relationships beyond those maxima indicating that total As does not control soluble concentrations at other depths.

A second possibility accounting for the differences in soluble As concentrations within the porewater is mineralogical variation in the deposited sediments resulting from sediment sorting relative to the mouth of the CDA River. As there is little doubt the CDA River is the point source for the contaminated sediments (Horowitz et al. 1993a), any mineralogical differences would not be related to parent material. However, particle surface area and associated distinctions in chemical reactivity may differ between the two sites. To explore this possibility, we compared the particle size distribution and found the silt fraction
composed $70 \%$ or more of the sediment weight at all sampled depths at both sites. As would be expected due to the distance from the mouth of the CDA River, PP sediment consistently contained more clay: $8.1 \%$ more for $6-12 \mathrm{~cm}$ at PP compared to $30-36 \mathrm{~cm}$ at HP (corresponding depths for differing sedimentation rates) and $9.7 \%$ more for $0-3 \mathrm{~cm}$ at PP compared to $6-12 \mathrm{~cm}$ at HP. This difference in clay content, and thus surface area, indicates the sediments at PP could be more susceptible to dissolution of sulfidic minerals at the oxic interface, increasing formation of oxyhydroxides and subsequent sorption of As. These events would lead to additional oxyhydroxide transfer to the suboxic zone where reductive dissolution would release the sorbed As to the dissolved phase. Thus, particle size could be one factor contributing to the increased As at PP.

A third possibility that would contribute to the disparity in soluble As concentrations would be variations in total amounts of organic C . Higher concentrations of organic C would be expected to compress the redox boundaries, due to the increased oxygen demand, and increase reductive dissolution in the suboxic and anoxic zones because of the increased carbon source. The organic C values never exceed $2.7 \%$ at either site but are consistently higher at HP, whether depth corrected for sedimentation or depth-wise comparisons are made. Thus, we would expect to find more compressed redox boundaries and increased concentrations of dissolved of Mn and Fe at HP . Changes in interstitial concentrations of Mn , $\mathrm{Fe}, \mathrm{SO}_{4}{ }^{2-}-\mathrm{S}$, and As all indicated that the redox zones are more compressed at PP than HP, making it unlikely that OC differences are responsible for observed difference in dissolved As.

Finally, we must consider the impact that dissimilar sedimentation rates have on soluble As concentrations. We must first acknowledge that sulfidic materials, including

FeAsS, contained in sediments deposited at the sediment-water interface could potentially oxidize, the extent of oxidation being a function of sediment residence time in this aerobic environment. Larger or more frequent deposition events would decrease the time available for oxidative diagenetic reactions. Our data as well as that reported by others indicates surface enrichment of As occurs in PP, but not HP sediments (Supporting Information Table 2.1). Increased oxidation of FeAsS at PP releases more As for sorption to oxyhydroxides at the oxic interface, resulting in the observed enrichment of As when compared to HP (Figure 2.2, D). This enrichment at PP occurs because the lower sedimentation rate allows As-bearing sulfidic sediments to reside in the oxic zone for longer periods prior to burial and subsequent transition to stable conditions in the anoxic environment.

If increased oxidation of sulfidic materials is occurring at PP, we would expect differences in $S$ cycling at the two sites. The oxidation of sulfides is indicated at both sites by increased $\mathrm{SO}_{4}{ }^{2-}$ - S in the porewater near the sediment-water interface (Figure 2, E-F). When porewater $\mathrm{SO}_{4}{ }^{2-}$-S concentrations are compared between HP and PP (Figure 2, E-F), the differences appear to be minor and do not indicate additional oxidation of sulfidic minerals at PP. However, as discussed previously, the solid phase $S$ concentrations at PP are only about half those for HP when the sediment concentrations are depth-normalized (Figure 2.2, C). This trend for lower total S concentrations at PP is consistent with greater dissolution of sulfides in the oxic zone and diffusional losses of $\mathrm{SO}_{4}{ }^{2-}-\mathrm{S}$ into the overlying water column. This larger $S$ depletion in the sediments of PP is expected given the lower deposition rates and longer residence times at the sediment-water interface.

The proposed As cycle in the sediment of Lake CDA was inferred from total sediment and porewater concentrations of the relevant elements, and the assumption that sulfidic
materials were present in the materials deposited at the sediment-water interface. In the next section, we used XANES analysis to provide direct evidence for oxidation and preservation of Fe AsS depending on sediment deposition rates and residence times at the oxic sedimentwater interface.

## X-ray Absorption Spectroscopy.

Figure 2.6, A-B shows the normalized XANES spectra of sediments from HP and PP with the corresponding Least Square Fitting (LSF) spectra represented by the dotted line. The As in both profiles is variable in oxidation state and percentages of FeAsS. Upon inspection of the spectra and their respective fits, it is apparent that high percentages of FeAsS ( $>68 \%$ of the total As) are found at both sites, but only at specific depths (HP 6-12, 30-36 cm and PP 612, 12-18, and $30-36 \mathrm{~cm}$ ). Recent studies assessing the stability and dissolution of FeAsS have expanded the environmental conditions where dissolution would not occur, but this work has also confirmed the reactivity of fine grained FeAsS in oxic environments (Craw et al. 2003). Geochemical information does not support precipitation of FeAsS (Craw et al. 2003), making it is reasonable to assume FeAsS is detritial and not authigenic. Due to the fine-grained nature of these sediments and the reactivity of fine-grained FeAsS, preservation of this mineral is therefore the consequence of rapid transition by burial through the oxic environment of the surface sediments. The highly variable concentration of FeAsS in the sediments, $0-86 \%$ of the total As, (Figure 2.6, A-B) implies that the deposited material had widely variable FeAsS concentrations or the residence time in the oxic zone varied tremendously throughout history. When previously presented total elemental and dissolved As analyses are used in conjunction with the XANES analyses, there are indications the
sediment source as well as the time spent at the sediment water interface both play a role in controlling FeAsS concentrations within the sediment.

In determining the conditions that govern which mechanism is most important, it is essential to remember that HP receives four times the amount of deposition as PP. Thus, as discussed previously, the $30-36-\mathrm{cm}$ sample at HP approximately corresponds to the $6-12-\mathrm{cm}$ sample obtained from PP, with both having similar total As concentrations (Figure 2.1, G-H) and Figure 2.2, D. The As-XANES spectra from these two depths are quite similar with 84 to $86 \%$ of the total As in the form of FeAsS (Figure 2.5, A-B), confirming the sediments are likely of the same origin and that little post-depositional alteration has occurred. This is consistent with our previous conclusions based on total elemental analyses and the hypothesis presented by Horowitz et al. (1993a) which stated that Lake CDA sediments are not substantially affected by post-depositional remobilization. These data thus give credence to the claim that one of the reasons FeAsS concentrations within the sediments vary is because the deposited materials originally contained different amounts of FeAsS.


Figure 2.6, A-B. Arsenic-XANES spectra (solid lines) for sub-samples of cores from Harlow Point (A) and Peaceful Point (B) with the Least Square Fitting (LSF) curves (dotted lines) superimposed. The vertical dashed lines represent the inflection energy, from left to right, for FeAsS, $\mathrm{As}(\mathrm{III})$ and $\mathrm{As}(\mathrm{IV})$, respectively. The percentages of $\mathrm{FeAsS}, \mathrm{As}(\mathrm{III})$, and $\mathrm{As}(\mathrm{V})$ were quantified from the LSF results. Principle Component Analysis was used to reduce the number of fitting spectra. The cores were collected in May of 2002.

If, however, FeAsS concentration differences in the sediment are simply the function of what was in the deposited materials, how can HP sediments in the 6-12 cm sample contain $68 \%$ FeAsS, but sediments deposited at the same time and present in the $0-3 \mathrm{~cm}$ sample from PP contain no FeAsS (Figure 2.6, A-B)? The $4: 1$ sedimentation rate difference between the sites leads us to predict that PP sediments present at 2 cm should have the equivalent FeAsS percentage of $68 \%$. This apparent conflict indicates that the depositional event represented in the $6-12-\mathrm{cm}$ sample at HP had sufficient sediment volume to transition the FeAsS from the surface oxic zone to the subsurface suboxic zone where the mineralogical signature was preserved, but the event was not large enough to accomplish this same transition by burial at PP. While the FeAsS was residing in the oxic sediments at PP, two significant events occurred. First, more weathered materials from subsequent, less significant flood events were
deposited, diluting the concentration of FeAsS, and second, while FeAsS was residing in the oxic zone, dissolution occurred. Both of these events would serve to minimize the FeAsS signature in the $0-3 \mathrm{~cm}$ sample from PP , producing the observed result.

Site comparisons clearly show both sites receive material having similar mineralogical compositions, but FeAsS concentrations within these materials vary widely from one depositional event to another. We contend differences in FeAsS concentration are a function of the size of the flood event as it relates to the source of the mobilized materials. Flooding events in the CDA River Basin are frequent, scouring and mobilizing material along the riverbanks and within the river channel, subsequently depositing this material throughout the floodplain and in Lake CDA (Box et al. 2005). There are considerable qualitative differences in the sediment loads of these flood events, because larger events erode material from different sources than smaller flood events. Riverbed sediments are more typically scoured, mobilized, and transported during the lesser flood events, whereas larger flood events transport floodplain soils previously protected by their elevation above the river. Different weathering processes are active in the two environments giving the respective eroded materials distinct geochemical signatures (Box et al. 2005), signatures which we contend are partially responsible for the observed variation in As-XANES spectra.

Some examples of these differing sediment sources and loads and how they are reflected in the XANES spectra are the flood events occurring in January 1996 and January 1974. The January 1996 flood event was the second largest event recorded since the Cataldo gauge was established in 1911. This flood event produced suspended-sediment loads that were two orders of magnitude greater than three other flood events from 1995 to 1997 (Box et al. 2005), depositing sediment now found in HP cores at $6-12 \mathrm{~cm}$ and PP cores at $0-3 \mathrm{~cm}$.

This large flood event eroded soils having relatively high FeAsS concentrations, thus yielding an As-XANES spectrum for HP showing $68 \%$ FeAsS (Figure 2.6, A). Since 1996, lower river flows primarily eroded highly weathered riverbed and stream bank sediments producing the spectra observed for HP samples obtained from $0-3$ and $3-6 \mathrm{~cm}$. As expected, these spectra indicate only $10-27 \%$ of the As is present in the form of FeAsS (Figure 2.6, A). High FeAsS percentages are not observed at $0-3 \mathrm{~cm}$ in PP sediment samples not only because of FeAsS oxidation, but also because smaller depositional loads of sediment with lower percentages of FeAsS diluted the signature of material deposited by the 1996 flood.

A second flood event that provides additional evidence for the proposed As cycle is that of 1974, the largest event ever recorded at the Cataldo gauge. The magnitude of this event would be expected to produce signatures similar to the 1996 event not only because the sediment load would include less weathered sources with higher FeAsS content, but also because the amount deposited would transition the sulfidic materials through the oxic zone and into the suboxic zone by burial where they would retain their sulfidic signature. We propose that sediment from the 1974 flood is found in HP cores at $30-36 \mathrm{~cm}$ and in PP cores at 6-12 cm. Consistent with the above-described events, both As XANES spectra show materials with high concentrations of FeAsS (Figure 2.6, A-B). This indicates the magnitude of this flood event was large enough to preserve the FeAsS signature even at the lower depositional environment of PP.

Major flood events thus have been shown to deposit sediment of a different mineralogical composition than minor flood events (Box et al. 2005) producing historical signatures in Lake CDA sediment. These historical signatures are modified by diagenetic reactions, the extent of which is a function of sediment deposition rate. Major flood events
depositing large amounts of sediment promote rapid burial and preservation of any contained reduced minerals such as FeAsS. Soluble As release in the sediments is a sequential process whereby sediments first reside in an oxic zone near the sediment-water interface and then transition upon burial to a suboxic or anoxic zone deeper in the sediment. Lower deposition rates at PP allow for longer residence times in the oxic surface sediment layer, promoting more extensive oxidation of reduced minerals, $\mathrm{SO}_{4}{ }^{2-}$ efflux, and the formation of additional oxides and oxide precipitates that undergo reductive dissolution when buried. As a result, higher concentrations of dissolved As closer to the sediment-water interface are found at PP when compared to HP. The release of soluble As in reduced sediment of Lake CDA is especially significant, because a $S$ limitation prevents As sorption or precipitation. This series of reactions and processes presents a dilemma for lake management since aerobic conditions at the sediment-water interface serve to trap As, preventing its flux into the overlying water; however, burial and reductive dissolution of the trapped As produces toxic As concentrations in the anoxic sediment porewater. Since promoting reduced conditions at the sediment-water interface is an unacceptable method to decrease porewater As, decreased soluble As in the sediments will only occur by minimizing As inputs to Lake CDA.

## SUPPORTING INFORMATION

A table summarizing results of prior research regarding $\mathrm{Fe}, \mathrm{As}$, and S concentration in the sediments of the two study sites is available immediately following the References for Chapter 2.

## ACKNOWLEDGEMENTS

Significant contributions to this research were made by Matthew L. Polizzotto and Scott Fendorf, Stanford University and Matthew J. Morra, Dan Strawn, and Leigh Winowiecki from the University of Idaho.

## REFERENCES

Azcue, J. M. and J. O. Nriagu (1995). Impact of abandoned mine tailings on the arsenic concentrations in Moira Lake, Ontario. Journal of Geochemical Exploration 52(1-2): 81-89.

Balistrieri, L. (1998). Preliminary estimates of benthic fluxes of dissolved metals in Coeur d'Alene Lake, Idaho. U.S. Geological Survey USGS Open-File Report.98-793, 40

Beauchemin, S., D. Hesterberg and M. Beauchemin (2002). Principal component analysis approach for modeling sulfur K-XANES spectra of humic acids. Soil Science Society of America Journal 66(1): 83-91.

Bender, S. F. (1991). Investigation of the chemical composition and distribution of mining wastes in Killarney Lake, Coeur d'Alene Area, Northern Idaho. Geology. Moscow, Idaho, University of Idaho. M.S.: 98.

Box, S. E., A. A. Bookstrom and M. Ikramuddin (2005). Stream-sediment geochemistry in mining-impacted streams: sediment mobilized by floods in the Coeur d'AleneSpokane River System, Idaho and Washington. USGS Scientific Investigations Report.2005-5011, 51

Brannon, J. M. and W. H. Patrick (1987). Fixation, transformation, and mobilization of arsenic in sediments. Environmental Science \& Technology 21(5): 450-459.

Craw, D., D. Falconer and J. H. Youngson (2003). Environmental arsenopyrite stability and dissolution: Theory, experiment, and field observations. Chemical Geology 199: 7182.

Cummings, D. E., F. Caccavo, Jr., S. Fendorf and R. F. Rosenzweig (1999). Arsenic mobilization by the dissimilatory Fe (III)-reducing bacterium Shewanella alga BrY . Environmental Science and Technology 33(5): 723-729.

De Vitre, R., N. Belzile and A. Tessier (1991). Speciation and adsorption of arsenic on diagenetic iron oxyhydroxides. Limnology and Oceanography 36(7): 1480-1485.

Di Toro, D. M., J. D. Mahony, K. Hansen, J. Scott, A. R. Carlson and G. T. Ankley (1992). Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environmental Science and Technology 26: 96-101.

Eisler, R. (1994). A review of arsenic hazards to plants and animals with emphasis on fishery and wildlife resources. Arsenic in the Environment, Part II: Human Health and Ecosystem Effects. J. O. Nriagu. New York City, NY, John Wiley \& Sons, Inc. 27: 185-259.

Fendorf, S., M. J. Eick, P. Grossl and D. L. Sparks (1997). Arsenate and chromate retention mechanisms on goethite. 1. Surface structure. Environmental Science and Technology 31(2): 315-320.

Froelich, P. N., G. P. Klinkhammer, M. L. Bender, N. A. Luedtke, G. R. Heath, D. Cullen, P. Dauphen, D. Hammond, B. Hartman and V. Maynard (1979). Early oxidation of organic matter in pelagic sediments of the Eastern Equatorial Atlantic: Suboxic diagenesis. Geochimica et Cosmochimica Acta 43: 1075-1090.

Fryklund, V. C., Jr (1964). Ore deposits of the Coeur d'Alene district Shoshone County, Idaho. Interior, Geological Survey. Professional Paper 445: 101.

Fryklund, V. C., Jr (1961). General features of the ore deposits of the Coeur d'Alene district, Idaho. Idaho Bureau of Mines and Geology Bulletin 16, 6-8

Gee, G. W. and J. W. Bauder (1986). Particle-size analysis. Methods of Soil Analysis. A. Klute. Madison, WI, Soil Science and Agronomy Societies of America. 1: 383-399.

Gott, G. B. and J. B. Cathrall (1980). Geochemical-exploration studies in the Coeur d'Alene district, Idaho and Montana. Interior, Geological Survey. Professional Paper 1116: 40.

Harrington, J. M., S. E. Fendorf and R. F. Rosenzweig (1998). Biotic generation of arsenic(III) in metal(loid)-contaminated freshwater lake sediments. Environmental Science and Technology 32(16): 2425-2430.

Harrington, J. M., M. J. La Force, W. C. Rember, S. E. Fendorf and R. F. Rosenzweig (1998). Phase associations and mobilization of iron and trace elements in Coeur d'Alene Lake, Idaho. Environmental Science and Technology 32(5): 650-656.

Hesslein, R. H. (1976). An in situ sampler for close interval pore water studies. Limnology and Oceanography 21: 921.

Hindmarsh, J. T. and R. F. McCurdy (1986). Clinical and environmental aspects of arsenic toxicity. Crc Critical Reviews In Clinical Laboratory Sciences 23(4): 315-347.

Hoffman, M. L. (1995). Characterization of heavy metal contamination in two lateral lakes of the lower Coeur d'Alene River Valley, Northern Idaho. Geology and Geologic Engineering. Moscow, ID, University of Idaho. M.S.: 76.

Horowitz, A. J., K. A. Elrick and R. B. Cook (1992). Effect of mining-related activities on the sediment-trace element geochemistry of Lake Coeur d'Alene, Idaho, USA--Part 1:Surface sediments. USGS Open-File Report.92-109, 30

Horowitz, A. J., K. A. Elrick, J. A. Robbins and R. B. Cook (1993a). The effect of mining and related activities on the sediment-trace element geochemistry of Lake Coeur d'Alene, Idaho Part II: Subsurface sediments. USGS Open-File Report.93-656, 32

Koschorreck, M., I. Brookland and A. Matthias (2003). Biogeochemistry of the sedimentwater interface in the littoral of an acidic mining lake studied with microsensors and gel-probes. Journal of Experimental Marine Biology and Ecology 285-286: 71-84.

Kuhn, A. and L. Sigg (1993). Arsenic cycling In eutrophic Lake Greifen, Switzerland Influence of seasonal redox processes. Limnology and Oceanography 38(5): 10521059.

La Force, M. J., S. Fendorf, L. Guangchao and R. F. Rosenzweig (1999). Redistribution of trace elements from contaminated sediments of Lake Coeur d'Alene during oxygenation. Journal of Environmental Quality 28: 1195-1200.

La Force, M. J., C. M. Hansel and S. Fendorf (2000). Constructing simple wetland sampling devices. Soil Science Society of America Journal 64: 809-811.

Loeppert, R. H. and D. L. Suarez (1996). Carbonate and gypsum. Methods of Soil Analysis. Madison, WI, Soil Science and Agronomy Societies of America. 3: Chemical Methods: 437-444.

Manning, B., A., S. E. Fendorf and S. Goldberg (1998). Surface structures and stability of arsenic(III) on goethite: Spectroscopic evidence for inner-sphere complexes. Environmental Science and Technology 32(16): 2383-2388.

Manning, B., A. and S. Goldberg (1996). Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals. Soil Science Society of America Journal 60: 121-131.

Matin, A. J. and T. F. Pedersen (2002). Seasonal and Interannual Mobility of Arsenic in a Lake Impacted by Metal Mining. Environmental Science and Technology 36(7): 1516-1523.

Mok, W.-M. and C. M. Wai (1990). Distribution and mobilization of arsenic and antimony species in Coeur d'Alene River, Idaho. Environmental Science \& Technology 24(1): 102-108.

Morse, J. W. (1994). Interactions of trace metals with authigenic sulfide minerals: implication for their bioavailabililty. Marine Chemistry 461-2(1-2): 1-6.

Morton, W. and D. A. Dunnette (1994). Health effects of environmental arsenic. Arsenic in the environment, Part II: Human health and ecosystem effects. J. O. Nriagu. New York City, NY, John Wiley \& Sons, Inc. 27: 17-34.

Nelson, D. W. and L. E. Sommers (1996). Total carbon, organic carbon, and organic matter. Methods of soil analysis. J. M. Bartels. Madison, WI, Soil and Agronomy Societies of America, Inc. 5: 961-1010.

Nicholas, D. R., S. Ramamoorthy, V. Palace, S. Spring, J. N. Moore and R. F. Rosenzweig (2003). Biogeochemical transformations of arsenic in circumneutral freshwater sediments. Biodegradation 14: 123-127.

O'Day, P. A., D. Vlassopoulos, R. Root and N. Rivera (2004). The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proceedings of the National Academy of Sciences of the United States of America 101(38): 13703-13708.

Polizzotto, M. L., C. F. Harvey, L. Guangchao, B. Badruzzman, A. Ali, M. Newville, S. Sutton and S. Fendorf (2006). Solid-phases and desorption processes of arsenic within Bangladesh sediments. Chemical Geology 228: 97-111.

Raven, K. P., A. Jain and R. H. Leoppert (1998). Arsenite and arsenate adsorption on ferrihydrite: Kinetics, equilibrium, and adsorption envelops. Environmental Science and Technology 32: 344-349.

Ressler, T., J. Wong, J. Roos and I. L. Smith (2000). Quantitative speciation of Mn-bearing particulates emitted from autos burning (methylcyclopentadienyl)manganese tricarbonyl-added gasolines using XANES spectroscopy. Environmental Science \& Technology 34(6): 950-958.

Rittle, K. A., J. I. Drever and P. J. S. Colberg (1995). Precipitation of arsenic during bacterial sulfate reduction. Geomicrobiology Journal 13: 1-11.

Ruby, M. V., A. Davis, R. Schoof, S. Eberle and M. Sellstone (1996). Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science \& Technology 40: 2537-2543.

Staff. (1994, 10 March 2003). Method 3052: Microwave assisted acid digestion of siliceous and organically based matrices. 3. Retrieved 01 January 2004, 2004, from http://www.epa.gov/epaoswer/hazwaste/test/pdfs/3052.pdf.

Toevs, G. R., M. J. Morra, M. L. Polizzotto, D. G. Strawn, B. C. Bostick and S. Fendorf (2006). Metal(loid) diagenesis in mine-impacted sediments of Lake Coeur d'Alene, Idaho. Environmental Science \& Technology 40(8): 2537-2543.

Waychunas, G. A., B. A. Rea, C. C. Fuller and J. A. Davis (1993). Surface-chemistry of ferrihydrite.1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochimica et Cosmochimica Acta 57(10): 2251-2269.

Waychunas, G. A., B. A. Rea, C. C. Fuller and J. A. Davis (1993). Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochimica et Cosmochimica Acta 57: 2251-2269.

Webb, S. (2002). SixPACK. Stanford, CA, Stanford Synchrotron Radiation Laboratory: XAS Interface.

Whitman, C. T. (2002). National recommended water quality criteria: 2002. EPA. Washington, D.C., Office of Water, Office of Science and Technology: 36.

Wilkin, R. T. and R. G. Ford (2006). Arsenic solid-phase partitioning in reducing sediments of a contaminated wetland. Chemical Geology 228: 156-174.

Winowiecki, L. (2002). Geochemical Cycling of Heavy Metals in the Sediment of Lake Coeur d'Alene, Idaho. Soil Science. Moscow, Idaho, University of Idaho. M.S.: 196.

Woods, P. F. and M. A. Beckwith (1997). Nutrient and trace-element enrichment of Coeur d'Alene Lake, Idaho. U.S. Geological Survey USGS Water-Supply Paper.2485, 129

## SUPPORTING INFORMATION

Supporting Information Table 2.1. A summary of present and prior concentrations of Fe , As, and $S$ in the sediments at or near Harlow Point (HP) and Peaceful Point (PP). The data indicate agreement of As enrichment and $S$ depletion in the surface sediments at PP when compared with HP.

| Date | Site | Sample Description | Fe | As | S |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | (\%) | ( $\mathrm{mmol} \mathrm{kg}^{-1}$ ) | $\left(\mathrm{mmol} \mathrm{kg}{ }^{-1}\right)$ |
| Horowitz et al. (1992) | $\begin{aligned} & \text { \#128, } \\ & \text { near HP } \end{aligned}$ | 2 cm surface grab sample | 8.7 | 6.41 | N/A |
| Horowitz et al. (1992) | \#119, near PP | 2 cm surface grab sample | 6.5 | 8.81 | N/A |
| Winowiecki (2002) | HP | $0-5 \mathrm{~cm}$, homogenized | 7.5 | 1.88 | 128.91 |
|  |  | $0-25 \mathrm{~cm}$ average | 7.6 | 1.94 | 139.93 |
| Winowiecki (2002) | PP | $0-5 \mathrm{~cm}$, homogenized | 5.86 | 4.99 | 32.81 |
|  |  | $0-25 \mathrm{~cm}$ average | 6.91 | 3.42 | 59.77 |
| Toevs et al. (2006) | HP | $0-3 \mathrm{~cm}$, homogenized | 7.7 | 1.90 | 99.69 |
|  |  | $0-35 \mathrm{~cm}$ average | 8.2 | 2.18 | 123.70 |
| Toevs et al. (2006) | PP | $0-3 \mathrm{~cm}$, homogenized | 7.1 | 4.01 | 24.72 |
|  |  | $0-35 \mathrm{~cm}$ average | 8.3 | 2.57 | 81.70 |

## CHAPTER 3

# Internal Cycling and Benthic Flux of Trace-Metals in MineWaste Impacted Sediments of Lake Coeur d'Alene, Idaho 


#### Abstract

Lake Coeur d'Alene, Idaho, USA is a natural freshwater lake containing sediments highly enriched with $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Mn}, \mathrm{Pb}, \mathrm{Zn}$, and other trace metals transported from upstream mining district. The potential for these contaminants to negatively impact benthic organisms and degrade lake water quality through the process of solid phase-dissolution and subsequent diffusion of contaminants to the overlying water column is of great concern. Our objective was to characterize geochemical parameters controlling interstitial concentrations of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Ni}, \mathrm{Pb}$, and Zn in order to determine the threat of these metals to benthic communities and the potential for release to the overlying water. Total heavy metal concentrations in the sediment and dissolved heavy metals in sediment interstitial water as obtained using equilibrium dialyzers were quantified for two contaminated sites. Dissolved trace metal concentrations of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$, and Zn in the interstitial water exceeded the level EPA has recognized as chronically damaging, and in most cases exceed the level determined to be acutely toxic to benthic organisms. Lead exceeded the Criterion Continuous Concentration by 400 times within 3 cm of the sediment-water interface and Zn exceeded that standard by forty times at 7.5 cm at one site. All of the metals except Ni demonstrate large


increases in concentrations from the sediment water interface (SWI) to the anoxic boundary, indicating the source of the dissolved metals is likely the reduction of oxides containing sorbed contaminants. Benthic flux calculations suggest the sediments to be a source of Cd , $\mathrm{Cu}, \mathrm{Pb}$, and Mn at both sites, and Zn to act as a source at one site, but a sink at the other. Dissolved trace-metal concentrations in these contaminated sediments are thus acutely and chronically damaging to benthic organisms and a potential contaminant source to the overlying water. This process of metal release from oxidized materials transitioning by burial to a reduced zone deeper in the sediment will continue until transport and deposition of additional contaminated materials are eliminated.

## INTRODUCTION

Lake Coeur d'Alene, Idaho, USA is a natural freshwater lake that lies at the mouth of the Coeur d'Alene (CDA) River. The CDA River drains a watershed that includes the Silver Valley, a mining district that ranks as one of the world's leading producers of Ag and one of the United States' major producers of Pb and Zn (Bennett et al. 1989). Mining began in the district in the late 1800's and for the first two-thirds of the twentieth century, mining and oreprocessing wastes were deposited directly into the South Fork of the CDA River. These materials, highly enriched in $\mathrm{Ag}, \mathrm{As}, \mathrm{Cd}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Mn}, \mathrm{Pb}, \mathrm{Sb}$, and Zn (Bender 1991), were distributed throughout the channel and floodplain of the lower CDA River and CDA Lake. Regulation stopped the dumping of mine-wastes into the South Fork of the CDA River in 1968, but periodic flooding within the CDA River basin continues to redistribute this contaminated material (Box et al. 2005). Horowitz et al (1992, 1993a) estimated that by 1990 there were already 75 million metric tons of metal-enriched sediments in Lake CDA.

In 1989, 172 surface grab samples were collected in Lake CDA to conclude $85 \%$ of the lake bed was contaminated and that trace metals in the surface sediments were largely associated with oxides (Horowitz et al. 1992). Twelve gravity cores obtained in 1990 at various depths and in a variety of depositional environments revealed some locations had trace-element enrichment exceeding 119 cm in the bed sediments and virtually no benthic activity in the contaminated zones (Horowitz et al. 1993a). Interstitial concentrations of dissolved of $\mathrm{Cu}, \mathrm{Pb}$, and Zn secured during this same time period using equilibrium dialyzers showed that all three metals exceeded the Criterion Maximum Concentration (CMC) established by EPA (Woods et al. 1997). Balistrieri (Balistrieri 1998) performed preliminary benthic flux calculations utilizing the above mentioned dialyzer samples and additional data from sediment cores, producing preliminary evidence that the sediments may be a source of dissolved trace metals that is equal to, or in some cases greater than the CDA River. In 1999, the first direct studies of benthic flux were conducted in a pilot study (Kuwabara et al. 2000), confirming the potential for the bed sediments to be a significant source of trace metals. In spite of extensive sediment contamination, the overlying water column, with the exception of Zn , generally meets EPA standards (Woods et al. 1997) (Rothrock 2004).

Therefore, there is not only a critical need to characterize the dissolved trace metal profiles, but it is also necessary to evaluate the processes responsible for the heretoforementioned toxic concentrations of dissolved trace metals and determine the barriers that prevent their diffusion into the overlying water column. Diagenetic processes relevant to metal(loid) cycling in Lake CDA have been studied (Harrington et al. 1998; Harrington et al. 1998; Cummings et al. 1999; Toevs et al. 2006a) and indicate significant changes in solid phase associations from the surface sediment to the near surface sediments. The combined
results of these studies indicate an oxic cap is present at the sediment water interface, with the transitions from Mn , to Fe , and finally $\mathrm{SO}_{4}{ }^{2-}$ reduction occurring in less than 10 cm (Toevs et al. 2006a). We proposed that these redox changes in combination with frequent depositional events exert a major influence on Fe (first article) and As (second article) cycling.

The influence of redox changes on the phase distribution of other metals is relatively unknown. Although solid phase concentrations of trace-metals have been measured extensively in Lake CDA sediments, it is soluble concentrations that are of interest when determining the threat of these metals to benthic communities and the potential for metal release to the overlying water column. Soluble-metal concentrations are most bioavailable and hence have the greatest impact on benthic organisms (Di Toro et al. 1992). Soluble-metal concentrations and the associated concentration gradients across the sediment-water interface are also the driving force for benthic flux. However, the paucity of dissolved-metal data within these sediments precludes the ability to evaluate recovery plans for benthic activity and makes benthic flux calculations tenuous.

Our objective was to characterize geochemical parameters controlling interstitial concentrations of selected trace elements in order to determine the threat of these metals to benthic communities and the potential for release to the overlying water column. To achieve this objective, we: quantified dissolved metal concentrations in the sediment and the overlying water column; determined the depths and spatial differences of dissolved constituents at two contaminated sites; proposed diagenetic processes potentially responsible for the dissolved metal profiles; and calculated benthic fluxes to determine if the sediments are a source or a sink for the dissolved contaminants.

## MATERIALS AND METHODS

## Sample Sites.

Two sample sites near the mouth of the Coeur d'Alene (CDA) River, Harlow Point (HP) and Peaceful Point (PP), were chosen because they are significantly contaminated with mine waste (Horowitz et al. 1992; Horowitz et al. 1993a). Both sites continue to receive additional sedimentation of metal(loid)-containing materials during frequent and episodic flood events. The water depths at these sites are 15 and 19 m , respectively. A non-mine waste-impacted site located near the mouth of the pristine St. Joe River was used as a reference for background levels of metals in the sediments (Toevs et al. 2006a).

## Materials.

All chemicals were reagent grade and used without further purification. Solutions were prepared using distilled, deionized water. All sampling containers and labware were cleaned with $2 \% \mathrm{HNO}_{3}$ and thoroughly rinsed with deionized water prior to use. Analytical standards and quality-assurance standards for ion chromatography (IC) and inductively coupled plasma-atomic emission spectroscopy (ICP) were purchased from Spex CertiPrep (Metuchen, NJ). Standard Reference Material 2711 from the National Institute of Standards and Technology (Gaithersburg, MD) was used as the total metals standard. Acids used for total metals were all trace-metal grade (Fisher Scientific, Pittsburgh, PA).

## Equilibrium Dialyzers and Sediment Cores.

Interstitial water was collected in situ utilizing Plexiglas equilibrium dialysis samplers (Hesslein 1976). The dialyzers contained two rows of $25,10-\mathrm{mL}$ compartments milled on $1.5-\mathrm{cm}$ centers. The compartments were covered with $0.2-\mu \mathrm{m}$ Osmonics nylon membrane (Westborough, MA), nylon tulle netting, and a matching cover plate held in place with nylon
screws. SCUBA divers inserted the dialyzers vertically into the sediment where they were allowed to equilibrate for 4 weeks, a time deemed appropriate based on field and laboratory studies (Balistrieri 1998; La Force et al. 2000; Winowiecki 2002). Upon retrieval, they were immediately transferred to a boat waiting at the sample site, where interstitial water for anion analysis was transferred from the dialyzer cells to a HDPE sample vial using a $10-\mathrm{mL}$ syringe. The sample vials were preserved under anaerobic conditions at $4{ }^{\circ} \mathrm{C}$. Interstitial water for cation analysis was transferred in a similar fashion and placed in a sample vial containing 4 drops of trace metal grade $\mathrm{HNO}_{3}$ to maintain a pH of less than 2.5.

The exact location of the SWI is difficult to determine as this interface is typically a diffuse and variably stratified region (Koschorreck et al. 2003) and additionally, insertion into and retrieval from the lake sediments took place under zero visibility. The $1.5-\mathrm{cm}$ resolution of the dialyzer cells permits the spatial determination of aqueous concentrations and gradients, but identifying the precise depth is difficult. This challenge was resolved by analyzing various signatures observed during retrieval and sample analyses to establish the sediment water interface (SWI). These signatures include the approximate depth of insertion marked by a clip placed on the dialyzer by divers prior to removal from the sediment; the cell where iron oxidation occurred after sample removal and exposure to oxygen; and the cell where Mn concentrations increased. Collectively, this information was used to establish the SWI, which is referred to as zero depth on all figures displaying aqueous concentrations. Negative depths refer to the overlying water column.

SCUBA divers collected sediment cores in polycarbonate tubes with a diameter of 10 cm and a length of 50 cm . The tubes were inserted into the sediment, a Fernco-style Quickcap (Davison, MI) was placed over the exposed end, the tube was extracted from the sediment,
and a size 10 rubber stopper was placed in the tube. The cores were immediately transferred to a waiting boat where they were sealed to prevent leaks and oxidation, packed in ice packs in an airtight container, and purged with $\mathrm{N}_{2}$ for transport to the laboratory. Once in the laboratory, the cores were transferred to an $\mathrm{N}_{2}$-filled glove box and extruded from the coring tubes with care taken to avoid compaction or elongation. Cores were sub-sectioned at the appropriate depths and homogenized samples placed in acid-washed HDPE vials. The vials were frozen until analysis.

## Analytical Methods.

Frozen, homogenized core sub-sections were thawed, transferred to acid-washed crucibles, and dried at $90^{\circ} \mathrm{C}$ until stable weights were achieved. The dry samples were cooled in a vacuum desiccator, ground with a mortar and pestle, transferred to $10-\mathrm{mL}$ polyethylene vials and stored in a vacuum desiccator except when removed to transfer an accurately weighed sample to a digestion container. Samples were microwave-digested with a 9:2:3 ratio of $\mathrm{HNO}_{3}, \mathrm{HCl}$, and HF in accordance with EPA method 3052 (Staff 1994). Recovery precision and accuracy, performed in triplicate on the Standard Reference Material 2711, indicated a relative standard deviation (RSD) of less than 3\% and extraction efficiency greater than $90 \%$ for the data presented. Triplicate unknown samples were run in each batch digestion and the RSD was generally less than $5 \%$. The digest was filtered using a $0.2-\mu \mathrm{m}$ Gelman IC Acrodisc syringe filter (Ann Arbor, MI) and volumetrically diluted to 50 mL in preparation for analysis.

Concentrations of $\mathrm{NO}_{3}{ }^{-}$and $\mathrm{SO}_{4}{ }^{2-}$ in the samples collected with the equilibrium dialyzers was determined using a Dionex 500DX Ion Chromatograph fitted with an AS11 Ion Pac column, an AG11 4-mm guard column, and a MFC-1 Metal Trap. The flow rate was 1.0
$\mathrm{mL} \mathrm{min}-$ of a 50 mM NaOH eluent. The samples were preserved at $4^{\circ} \mathrm{C}$ under $\mathrm{N}_{2}$ gas until transferred to the auto-sampler vials. Standards were included with the unknowns to monitor calibration and drift, and analysis was completed within 24 h .

Dissolved metal(loid) analyses were performed on a Thermal Jarrell Ash ICP-AES. Reported values are the average of two replications from each cell. Detection limits for each element were calculated at two times the standard deviation of the low standard. The RSD, as determined by running a standard 10 times, calculating the average, and dividing it into the standard deviation, was less than $4 \%$ across all analyses. Standards were run every 15 samples to verify calibration and were also included in the unknowns to monitor drift. Dissolved trace-metal analyses were performed on a HP 4500 ICP-MS with a flow rate of 0.5 $\mathrm{mL} \min ^{-1}$ and a dilution of $5: 1$ via peristaltic pumps. The reported concentrations are the average of three replications from each sample. In order to avoid airborne contamination, ICP-MS sample preparation took place in a positive-pressure clean hood and the autosampler was housed in a HEPA enclosure. Detection limits were calculated at two times the standard deviation of the low standard.

Porosity was determined by extruding fresh, unfrozen cores in precise increments and sectioning into pre-weighed drying tins. The tins were subsequently reweighed and dried at $105^{\circ} \mathrm{C}$ until a stable weight was achieved. The weight of the water was determined by difference between the wet and dry sediment sections. The porosity was calculated by dividing the volume of water by the total volume of the saturated sediment (Danielson et al. 1986). The density of the sediment and water were assumed to be $2.65 \mathrm{~g} \mathrm{~cm}^{-3}$ and $1.0 \mathrm{~g} \mathrm{~cm}^{-3}$, respectively.

## RESULTS AND DISCUSSION

## Element Abundance.

Total metal digests of cores collected from HP and PP found the sediments were substantially enriched in $\mathrm{As}, \mathrm{Cd}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Fe}, \mathrm{Mn}$, and S when compared to the non-mine impacted area (St Joe) of Lake CDA (Table 3.1). The reported values are in general agreement with other studies designed to quantify the mine-waste materials which have been transported to the lake (Horowitz et al. 1992; Horowitz et al. 1993a).

Table 3.1. The elemental range, median, mean, and standard deviation of depth averaged duplicate cores, 30 cm in length. The cores were taken from a non-mine impacted site ( St . Joe) and from two mine waste-impacted sites (Harlow Point and Peaceful Point). The cores were collected in May of 2002 and the data is from microwave digestions analyzed on ICPAES.

| Statistics | $\text { Element ( } \mathrm{mg} \mathrm{~kg}^{-1} \text { ) }$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | As | Cd | Fe | Mn | Pb | S | Zn |
| St. Joe Site |  |  |  |  |  |  |  |
| Range | 9-17 | 0-0.17 | 28270-37330 | 390-530 | 12-255 | 370-700 | 100-150 |
| Median | 15.3 | 0 | 34280 | 440 | 23 | 640 | 140 |
| Mean | 14.8 | 0.04 | 33906 | 483 | 48 | 591 | 139 |
| $\pm S D(n=9)$ | 3.36 | 0.07 | 34282 | 440 | 23 | 639 | 142 |
| Harlow Point Site |  |  |  |  |  |  |  |
| Range | 100-350 | 22-40 | 62360-108370 | 3940-9460 | 2820-5295 | 2500-6450 | 2550-3970 |
| Median | 140 | 25.6 | 79660 | $6058$ | 4561 | 3999 | 3560 |
| Mean | 162 | 28.3 | 80865 | 5982 | 4369 | 4021 | 3480 |
| $\pm S D(n=13)$ | 68.8 | 6.0 | 11242 | 1551 | 670 | 1076 | 363 |
| Peaceful Point Site |  |  |  |  |  |  |  |
| Range | 75-450 | 15-45 | 36000-114000 | 3560-10540 | 1595-6490 | 1150-4330 | 2470-4080 |
| Median | 160 | 24.4 | 81387 | 7428 | 3498 | 3078 | 3030 |
| Mean | 190 | 26 | 79978 | 7264 | 3582 | 2955 | 3080 |
| $\pm S D(n=13)$ | 98.6 | 8.9 | 23764 | 2145 | 1339 | 1136 | 493 |

## Dissolved Trace Metal Concentrations.

The aqueous trace-metal profiles of duplicate equilibration dialyzers from the HP site are shown in Figure 3.1, A-E. With the exception of Ni, all of the elements at least at some depths, exceed the continuous and the maximum concentration considered acutely or chronically toxic for freshwater biota. For continuous exposure (CCC), corrected for alkalinity of $5 \mathrm{mg} \mathrm{L}^{-1}$ of $\mathrm{CaCO}_{3}$ (Woods et al. 1997), Cd should not exceed $0.09 \mathrm{~g} \mathrm{~L}^{-1}$ and the recommended maximum concentration (CMC) is $0.37 \mu \mathrm{~g} \mathrm{~L}$ (Whitman 2002). Both of these values were exceeded at the SWI and throughout the profile when analyzed concentrations were above the instrumental detection limit of $0.732 \mu \mathrm{~g} \mathrm{~L}^{-1}$ (Figure 3.1, A). Copper exceeded both the CCC and the CMC, 0.69 and $0.80 \mu \mathrm{~g} \mathrm{~L}^{-1}$, respectively, from the SWI to 3.0 cm (Figure 3.1, B). Nickel (Figure 3.1, C) does not exceed the CCC of $4.13 \mu \mathrm{~g} \mathrm{~L}$ at any point in the HP profile. Lead (Figure 3.1, D) exceeded the CCC and the CMC, 0.07 and $1.82 \mu \mathrm{~g} \mathrm{~L}^{-1}$, respectively, at the SWI and throughout the profile, and the maximum soluble concentration at 3.0 cm was 400 times the recommended CCC. Zinc (Figure 3.1, E) exceeds the CCC of $8.97 \mu \mathrm{~g} \mathrm{~L}^{-1}$ and the CMC of $9.26 \mu \mathrm{~g} \mathrm{~L}^{-1}$ at the SWI and throughout the profile, and at 7.5 cm exceeds the CCC by forty times. High concentations of Zn were expected since it typically exceed the freshwater aquatic life criteria throughout the overlying water column (Woods et al. 1997; Balistrieri 1998; Rothrock 2004).

When the dissolved-trace metal values are compared to the dialyzer-collected data reported by Balistrieri (Balistrieri 1998), there is general agreement for Cu and Pb . A comparison of our Zn data and the Balistrieri data reveals inconsistencies, but there was concern that sample integrity had compromised the accuracy of this element in the data set used by Balistrieri. No concentrations were reported for Cd or Ni in that report. The
differences between the values reported by Balistrieri (Balistrieri 1998) and those reported in this study could reflect inherent variability of the different sample sites, but they could also be a function of seasonal trends, a critical and dynamic component of trace-metal cycling, which to our knowledge, has not yet been addressed.


Figure 3.1, A-E. Duplicate profiles of trace metals found in the interstitial water at HP. The samples were collected by equilibrium dialyzers in May of 2002 and analyzed by ICP-MS. The dashed line represents the sediment-water interface.

The aqueous-trace metal profiles of duplicate equilibration dialyzers from the PP site are shown in Figure 3.2, A-E. Changes in interstitial water concentrations of all elements with depth are similar between the sites, the main difference was in absolute concentration of the elements. Cadmium (Figure 3.2, A) had lower values than those reported at HP and more
of the data points were below the detection limit. However, all values above detection limits exceed both the CCC and the CMC. The Cu profile (Figure 3.2, B) is similar to that of HP, with the major difference being a slightly higher maximum concentration. Copper exceeds both criteria from the SWI to 3.0 cm and then exceeds the CCC to a depth of 6.0 cm . Nickel (Figure 3.2,C) has a greater maximum concentration than HP and exceeds the CCC beginning at 22.5 cm , but does not exceed the CMC at any point in the interstitial water profile. The dissolved Pb concentrations at PP (Figure 3.2, D ) are substantially less that those at HP with the average maximum ( $30 \mu \mathrm{~g} \mathrm{~L}^{-1}$ ) only one-fourth that of HP ( $130 \mu \mathrm{~g} \mathrm{~L}^{-1}$ ). However, Pb still exceeds the CCC and the CMC at the SWI and throughout the profile. The maximum concentration of Zn at PP (Figure 3.2, E) is substantially less than HP, but again the dissolved concentrations exceed both the CCC and the CMC at the SWI and throughout the profile. Our data are similar to those previously reported for a sampling performed at East Point, a site near that of PP (Balistrieri 1998). As with HP, differences between the two data sets may reflect inherent variability or seasonal variation.

Regardless of the absolute differences between our two sites or between our data and that of other investigators, the range in concentrations of dissolved trace metals at the SWI and in these sediments clearly show that a number of different metals pose a significant threat to the benthic community and the overlying water column. These acute and chronic dissolved concentrations would certainly explain the low densities of macroinvertebrates observed by Horowitz et al. (1993a) and Kuwabara et al. (2003), and the dynamic profiles indicate the importance of diagenetic reactions. Understanding the processes controlling metal solubility is a key component for effective management of Lake CDA and other bodies of water with similar contamination.


Figure 3.2, A-E. Duplicate profiles of trace metals found in the interstitial water at PP. The samples were collected in equilibrium dialyzers in May of 2002 and analyzed by ICP-MS. The dashed line represents the sediment-water interface.

## Diagenetic Processes.

The processes commonly impacting the fate of trace metals in similar freshwater environments are: sorption onto or co-precipitation with Mn and Fe oxyhydroxides in the oxic zone; release from Mn and Fe oxyhydroxides during reductive dissolution in the anoxic zone; sorption onto r co-precipitation with sulfidic minerals in the anoxic zone; formation of organic matter-metal complexes; and oxidation state changes across redox boundaries that often affect their solubility (Balistrieri et al. 1994; Morse 1994). In order to facilitate the identification of which processes are likely occurring at various depths in Lake CDA sediments, the dissolved concentrations of redox-sensitive species are compared in Figure
3.3, A-C. The inserts in these figures facilitate a more detailed depth comparison of the redox boundaries, which upon examination reveal subtle differences between HP and PP.

Dissolved Mn (Figure 3.3, A) increased in the interstitial water sample taken from a depth of 3.0 cm at HP and reached its near-surface maximum of $6 \mathrm{mg} \mathrm{L}^{-1}$ by 6 cm . Dissolved Fe (Figure 3.3, B) began to increase at 4.5 cm and generally continued to increase throughout the profile reaching a maximum of $42 \mathrm{mg} \mathrm{L}^{-1}$ at 30 cm . Sulfate (Figure 3.3, C) begins to decrease in the interstitial water directly below the SWI and is below the detection limit by 12 cm , indicating the maximum depth we would expect to find significant sulfidic mineral precipitation. The depths at which redox processes alter interstitial concentrations of $\mathrm{Mn}, \mathrm{Fe}$, and $\mathrm{SO}_{4}{ }^{2-}-\mathrm{S}$ serve as reference points for discussing diagenetic processes potentially responsible for the observed trace-metal concentration profiles. The HP site will be discussed first and then it will be compared with PP to determine which processes appear to be common and which seem to be impacted by differences in redox boundaries.


Figure 3.3, A-C. Average interstitial water profiles of redox sensitive species from HP and PP indicating the transition from oxic to anoxic sediments. The inserts allow for a precise identification and comparison of the redox boundary between the two sites. The samples were collected in equilibration dialyzers in May of 2002. Iron and Mn were analyzed by ICP-AES and $\mathrm{SO}_{4}{ }^{2-}$ - S was analyzed by IC.

Dissolved Cd at HP (Figure 3.1, A) reaches its near-surface maximum of $4.0 \mathrm{mg} \mathrm{L}^{-1}$ at 4.5 cm , slightly above the Mn near-surface maximum at 6.0 cm . This close depth proximity with dissolved Mn would indicate a Mn-oxyhydroxide association and subsequent release when this oxide undergoes reductive dissolution. Previous studies have studied the adsorption characteristic of various trace metals (Tessier et al. 1985) and found that Cd release was highly correlated with Mn-oxyhydroxide dissolution. Tthe trace metals analysis of grab samples from CDA sediments likewise found the majority of Cd was associated with an operationally defined oxide phase (Horowitz et al. 1992). Ánother possible source for Cd would be the reduced ore materials which would be unstable in the near-surface, oxic environment. Although literature indicates the formation of oxic rinds can promote long-term stability in oxic conditions and minimize their dissolution (Moore 1994), these rinds may in and of themselves be a source of trace metals when additional sedimentation transitions these materials to the suboxic and anoxic zones of the sediments (Toevs 2006b).

The aqueous profiles for Cd at sediment depths above the maxima are surprising in that Cd is not removed from the interstitial water in the oxic zone near the SWI. An oxic environment at the SWI supports the formation of Fe and Mn oxides that act as sorbents of dissolved trace metals (Tessier et al. 1985). We previously reported that As diffusion to the overlying water column is prevented by sorption to Fe-oxyhydroxides in these sediments (Toevs 2006b). One possibility for the elevated levels of Cd at the SWI is incomplete cycling of Mn , a process typical in sediments where the suboxic zone is near the SWI. This close proximity allows soluble Mn to diffuse into the overlying water column prior to Mn oxyhydroxide formation, thus preventing concomitant sorption of trace metals (Shaw et al. 1990). This kinetic limitation on Mn oxidation decreases the formation of Mn -
oxyhydroxides, possibly limiting Cd sorption on Mn minerals within the oxidized zone at the SWI.

The Cd profile at about 8 cm shows a decrease in dissolved concentrations that corresponds to the zone of $\mathrm{SO}_{4}{ }^{2-}$ reduction (Figure 3.3, C) and presumably, the formation of amorphous Fe-sulfides. Sulfides demonstrate a large sorption capacity for trace metals, such as Cd , that have a preferential coordination to sulfur ligands rather than oxygen (Balistrieri et al. 1994). Previous investigations have shown that pyrite concentrations increase with depth as a result of diagenetic reactions occurring in Lake CDA sediments (Toevs et al. 2006a). Copper concentrations in sediment interstitial water are relatively constant from the SWI to the maximum at 3.0 cm (Figure 3.1, B) indicating that once Cu is in the dissolved phase, sorption processes are ineffective in preventing diffusion to the overlying water column. As with Cd , the dissolved concentrations of Cu decrease in the zone of $\mathrm{SO}_{4}{ }^{2-}$ reduction, fluctuating near the CCC of $0.69 \mu \mathrm{~g} \mathrm{~L}^{-1}$ for the remainder of the profile. Both Cu and Cd solid phases thus appears to be stable in the anoxic zone or at the very least, dissolution in this zone is offset by sorption or precipitation.

The Ni profile (Figure 3.1, C) is unique when compared to the other four elements in Figure 3.1 in that the slope is fairly consistent from the surface to the maximum depth, with relatively minor changes at the suboxic-anoxic boundary. As with Cd and Cu , it appears there is insufficient sorption in the oxic zone to remove the dissolved phase from solution, thus establishing the opportunity for diffusion into the overlying water column. This incomplete sorption is consistent with nickel's lack of affinity for oxides as reported by McKenzie (McKenzie 1980), where Ni had the lowest affinity for Mn-oxyhydroxides and second lowest affinity Fe-oxyhydroxides when compared to the sorption of $\mathrm{Mn}, \mathrm{x}, \mathrm{x}, \mathrm{x}$, and x . Regardless of
the low sorption affinity, dissolved Ni was positively correlated with dissolved Mn and Fe in Hall Lake (Balistrieri et al. 1994) and appears to be highly correlated with dissolved Fe at HP (Figure 3.3, B). The limited change in the slope of dissolved Ni across the suboxic-anoxic boundary is possibly because Ni has less affinity for sulfur ligands than do reduced species of $\mathrm{Cu}(\mathrm{I}), \mathrm{Pb}(\mathrm{II})$, and $\mathrm{Zn}(\mathrm{II})$ (Stumm et al. 1996). Therefore, the Ni profile seems to correlate well with dissolved Fe , and the low affinity for Mn and Fe -oxyhydroxides is insufficient to remove it from solution in the oxic zone. Additionally, the low affinity of Ni for sulfur ligands appears to prevent removal from the aqueous phase in the anoxic zone.

The Pb concentration profile in HP interstitial water (Figure 3.1, D) indicates a significant source of dissolved Pb at 5 cm and effective sorption above and below this maximum concentration. The maximum concentration of Pb coincides very well with maximum Mn concentration (Figure 3.3, A ) and also with the rapid increase of dissolved Fe (Figure 3.3, B). Both of these oxyhydroxides would be expected to contribute to dissolved Pb concentrations as previous studies (McKenzie 1980) found Pb had the strongest binding affinity on Mn and Fe -oxyhydroxides on all the trace metals tested with the exception of Cu on goethite. This same affinity for oxides would account for the decrease in dissolved Pb in the oxic zone. Another mechanism for Pb removal from the aqueous phase is the formation of pyromorphite which can form rapidly in soils when $\mathrm{Pb}(\mathrm{II})$ and $\mathrm{HPO}_{4}{ }^{2-}$ ions are present (Scheckel et al. 2003) and have been shown to be sparingly soluble (Ruby et al. 1994) The decrease in dissolved Pb concentrations in the anoxic zone is consistent with the Cd and Cu profiles at this depth, again coinciding with the zone of sulfate reduction.. The bimodal shape of the dissolved Pb profile at HP indicates an additional source of Pb in the anoxic sediments or if not an additional source, removal from solution has been outstripped by contributions to
the dissolved phase. Regardless of the reason, dissolved Pb remains in solution at levels that are chronicly and acutely toxic throughout the remainder of the profile at HP.

The Zn profile is similar to the Ni profile in that the highest dissolved concentrations are found at the deepest depth and, as with the other elements discussed, sorption processes in the oxic zone are insufficient to remove Zn from solution (Figure 3.1, E). Zinc concentrations appear to be positively correlated with dissolved Mn and Fe profiles above the anoxic boundary and the poorly defined depth of release, similar to Cd , could indicate multiple solidphase sources. This would be in agreement with the association reported in Hall Lake (Balistrieri et al. 1994), where dissolution of both Mn and Fe oxides correlated well with dissolved Zn . This would also be supported by the high solubility of $\mathrm{Zn}(\mathrm{II})$ in water of circumneutral pH .

The dissolved Zn profile exhibits a rapid decrease at 8 cm coinciding with the zone of sulfate reduction and therefore, sulfide production (Figure 3.3, C). Zinc's affinity for sulfur ligands would account for the decrease in dissolved Zn in this zone. After reaching this minimum in the anoxic zone, Zn concentrations continue to increase throughout the remainder of the profile indicating there is a solid-phase source in the anoxic zone and insufficient sulfide production occurs to precipitate the high concentration of this dissolved metals. Although the responsible processes cannot be determined with certainty, it is clear that dissolved Zn exists at acute and chronic concentrations detrimental to biota at the SWI and throughout the remainder of the profile.

An overall comparison of dissolved trace-metal concentrations at HP and PP indicates that PP has lower maxima of $\mathrm{Cd}, \mathrm{Pb}$, and Zn , but higher maximum concentrations of Cu and Ni (Figure 3.2, A-E). Even though the Pb maximum at PP is about $20 \%$ of the HP maximum,

Pb still exceeds both the CCC and the CMC at the SWI and throughout the profile (Figure 3.2, D). As with Pb , the Zn maximum at PP is lower than found at HP , but this element also exceeds the CCC and the CMC at the SWI and throughout the profile (Figure 3.2, E). Thus, although absolute concentrations of Pb and Zn differ considerably between the two sites, both HP and PP interstitial waters contain dissolved trace-metal concentrations that have acute and chronic toxicity.

One noteworthy difference between the two sites is the depth of maximum concentrations and the depth where these maxima decrease. We can explain this dissimilarity by noting that the depth to the suboxic-anoxic boundary differs between the sites, with PP sediments exhibiting Fe-reducing conditions at least 2 cm closer to the SWI than HP (Figure 3.3, B). The depth of this boundary does not alter the observed trends in soluble trace-metal concentrations, it only changes the depths at which changes occur, thus indicating that the diagenetic processes involved in the release of trace metals to the dissolved phase are similar. According to the freshwater aquatic standards, these dissolved concentrations of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$, and Zn are problematic for any meaningful attempt towards restoration of a benthic community. The additional problem of potential diffusion of these dissolved species to the overlying water will be addressed in the following section.

## Molecular Diffusion.

As discussed in the previous section, diagenetic reactions occurring in these mineimpacted sediments produce acute and chronic concentrations of dissolved trace metals in the interstitial water. If these soluble concentrations are greater than those in the overlying water column, diffusional processes promote transport of dissolved metals from the sediments into the lake water. If dissolved concentrations in the overlying water column are greater than
those in the interstitial water, diffusional processes favor transport of dissolved metals to the sediments at which time the sediments act as a sink for dissolved trace metals.

Molecular diffusion, the process responsible for diffusive flux across the SWI, is usually calculated from Fick's First Law as applied to the sedimentary environment:

$$
J_{s}=-\phi D_{s}\left(\frac{\delta C}{\delta x}\right)
$$

where $J_{S}$ is the benthix flux $\left(\mathrm{g} \mathrm{cm}^{-2} \mathrm{~d}^{-1}\right), \phi$ is the sediment porosity just below the sediment-water interface, $D_{S}$ is the diffusion coefficient for the element in the sediment ( $\mathrm{cm}^{2}$ $\left.\mathrm{d}^{-1}\right)$, and $(\delta C / \delta x)$ is the concentration gradient of the element across the sediment-water interface $\left(\mathrm{g} \mathrm{cm}^{-4}\right)$ (Berner 1980). Diffusion coefficients in the sediment $\left(D_{S}\right)$ are related to molecular diffusion coefficients in water $\left(D_{0}\right)$ as follows:

$$
D_{s}=D_{o} /(\phi * F)
$$

where $F$ is the sediment resistivity. For high porosity sediments as in Lake CDA, $F$ can be estimated as $\phi^{-3}$ (Ullman et al. 1982). Therefore,

$$
D_{S}=D_{o} / \phi^{-2}
$$

The diffusion coefficient $\left(D_{0}\right)$ is determined from the species of the metal, which will depend on the pH , redox potential, and the presence of complexing ligands. The calculations are based on $\mathrm{Cd}(\mathrm{II}), \mathrm{Cu}(\mathrm{II}), \mathrm{Ni}(\mathrm{II}), \mathrm{Pb}(\mathrm{II}), \mathrm{Zn}(\mathrm{II})$, and $\mathrm{Mn}(\mathrm{II})$. The diffusion coefficients at $25^{\circ} \mathrm{C}$ in units of $\mathrm{cm}^{2} \mathrm{~d}^{-1}$ for $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Ni}, \mathrm{Pb}, \mathrm{Zn}$, and Mn are $0.619,0.633,0.587,0.816$, 0.618 , and 0.594 , respectively ( Li et al. 1974). These coefficients are then corrected for the water temperature of $9.5^{\circ} \mathrm{C}$ resulting in the corrected coefficients of $0.320,0.327,0.303$, $0.422,0.319$, and 0.307 , respectively. For a complete discussion of the assumptions made and
temperature corrections based on the Stokes-Einstein, relationship refer to the article by Balistrieri (Balistrieri 1998).

Once the corrected diffusion coefficients in water $\left(D_{O}\right)$ have been calculated, the diffusion coefficient in the sediments $\left(D_{S}\right)$ can be calculated by taking into account the porosity $(\phi)$ of the sediment. The porosity was determined from wet and dry difference and was $82.2 \%$ at HP and $91.7 \%$ at PP. One factor that can significantly change $D_{S}$ is bioturbation in the near-surface sediments can range from a factor of 1.3 to 2.5 times larger than $D_{o}$ (Carignan et al. 1985). However like Horowitz (1992) and Kuwabara (2000), we identified individual sedimentation layers throughout the contaminated core sections indicating a virtual absence of bioturbation. Therefore, no adjustment is made to $D_{S}$ to accommodate the effect of bioturbation.

To determine the concentration gradient across the SWI ( $\delta C / \delta x)$, the concentration of the dissolved metal must be determined above and below the SWI. The use of equilibrium dialyzers with a spatial resolution of 1.5 cm has limitations in that the gradient changes across this dynamic interface are undoubtedly more exponential than linear, but even with this recognition, these calculations are very useful to establish trends and benchmarks for future work. The gradient is calculated using the following formula:

$$
\delta C / \delta x=\left[\left(M e^{2+}\right)_{B W}-\left(M e^{2+}\right)_{I V}\right] / \Delta d
$$

where $\left(M e^{2+}\right)_{B W}$ is the concentration of the dissolved metal $\left(\mathrm{Me}^{2+}\right)$ at the bottom of the water column just above the interface $\left(\mathrm{g} \mathrm{cm}^{-3}\right),\left(M e^{2+}\right)_{I W}$ is the concentration of the dissolved metal in the interstitial water just below the interface $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$, and $\Delta d$ is the distance between the location of the bottom water and the interstitial water (cm). For this data set, the bottom water concentration is the average of the cell located at 0 cm and the one located at -1.5 cm ,
the interstitial water is the concentration in the cell at a depth of 1.5 cm , and the diffusional distance across the SWI is 0.75 cm .

A summary of the benthic flux calculations is shown in Table 2. Positive numbers indicate the sediments are a source of metals to the overlying water column and negative numbers indicate the sediments are a sink. As with the Kuwabara report, (2000) these benthic flux calculations (Table 1) generally found the sediments to be a source of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$, and Mn at both sites. The sediments at HP were also a source of Zn , but PP sediments are predicted to act as a sink, as dissolved Zn in the overlying water column was high enough to prevent its diffusion. However, dissolved Zn concentrations used in these calculations, 72.2 and $72.4 \mu \mathrm{~g} \mathrm{~L}{ }^{-1}$ in sampler 15 A and 15 B , respectively, are consistent with the Zn concentrations reported for the water of Lake CDA (Balistrieri 1998; Kuwabara et al. 2000; Rothrock 2004). This indication of the sediments acting as a sink at PP gives additional significance to recent studies indicating remediation to reduce dissolved trace metal concentrations up-gradient from a potential source of dissolved metals can actually increase the release from the down-gradient source, minimizing or negating the benefits of the remediation (Kuwabara et al. 2003), as any reduction in overlying concentrations would impact the direction and magnitude of benthic flux. Thus, the issue is complex but cannot be dismissed when discussing lake management and remediation plans.

Table 3.2. Summary of molecular diffusive benthic fluxes from HP and PP based on molecular diffusion coefficients from Li and Gregory (1974). The samples used for calculations were collected by equilibrium dialyzers in May of 2002.

| Sample | Molecular Diffusive Flux ( $\mu \mathrm{g} \mathrm{cm}{ }^{-2} \mathrm{y}^{-1}$ ) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Cd | Cu | Ni | Pb | Zn | Mn |
| Harlow Point Site |  |  |  |  |  |  |
| HP\#6B | 0.078 | 0.037 | 0.006 | 0.418 | 8.63 | 4.70 |
| HP\#11A | 0.095 | 0.002 | -0.007 | 0.192 | 11.1 | 0.319 |
| Peaceful Point Site |  |  |  |  |  |  |
| PP\#15A | -0.017 | 0.060 | 0.042 | 0.788 | -1.25 | 616 |
| PP\#15B | 0.071 | 0.007 | -0.009 | -0.272 | -1.05 | 0.835 |

Although flux calculations give indications that the sediments act as a source for the metals studied, additional monitoring with increased resolution, as has been recently demonstrated through the use of gel probes and microsensors (Koschorreck et al. 2003; Leermakers et al. 2005), would resolve the present ambiguity. However, the dissolved metal data demonstrate that concentrations of $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$, and Zn in the interstitial water exceed the level EPA has determined to be a chronically damaging, and in most cases exceed the level determined to be acutely toxic to benthic organisms. It is also evident that all of the metals except Ni have large increases in concentrations from the SWI to the anoxic boundary, indicating the source of the dissolved metals is likely the reduction of oxides containing sorbed contaminants. With the exception of Ni and Zn , once the sediments have transitioned across the anoxic boundary, dissolution and sorption processes appear to be in equilibria or the dissolved concentrations decrease. This would suggest the oxic boundary and the dissolution and sorption processes occurring there are contributing to these high concentrations of dissolved metals in the interstitial water when those same oxides transition to this anoxic zone with additional sedimentation. This process of metal release from
oxidized materials transitioning to a reduced zone deeper in the sediment will continue until transport and deposition of contaminated materials are eliminated.

## ACKNOWLEDGEMENTS

Significant contributions to this research were made by Laurie S. Balistrieri, USGS, University of Washington and Matthew J. Morra and Leigh Winowiecki from the University of Idaho.

## REFERENCES

Balistrieri, L. (1998). Preliminary estimates of benthic fluxes of dissolved metals in Coeur d'Alene Lake, Idaho. U.S. Geological Survey USGS Open-File Report.98-793, 40

Balistrieri, L. S., J. W. Murray and B. Paul (1994). The geochemical cycling of trace elements in a biogenic meromictic lake. Geochimica et Cosmochimica Acta 58: 39934008.

Bender, S. F. (1991). Investigation of the chemical composition and distribution of mining wastes in Killarney Lake, Coeur d'Alene Area, Northern Idaho. Geology. Moscow, Idaho, University of Idaho. M.S.: 98.

Bennett, E. H., P. L. Siems and J. T. Constantopolous (1989). The geology and history of the Coeur d'Alene Mining District, Idaho. Idaho Geological Survey Bulletin 28: 137-156.

Berner, R. A. (1980). Early diagenesis, Princeton University Press.
Box, S. E., A. A. Bookstrom and M. Ikramuddin (2005). Stream-sediment geochemistry in mining-impacted streams: sediment mobilized by floods in the Coeur d'AleneSpokane River System, Idaho and Washington. USGS Scientific Investigations Report.2005-5011, 51

Carignan, R., F. Rapin and A. Tessier (1985). Sediment porewater sampling for metal analysis: A comparison of techniques. Geochimica et Cosmochimica Acta 49: 24932497.

Cummings, D. E., F. Caccavo, Jr., S. Fendorf and R. F. Rosenzweig (1999). Arsenic mobilization by the dissimilatory Fe (III)-reducing bacterium Shewanella alga BrY . Environmental Science and Technology 33: 723-729.

Danielson, R. E. and P. L. Sutherland (1986). Porosity. Physical and Mineralogical Methods. A. Klute. Madison, WI, Soil and Agronomy Societies of America. 1: 443-461.

Di Toro, D. M., J. D. Mahony, K. Hansen, J. Scott, A. R. Carlson and G. T. Ankley (1992). Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environmental Science and Technology 26: 96-101.

Harrington, J. M., S. E. Fendorf and R. F. Rosenzweig (1998). Biotic generation of arsenic(III) in metal(loid)-contaminated freshwater lake sediments. Environmental Science and Technology 32: 2425-2430.

Harrington, J. M., M. J. La Force, W. C. Rember, S. E. Fendorf and R. F. Rosenzweig (1998). Phase associations and mobilization of iron and trace elements in Coeur d'Alene Lake, Idaho. Environmental Science and Technology 32: 650-656.

Hesslein, R. H. (1976). An in situ sampler for close interval pore water studies. Limnology and Oceanography 21: 921.

Horowitz, A. J., K. A. Elrick and R. B. Cook (1992). Effect of mining-related activities on the sediment-trace element geochemistry of Lake Coeur d'Alene, Idaho, USA--Part 1:Surface sediments. USGS Open-File Report.92-109, 30

Horowitz, A. J., K. A. Elrick, J. A. Robbins and R. B. Cook (1993a). The effect of mining and related activities on the sediment-trace element geochemistry of Lake Coeur D'Alene, Idaho Part II: Subsurface sediments. USGS Open-File Report.93-656, 32

Koschorreck, M., I. Brookland and A. Matthias (2003). Biogeochemistry of the sedimentwater interface in the littoral of an acidic mining lake studied with microsensors and gel-probes. Journal of Experimental Marine Biology and Ecology 285-286: 71-84.

Kuwabara, J. S., W. M. Berelson, L. Balistrieri, P. F. Woods, B. R. Topping, D. J. Steding and D. P. Krabbenhoft (2000). Benthic flux of metals and nutrients into the water column of Lake Coeur d'Alene, Idaho: Report of an August, 1999, pilot study. Geological Survey Open-File Report.00-4132, 73

Kuwabara, J. S., J. L. Carter, B. R. Topping and S. V. Fend (2003). Importance of sedimentwater interactions in Coeur d'Alene Lake, Idaho: Management implications. Environmental Management 32: 348-359.

La Force, M. J., C. M. Hansel and S. Fendorf (2000). Constructing simple wetland sampling devices. Soil Science Society of America Journal 64: 809-811.

Leermakers, M., Y. Gao, C. Gabelle, S. Lojen, B. Ouddane, M. Wartel and W. Baeyens (2005). Determination of high resolution pore water profiles of trace metals in sediments of the Rupel River (Belgium) using DET (diffusive equilibrium in thin films) and DGT (diffusive gradients in thin films) techniques. Water Air And Soil Pollution 166: 265-286.

Li, Y.-H. and S. Gregory (1974). Diffusion of ions in sea water and in deep-sea sediments. Geochimica et Cosmochimica Acta 38: 703-714.

McKenzie, R. M. (1980). The adsorption of lead and other heavy metals on oxides of manganese and iron. Australian Journal of Soil Resources 18: 61-73.

Moore, J. N. (1994). Contaminant mobilization resulting form redox pumping in a metalcontaminated river-reservoir system. Environmental Chemistry in Lakes and Reservoirs, Atlanta, GE, American Chemical Society.

Morse, J. W. (1994). Interactions of trace metals with authigenic sulfide minerals: implication for their bioavailabililty. Marine Chemistry 461-2: 1-6.

Rothrock, G. (2004). Water quality data, Lake Coeur d'Alene, Idaho. G. R. Toevs. Coeur d'Alene, Idaho.

Ruby, M. V., A. Davis and A. Nicholson (1994). In situ formation of lead phosphates in soils as a method to immobilize lead. Environmental Science \& Technology 28: 646-654.

Scheckel, K. G., C. A. Impellitteri, J. A. Ryan and T. McEvoy (2003). Assessment of a sequential extraction procedure for perturbed lead-contaminated samples with and without phosphorous amendments. Environmental Science \& Technology 37: 18921898.

Shaw, T. J., J. M. Gieskes and R. A. Jahnke (1990). Early diagenesis in differing depositional environments: The response of transition metal in pore water. Geochimica et Cosmochimica Acta 54: 1233-1246.

Staff. (1994, 10 March 2003). Method 3052: Microwave assisted acid digestion of siliceous and organically based matrices. 3. Retrieved 01 January 2004, 2004, from http://www.epa.gov/epaoswer/hazwaste/test/pdfs/3052.pdf.

Stumm, W. and J. J. Morgan (1996). Aquatic chemistry: Chemical equilibria and rates in natural waters, John Wiley \& Sons.

Tessier, A., F. Rapin and R. Carignan (1985). Trace metals in oxic lake sediments: possible adsorption onto iron oxyhydroxides. Geochimica et Cosmochimica Acta 49: 183-194.

Toevs, G. R. (2006b). Metal(loid) cycling in mine-impacted sediments of the northern Idaho Coeur d'Alene River Basin; Chapter 2: Arsenic cycling in freshwater sediments of Lake Coeru d'Alene, Idaho. Soil and Land Resources. Moscow, Idaho, University of Idaho. Ph.D Soil Science.

Toevs, G. R., M. J. Morra, M. L. Polizzotto, D. G. Strawn, B. C. Bostick and S. Fendorf (2006a). Metal(loid) diagenesis in mine-impacted sediments of Lake Coeur d'Alene, Idaho. Environmental Science \& Technology 40: 2537-2543.

Ullman, W. J. and R. C. Aller (1982). Diffusion coefficients in nearshore marine sediments. Limnology and Oceanography 27: 552-556.

Whitman, C. T. (2002). National recommended water quality criteria: 2002. EPA. Washington, D.C., Office of Water, Office of Science and Technology: 36.

Winowiecki, L. (2002). Geochemical Cycling of Heavy Metals in the Sediment of Lake Coeur d'Alene, Idaho. Soil Science. Moscow, Idaho, University of Idaho. M.S.: 196.

Woods, P. F. and M. A. Beckwith (1997). Nutrient and trace-element enrichment of Coeur d'Alene Lake, Idaho. U.S. Geological Survey USGS Water-Supply Paper.2485, 129Balistrieri, L. (1998). Preliminary estimates of benthic fluxes of dissolved metals in Coeur d'Alene Lake, Idaho. Seattle, WA, U.S. Geological Survey: 40.

## CHAPTER 4

# Seasonal Redox Changes and Impact on Stability of Mine-Waste, Lower Coeur d'Alene River, Idaho 


#### Abstract

The Coeur d'Alene Mining district is world-class in the production of numerous metals, but this mining legacy has contaminated broad areas of the Coeur d'Alene River floodplain and Lake Coeur d'Alene. The potential for eutrophication to promote dissolution of the mine-wastes within the lake sediments and subsequent diffusion of the contaminants to the overlying water is of great concern. Our objective was to determine the impact reduction potential has on dissolved trace metal concentrations and therefore, the potential to degrade water quality. A pond was located with similar solid-phase contamination as found in the lake sediments. We monitored dissolved metals in the interstitial water during an annual cycle by analyzing seasonal samples collected with equilibrium dialyzers. Surface and bottom water samples were also collected and analyzed. The analytical results were unexpected as all monitored, dissolved trace-metal concentrations in the interstitial water were lower than levels observed in Lake CDA, which has a continuously oxic sediment-water interface. Dissolved Pb in the pond sediments was only $7.1 \%$ that found in the lake sediments, 10.10 and $141.9 \mu \mathrm{~g} \mathrm{~L}$-1 , respectively, and Zn was only $3.5 \%$ of the Lake maximum, 18.88 and 530.5 $\mu \mathrm{g} \mathrm{L}^{-1}$, respectively. However, Zn concentrations in the surface water of the pond experienced


shifts covering two orders of magnitude, 78 to $8688 \mu \mathrm{~g} \mathrm{~L}^{-1}$, respectively, and the bottom water concentrations were typically greater than those found in the lake. When compared to Lake Coeur d'Alene, conditions in this mine-waste impacted pond increased some dissolved metal concentrations in the overlying water, but substantially lower concentrations of dissolved metals were found in the sediment interstitial water. This study therefore strongly implicates reductive dissolution of the oxic cap when buried by additional sediment as the source of dissolved contaminants in the lake sediments and confirms the paramount importance of minimizing future transport of mine-waste sediments to the lake.

## INTRODUCTION

The Coeur d'Alene Mining district is one of the richest sources of lead, zinc, silver and antimony in the world. Mining began in the late 1800's and by 1983 extensive contamination from mining activities led to the establishment of a $54-\mathrm{km}^{2}$ Superfund site, which as of that date was the largest site established. The mine wastes were not confined to the Superfund site as a large portion of the material, the mill slimes, had been deposited directly into the South Fork of the Coeur d'Alene River. These sediments were simultaneously and subsequently transported down the entire length of the Coeur d'Alene River and into Lake Coeur d'Alene. The ores in the Coeur d'Alene mining district are mostly sulfides of silver, lead, and iron with interlaced arsenic, antimony, cadmium, cobalt, and mercury (Sprenke et al. 2000). In 1993 Horowitz et al. (1993) confirmed that 85 million metric tons of these mine-wastes had been transported to Lake Coeur d'Alene (CDA) and were residing in the lakebed sediments. The potential for these sediments to contaminate the overlying water, which with the exception of Zn typically meets the EPA guidelines for freshwater lakes, has resulted in numerous publications and extensive studies.

One of the major concerns is that eutrophication will potentially release metal(loid) contaminants (Woods et al. 1997) by eliminating the oxic zone present at the sediment water interface (SWI). It is proposed that suboxic and anoxic conditions will promote reductive dissolution of solid materials that currently scavenge metal(loid)s and prevent them from entering the overlying water. Our goal was to first locate a small body of water contaminated by mine waste similar to that contained in Lake CDA sediments, but possessing an oxic interface for only a portion of the year. The interstitial water would then be monitored through an annual cycle to determine concentration changes of dissolved metals, and therefore the effect redox changes had on mine-waste stability. Because of extensive contamination and the presence of numerous wetland areas, the lower CDA River floodplain is a suitable area to consider for a monitoring site.

The lower 42 km of the CDA River is a broad floodplain that appears to be the remnants of a once much larger glacial lake. This section of the river is deep and slow with a gradient of only $0.19 \mathrm{~m} \mathrm{~km}^{-1}$. Mill slimes contaminating the CDA River are quite susceptible to redistribution because of their very uniform particle size, with the $<0.125-\mathrm{mm}$ fraction composing up to $90 \%$ of the sample (Sprenke et al. 2000). For example, the tremendous input of mill slimes from the South Fork of the Coeur d'Alene River to the main stem of the CDA River reduced the river depth at one monitored location from 12-15 m in 1910 to 3-5 m in 1930. Consequently, frequent and episodic flood events transported and distributed this reservoir of contaminants in the river, throughout the flood plain, and into the numerous small lakes and wetland areas which are common features of this ecosystem. We established a monitoring site in a pond where there were indicators of active redox cycling to quantify changes in soluble metal concentrations within the sediment and the overlying water. Our
objective was to use this simulation as a means to predict what might occur in Lake CDA should it become eutrophic and anaerobic.

## MATERIALS AND METHODS

## Sample Site.

A sample site was chosen near the center of a wetland located on Mike Schlepp's farm near Medimont, Idaho. The owner of the surrounding farm ground indicated the site has been continuously inundated since the early 1900's when the Post Falls dam was constructed, which is important for replicating sediment conditions similar to that of Lake (CDA). The water depth fluctuated from 1 meter in the early spring, to 2 meters throughout the summer, and decreased to 1 meter again in the late fall. Prior to establishing the site, sediment contamination and dissolved metal concentrations in the interstitial water from three locations within the wetland were compared. There were only minor differences in the contaminant levels and dissolved metals, indicating that a wetland with uniform contamination and geochemistry had been located.

## Materials.

All chemicals were reagent grade and used without further purification. Solutions were prepared using distilled, deionized water. All sampling containers and labware were cleaned with $2 \% \mathrm{HCl}$, soaked in $1 \% \mathrm{HNO}_{3}$, and thoroughly rinsed with deionized water prior to use. Analytical standards and quality assurance standards for ion chromatography (IC) and inductively coupled plasma-atomic emission spectroscopy (ICP) were purchased. Standard Reference Material 2711 from the National Institute of Standards and Technology (Gaithersburg, MD) was used as the total metals standard for the acid digests. Acids used for total metals were all trace-metal grade (Fisher Scientific, Pittsburgh, PA).

## Equilibrium Dialyzers and Overlying Water Samples.

Interstitial water was collected in situ utilizing Plexiglas equilibrium, dialysis samplers (Hesslein 1976). The dialyzers contained two rows of $25,10-\mathrm{mL}$ compartments milled on $1.5-\mathrm{cm}$ centers. The compartments were covered with $0.2-\mu \mathrm{m}$ Osmonics nylon membrane (Westborough, MA), nylon tulle netting, and a matching cover plate held in place with nylon screws. The dialyzers were inserted vertically into the sediments from a Cataraft (Aire-Ocelot, Boise, ID) using a template to stabilize the dialyzer during placement, a landing board attached to the template to assure uniform depth placement, and interconnected sections of steel tubing that were adjustable for the depth of the overlying water. Rope was attached to the dialyzer to assist in placement and tied off to a buoy to aid in retrieval. The dialyzers were allowed to equilibrate for 4 weeks, a time deemed appropriate based on field and laboratory studies (Balistrieri 1998; La Force et al. 2000; Winowiecki 2002).

Upon retrieval, the dialyzers were transferred to shore and immediately processed on location or in an enclosure located a short distance from the sample site. We removed samples from adjacent dialyzer cells in rapid sequence using a $10-\mathrm{mL}$ syringe and expressed them into a $15-\mathrm{mL}$ HDPE sample vial. Three milliters of the total volume were immediately removed using the same syringe. A lure lock cation exchange cartridge (OnGuard II, Dionex, Sunnyvale, CA) was installed, 2 mL was dispensed to condition the cation-exchange cartridge, and 1 mL was placed in a HDPE vial for anion analysis. Another 3 ml was immediately removed and placed in a 5-mL PPE sample vial (Perfector Scientific, Atascadero, CA ) where it was stored under $\mathrm{N}_{2}$ gas on ice packs until titrated for alkalinity. The remaining sample in the $15-\mathrm{mL}$ HDPE vial was acidified with 0.075 mL of trace metal grade HCl to maintain a pH of less that 2.5 in preparation for metal(loid) analysis by ICP-

AES or ICP-MS. All samples were stored on ice until returning to the laboratory where they were maintained at $4{ }^{\circ} \mathrm{C}$ until analysis.

Overlying water samples were collected by submerging acid-washed and rinsed, 250mL HDPE bottles beneath the water surface, removing the cap, and allowing the bottle to fill. The bottom water samples were collected by using an acid-washed and rinsed, $10-\mathrm{cm}$ by $50-$ cm polycarbonate core tube and the coring device described below. The air-tight piston was placed flush with the exposed end of the core tube to prevent the capture of surface water. The coring device was lowered until contact was made with the sediment, at which time the air-tight piston was drawn into the core tube to the half-way mark, filling the core tube with bottom water. The coring device was then inserted into the sediment while simultaneously pulling the piston through the remainder of the core tube. The partial sediment core prevented loss of the bottom water while pulling the coring device to the surface, and the piston prevented mixing the bottom water sample with the overlying water. Once the coring device was at the surface, the piston was removed and the bottom water decanted into a $250-\mathrm{mL}$, acid-washed HDPE bottle. The water samples were immediately transferred to the processing site where they were syringe-filtered with a $2-\mu \mathrm{m}$ membrane and preserved for analytical analysis as described above.

## Sediment Cores.

Sediment cores were collected in polycarbonate tubes with a diameter of 10 cm and a length of 50 cm . The tubes were modified to securely attach to a coring device by drilling a $1-\mathrm{cm}$ hole through the tube diameter and inserting a $1-\mathrm{cm}$ by $12-\mathrm{cm}$ head bolt secured with a hair-pin clip to an insertion assembly attached to sections of quick connect core tube extensions (AMS, American Fall, ID). The core tube extensions allowed adjustment for the
depth of the overlying water. Once the core tube was secure, a rope ( 1 m longer than the length of the steel tubing) with a traveling air-tight piston attached was fed through the open end of the core tube, through an opening in the insertion assembly, and secured to the end of the steel tubing to allow easy access. The entire coring device was then lowered in a vertical fashion until contact with the sediment was made. The core tube was then pushed into the sediment while simultaneously pulling the rope, which in turn pulled the air-tight piston. When the piston had traveled the length of the core, the device was returned to the surface in a vertical motion, with the air-tight piston holding the core in place. As the lower end of the core cleared the surface of the water, a Fernco style Quickcap (Davison, MI) was placed over the exposed end and secured. The insertion assembly was then removed from the upper end of the tube, the air-tight piston was removed with care taken not to elongate the core, another Fernco-style Quickcap was placed and secured, and the holes used to insert the headpin were covered with duct tape to prevent spillage and to maintain the redox condition of the core. The cores were stored on ice under $\mathrm{N}_{2}$ until they were sectioned in an anaerobic glovebox in the laboratory. Throughout the core retrieval, storage, and transport processes every effort was made to maintain a vertical orientation. Once in the laboratory, the cores were transferred to an $\mathrm{N}_{2}$-filled glove box and extruded from the coring tubes with care taken to avoid compaction or elongation. Cores were sub-sectioned at the appropriate depths and homogenized samples placed in acid-washed HDPE vials. The vials were frozen until analysis. The insertion tool for the dialyzers and the coring assembly were designed and built specifically for this project.

## Analytical Methods.

Frozen, homogenized core sub-sections were thawed, transferred to acid-washed crucibles, and dried at $90^{\circ} \mathrm{C}$ until stable weights were achieved. The dry samples were cooled in a vacuum desiccator, ground with a mortar and pestle, transferred to $10-\mathrm{mL}$ polyethylene vials, and stored in a vacuum desiccator except when removed to transfer an accurately weighed sample to a digestion container. Samples were microwave-digested with a 9:2:3 ratio of $\mathrm{HNO}_{3}, \mathrm{HCl}$, and HF in accordance with EPA method 3052 (Staff 1994). Recovery precision and accuracy, performed in triplicate on the Standard Reference Material 2711, indicated a relative standard deviation (RSD) of less than 3\% and extraction efficiency greater than $90 \%$ for the data presented. Triplicate unknown samples were run in each batch digestion and the RSD was generally less than $5 \%$. The digests were filtered using a $0.2-\mu \mathrm{m}$ Gelman IC Acrodisc syringe filter (Ann Arbor, MI) and volumetrically diluted to 50 mL in preparation for analysis.

Anion concentrations were determined using a Dionex 500DX Ion Chromatograph fitted with an AS18 Ion Pac column, an AG18, 4-mm guard column, and a MFC-1 Metal Trap. The flow rate was $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$ of a 100 mM KOH eluent. A gradient method was used to improve peak separation and decrease elution time. The samples were preserved at $4{ }^{\circ} \mathrm{C}$ under $\mathrm{N}_{2}$ gas until transferred to auto-sampler vials. Standards were included with the unknowns to monitor calibration and drift and analysis was complete within 24 hours.

Dissolved metal(loid) analyses were performed on a Thermal Jarrell Ash ICP-AES. The reported values are the average of three replicates. Detection limits for each element were calculated at two times the standard deviation of the low standard. The RSD, as determined by running a standard 10 times, calculating the average, and dividing it into the
standard deviation, was less than $4 \%$ across all analyses. Standards were run every 15 samples to verify calibration and were also included in the unknowns to monitor drift. Dissolved trace-metal analyses were performed on a HP 4500 ICP-MS with a flow rate of 0.5 $\mathrm{mL} \mathrm{min}{ }^{-1}$ and a dilution of $5: 1$ via peristaltic pumps. The reported concentrations are the average of three replications from each sample. In order to avoid airborne contamination, ICP-MS sample preparation took place in a positive-pressure clean hood and the autosampler was housed in a HEPA enclosure. Detection limits were calculated at two times the standard deviation of the low standard.

## Seasonal Deployments.

To meet the objective of monitoring contaminant stability under varying redox conditions, a sampling sequence was established to capture changing pond conditions. The first deployment took place in February 2004 when the pond was covered with ice and snow and the water level was near the annual minimum. Retrieval took place in March when we simultaneously deployed the second set of dialyzers. The ponds were ice free, the water level had risen slightly, but the ponds were generally devoid of macrophyte growth. The April retrieval and simultaneous deployment found the ponds had increased in depth by approximately 0.5 m since February and some macrophyte growth had extended to the pond surface. It was during this April event when additional sediment cores were removed and preserved for total metal analysis. The May retrieval and simultaneous deployment took place under very similar pond levels as April but macrophytes were becoming abundant and high water clarity allowed us to observe turtles, fish, and muskrats. The June retrieval found the ponds at full pool, about 1.2 m above the February level. The ponds were teaming with aquatic activity, emerging pond grasses, and moss growth at the surface and at depth was
apparent. The fifth deployment took place in July when the pond remained at full pool, but with macrophyte, pond grasses, and moss in such abundance that maneuvering the cataraft was difficult. During the August retrieval, the pond level had declined slightly, but vegetation had continued to grow in such abundance that maneuvering to the sample site and sample retrieval were challenging. The September deployment took place with similar water levels as observed in August and pond grasses had extended their growth to approximately 1 m above the water surface, but other vegetation was not as abundant. The water level in the ponds during the November retrieval had declined approximately 0.75 m from full pool and macrophytes and pond grasses were in the advanced stages of senescence allowing easy navigation in the pond.

## RESULTS AND DISCUSSION

## Element Abundance.

Total metal digests of cores collected from Schlepp Pond found the sediments were substantially enriched in $\mathrm{As}, \mathrm{Cd}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Fe}, \mathrm{Mn}$, and S when compared to non-mine impacted sediments of lower CDA basin (Horowitz et al. 1993a; Toevs et al. 2006a). Contamination levels were equal to or greater than those found during a previous monitoring project of the contaminated sediments of Lake CDA (Table 4.1). Median total Cd and Zn concentrations in the sediment of the pond are double, total Pb is approximately $30 \%$ greater, and total S concentrations are over twice as high as Lake CDA sediments. The reported values are in general agreement with other studies that quantified mine-waste material that has been transported to the lateral lakes in the lower CDA River basin (Sprenke et al. 2000) and to Lake CDA (Horowitz et al. 1992; Horowitz et al. 1993a).

Table 4.1. Elemental analysis of acid-digested sediments from 2, depth averaged Schlepp Pond cores and averaged concentrations from two Lake Coeur d'Alene mine-waste impacted sites. The cores from Schlepp Pond were collected in April of 2004 and Lake Coeur d'Alene cores were collected in May of 2002. Analyses were performed using ICP-AES.

| Statistic | Element (mg kg ${ }^{-1}$ ) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | As | Cd | Fe | Mn | Pb | S | Zn |
| Schlepp Pond Site |  |  |  |  |  |  |  |
| Range | 51-298 | 26-103 | 66 900-103000 | 622-103 | 4280-15100 | 5590-11100 | 3750-11000 |
| Median | 145 | 58.6 | 89200 | 794 | 5440 | 8860 | 7260 |
| Mean | 171 | 61.5 | 87300 | 807 | 739 | 8700 | 7380 |
| $\pm$ SD ( $\mathrm{n}=16$ ) | 88.5 | 18.6 | 10800 | 113 | 398 | 1570 | 2270 |
| Lake Coeur d'Alene Contaminated Sites, Averaged |  |  |  |  |  |  |  |
| Range | 94-451 | 15-44 | 36400-116000 | 3600-10600 | 1620-6490 | 1 12-6450 | 2 290-4 080 |
| Median | 157 | 25.6 | 80477 | 6540 | 4130 | 3700 | 3370 |
| Mean | 193 | 27.5 | 82311 | 6870 | 4010 | 3420 | 3300 |
| $\pm$ SD ( $\mathrm{n}=34$ ) | 99.4 | 6.56 | 17488 | 1990 | 1110 | 1230 | 474 |

## Seasonal Redox Environment.

The redox boundaries were determined by the presence or absence of $\mathrm{NO}_{3}{ }^{-}, \mathrm{Mn}, \mathrm{Fe}$, and $\mathrm{SO}_{4}{ }^{2-}$ in the sediment interstitial water following the description of Froelich (Froelich et al. 1979). This method requires accurate identification of the sediment-water interface (SWI) defined as zero in the presentation of all dissolved species data. This boundary was determined by recording the residual sediment line on the dialyzer when retrieved and verifying this position by overlaying the analytical data to verify water-column and subsurface dissolved concentration trends. The data presented in Figure 4.1, A-F are the average of three equilibrium dialyzers for each deployment.


Figure 4.1, A-F. Profiles from averaged concentrations of redox sensitive species present in the interstitial water from six seasonal deployments in Schlepp Pond during 2004. Nitrate and $\mathrm{SO}_{4}{ }^{2 \cdot}$-S were analyzed by IC and Mn and Fe were analyzed by ICP-AES. The average is from three equilibrium dialyzers.

The March data (Figure 4.1, A) show no $\mathrm{NO}_{3}-\mathrm{N}$, the highest $\mathrm{SO}_{4}{ }^{2-}-\mathrm{S}$ levels recorded in the sediments during this study, and relatively low levels of Mn and Fe when compared to the subsequent months. The dissolved concentrations of both Mn and Fe vary little with depth indicating that the reduction potential was uniform throughout the sampled profile. A possible explanation for the observed concentrations of redox-active species is that deployment took place while the surface of the pond was ice covered. This ice cover restricted oxygen diffusion and low temperatures limited microbial activity.

The only deployment in this series where $\mathrm{NO}_{3}-\mathrm{N}$ was detected in the overlying water column was April (Figure 4.1, B), indicating that the SWI was less reduced than at other sampled times of the year, and possibly even oxic. Manganese and Fe both decreased at the SWI indicating the likely formation of oxyhydroxides in this oxic zone, but dissolved Fe increased deeper in the profile when compared to the March data indicating microbial activity was utilizing this terminal electron acceptor (TEA).

Nitrate was not detected in the May samples (Figure 4.1, C), but $\mathrm{SO}_{4}{ }^{2-}-\mathrm{S}$ was above detection limits through most of the profile, indicating a sulfate input, internal production by way of mineralization was greater than utilization, or that the sediments were poised above the $\mathrm{SO}_{4}{ }^{2-}$ reduction potential during this period. All of these scenarios may be contributing as the ponds continued to increase in depth from the influx of well-oxygenated CDA River water. Manganese and Fe continued to increase deeper in the sediments, not only indicating additional availability, but also continued demand as a TEA. The June data (Figure 4.1, D) were very similar to those of May except for the absence of $\mathrm{SO}_{4}{ }^{2-}$ deeper in the sediments suggesting that the ratio of $\mathrm{SO}_{4}{ }^{2-}$ utilization as a TEA to any inputs had increased. This June
retrieval occurred when the ponds had reached their maximum depth and vegetative growth was rapidly increasing.

In August, both $\mathrm{NO}_{3}^{-}-\mathrm{N}$ and $\mathrm{SO}_{4}{ }^{2-}-\mathrm{S}$ were absent at the SWI and concentrations were near detection limits throughout the profile (Figure 4.1, E). Dissolved Mn concentrations were comparable to both May and June, but dissolved Fe concentrations had increased. The feature of the August profile that is significant is the return to the nearly vertical shape of dissolved Mn and Fe profiles that were observed in March, indicating uniform reducing conditions in the sediments from the SWI to 26 cm .

The November (Figure 4.1, F) samples showed large increases in dissolved Mn and Fe , a trend counterintuitive to what would be expected as sediment temperatures are expected to decrease microbial activity. One possibility for this increase is plant senescence, which would provide a large, readily available carbon source for the microbial community and also readily reducible iron oxyhydroxides that had accumulated at the soil-root interface of the aquatic plants during the summer months. Another notable feature of the November profiles is the presence of $\mathrm{SO}_{4}{ }^{2-}-\mathrm{S}$ from the SWI to the maximum sampled depth as might be expected if oxyhydroxides poise the redox potential and decrease $\mathrm{SO}_{4}{ }^{2-}-\mathrm{S}$ utilization.

The analytical data for these redox-sensitive elements show that the ponds display significant changes in the reduction potential but only a brief interval when an oxic SWI was possibly present between the March deployment and the April retrieval. This brief oxic SWI was inferred not only by the presence of $\mathrm{NO}_{3}-\mathrm{N}$ at the interface and in the overlying water, but also because we observed an orange Fe-like precipitate in the first 2 to 3 cells below the SWI of each dialyzer when retrieved from the pond sediments in April. Iron precipitation always occurred inside the cells after sample removal and exposure to $\mathrm{O}_{2}$, however no other
deployment found Fe already precipitated in the cells prior to removal from the sediments. Thus, the presence of Fe at the SWI in March (Figure 4.1, A) and the presence of $\mathrm{NO}_{3}{ }^{-}-\mathrm{N}$ in April (Figure 4.1, B) support the theory that dialyzer placement took place when the sediments were Fe-reducing at the SWI (March), but during the ensuing equilibration period the surface sediments became oxic. This increase in redox potential caused the precipitation of the dissolved Fe that had already diffused into the sample cell, resulting in the orange precipitate. These seasonal redox changes at the SWI provide the context in which to explain changes in dissolved trace-metal concentrations.

## Dissolved Trace Metal Profiles.

The seasonal deployments described above were designed to monitor the stability of metals in these contaminated sediments under changing redox conditions. Prior research in Lake CDA suggested (Horowitz et al. 1995; Woods et al. 1997) that most trace elements were associated with an operationally defined Fe -oxide phase that would be unstable if placed in an Fe-reducing environment. As the CDA River and floodplain are the point source for the contaminated lake sediments, these pond sediments, which lie within this flood plain, should serve as an excellent proxy for the lake sediments. Therefore, the ICP-MS trace-metal analytical results (Figure 4.2, A-E) indicating concentrations of dissolved metals were dramatically less than those found in Lake CDA sediments (Toevs 2006c) were unexpected.


Figure 4.2, A-F. Profiles of dissolved metal concentrations in the interstitial water from Schlepp Pond. Figures A-E are from June 2004 and June 2005 samples analyzed by ICP-MS. Figure F is the average dissolved Zn concentration for six seasonal deployments in 2004 analyzed by ICP-AES. The averages in Figure F are from three equilibrium dialyzers from each deployment.

Cadmium (Figure 4.2, A) was always below the detection limit $\left(0.78 \mu \mathrm{~g} \mathrm{~L}^{-1}\right)$ in the pond samples compared to a maximum of $4.02 \mu \mathrm{~g} \mathrm{~L}^{-1}$ in Lake CDA interstitial waters (Toevs 2006c). Copper (Figure 4.2, B) was also often below the detection limit ( $0.67 \mathrm{gg} \mathrm{L}^{-1}$ ), having a maximum concentration of $1.37 \mu \mathrm{~g} \mathrm{~L}^{-1}$ compared to the lake maximum of $2.04 \mu \mathrm{~g} \mathrm{~L}^{-1}$. The maximum Ni concentration in the pond was $1.70 \mu \mathrm{~g} \mathrm{~L}^{-1}$ (Figure 4.2, C) compared to the lake interstitial water maximum of $4.72 \mu \mathrm{~g} \mathrm{~L}$. . Maximum dissolved Pb concentrations in the pond sediments (Figure 4.2, D) were only $7.1 \%$ of the lake maximum, 10.10 and $141.9 \mu \mathrm{~g} \mathrm{~L}^{-1}$, respectively. When the June pond samples are compared to the May lake samples, Zn
concentrations (Figure 4.2,E) were similarly different with the maximum pond concentration only $3.5 \%$ of the lake maximum, 18.88 and $530.5 \mu \mathrm{~g} \mathrm{~L}^{-1}$, respectively.

Less damaging biotic effects are anticipated in Schlepp Pond sediments compared to Lake CDA sediments as result of lower maximum concentrations of dissolved metals in the pond interstitial waters. Lake CDA interstitial water concentrations generally exceeded the Criterion Continuous Maximum (CCC) established by the EPA for freshwater biota (Whitman 2002) by several orders of magnitude, but the June interstitial water concentrations in Schlepp Pond, with the exception of Pb , were close to the values considered nonthreatening for aquatic biota. It is therefore probable that the differences in dissolved metals is responsible for the lack of benthic activity in Lake CDA sediments and the abundance of activity in these pond sediments. Additionally, the large difference in soluble As concentrations within the interstitial waters is a probable contributing factor to the observed difference in benthic activity, with maximum concentrations of $1211 \mu \mathrm{~g} \mathrm{~L}^{-1}$ observed for Lake CDA (Toevs 2006b) and $14 \mu \mathrm{~g} \mathrm{~L}^{-1}$ for Schlepp Pond (Figure 5.67).

Another noticeable difference is the lack of distinct concentration maxima in the Schlepp Pond profiles when compared to the Lake CDA profiles. Lake CDA commonly showed maxima for $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}$, and Zn at the oxic-suboxic boundary, which we explained as reductive dissolution of Fe and Mn oxyhydroxides transitioned to lower depths by depositional events (Toevs 2006c). Iron and Mn oxyhydroxides sorbed soluble metals at the continuously oxic SWI and released these metals when buried, thus producing a maximum at the point of reductive dissolution. Lower metal concentrations at deeper depths resulted from anoxic conditions and the formation of iron sulfide precipitates acting as sorbents. Although a slight hint of maxima exist for Pb and Zn (Figure 4.2, D-E), we observed no consistent
evidence that similar processes were occurring in Schlepp Pond sediments. We explain this difference by the fact that an oxic SWI existed for only a brief time during the March deployment, thus there was no extended accumulation phase for the metals during the remainder of the year when the SWI was either Fe - or $\mathrm{SO}_{4}{ }^{2-}$-reducing. In addition, the lack of burial events on a routine basis prevents this sequential sorption-release cycle to occur within the pond sediments.

Our ability to monitor the stability of these contaminated sediments through various redox environments was thus hindered because of two factors, the first of which was the brief period of oxic conditions at the SWI. Secondly, the only element in the interstitial water that was consistently above detection limits on the ICP-AES was Zn . We have presented the Zn profiles for the six seasonal deployments in Figure 4.2, F. Zinc concentrations vary throughout the six deployments from a high of $200.5 \mu \mathrm{~g} \mathrm{~L}^{-1}$ in March, which is approximately six times the average, to a low in June when Zn is occasionally below the detection limit of $3.0 \mu \mathrm{~g} \mathrm{~L}^{-1}$. Additionally, the April samples indicated Zn began to accumulate in the interstitial water at 1.5 cm and exceeded $100 \mu \mathrm{~g} \mathrm{~L}^{-1}$ at the SWI. This sequence may be the result of the oxic conditions experienced during the March deployment. The November to March sequence deserves additional comparison even though these sampling events are not sequential.

As previously described, the November $\mathrm{SO}_{4}{ }^{2-}-\mathrm{S}$ profile along with the largest soluble Mn and Fe concentrations (Figure 4.1, F) imply that Fe and Mn oxyhydroxides associated with plant roots are being reduced and that the sediments appear poised in redox at the level of Fe and Mn reduction. In March when the pond is ice covered, $\mathrm{SO}_{4}{ }^{2-}$ continues to accumulate in the interstitial water and soluble Fe and Mn concentrations vary little from the

SWI to the maximum sampled depth, indicating suboxic conditions throughout the sediments.
During this same period, Zn is released to the dissolved phase reaching its maximum in the March sample, but Fe is decreasing, reaching its seasonal minimum at this point.

Bostick et al. (2001) showed that oxidation and reduction reactions play a major role in Zn partitioning among various solid phases in CDA mine-wastes, despite the fact that Zn itself is not redox active. Additional investigations by Hansel et al. (2001) clearly demonstrated that plant roots greatly influence Zn partitioning, because of reactions occurring in the rhizosphere. It is possible that Zn associates with Fe oxyhydroxides formed in the rhizosphere of the wetland plants, and as such we would expect a concurrent release of Zn in November during the time when maximum Fe dissolution occurs. As this is not the case, Zn release must be a function of the dissolution of other solid phases. The observation that maximum soluble Zn is produced during March when Fe concentrations are at a minimum and $\mathrm{SO}_{4}{ }^{2-}-\mathrm{S}$ concentrations are at a maximum (Figure 4.1, A), suggests the source of Zn cannot be Fe oxyhydroxides, but is possibly a reduced species undergoing oxidative dissolution. This would be consistent with a previous study which found Zn associated with sulfides and carbonates in flooded CDA tailings (Bostick et al. 2001), thus supporting our observations. Additionally, it is entirely possible that rhizosphere reactions play a role in this sequestration in that Zn has been shown to form metal carbonate nodules on the roots of the wetland plant Phalaris arundinacea (Hansel et al. 2001). We propose that wide fluctuations in soluble Zn concentrations result from changes in redox as they affect Zn -containing sulfides and carbonates associated with plant roots, thus playing a major role in this wetland system.

## Surface and Bottom Water Dissolved Metals.

In addition to the dissolved metals in the sediments, changes in dissolved metal concentrations in the overlying water column were monitored. Table 4.2, A show averaged values of dissolved Pb and Zn concentrations in the surface and bottom water samples from each deployment. The surface-water Pb concentrations were below the detection limit of 8.0 $\mu \mathrm{g} \mathrm{L}^{-1}$ for all months except June. When the June value is compared to the CCC for Pb of $0.07 \mu \mathrm{~g} \mathrm{~L}{ }^{-1}$, after adjustment for alkalinity of $5 \mathrm{mg} \mathrm{L}^{-1}$ of $\mathrm{CaCO}_{3}$, the Pb values exceed the adopted limit. When dissolved Pb concentrations in the bottom water samples were above detection limits, they also exceeded the CCC . The dissolved Zn concentrations in the surface samples from the seasonal deployments have two orders of magnitude in variation, all of which exceed the CCC of $8.96 \mu \mathrm{~g} \mathrm{~L}^{-1}$, after adjustment for alkalinity. The Zn bottom water concentrations are all within the same order of magnitude, but they too exceed the CCC. When the ICP-MS data for June of 2004 and June of 2005 are examined (Table 4.2, B), Cd values were always below the detection limit of $0.78 \mu \mathrm{~g} \mathrm{~L}^{-1}$ for both the surface and bottom water. The CCC for Cu is $0.69 \mu \mathrm{~g} \mathrm{~L}^{-1}$ after alkalinity adjustment, and is slightly exceeded for all samples. As with the seasonal data, Pb and Zn also exceeded the CCC for freshwater biota.

Table 4.2, A-B. Dissolved trace metal concentrations in the surface water and the bottom water in Schlepp Pond. Table 4.2, A displays averaged values of each seasonal deployment in 2004 for Pb and Zn analyzed by ICP-AES. Table 4.2, B displays the averaged values for five trace metals from the June 2004 and the June 2005 deployments analyzed by ICP-MS.

| Sample | Month |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | March | April | May | June | August | November |
| A |  |  |  |  |  |  |
|  | Seasonal Lead Concentration ( $\mu \mathrm{g} \mathrm{L}{ }^{-1}$ ) |  |  |  |  |  |
| Surface | $<8$ | $<8$ | $<8$ | 8.90 | $<8$ | $<8$ |
| Bottom | 10.560 | 19.5 | $<8$ | 9.20 | 22.6 | 32.4 |
| Seasonal Zinc Concentrations ( $\mu \mathrm{g} \mathrm{L}{ }^{-1}$ ) |  |  |  |  |  |  |
| Surface | 8680 | 472 | 95.0 | 78.0 | 41.9 | 75.4 |
| Bottom | 683 | 158 | 103 | 210 | 177 | 186 |
| Element ( $\mu \mathrm{g} \mathrm{L}^{-1}$ ) |  |  |  |  |  |  |
|  | Cd | Cu | Ni | Pb | Zn |  |
| B |  |  |  |  |  |  |
| June 2004 Deployment |  |  |  |  |  |  |
| Surface | 0.000 | 0.877 | 0.934 | 12.1 | 33.1 |  |
| Bottom | 0.000 | 0.908 | 1.62 | 28.6 | 250 |  |
| June 2005 Deployment |  |  |  |  |  |  |
| Surface | 0.000 | 0.811 | 0.865 | 12.6 | 28.30 |  |
| Bottom | 0.000 | 0.646 | 1.70 | 10.5 | 171 |  |

The dissolved metals concentrations for the surface and bottom water of Schlepp Pond show that for all elements except Zn , the concentrations are similar. The high concentrations of soluble Zn in the bottom waters of the pond and the very large changes in concentrations in March and April (Table 4.2, A) are striking. These fluctuations most likely reflect active redox cycling within this zone and the dynamic nature of Zn associations and partitioning with the solid phase (Bostick et al. 2001). In contrast, we did not observe analogous changes in the bottom and surface water for seasonal Pb concentrations (Table 4.2, A). Radically different partitioning of Pb in the rhizosphere of $P$. arundinacea was observed as compared to Zn with plants collected from the CDA floodplain (Hansel et al. 2001). Lead
was found to be complexed mainly to organic functional groups, and thus the redox cycling that influences Zn does not exert the same influence on Pb . Active redox cycling within the sediments of Schlepp Pond thus has dramatic effects on soluble Zn concentrations, but such changes are element-specific depending on the solid-phase component associations.

## Schlepp Pond and Lake Coeur d'Alene Comparisons.

The contaminated sediments of Schlepp Pond have similar sources as those deposited in Lake CDA and they are equally or more highly enriched in total metals. The most notable differences include median total Cd and Zn concentrations twice those of the Lake and a total Pb concentration approximately $30 \%$ higher. One other relevant elemental difference is a total $S$ concentration, which is more than twice that of Lake CDA sediments.

Despite the equivalent or higher levels of contamination, Schlepp Pond interstitial waters consistently contained lower dissolved metal concentrations than Lake CDA interstitial waters. In June 2004 and June 2005 deployments, we found lower dissolved Cd, Cu , and Ni , with Pb and Zn concentrations being only a fraction of those found in the Lake interstitial waters (Toevs 2006c). The influence of the oxic SWI on higher dissolved metal concentrations in Lake CDA sediments cannot be discounted, as dissolved metal concentrations in the pond sediments show little variation with depth indicating the sorption release processes observed in the Lake are absent. Additionally important is the concentration of $\mathrm{SO}_{4}{ }^{2-}$ observed in the ponds is twice that of the lake sediments. This additional $\mathrm{SO}_{4}{ }^{2-}$ would increase sulfide production potential in the anoxic zone and sorption of metals that have strong affinity for sulfur ligands (Balistrieri et al. 1994), thus lowering the dissolved metals in the pond. Finally, as Hansel et al. (2001) found, the root-sediment interface is dynamic and plays an active role in trace-metal sequestration, a process absent in the lake
sediments. Differences exist between the sedimentary environment of Lake CDA and Schlepp Pond, but our data confirm the stability of these mine-waste impacted sediments in Fe-reducing environments. Additionally, these data strongly implicate reductive dissolution of the oxic cap upon burial as the source of dissolved contaminants in the lake sediments and confirm the paramount importance of minimizing future transport of mine-waste sediments to the lake.

## ACKNOWLEDGEMENTS

Significant contributions to this research were made by Matthew J. Morra, Dan Strawn, and Doug Finkelnburg from the University of Idaho and Laurie Balistrieri, USGS, University of Washington.

## REFERENCES

Balistrieri, L. (1998). Preliminary estimates of benthic fluxes of dissolved metals in Coeur d'Alene Lake, Idaho. U.S. Geological Survey USGS Open-File Report.98-793, 40

Balistrieri, L. S., J. W. Murray and B. Paul (1994). The geochemical cycling of trace elements in a biogenic meromictic lake. Geochimica et Cosmochimica Acta 58: 39934008.

Bostick, B. C., C. M. Hansel, M. J. La Force and S. E. Fendorf (2001). Seasonal fluctuations in zinc speciation within a contaminated wetland. Environmental Science and Technology 35: 3823-3829.

Froelich, P. N., G. P. Klinkhammer, M. L. Bender, N. A. Luedtke, G. R. Heath, D. Cullen, P. Dauphen, D. Hammond, B. Hartman and V. Maynard (1979). Early oxidation of organic matter in pelagic sediments of the Eastern Equatorial Atlantic: Suboxic diagenesis. Geochimica et Cosmochimica Acta 43: 1075-1090.

Hansel, C. M., S. Fendorf, S. Sutton and M. Newville (2001). Characterization of Fe Plaque and Associated Metals on the Roots of Mine-Waste Impacted Aquatic Plants. Environmental Science and Technology 35: 3863-3868.

Hesslein, R. H. (1976). An in situ sampler for close interval pore water studies. Limnology and Oceanography 21: 921.

Horowitz, A. J., K. A. Elrick and R. B. Cook (1992). Effect of mining-related activities on the sediment-trace element geochemistry of Lake Coeur d'Alene, Idaho, USA--Part 1:Surface sediments. USGS Open-File Report.92-109, 30

Horowitz, A. J., K. A. Elrick, J. A. Robbins and R. B. Cook (1993a). The effect of mining and related activities on the sediment-trace element geochemistry of Lake Coeur D'Alene, Idaho Part II: Subsurface sediments. USGS Open-File Report.93-656, 32

Horowitz, A. J., K. A. Elrick, J. A. Robbins and R. B. Cook (1995). A summary of the effects of mining and related activities on the sediment-trace element geochemistry of Lake Coeur d'Alene, Idaho, USA. Journal of Geochemical Exploration 52: 135-144.

La Force, M. J., C. M. Hansel and S. Fendorf (2000). Constructing simple wetland sampling devices. Soil Science Society of America Journal 64: 809-811.

Sprenke, K. F., W. C. Rember, S. F. Bender, M. L. Hoffman, F. Rabbi and V. E. Chamberlain (2000). Toxic metal contamination in the lateral lakes of the Coeur d'Alene River valley, Idaho. Environmental Geology (New York) 36: 575-586.

Staff. (1994, 10 March 2003). Method 3052: Microwave assisted acid digestion of siliceous and organically based matrices. 3. Retrieved 01 January 2004, 2004, from http://www.epa.gov/epaoswer/hazwaste/test/pdfs/3052.pdf.

Toevs, G. R. (2006b). Metal(loid) cycling in mine-impacted sediments of the northern Idaho Coeur d'Alene River Basin; Chapter 2: Arsenic cycling in freshwater sediments of Lake Coeur d'Alene, Idaho. Soil and Land Resources. Moscow, Idaho, University of Idaho. PhD Soil Science.

Toevs, G. R. (2006c). Metal(liod) cycling in mine-impacted sediments of the northern Idaho Coeur d'Alene river basin, Chapter 3: Internal cycling and benthic flux of trace-metals in mine-waste impacted sediments, Lake Coeur d'Alene, Idaho. Soil and Land Resources. Moscow, Idaho, University of Idaho. PhD Soil Science.

Toevs, G. R. (2006d). Metal cycling in mine-impacted sediments of the Northern Idaho Coeur d'Alene River Basin, Chapter 4: Seasonal reduction potential impacts on stability of mine-waste, Lower Coeur d' Alene River, Idaho. Soil and Land Resources. Moscow, Idaho, University of Idaho. PhD Soil Science.

Toevs, G. R., M. J. Morra, M. L. Polizzotto, D. G. Strawn, B. C. Bostick and S. Fendorf (2006a). Metal(loid) diagenesis in mine-impacted sediments of Lake Coeur d'Alene, Idaho. Environmental Science \& Technology 40: 2537-2543.

Whitman, C. T. (2002). National recommended water quality criteria: 2002. EPA. Washington, D.C., Office of Water, Office of Science and Technology: 36.

Winowiecki, L. (2002). Geochemical Cycling of Heavy Metals in the Sediment of Lake Coeur d'Alene, Idaho. Soil Science. Moscow, Idaho, University of Idaho. M.S.: 196.

Woods, P. F. and M. A. Beckwith (1997). Nutrient and trace-element enrichment of Coeur d'Alene Lake, Idaho. U.S. Geological Survey USGS Water-Supply Paper.2485, 129Balistrieri, L. (1998). Preliminary estimates of benthic fluxes of dissolved metals in Coeur d'Alene Lake, Idaho. Seattle, WA, U.S. Geological Survey: 40.

## APPENDIX

## FIGURES FOR LAKE COEUR D'ALENE

## Redox Elements

## Replicates of Redox Elements



Figure 5.1. Replicate samples of nitrate-nitrogen from the control site, SJ. Samples are from May 2002 and analyzed by IC.


Figure 5.2. Replicate samples of nitrate-nitrogen from the two contaminated sites, HP and PP. Samples are from May 2002 and analyzed by IC.


Figure 5.3. Replicate samples of Mn from the control site, SJ and the contaminated, HP. Samples are from May 2002 and analyzed by ICP-AES.


Figure 5.4. Replicate samples of Mn from one contaminated site, PP and Fe from the control site, SJ. Samples are from May 2002 and analyzed by ICP-AES.


Figure 5.5. Replicate samples of Fe from the two contaminated sites, HP and PP. Samples are from May 2002 and analyzed by ICP-AES.


Figure 5.6. Replicate samples of Fe from the two contaminated sites, HP and PP. Samples are from May 2002 and analyzed by ICP-AES.


Figure 5.7. Replicate samples of Fe from the two contaminated sites, HP and PP. Samples are from May 2002 and analyzed by ICP-AES.

## Redox Element Profiles, Averaged Data



Figure 5.8. Redox profile of the control site, SJ, established from the presence or absence of TEA. The data are the average of replicate samples collected in May 2002.


Figure 5.9. Redox profile of the two contaminated sites, HP and PP, established from the presence or absence of TEA. The data are the average of replicate samples collected in May 2002.

## Dissolved Metal(loids), ICP-MS

## St. Joe Site



Figure 5.10. Replicate samples of As and Cd from the control site, SJ. Samples are from May 2002 and analyzed by ICP-MS.


Figure 5.11. Replicate samples of Cu and Ni from the control site, SJ. Samples are from May 2002 and analyzed by ICP-MS .


Figure 5.12. Replicate samples of Pb and Zn from the control site, SJ. Samples are from May 2002 and analyzed by ICP-MS.


Figure 5.13. Replicate samples of As and Cd from one contaminated site, HP. Samples are from May 2002 and analyzed by ICP-MS.


Figure 5.14. Replicate samples of Cu and Ni from one contaminated site, HP. Samples are from May 2002 and analyzed by ICP-MS.


Figure 5.15. Replicate samples of Cu and Ni from one contaminated site, HP. Samples are from May 2002 and analyzed by ICP-MS.

Peaceful Point Site


Figure 5.16. Replicate samples of As and Cd from one contaminated site, PP. Samples are from May 2002 and analyzed by ICP-MS.


Figure 5.17. Replicate samples of Cu and Ni from one contaminated site, PP. Samples are from May 2002 and analyzed by ICP-MS.


Figure 5.18. Replicate samples of Cu and Ni from one contaminated site, PP. Samples are from May 2002 and analyzed by ICP-MS.

## FIGURES FOR SCHLEPP POND

## Redox Elements

## Replicates of Redox Elements



Figure 5.19. Triplicate samples of nitrate-nitrogen from the March, 2004 deployment in Schlepp Pond.


Figure 5.20. Triplicate samples of nitrate-nitrogen from the April and May, 2004 deployments in Schlepp Pond.


Figure 5.21. Triplicate samples of nitrate-nitrogen from the June and August, 2004 deployments in Schlepp Pond.


Figure 5.22. Triplicate samples of nitrate-nitrogen from the November 2004 and June 2005 deployment in Schlepp Pond.


Figure 0.23. Triplicate samples of Mn from the March and April, 2004 deployment in Schlepp Pond.


Figure 5.24. Triplicate samples of Mn from the May and June, 2004 deployment in Schlepp Pond.


Figure 5.25. Triplicate samples of Mn from the August and November, 2004 deployment in Schlepp Pond.


Figure 5.26. Triplicate samples of Mn from the June, 2005 deployment in Schlepp Pond.


Figure 5.27. Triplicate samples of Fe from the March, 2004 deployment in Schlepp Pond.


Figure 5.28. Triplicate samples of Fe from the April and May, 2004 deployments in Schlepp Pond.


Figure 5.29. Triplicate samples of Fe from the June and August, 2004 deployments in Schlepp Pond.


Figure 5.30. Triplicate samples of Fe from the November, 2004 and June, 2005 deployments in Schlepp Pond.


Figure 5.31. Triplicate samples of sulfate-sulfur from the March and April, 2004 deployments in Schlepp Pond.


Figure 5.32. Triplicate samples of sulfate-sulfur from the May and June, 2004 deployments in Schlepp Pond.


Figure 5.33. Triplicate samples of sulfate-sulfur from the August and November, 2004 deployments in Schlepp Pond.


Figure 5.34. Triplicate samples of sulfate-sulfur from the June, 2005 deployment in Schlepp Pond.

## Redox Element Profiles, Averaged Data



Figure 5.35. Redox profiles from the March and April, 2004 deployments in Schlepp Pond. The data are the average of triplicate samples with reduction potential determined by presence or absence of TEA.


Figure 5.36. Redox profiles from the May and June, 2004 deployments in Schlepp Pond. The data are the average of triplicate samples with reduction potential determined by presence or absence of TEA.


Figure 5.37. Redox profiles from the August and November, 2004 deployments in Schlepp Pond. The data are the average of triplicate samples with reduction potential determined by presence or absence of TEA.


Figure 5.38. Redox profile from the June, 2005 deployment in Schlepp Pond. The data are the average of triplicate samples with reduction potential determined by presence or absence of TEA.

Dissolved Constituents Schlepp Pond, ICP-AES


Figure 5.39. Triplicate samples of dissolved Ca in interstitial water from Schlepp Pond samples collected in March and April, 2004.


Figure 5.40. Triplicate samples of dissolved Ca in interstitial water from Schlepp Pond samples collected in May and June, 2004.


Figure 5.41. Triplicate samples of dissolved Ca in interstitial water from Schlepp Pond samples collected in August and November, 2004.


Figure 5.42. Triplicate samples of dissolved Ca in interstitial water from Schlepp Pond samples collected in June 2005.


Figure 5.43. Triplicate samples of dissolved $K$ in interstitial water from Schlepp Pond samples collected in March, 2004.


Figure 5.44. Triplicate samples of dissolved K in interstitial water from Schlepp Pond samples collected in April and May, 2004.


Figure 5.45. Triplicate samples of dissolved $K$ in interstitial water from Schlepp Pond samples collected in June and August, 2004.


Figure 5.46. Triplicate samples of dissolved K in interstitial water from Schlepp Pond samples collected in November, 2004 and June, 2005.


Figure 5.47. Triplicate samples of dissolved Mg in interstitial water from Schlepp Pond samples collected in March and April, 2004.


Figure 5.48. Triplicate samples of dissolved Mg in interstitial water from Schlepp Pond samples collected in May and June, 2004.


Figure 5.49. Triplicate samples of dissolved Mg in interstitial water from Schlepp Pond samples collected in August and November, 2004.


Figure 5.50. Triplicate samples of dissolved Mg in interstitial water from Schlepp Pond samples collected in June, 2005.


Figure 5.51. Triplicate samples of dissolved Na in interstitial water from Schlepp Pond samples collected in March, 2004.


Figure 5.52. Triplicate samples of dissolved Na in interstitial water from Schlepp Pond samples collected in April and May, 2004.


Figure 5.53. Triplicate samples of dissolved Na in interstitial water from Schlepp Pond samples collected in June and August, 2004.


Figure 5.54. Triplicate samples of dissolved Na in interstitial water from Schlepp Pond samples collected in November, 2004 and June, 2005.


Figure 5.55. Triplicate samples of dissolved $P$ in interstitial water from Schlepp Pond samples collected in March and April, 2004.


Figure 5.56. Triplicate samples of dissolved $P$ in interstitial water from Schlepp Pond samples collected in May and June, 2004.


Figure 5.57. Triplicate samples of dissolved $P$ in interstitial water from Schlepp Pond samples collected in August and November, 2004.


Figure 5.58. Triplicate samples of dissolved $P$ in interstitial water from Schlepp Pond samples collected in June, 2005.


Figure 5.59. Triplicate samples of dissolved $S$ in interstitial water from Schlepp Pond samples collected in March, 2004.


Figure 5.60. Triplicate samples of dissolved $S$ in interstitial water from Schlepp Pond samples collected in April and May, 2004.


Figure 5.61. Triplicate samples of dissolved $S$ in interstitial water from Schlepp Pond samples collected in June and August, 2004.


Figure 5.62. Triplicate samples of dissolved $S$ in interstitial water from Schlepp Pond samples collected in November, 2004 and June, 2005.


Figure 5.63. Triplicate samples of dissolved Zn in interstitial water from Schlepp Pond samples collected in March and April, 2004.


Figure 5.64. Triplicate samples of dissolved Zn in interstitial water from Schlepp Pond samples collected in May and June, 2004.


Figure 5.65. Triplicate samples of dissolved Zn in interstitial water from Schlepp Pond samples collected in August and November, 2004.


Figure 5.66. Triplicate samples of dissolved Zn in interstitial water from Schlepp Pond samples collected in June, 2005.

## Dissolved Constituents, Schlepp Pond ICP-MS



Figure 5.67. Dissolved As and Cd in interstitial water from Schlepp Pond. Sample 1404 was collected in June of 2004 and 0405 and 1205 were collected in June of 2006. Samples were analyzed by ICP-MS.


Figure 5.68. Dissolved Cu and Ni in interstitial water from Schlepp Pond. Sample 1404 was collected in June of 2004 and 0405 and 1205 were collected in June of 2006. Samples were analyzed by ICP-MS


Figure 5.69. Dissolved Pb and Zn in interstitial water from Schlepp Pond. Sample 1404 was collected in June of 2004 and 0405 and 1205 were collected in June of 2006. Samples were analyzed by ICP-MS.
TABLES OF DATA
Sediment Digest, Lake Coeur d'Alene
Table 5.1. Total digest of two St. Joe site cores collected in May, 2002. Solution analyzed with ICP-AES.

| Depth | Sample | Element ( $\mathrm{mg} \mathrm{kg}^{-1}$ ) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (cm) |  | As | Cd | Fe | Mn | Pb | S | Zn |
| St. Joe Site Core A |  |  |  |  |  |  |  |  |
| 3-6 | SJA2-1 | 9.4699 | 0.0000 | 34008.338 | 390.411 | 30.31566 | 711.733 | 112.478 |
| 3-6 | SJA2-2 | 27.2167 | 0.0000 | 35760.423 | 400.176 | 43.36465 | 779.213 | 109.777 |
| 3-6 | SJA2-3 | 29.8378 | 0.0000 | 34965.238 | 380.939 | 27.14368 | 762.457 | 105.620 |
| 12-18 | SJA4 | 11.9339 | 0.0000 | 33506.732 | 405.141 | 23.86781 | 701.346 | 141.218 |
| 24-30 | SJA6 | 14.9394 | 0.0000 | 29681.818 | 438.485 | 22.36364 | 452.121 | 109.364 |
| St. Joe Site Core B |  |  |  |  |  |  |  |  |
| 0-3 | SJB1 | 8.0701 | 0.0000 | 34610.94 | 524.461 | 33.571 | 520.801 | 118.240 |
| 3-6 | SJB2 | 11.0101 | 0.0000 | 37480.65 | 568.498 | 41.235 | 639.319 | 151.993 |
| 6-12 | SJB3 | 12.0176 | 0.0000 | 36530.38 | 774.933 | 273.787 | 644.058 | 183.836 |
| 12-18 | SJB4 | 10.6374 | 0.0000 | 34267.15 | 423.873 | 43.260 | 609.419 | 131.567 |
| 18-24 | SJB5 | 9.8289 | 0.0000 | 34520.49 | 430.362 | 46.876 | 639.276 | 143.812 |
| 24-30 | SJ-6-1 | 8.9459 | 0.0000 | 28413.07 | 467.717 | 40.121 | 396.149 | 96.052 |
| 24-30 | SJ-6-2 | 9.5321 | 0.0000 | 29060.32 | 484.919 | 36.756 | 391.725 | 104.002 |
| 24-30 | SJ-6-3 | 13.6327 | 0.0000 | 27970.20 | 461.941 | 33.508 | 317.559 | 101.369 |

St. Joe Site Core A

| St. Joe Site Core A |  |  |  |
| ---: | ---: | ---: | ---: |
| 9.4699 | 0.0000 | 34008.338 | 390.411 |
| 27.2167 | 0.0000 | 35760.423 | 400.176 |
| 29.8378 | 0.0000 | 34965.238 | 380.939 |
| 11.9339 | 0.0000 | 33506.732 | 405.141 |
| 14.9394 | 0.0000 | 29681.818 | 438.485 |

St. Joe Site Core B
118.240
151.993
183.836
131.567
143.812
96.052
104.002
101.369
 43.36465
27.14368
23.86781
22.36364

Table 5.2. Total digest of two Harlow Point site cores collected in May, 2002. Solution analyzed with ICP-AES.

| Depth | Sample | Element ( $\mathrm{mg} \mathrm{kg}^{-1}$ ) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (cm) |  | As | Cd | Fe | Mn | Pb | S | Zn |
| Harlow Point Site Core A |  |  |  |  |  |  |  |  |
| 0-3 | HPA1-1 | 170.316 | 23.7302 | 79401.81 | 4523.14 | 4746.05 | 3690.74 | 3625.85 |
| 0-3 | HPA1-2 | 155.503 | 23.7076 | 75347.42 | 4271.82 | 4510.84 | 3396.33 | 3424.12 |
| 0-3 | HPA1-3 | 169.378 | 23.4166 | 82510.17 | 5647.88 | 4808.25 | 3704.24 | 3611.27 |
| 3-6 | HPA2 | 165.832 | 22.2722 | 84983.13 | 6268.28 | 4946.57 | 3998.88 | 3560.18 |
| 6-12 | HPA3 | 136.328 | 25.5962 | 82806.43 | 6128.67 | 5293.95 | 4453.69 | 3740.99 |
| 12-18 | HPA4 | 162.774 | 30.0506 | 84327.52 | 4575.13 | 4817.11 | 4231.85 | 3809.79 |
| 18-24 | HPA5 | 175.913 | 41.4441 | 68910.08 | 3940.05 | 3547.68 | 3626.70 | 3207.08 |
| 24-30 | HPA6 | 346.064 | 36.1516 | 108367.35 | 9457.73 | 4950.44 | 6448.98 | 3967.93 |
| Harlow Point Site Core B |  |  |  |  |  |  |  |  |
| 0-3 | HPB1 | 124.022 | 22.6680 | 74724.17 | 6018.05 | 4037.11 | 2503.01 | 3207.12 |
| 3-6 | HPB2 | 98.282 | 22.6145 | 73473.28 | 5262.40 | 3984.73 | 2993.80 | 3218.99 |
| 6-12 | HPB3 | 115.867 | 24.4987 | 78160.42 | 6473.41 | 4681.78 | 4262.86 | 3587.18 |
| 12-18 | HPB4 | 119.238 | 25.5739 | 79476.58 | 6033.06 | 4497.70 | 3804.87 | 3518.82 |
| 18-24 | HP-5-1 | 134.972 | 28.9326 | 80243.45 | 6362.36 | 4489.70 | 4350.66 | 3580.06 |
| 18-24 | HP-5-2 | 139.341 | 30.9593 | 84932.17 | 6739.34 | 4859.50 | 4706.88 | 3913.28 |
| 18-24 | HP-5-3 | 122.023 | 28.2609 | 77410.21 | 5959.36 | 4442.34 | 4246.69 | 3512.29 |
| 24-30 | HPB6 | 113.583 | 29.6931 | 62319.49 | 4295.13 | 2847.47 | 2584.84 | 2553.70 |
| 30-36 | HPB7 | 246.286 | 34.6531 | 92448.98 | 8261.22 | 4155.10 | 5334.69 | 3650.20 |

Table 5.3. Total digest of two Peaceful Point site cores collected in May, 2002. Solution analyzed with ICP-AES.


| S | Zn |
| :---: | :---: |
| 1120.60 | 2909.17 | 2909.17

2904.16
2887.24 2719.17 $\Omega_{n}$

N

N $\stackrel{0}{\circ}$ $\begin{array}{lll}4812.87 & 3801.17 & 3359.65\end{array}$ | Peaceful Point Site Core B |  |  |  |  |  |  |
| ---: | :---: | ---: | ---: | ---: | ---: | ---: |
| 150.801 | 28.6787 | 72722.72 | 6281.28 | 3566.07 | 1831.83 | 3381.88 |
| 94.893 | 28.0503 | 36420.75 | 3944.06 | 1618.57 | 1426.43 | 2292.26 |
| 278.540 | 44.2224 | 105299.74 | 9374.46 | 2560.38 | 3261.51 | 3029.54 |
| 248.250 | 34.7145 | 115147.33 | 10566.30 | 2665.75 | 3122.01 | 2762.89 |
| 244.722 | 33.2534 | 113387.72 | 10446.26 | 2632.44 | 3000.96 | 2739.44 |
| 249.046 | 35.3053 | 116078.24 | 10625.00 | 2674.62 | 3112.12 | 2809.64 |
| 151.449 | 17.5154 | 81957.86 | 7506.58 | 3901.67 | 4241.00 | 3291.04 |
| 108.445 | 22.7165 | 68336.61 | 7607.28 | 5699.80 | 3922.24 | 4064.96 |
| 158.474 | 24.3806 | 99554.01 | 9043.61 | 5213.08 | 4328.05 | 3739.84 |

| Peaceful Point Site Core A |  |  |
| :--- | ---: | ---: |
| 22.8736 | 68924.67 | 7539 |
| 22.5751 | 69717.09 | 7459 |
| 21.9248 | 66714.12 | 7027 |
| 36.6667 | 52389.38 | 3604 |
| 29.7155 | 104205.32 | 9440 |
| 15.5303 | 80710.96 | 6605 |
| 22.3281 | 84950.90 | 8194 |
| 21.0819 | 92222.22 | 7789 | Peaceful Point Site Core B

3435.60
3383.37
3231.78
2272.27
2368.58
4105.48
6490.47
4812.87

$$
\mathrm{Fe}
$$ $\begin{array}{ll}3383.37 & 1142.61 \\ 3231.78 & 1189.35\end{array}$ $\begin{array}{ll}2272.27 & 1434.51 \\ 2368.58 & 2985.16\end{array}$ $4105.48 \quad 4117.13$ 3951.47 451.094

449.192
445.615
125.516
259.709
178.963
127.527
149.678 $\frac{\text { Depth }}{(\mathrm{cm})}$ Sample PPA1-1 $\stackrel{N}{\stackrel{M}{4}}$ PPA1-3 PPA2 PPA4
PPA5 PPA5 PPB1
PPB2
PPB3
PP-4-1
PP-4-2
PP-4-3
PPB5
PPB6
PPB7

Sediment Carbon, Nitrogen, and Sulfur
Table 5.4. Total $\mathrm{C}, \mathrm{N}$, and S , organic $\mathrm{C}(\mathrm{C}($ org $))$ after treatment with HCl , and inorganic C ( C (inorg) ) by difference. Samples are from cores collected at the sites, May 2002 and analyzed by dry combustion.

| Depth | Sample | Seq | (\%) |  |  | Seq | C(org) | C(inorg) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{C}(\mathrm{T})$ | N | S |  |  |  |
| cm |  |  |  |  |  |  | \% | \% |
| St. Joe Site, Core A |  |  |  |  |  |  |  |  |
| 3-6 | SJ 2A | 28 | 3.4376 | 0.2755 | 0.0670 | 25 | 3.2066 | 0.2310 |
| 12-18 | SJ 4A | 29 | 3.8972 | 0.2915 | 0.0650 | 26 | 3.6400 | 0.2572 |
| 24-30 | SJ 6A1 | 30 | 2.1451 | 0.1627 | 0.0430 | 27 | 1.8667 | 0.2784 |
| 24-30 | SJ 6A2 | 31 | 2.1683 | 0.1644 | 0.0412 | 28 | 1.9715 | 0.1967 |

$-0.1967$ 0.4977
0.5535
0.5820
0.5104
0.4844
0.4652
0.6369
0.6093

Particle Size Analysis, Lake Coeur d'Alene

| Table 5.5. Particle sites, St. Joe, Harlo |  | Fraction (g) |  |  | Total | Precision | Fraction (\%) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Sand | Silt | Clay |  |  | Sand | Silt | Clay |
| (cm) |  |  |  |  | (g) | (\%) |  |  |  |
| St. Joe Site |  |  |  |  |  |  |  |  |  |
| 24-28 | SJ 24-28 | 0.5823 | 5.3266 | 0.7548 | 6.6637 | 98.6 | 8.74 | 79.93 | 11.33 |
| Harlow Point Site |  |  |  |  |  |  |  |  |  |
| 6-12 | HP 6-12 | 1.0093 | 6.2609 | 0.7623 | 8.0325 | 97.1 | 12.57 | 77.94 | 9.49 |
| 18-24 | HP 18-24 | 1.9962 | 6.2459 | 0.7923 | 9.0344 | 97.9 | 22.10 | 69.13 | 8.77 |
| 30-36 | HP 30-36 | 1.9341 | 7.1566 | 0.5948 | 9.6855 | 98.0 | 19.97 | 73.89 | 6.14 |
| Peaceful Point Site |  |  |  |  |  |  |  |  |  |
| 0-3 | PP 0-3 | 0.0740 | 5.0876 | 1.2273 | 6.3889 | 98.4 | 1.16 | 79.63 | 19.21 |
| 6-12 | PP 6-12 | 0.3292 | 4.9670 | 0.8823 | 6.1785 | 97.1 | 5.33 | 80.39 | 14.28 |
| 18-24 | PP 18-24 | 0.0180 | 7.7253 | 0.8298 | 8.5731 | 96.9 | 0.21 | 90.11 | 9.68 |
| 30-34 | PP 30-34 | 0.0203 | 10.0123 | 1.0873 | 11.1199 | 94.7 | 0.18 | 90.04 | 9.78 |

Sediment Porosity

| Table 5.6 solids volu <br> Depth | (g) |  |  | $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Wet Weight | Dry Weight | Water Weight | Pore Volume | Solids Volume | Porosity |
| (g) |  |  |  |  |  | (\%) |
| 0-1.5 | 25.1919 | 5.6244 | 19.5675 | 19.5675 | 2.1224 | 90.21 |
| 1.5-3.0 | 28.3728 | 8.8308 | 19.5420 | 19.5420 | 3.3324 | 85.43 |
| 3.0-4.5 | 34.6878 | 11.8597 | 22.8281 | 22.8281 | 4.4754 | 83.61 |
| 4.5-6.0 | 33.9530 | 12.8284 | 21.1246 | 21.1246 | 4.8409 | 81.36 |
| 6.0-7.5 | 35.1378 | 14.7269 | 20.4109 | 20.4109 | 5.5573 | 78.60 |
| 7.5-9.0 | 35.8244 | 15.9270 | 19.8974 | 19.8974 | 6.0102 | 76.80 |
| 9.0-10.5 | 35.2818 | 15.4303 | 19.8515 | 19.8515 | 5.8228 | 77.32 |
| 10.5-12.0 | 35.6466 | 13.5055 | 22.1411 | 22.1411 | 5.0964 | 81.29 |
| 12.0-13.5 | 33.5743 | 12.5112 | 21.0631 | 21.0631 | 4.7212 | 81.69 |
| 13.5-15.0 | 32.7718 | 12.1889 | 20.5829 | 20.5829 | 4.5996 | 81.73 |
| 15.0-16.5 | 33.6018 | 13.0157 | 20.5861 | 20.5861 | 4.9116 | 80.74 |
| 16.5-18.0 | 35.7289 | 14.3010 | 21.4279 | 21.4279 | 5.3966 | 79.88 |
| 18.0-19.5 | 36.0865 | 15.3463 | 20.7402 | 20.7402 | 5.7911 | 78.17 |
| 19.5-21.0 | 33.3009 | 14.9351 | 18.3658 | 18.3658 | 5.6359 | 76.52 |
| 21.0-22.5 | 37.7903 | 18.2190 | 19.5713 | 19.5713 | 6.8751 | 74.00 |

Table 5.7. Porosity of core \#11 from the St. Joe site collected May, 2002. The particle density was assumed at $2.65 \mathrm{~g} \mathrm{~cm}^{-3}$ to calculate the solids volume. Two cores were done to validate the method and precision.

2.7402
3.6348
3.7690
4.3942
4.0521
4.9294
4.9788
5.5802
4.9224
4.9458
5.1900
5.4719
6.6450
4.9815
5.4398
7.2843
9.3182
6.1966 28.2596
21.8100
23.1446
20.8985
22.1334
21.4602
19.7527
20.8582
20.9503
23.4889
20.4039
19.6925
20.3058
20.3377
22.1545
18.1440
17.4507
19.0395

| $(\mathrm{g})$ |  |  |
| :---: | :---: | :---: |
| Wet | Dry | Water |
| Weight | Weight | Weight |

28.2596
21.8100
23.1446
20.8985
22.1334
21.4602
19.7527
20.8582
20.9503
23.4889
20.4039
19.6925
20.3058
20.3377
22.1545
18.1440
17.4507
19.0395
7.2616
9.6323
9.9878
11.6446
10.7381
13.0629
13.1937
14.7874
13.0443
13.1063
13.7535
14.5005
17.6093
13.2010
14.4154
19.3035
24.6932
16.4210


| Core 11 |
| :---: |
| Depth |
| $(\mathrm{cm})$ |

0-1.5
$1.5-3.0$
$3.0-4.5$
4.5-6.0
$6.0-7.5$
$7.5-9.0$
9.0-10.5
10.5-12.0
12.0-13.5




~~

25.5-27.0
Table 5.8. Porosity of a core from the Harlow Point site collected in May, 2002. The particle density was assumed at $2.65 \mathrm{~g} \mathrm{~cm}^{-3}$ to calculate the solids volume.

| Depth | (g) |  |  | $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$ |  | Porosity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Wet Weight | Dry Weight | Water Weight | Pore Volume | Solids Volume |  |
| (cm) |  |  |  |  |  | (\%) |
| 0-3.8 | 93.5666 | 36.0553 | 57.5113 | 57.5113 | 13.6058 | 80.87 |
| 3.8-7.6 | 80.3083 | 33.1772 | 47.1311 | 47.1311 | 12.5197 | 79.01 |
| 7.6-11.4 | 80.7227 | 39.8221 | 40.9006 | 40.9006 | 15.0272 | 73.13 |
| 11.4-15.2 | 99.4816 | 48.7681 | 50.7135 | 50.7135 | 18.4031 | 73.37 |
| 15.2-19.0 | 99.2505 | 47.6643 | 51.5862 | 51.5862 | 17.9865 | 74.15 |
| 19.0-22.9 | 104.5889 | 54.6745 | 49.9144 | 49.9144 | 20.6319 | 70.75 |
| 22.9-26.7 | 103.6859 | 57.0868 | 46.5991 | 46.5991 | 21.5422 | 68.39 |
| 26.7-28.2 | 49.2626 | 26.8732 | 22.3894 | 22.3894 | 10.1408 | 68.83 |
| 28.2-29.7 | 49.3532 | 29.1321 | 20.2211 | 20.2211 | 10.9932 | 64.78 |
| 29.7-31.2 | 44.6335 | 27.9161 | 16.7174 | 16.7174 | 10.5344 | 61.34 |
| 31.2-32.7 | 49.1397 | 30.2937 | 18.8460 | 18.8460 | 11.4316 | 62.24 |
| 32.7-34.2 | 44.4466 | 25.5065 | 18.9401 | 18.9401 | 9.6251 | 66.30 |

Table 5.9. Porosity of a core from the Peaceful Point site collected in May, 2002. The particle density was assumed at $2.65 \mathrm{~g} \mathrm{~cm}^{-3}$ to calculate the solids volume.

| Depth <br> (g) | (g) |  |  | $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Wet Weight | Dry Weight | Water Weight | Pore Volume | Solids Volume | Porosity <br> (\%) |
| 0-1.5 | 31.3506 | 6.0621 | 25.2885 | 25.2885 | 2.2876 | 91.70 |
| 1.5-3.0 | 35.3766 | 8.1351 | 27.2415 | 27.2415 | 3.0698 | 89.87 |
| 3.0-4.5 | 30.2881 | 9.8734 | 20.4147 | 20.4147 | 3.7258 | 84.57 |
| 4.5-6.0 | 35.4649 | 10.3035 | 25.1614 | 25.1614 | 3.8881 | 86.62 |
| 6.0-7.5 | 40.1430 | 11.8017 | 28.3413 | 28.3413 | 4.4535 | 86.42 |
| 7.5-9.0 | 40.5988 | 13.1510 | 27.4478 | 27.4478 | 4.9626 | 84.69 |
| 9.0-10.5 | 41.9013 | 17.8477 | 24.0536 | 24.0536 | 6.7350 | 78.13 |
| 10.5-12.0 | 41.1309 | 17.8803 | 23.2506 | 23.2506 | 6.7473 | 77.51 |
| 12.0-13.5 | 54.8575 | 26.6872 | 28.1703 | 28.1703 | 10.0706 | 73.67 |
| 13.5-15.0 | 44.3934 | 22.7065 | 21.6869 | 21.6869 | 8.5685 | 71.68 |
| 15.0-16.5 | 43.0209 | 21.5442 | 21.4767 | 21.4767 | 8.1299 | 72.54 |
| 16.5-18.0 | 50.2791 | 25.6235 | 24.6556 | 24.6556 | 9.6692 | 71.83 |
| 18.0-19.5 | 49.7374 | 26.4550 | 23.2824 | 23.2824 | 9.9830 | 69.99 |
| 19.5-21.0 | 50.7403 | 26.9833 | 23.7570 | 23.7570 | 10.1824 | 70.00 |
| 21.0-22.5 | 54.0268 | 29.3558 | 24.6710 | 24.6710 | 11.0777 | 69.01 |
| 22.5-24.0 | 45.9017 | 25.3009 | 20.6008 | 20.6008 | 9.5475 | 68.33 |

ICP-AES Data, Lake Coeur d'Alene

Table 5.11. ICP-AES data from the St. Joe site, May 2002. Samples are from dialyzer \#5.

Table 5.12. ICP-AES data from the Harlow Point site, May 2002. Samples are from dialyzer \#9.

Table 5.13. ICP-AES data from the Harlow Point site, May 2002. Samples are from dialyzer \#12.

Table 5.14. ICP-AES data from the Peaceful Point site, May 2002. Samples are from dialyzer \#13.

Table 5.15. ICP-AES data from the Peaceful Point site, May 2002. Samples are from dialyzer \#17.

IC Data, Lake Coeur d'Alene

Table 5.17. IC data from the St. Joe site, May 2002. Samples are from dialyzer \#5. The data were converted to elemental concentrations in the right hand columns and S and P are compared to ICP totals.

| Depth | Element ( $\mathrm{mg} \mathrm{L}{ }^{-1}$ ) |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (cm) | F | Cl | $\mathrm{SO}_{4}{ }^{\text {- }}$ | $\mathrm{HPO}_{4}{ }^{\text {- }}$ | $\mathrm{NO}_{3}{ }^{-}$ |  | $\left(\mathrm{SO}_{4}{ }^{2}\right) \mathrm{S}$ | $\left(\mathrm{HPO}_{4}{ }^{2}\right) \mathrm{P}$ | $\left(\mathrm{NO}_{3}\right)^{\text {N }}$ | S(ICP) | dif S | P(ICP) | dif $P$ |
| -1.5 | 0.0000 | 0.4726 | 1.0192 | 0.0000 | 0.0000 | 0.0000 | 0.3402 | 0.0000 | 0.0000 | 0.3289 | -0.0113 | 0.0135 | 0.0135 |
| 0.0 |  | 0.4961 | 0.9777 |  | 0.0000 |  | 0.3263 | 0.0000 | 0.0000 | 0.3281 | 0.0018 | 0.0051 | 0.0051 |
| 1.5 |  | 0.4866 | 0.9790 |  | 0.0000 |  | 0.3268 | 0.0000 | 0.0000 | 0.3590 | 0.0322 | 0.0044 | 0.0044 |
| 3.0 |  | 0.4725 | 1.1263 |  | 0.7085 |  | 0.3760 | 0.0000 | 0.1601 | 0.3878 | 0.0118 | 0.1412 | 0.1412 |
| 4.5 |  | 0.4584 | 1.1022 |  | 0.0000 |  | 0.3679 | 0.0000 | 0.0000 | 0.2735 | -0.0944 | 0.6798 | 0.6798 |
| 6.0 |  | 0.4720 | 0.8126 |  | 0.0000 |  | 0.2712 | 0.0000 | 0.0000 | 0.2994 | 0.0282 | 0.6120 | 0.6120 |
| 7.5 |  | 0.4693 | 0.9820 |  | 0.0000 |  | 0.3278 | 0.0000 | 0.0000 | 0.2494 | -0.0784 | 0.7977 | 0.7977 |
| 9.0 |  | 0.4685 | 1.0726 |  | 0.0000 |  | 0.3580 | 0.0000 | 0.0000 | 0.2438 | -0.1142 | 0.7616 | 0.7616 |
| 10.5 |  | 0.5040 | 0.9759 |  | 0.0000 |  | 0.3258 | 0.0000 | 0.0000 | 0.2540 | -0.0718 | 0.6065 | 0.6065 |
| 12.0 |  | 0.4878 | 0.8950 |  | 0.0000 |  | 0.2988 | 0.0000 | 0.0000 | 0.2295 | -0.0693 | 1.0810 | 1.0810 |
| 13.5 |  | 0.5327 | 0.5167 |  | 0.0000 |  | 0.1725 | 0.0000 | 0.0000 | 0.2091 | 0.0366 | 1.3910 | 1.3910 |
| 15.0 |  | 0.5692 | 0.4760 |  | 0.0000 |  | 0.1589 | 0.0000 | 0.0000 | 0.2184 | 0.0595 | 1.3870 | 1.3870 |
| 16.5 |  | 0.6338 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 | 0.2304 | 0.2304 | 1.2080 | 1.2080 |
| 18.0 |  | 0.6619 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 | 0.2689 | 0.2689 | 1.0750 | 1.0750 |
| 19.5 |  | 0.7319 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 | 0.2748 | 0.2748 | 1.0360 | 1.0360 |
| 22.5 |  | 0.7503 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 | 0.3216 | 0.3216 | 0.9986 | 0.9986 |
| 25.5 |  | 0.7595 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 | 0.3293 | 0.3293 | 1.0340 | 1.0340 |
| 28.5 |  | 0.7676 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 | 0.3716 | 0.3716 | 0.9867 | 0.9867 |
| 31.5 |  | 0.9374 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 | 0.4183 | 0.4183 | 0.9371 | 0.9371 |
| 34.5 |  |  |  |  |  |  |  |  |  | 0.4524 |  | 0.8922 |  |

Table 5.18. IC data from the Harlow Point, May 2002. Samples are from dialyzer \#8. The data were converted to elemental concentrations in the right hand columns. No corresponding ICP data was available for S and P comparison.

| Depth | Element ( $\mathrm{mg} \mathrm{L}^{-1}$ ) |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (cm) | F | Cl | $\mathrm{SO}_{4}{ }^{\text {- }}$ | $\mathrm{HPO}_{4}{ }^{\text {- }}$ | $\mathrm{NO}_{3}{ }^{-}$ |  | $\left(\mathrm{SO}_{4}{ }^{2}\right) \mathrm{S}$ | $\left(\mathrm{HPO}_{4}{ }^{2}{ }^{\text {P }} \mathrm{P}\right.$ | $\left(\mathrm{NO}_{3}\right) \mathrm{N}$ | S(ICP) | dif S | P(ICP) | dif P |
| 0.0 | 0.0000 | 0.5550 | 10.7827 | 0.0000 | 0.6181 | 0.0000 | 3.5992 | 0.0000 | 0.1396 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 1.5 |  | 0.5600 | 8.2016 |  | 1.0053 |  | 2.7376 | 0.0000 | 0.2271 |  |  |  |  |
| 3.0 |  | 0.5567 | 6.6516 |  | 0.6864 |  | 2.2202 | 0.0000 | 0.1551 |  |  |  |  |
| 4.5 |  | 0.5646 | 5.7684 |  | 0.0000 |  | 1.9254 | 0.0000 | 0.0000 |  |  |  |  |
| 6.0 |  | 0.5814 | 3.5609 |  | 0.0000 |  | 1.1886 | 0.0000 | 0.0000 |  |  |  |  |
| 7.5 |  | 0.6358 | 2.0019 |  | 0.0000 |  | 0.6682 | 0.0000 | 0.0000 |  |  |  |  |
| 9.0 |  | 0.6516 | 0.7870 |  | 0.0000 |  | 0.2627 | 0.0000 | 0.0000 |  |  |  |  |
| 10.5 |  | 0.6704 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 |  |  |  |  |
| 12.0 |  | 0.6703 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 |  |  |  |  |
| 13.5 |  | 0.6858 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 |  |  |  |  |
| 15.0 |  | 0.7288 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 |  |  |  |  |
| 16.5 |  | 0.8627 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 |  |  |  |  |
| 18.0 |  | 0.7734 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 |  |  |  |  |
| 19.5 |  | 0.7817 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 |  |  |  |  |
| 21.0 |  | 1.0274 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 |  |  |  |  |
| 24.0 |  | 0.9580 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 |  |  |  |  |
| 27.0 |  | 0.9296 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 |  |  |  |  |
| 30.0 |  | 0.8281 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 |  |  |  |  |
| 33.0 |  | 0.9025 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 |  |  |  |  |
| 36.0 |  | 0.9325 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 |  |  |  |  |

Table 5.19. IC data from the Harlow Point site, May 2002. Samples are from dialyzer \#12. The data were converted to elemental concentrations in the right hand columns and $S$ and $P$ are compared to ICP totals. Bold numbers indicate ICP totals.

| Depth | Element ( $\mathrm{mg} \mathrm{L}^{-1}$ ) |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (cm) | F | Cl | $\mathrm{SO}_{4}{ }^{\text {2- }}$ | $\mathrm{HPO}_{4}{ }^{2-}$ | $\mathrm{NO}_{3}{ }^{-}$ |  | $\left(\mathrm{SO}_{4}{ }^{2}\right) \mathrm{S}$ | $\left(\mathrm{HPO}_{4}{ }^{2}\right) \mathrm{P}$ | $\left(\mathrm{NO}_{3}\right)^{\circ} \mathrm{N}$ | S(ICP) | dif S | P(ICP) | dif $P$ |
| -1.5 | 0.0000 | 0.6801 | 4.4652 | 0.0000 | 0.0008 |  | 1.4905 | 0.0000 | 0.0002 | 1.5360 | 0.0455 | 0.0000 | 0.0000 |
| 0.0 |  | 0.5778 | 4.5239 |  | 0.0008 |  | 1.5100 | 0.0000 | 0.0002 | 1.5940 | 0.0840 | 0.0000 | 0.0000 |
| 1.5 |  | 0.5696 | 5.0036 |  | 0.2348 |  | 1.6701 | 0.0000 | 0.0530 | 1.7090 | 0.0389 | 0.0000 | 0.0000 |
| 3.0 |  | 0.5648 | 4.9155 |  | 0.4908 |  | 1.6408 | 0.0000 | 0.1109 | 1.8380 | 0.1972 | 0.0000 | 0.0000 |
| 4.5 |  | 0.5629 | 4.4634 |  | 0.0008 |  | 1.4899 | 0.0000 | 0.0002 | 1.4920 | 0.0021 | 0.0000 | 0.0000 |
| 6.0 |  | 0.5956 | 3.7551 |  | 0.0008 |  | 1.2534 | 0.0000 | 0.0002 | 1.4590 | 0.2056 | 0.0274 | 0.0274 |
| 7.5 |  | 0.6360 | 3.2816 |  | 0.0008 | 1.0954 | 0.3800 | 0.0000 | 0.0002 | 0.3847 | 0.0047 | 0.1199 | 0.1199 |
| 9.0 |  | 0.6002 | 2.4942 |  | 0.0008 | 0.8325 | 0.2400 | 0.0000 | 0.0002 | 0.2423 | 0.0023 | 0.2734 | 0.2734 |
| 10.5 |  | 0.5884 | 2.3132 |  | 0.0008 | 0.7721 | 0.2300 | 0.0000 | 0.0002 | 0.2323 | 0.0023 | 0.2870 | 0.2870 |
| 12.0 |  | 0.6617 | 0.4412 |  | 0.0008 |  | 0.1473 | 0.0000 | 0.0002 | 0.2180 | 0.0707 | 0.4004 | 0.4004 |
| 13.5 |  | 2.5540 | 0.6435 |  | 0.4277 |  | 0.2148 | 0.0000 | 0.0966 | 0.3517 | 0.1369 | 0.7747 | 0.7747 |
| 15.0 |  | 0.7235 | 0.0046 |  | 0.2947 |  | 0.0016 | 0.0000 | 0.0666 | 0.2358 | 0.2342 | 0.4496 | 0.4496 |
| 16.5 |  | 0.7605 | 0.0046 |  | 0.0008 |  | 0.0016 | 0.0000 | 0.0002 | 0.2353 | 0.2337 | 0.4168 | 0.4168 |
| 18.0 |  | 0.7995 | 0.0046 |  | 0.0008 |  | 0.0016 | 0.0000 | 0.0002 | 0.2397 | 0.2381 | 0.3429 | 0.3429 |
| 19.5 |  | 0.8206 | 0.0046 |  | 0.0008 |  | 0.0016 | 0.0000 | 0.0002 | 0.2597 | 0.2581 | 0.3280 | 0.3280 |
| 22.5 |  | 0.8522 | 0.0046 |  | 0.0008 |  | 0.0016 | 0.0000 | 0.0002 | 0.2922 | 0.2906 | 0.3645 | 0.3645 |
| 25.5 |  | 0.8253 | 0.0046 |  | 0.0008 |  | 0.0016 | 0.0000 | 0.0002 | 0.3105 | 0.3089 | 0.3308 | 0.3308 |
| 28.5 |  | 0.8601 | 0.0046 |  | 0.0008 |  | 0.0016 | 0.0000 | 0.0002 | 0.3339 | 0.3323 | 0.2743 | 0.2743 |
| 31.5 |  | 0.9774 | 0.0046 |  | 0.0008 |  | 0.0016 | 0.0000 | 0.0002 | 0.3439 | 0.3423 | 0.1957 | 0.1957 |
| 34.5 |  | 0.8084 | 0.0046 |  | 0.0008 |  | 0.0016 | 0.0000 | 0.0002 | 0.3730 | 0.3714 |  | 0.0961 |

Table 5.20. IC data from the Peaceful Point site, May 2002. Samples are from dialyzer \#13. The data were converted to elemental concentrations in the right hand columns and S and P are compared to ICP totals. Bold numbers indicate ICP totals.

| Depth | Element ( $\mathrm{mg} \mathrm{L}^{-1}$ ) |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (cm) | F | Cl | $\mathrm{SO}_{4}{ }^{\text {2- }}$ | $\mathrm{HPO}_{4}{ }^{2-}$ | $\mathrm{NO}_{3}{ }^{-}$ |  | $\left(\mathrm{SO}_{4}{ }^{2-}\right)^{\text {S }}$ | $\left(\mathrm{HPO}_{4}{ }^{2}{ }^{\text {P }} \mathrm{P}\right.$ | $\left(\mathrm{NO}_{3}\right) \mathrm{N}$ | S(ICP) | dif S | P(ICP) | dif P |
| 0.0 | 0.0000 | 0.7353 | 5.4947 | 0.0000 | 0.7986 | 1.8341 | 1.3500 | 0.0000 | 0.1804 | 1.3480 | -0.0020 | 0.0011 | 0.0011 |
| 1.5 |  | 0.7781 | 9.0218 |  | 0.0000 | 3.0114 | 1.4570 | 0.0000 | 0.0000 | 1.4690 | -0.0010 | 0.0025 | 0.0025 |
| 3.0 |  | 0.9323 | 5.6243 |  | 0.0000 |  | 1.8774 | 0.0000 | 0.0000 | 2.6820 | 0.8046 | 0.0000 | 0.0000 |
| 4.5 |  | 0.9338 | 3.5187 |  | 0.0000 |  | 1.1745 | 0.0000 | 0.0000 | 1.4490 | 0.2745 | 0.0147 | 0.0147 |
| 6.0 |  | 0.8472 | 0.8845 |  | 0.0000 |  | 0.2952 | 0.0000 | 0.0000 | 0.7235 | 0.4283 | 0.0450 | 0.0450 |
| 7.5 |  | 0.8621 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 | 0.3144 | 0.3144 | 0.1640 | 0.1640 |
| 9.0 |  | 0.8442 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 | 0.1654 | 0.1654 | 0.0913 | 0.0913 |
| 10.5 |  | 1.2094 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 | 0.1446 | 0.1446 | 0.0430 | 0.0430 |
| 12.0 |  | 0.8748 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 | 0.2119 | 0.2119 | 0.4384 | 0.4384 |
| 13.5 |  | 0.8263 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 | 0.2226 | 0.2226 | 0.6243 | 0.6243 |
| 15.0 |  | 0.8088 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 | 0.2275 | 0.2275 | 0.6505 | 0.6505 |
| 16.5 |  | 0.9175 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 | 0.2291 | 0.2291 | 0.5734 | 0.5734 |
| 18.0 |  | 0.8862 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 | 0.2221 | 0.2221 | 0.5278 | 0.5278 |
| 19.5 |  | 0.7709 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 | 0.2374 | 0.2374 | 0.4078 | 0.4078 |
| 21.0 |  | 0.9234 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 | 0.2522 | 0.2522 | 0.4142 | 0.4142 |
| 24.0 |  | 0.7944 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 | 0.2690 | 0.2690 | 0.3116 | 0.3116 |
| 27.0 |  | 1.5514 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 | 0.3052 | 0.3052 | 0.2165 | 0.2165 |
| 30.0 |  | 0.7382 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 | 0.3274 | 0.3274 | 0.1850 | 0.1850 |
| 33.0 |  | 0.7275 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 | 0.3155 | 0.3155 | 0.1544 | 0.1544 |
| 36.0 |  | 1.2433 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 | 0.3200 | 0.3200 | 0.3743 | 0.3743 |

Table 5.21. IC data from the Peaceful Point site, May 2002. Samples are from dialyzer \#17. The data were converted to elemental concentrations in the right hand columns and $S$ and $P$ are compared to ICP totals. Bold numbers indicate ICP totals.

| epth | Element ( $\mathrm{mg} \mathrm{L}^{-1}$ ) |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (cm) | F | Cl | $\mathrm{SO}_{4}{ }^{\text {- }}$ | $\mathrm{HPO}_{4}{ }^{\text {2- }}$ | $\mathrm{NO}_{3}{ }^{-}$ |  | $\left(\mathrm{SO}_{4}{ }^{2}\right) \mathrm{S}$ | $\left(\mathrm{HPO}_{4}{ }^{2}\right) \mathrm{P}$ | $\left(\mathrm{NO}_{3}\right) \mathrm{N}$ | S(ICP) | dif S | P(ICP) | dif P |
| -6.0 | 0.0000 | 0.6736 | 3.5478 | 0.0000 | 0.1646 |  | 1.1842 | 0.0000 | 0.0372 | 1.2250 | 0.0408 | 0.0000 | 0.0000 |
| -4.5 |  | 0.7848 | 3.5058 |  | 0.3086 |  | 1.1702 | 0.0000 | 0.0697 | 1.2100 | 0.0398 | 0.0000 | 0.0000 |
| -3.0 |  | 0.6605 | 3.5840 |  | 0.1646 |  | 1.1963 | 0.0000 | 0.0372 | 1.2200 | 0.0237 | 0.0000 | 0.0000 |
| -1.5 |  | 0.6538 | 3.5445 |  | 0.3126 |  | 1.1831 | 0.0000 | 0.0706 | 1.2120 | 0.0289 | 0.0022 | 0.0022 |
| 0.0 |  | 0.6663 | 3.6192 |  | 0.3176 |  | 1.2081 | 0.0000 | 0.0718 | 1.2110 | 0.0029 | 0.0067 | 0.0067 |
| 1.5 |  | 0.6560 | 3.6145 |  | 0.3187 |  | 1.2065 | 0.0000 | 0.0720 | 1.4360 | 0.2295 | 0.0124 | 0.0124 |
| 3.0 |  | 1.1021 | 5.0101 |  | 0.6247 |  | 1.6723 | 0.0000 | 0.1411 | 1.9620 | 0.2897 | 0.1074 | 0.1074 |
| 4.5 |  | 0.7472 | 4.8762 |  | 0.0000 | 1.6276 | 0.7100 | 0.0000 | 0.0000 | 0.7125 | 0.0025 | 0.4556 | 0.4556 |
| 6.0 |  | 0.7649 | 1.3285 |  | 0.0000 | 0.4434 | 0.2600 | 0.0000 | 0.0000 | 0.2600 | 0.0000 | 0.7463 | 0.7463 |
| 7.5 |  | 0.7810 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 | 0.1678 | 0.1678 | 0.4452 | 0.4452 |
| 9.0 |  | 0.8300 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 | 0.1551 | 0.1551 | 0.1772 | 0.1772 |
| 10.5 |  | 0.7995 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 | 0.1580 | 0.1580 | 0.1215 | 0.1215 |
| 12.0 |  | 0.8035 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 | 0.1757 | 0.1757 | 0.1935 | 0.1935 |
| 13.5 |  | 0.8062 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 | 0.2250 | 0.2250 | 0.3512 | 0.3512 |
| 15.0 |  | 0.8015 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 | 0.2077 | 0.2077 | 0.3366 | 0.3366 |
| 18.0 |  | 0.8519 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 | 0.2102 | 0.2102 | 0.2801 | 0.2801 |
| 21.0 |  | 0.7928 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 | 0.2299 | 0.2299 | 0.2548 | 0.2548 |
| 24.0 |  | 0.7856 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 | 0.2678 | 0.2678 | 0.5264 | 0.5264 |
| 27.0 |  | 0.7425 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 | 0.2974 | 0.2974 | 0.4021 | 0.4021 |
| 30.0 |  | 0.7373 | 0.0000 |  | 0.0000 |  | 0.0000 | 0.0000 | 0.0000 | 0.3093 | 0.3093 | 0.5290 | 0.5290 |

IC Data, Schlepp Pond

| Depth | Element ( $\mathrm{mg} \mathrm{L}^{-1}$ ) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (cm) | F | Cl | $\mathrm{SO}_{4}{ }^{\text {- }}$ | $\mathrm{HPO}_{4}{ }^{\text {- }}$ | $\mathrm{NO}_{3}{ }^{-}$ | $\left(\mathrm{SO}_{4}{ }^{2 \cdot}\right) \mathrm{S}$ | $\left(\mathrm{HPO}_{4}{ }^{2}\right) \mathrm{P}$ | $\left(\mathrm{NO}_{3}{ }^{\text {) }} \mathrm{N}\right.$ | S(ICP) | dif S | P(ICP) | dif $P$ |
| March 2004, \#5 |  |  |  |  |  |  |  |  |  |  |  |  |
| -1.5 | 0.0600 | 3.5800 | 1.6371 | 1.3400 | 0.0600 | 0.5464 | 0.4324 | 0.0136 | 0.9226 | 0.3762 | 0.9517 | 0.5193 |
| 0.0 | 0.0600 | 3.8900 | 1.7970 | 1.1300 | 0.0800 | 0.5998 | 0.3647 | 0.0181 | 0.9209 | 0.3211 | 1.0190 | 0.6543 |
| 1.5 | 0.0600 | 3.9800 | 1.7817 | 1.7000 | 0.0500 | 0.5947 | 0.5486 | 0.0113 | 0.9606 | 0.3659 | 1.1260 | 0.5774 |
| 3.0 | 0.0600 | 3.8600 | 1.9721 | 1.3300 | 0.0700 | 0.6583 | 0.4292 | 0.0158 | 1.0280 | 0.3697 | 1.0810 | 0.6518 |
| 4.5 | 0.0600 | 3.5200 | 2.0025 | 1.3500 | 0.0400 | 0.6684 | 0.4357 | 0.0090 | 1.0300 | 0.3616 | 1.0230 | 0.5873 |
| 6.0 | 0.0700 | 3.1700 | 2.3376 | 1.2300 | 0.0400 | 0.7803 | 0.3969 | 0.0090 | 1.0980 | 0.3177 | 0.9764 | 0.5795 |
| 7.5 | 0.0700 | 2.8300 | 2.2234 | 0.9700 | 0.0200 | 0.7421 | 0.3130 | 0.0045 | 1.1050 | 0.3629 | 0.9607 | 0.6477 |
| 9.0 | 0.0700 | 2.7000 | 2.2843 | 0.6100 | 0.0400 | 0.7625 | 0.1969 | 0.0090 | 1.1080 | 0.3455 | 0.9911 | 0.7942 |
| 12.0 | 0.0800 | 2.5000 | 2.1701 | 1.5000 | 0.0200 | 0.7243 | 0.4841 | 0.0045 | 1.0450 | 0.3207 | 1.0820 | 0.5979 |
| 19.5 | 0.0700 | 2.6000 | 2.3223 | 1.4400 | 0.0300 | 0.7752 | 0.4647 | 0.0068 | 1.0840 | 0.3088 | 1.0390 | 0.5743 |
| 27.0 | 0.0800 | 2.8400 | 2.5964 | 0.6800 | 0.1100 | 0.8667 | 0.2194 | 0.0248 | 1.2140 | 0.3473 | 0.8921 | 0.6727 |
| 34.5 | 0.0700 | 3.0600 | 2.2538 | 0.8000 | 0.0600 | 0.7523 | 0.2582 | 0.0136 | 1.0860 | 0.3337 | 1.0350 | 0.7768 |

Table 5.23. IC data from the Schlepp Pond, March 2004. Samples are from dialyzer \#6 and \#7. The data were converted to elemental concentrations in the right hand columns and $S$ and $P$ are compared to ICP totals.


March 2004, \#7

0300






Table 5.24. IC data from the Schlepp Pond, April 2004. Samples are from dialyzer \#8 and \#9. The data were converted to elemental concentrations in the right hand columns and S and P are compared to ICP totals.

| epth | Element ( $\mathrm{mg} \mathrm{L}^{-1}$ ) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (cm) | F | Cl | $\mathrm{SO}_{4}{ }^{\text {- }}$ | $\mathrm{HPO}_{4}{ }^{\text {a- }}$ | $\mathrm{NO}_{3}{ }^{-}$ | $\left(\mathrm{SO}_{4}{ }^{2}\right) \mathrm{S}$ | $\left(\mathrm{HPO}_{4}{ }^{2}\right) \mathrm{P}$ | $\left(\mathrm{NO}_{3}{ }^{\text {) }} \mathrm{N}\right.$ | S(ICP) | dif S | P (ICP) | dif P |
| April 2004, \#8 |  |  |  |  |  |  |  |  |  |  |  |  |
| 0.0 | 0.0200 | 0.3400 | 3.3900 |  | 0.0200 | 1.1316 | 0.0000 | 0.0045 | 5.7320 | 4.6004 | 0.2228 | 0.2228 |
| 1.5 | 0.0500 | 1.1700 | 3.2400 | 0.0300 | 0.0400 | 1.0815 | 0.0097 | 0.0090 | 2.5550 | 1.4735 | 0.3228 | 0.3131 |
| 3.0 | 0.0500 | 1.4200 | 0.6600 | 0.0600 | 0.0500 | 0.2203 | 0.0194 | 0.0113 | 0.7963 | 0.5760 | 0.3614 | 0.3420 |
| 4.5 | 0.0400 | 1.3300 | 0.3100 | 0.1000 | 0.0200 | 0.1035 | 0.0323 | 0.0045 | 0.6508 | 0.5473 | 0.7462 | 0.7139 |
| 6.0 | 0.0300 | 1.6000 | 0.3600 | 0.5900 | 0.0400 | 0.1202 | 0.1904 | 0.0090 | 0.6621 | 0.5419 | 1.0110 | 0.8206 |
| 7.5 | 0.0300 | 1.5700 | 0.3600 | 0.5600 | 0.0300 | 0.1202 | 0.1807 | 0.0068 | 0.6522 | 0.5320 | 0.9889 | 0.8082 |
| 9.0 | 0.0400 | 1.8000 | 0.3800 | 0.5900 | 0.0300 | 0.1268 | 0.1904 | 0.0068 | 0.6829 | 0.5561 | 1.0230 | 0.8326 |
| 10.5 | 0.0300 | 1.8400 | 0.3900 | 0.5900 | 0.0300 | 0.1302 | 0.1904 | 0.0068 | 0.6639 | 0.5337 | 1.0890 | 0.8986 |
| 13.5 | 0.0300 | 1.9000 | 0.4000 | 0.6300 | 0.0300 | 0.1335 | 0.2033 | 0.0068 | 0.6060 | 0.4725 | 1.1370 | 0.9337 |
| 21.0 | 0.0300 | 2.1800 | 0.4100 | 0.8300 | 0.0100 | 0.1369 | 0.2679 | 0.0023 | 0.7122 | 0.5753 | 1.3110 | 1.0431 |
| 28.5 | 0.0300 | 1.4100 | 0.3900 | 0.9700 | 0.0100 | 0.1302 | 0.3130 | 0.0023 | 0.5843 | 0.4541 | 1.5000 | 1.1870 |
| 36.0 | 0.0300 | 2.5100 | 0.3200 | 0.8400 | 0.0100 | 0.1068 | 0.2711 | 0.0023 | 0.8437 | 0.7369 | 1.3990 | 1.1279 |
| April 2004, \#9 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.5 | 0.0600 | 1.1300 | 1.9700 | 0.0600 | 0.0900 | 0.6576 | 0.0194 | 0.0203 | 1.6780 | 1.0204 | 0.2642 | 0.2448 |
| 3.0 | 0.0700 | 1.8200 | 0.6900 | 0.2100 | 0.0700 | 0.2303 | 0.0678 | 0.0158 | 0.8117 | 0.5814 | 0.4522 | 0.3844 |
| 4.5 | 0.0300 | 1.3400 | 0.3400 | 1.2900 | 0.0600 | 0.1135 | 0.4163 | 0.0136 | 0.5301 | 0.4166 | 1.3620 | 0.9457 |
| 6.0 | 0.0300 | 1.4800 | 0.3400 | 1.4300 | 0.0200 | 0.1135 | 0.4615 | 0.0045 | 0.5293 | 0.4158 | 1.4850 | 1.0235 |
| 7.5 | 0.0400 | 1.5400 | 0.3500 | 1.4700 | 0.0200 | 0.1168 | 0.4744 | 0.0045 | 0.5404 | 0.4236 | 1.5970 | 1.1226 |
| 9.0 | 0.0300 | 1.2900 | 0.3800 | 0.7400 | 0.1500 | 0.1268 | 0.2388 | 0.0339 | 0.6079 | 0.4811 | 1.2640 | 1.0252 |
| 10.5 | 0.0300 | 1.5200 | 0.3800 | 0.8800 | 0.0500 | 0.1268 | 0.2840 | 0.0113 | 0.5702 | 0.4434 | 1.2280 | 0.9440 |
| 12.0 15.0 | 0.0300 0.0300 | 1.5000 | 0.4000 | 0.7700 | 0.0400 | 0.1335 | 0.2485 | 0.0090 | 0.5913 | 0.4578 | 1.1660 | 0.9175 |
| 15.0 | 0.0300 | 1.1300 | 0.3300 | 0.3600 | 0.0200 | 0.1102 | 0.1162 | 0.0045 | 0.5909 | 0.4807 | 1.2680 | 1.1518 |
| 22.5 30.0 | 0.0400 0.0400 | 1.1900 1.1200 | 0.4600 0.4300 | 0.7800 0.7300 | 0.0400 | 0.1535 | 0.2517 | 0.0090 | 0.5558 | 0.4023 | 1.0740 | 0.8223 |
| 30.0 37.5 | 0.0400 | 1.1200 | 0.4300 | 0.7300 | 0.0300 | 0.1435 | 0.2356 | 0.0068 | 0.5997 | 0.4562 | 1.1730 | 0.9374 |
| 37.5 | 0.0300 | 1.5500 | 0.5000 | 1.0800 | 0.1000 | 0.1669 | 0.3485 | 0.0226 | 0.7875 | 0.6206 | 1.1420 | 0.7935 |

Table 5.25. IC data from the Schlepp Pond, April and May 2004. Samples are from dialyzer \#12 (April) and \#1 (May). The data were converted to elemental concentrations in the right hand columns and $S$ and $P$ are compared to ICP totals.

| Depth | $\mathrm{F} \quad \mathrm{Cl} \mathrm{SO}^{2 .} \mathrm{HPO}^{2 .} \quad$ Element $\left(\mathrm{mg} \mathrm{L}^{-1}\right)$ |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (cm) |  |  |  |  |  |  |  |  |  |  |  |  |
| April 2004, \#12 |  |  |  |  |  |  |  |  |  |  |  |  |
| -1.5 | 0.0300 | 0.6400 | 8.7600 | 0.1200 | 14.8300 | 2.9240 | 0.0387 | 3.3502 | 6.8210 | 3.8970 | 0.0184 | -0.0203 |
| 0.0 | 0.0300 | 0.6200 | 4.6700 | 0.1200 | 12.6000 | 1.5588 | 0.0387 | 2.8464 | 3.8810 | 2.3222 | 0.1346 | 0.0959 |
| 1.5 | 0.0500 | 1.2000 | 1.6400 | 0.1000 | 0.1300 | 0.5474 | 0.0323 | 0.0294 | 1.4860 | 0.9386 | 0.4076 | 0.3753 |
| 3.0 | 0.0400 | 1.2100 | 0.4600 | 1.0400 | 0.0200 | 0.1535 | 0.3356 | 0.0045 | 0.6689 | 0.5154 | 1.2130 | 0.8774 |
| 4.5 | 0.0300 | 1.2900 | 0.3800 | 1.0400 | 0.0700 | 0.1268 | 0.3356 | 0.0158 | 0.6423 | 0.5155 | 1.1940 | 0.8584 |
| 6.0 7.5 | 0.0300 0.0300 | 1.4900 1.6600 | 0.3800 0.5000 | 0.5000 0.4200 | 0.0400 | 0.1268 | 0.1614 | 0.0090 | 0.6029 | 0.4761 | 1.0860 | 0.9246 |
| 9.0 | 0.0400 | 1.6400 | 0.5000 0.4000 | 0.4200 0.2400 | 0.1100 0.0300 | 0.1669 0.1335 | 0.1355 | 0.0248 | 0.6204 | 0.4535 | 0.9435 | 0.8080 |
| 12.0 | 0.0300 | 1.5500 | 0.5900 | 0.3500 | 0.0200 | 0.1969 | 0.0715 0.1130 | 0.0068 0.0045 | 0.5879 0.6376 | 0.4544 0.4407 | 0.8901 0.9040 | 0.8126 0.7910 |
| 18.0 | 0.0300 | 1.4400 | 0.5300 | 0.6600 | 0.1800 | 0.1769 | 0.2130 | 0.0407 | 0.6202 | 0.4433 | 0.9306 | 0.7910 |
| 25.5 | 0.0300 | 1.5500 | 0.4300 | 0.9200 | 0.0100 | 0.1435 | 0.2969 | 0.0023 | 0.5930 | 0.4495 | 1.0510 | 0.7541 |
| 33.0 | 0.0400 | 1.9900 | 0.4000 | 1.8000 | 0.0700 | 0.1335 | 0.5809 | 0.0158 | 0.6982 | 0.5647 | 1.7540 | 1.1731 |
| 0 May 2004, \#1 |  |  |  |  |  |  |  |  |  |  |  |  |
| 0.0 | 0.0400 | 2.1400 | 1.7200 | 0.2800 | 0.0500 | 0.5740 | 0.0904 | 0.0113 | 0.8053 | 0.2313 | 0.2290 | 0.2177 |
| 1.5 | 0.0500 | 2.9400 | 1.0000 | 0.1100 | 0.0200 | 0.3337 | 0.0355 | 0.0045 | 0.7800 | 0.4463 | 0.3138 | 0.3093 |
| 3.0 4.5 | 0.0500 0.0500 | 3.3200 3.5900 | 0.7100 1.5200 | 0.1000 | 0.0200 | 0.2370 | 0.0323 | 0.0045 | 0.8401 | 0.6031 | 0.3674 | 0.3629 |
| 6.0 | 0.0500 | 3.5900 3.7800 | 1.5200 0.9500 | 0.2700 0.2200 | 0.0400 0.0300 | 0.5073 | 0.0871 | 0.0090 | 0.8991 | 0.3918 | 0.4012 | 0.3922 |
| 7.5 | 0.0600 | 4.0300 | 0.9200 | 0.2800 | 0.0300 | 0.3171 0.3070 | 0.0710 0.0904 | 0.0068 | 0.9395 | 0.6224 | 0.4282 | 0.4214 |
| 9.0 | 0.0500 | 3.9000 | 1.0400 | 0.3000 | 0.0500 | 0.3471 | 0.0968 | 0.0068 | 0.8898 | 0.5828 | 0.4788 | 0.4720 |
| 10.5 | 0.0500 | 3.9700 | 0.9100 | 0.2500 | 1.3600 | 0.3037 | 0.0807 | 0.0113 | 0.8828 | 0.5357 | 0.4169 | 0.4056 |
| 13.5 | 0.0700 | 0.2900 | 1.4800 | 0.9200 | 0.9600 | 0.4939 | 0.2969 | 0.3071 | 0.8706 | 0.5669 | 0.5856 | 0.2785 |
| 21.0 | 0.0600 | 3.5400 | 0.8900 | 0.5000 | 0.0700 | 0.2970 | 0.2969 0.1614 | 0.2168 | 0.7936 | 0.2997 | 0.9030 | 0.6862 |
| 28.5 | 0.0700 | 2.0800 | 0.6700 | 3.2100 |  | 0.2236 | 0.1614 | 0.0158 | 0.6955 | 0.3985 | 0.9179 | 0.9021 |
| 36.0 | 0.0800 | 2.6500 | 0.4000 | 4.6800 |  | 0.1335 | 1.5103 | 0.0000 |  |  |  | 0.0000 |
|  |  |  |  |  |  |  | 1.5103 | 0.0000 | 0.6957 | 0.5622 | 1.1390 | 1.1390 |

Table 5.26. IC data from the Schlepp Pond, May 2004. Samples are from dialyzer \#2 and \#3. The data were converted to elemental concentrations in the right hand columns and S and P are compared to ICP totals.

| Depth | F CI Element ( $\mathrm{mg} \mathrm{L}^{-1}$ ) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (cm) | F | Cl | $\mathrm{SO}_{4}{ }^{\text {- }}$ | $\mathrm{HPO}_{4}{ }^{\text {a }}$ | $\mathrm{NO}_{3}{ }^{-}$ | $\left(\mathrm{SO}_{4}{ }^{2}\right) \mathrm{S}$ | $\left(\mathrm{HPO}_{4}{ }^{2}\right) \mathrm{P}$ | $\left(\mathrm{NO}_{3}\right) \mathrm{N}$ | S(ICP) | dif S | P(ICP) | dif P |
| May 2004, \#2 |  |  |  |  |  |  |  |  |  |  |  |  |
| -1.5 | 0.0300 | 2.7900 | 9.3000 | 0.0300 | 0.0400 | 3.1039 | 0.0097 | 0.0090 | 3.6020 | 0.4981 | 0.1103 | 0.1013 |
| 0.0 | 0.0400 | 4.9700 | 0.2900 | 0.0800 | 0.1000 | 0.0968 | 0.0258 | 0.0226 | 0.7786 | 0.6818 | 0.3317 | 0.3091 |
| 1.5 | 0.0500 | 7.4500 | 0.3100 | 0.1400 | 0.0200 | 0.1035 | 0.0452 | 0.0045 | 0.9043 | 0.8008 | 0.7104 | 0.7059 |
| 3.0 | 0.0600 | 7.4300 | 0.3200 | 0.2600 | 0.0700 | 0.1068 | 0.0839 | 0.0158 | 0.8600 | 0.7532 | 0.8164 | 0.8006 |
| 4.5 | 0.0600 | 7.3900 | 0.2900 | 0.3100 | 0.0800 | 0.0968 | 0.1000 | 0.0181 | 0.8437 | 0.7469 | 1.0540 | 1.0359 |
| 6.0 | 0.0600 | 7.4300 | 1.2900 | 0.7300 | 0.0400 | 0.4305 | 0.2356 | 0.0090 | 0.8306 | 0.4001 | 1.1960 | 1.1870 |
| 7.5 9.0 | 0.0500 0.0700 | 6.8100 75100 | 1.1800 12900 | 0.4400 | 0.0300 | 0.3938 | 0.1420 | 0.0068 | 0.8325 | 0.4387 | 1.2760 | 1.2692 |
| 9.0 12.0 | 0.0700 0.0700 | 7.5100 | 1.2900 | 0.4400 | 0.0600 | 0.4305 | 0.1420 | 0.0135 | 0.7908 | 0.3603 | 1.249 | 1.2355 |
| 19.5 | 0.0700 | 4.4500 | 0.3100 | 0.6800 0.3800 | 0.1000 | 0.1068 | 0.2194 | 0.0226 | 0.7865 | 0.6797 | 1.4100 | 1.3874 |
| 27.0 | 0.0800 | 4.0000 | 0.3400 | 0.5100 | 0.1500 | 0.1135 | 0.1226 | 0.0203 | 0.7237 | 0.6202 | 1.2830 | 1.2627 |
| 34.5 | 0.0800 | 8.3100 | 0.3900 | 0.6700 | 0.2600 | 0.1302 | 0.2162 | 0.0339 0.058 | 0.7693 0.9426 | 0.6558 0.8124 | 1.3600 1.1880 | 1.3261 1.1293 |
| - May 2004, \#3 |  |  |  |  |  |  |  |  |  |  |  |  |
| 0.0 | 0.0600 | 4.2700 | 0.2600 | 0.1300 | 0.0500 | 0.0868 | 0.0420 | 0.0113 | 1.3130 | 1.2262 | 0.2877 | 0.2764 |
| 1.5 | 0.0600 | 4.2900 | 0.3200 | 0.1500 | 0.0300 | 0.1068 | 0.0484 | 0.0068 | 1.3010 | 1.1942 | 0.4519 | 0.4451 |
| 3.0 |  | 0.4400 | 0.2000 |  |  | 0.0667 | 0.0000 | 0.0000 | 1.3330 | 1.2663 | 0.6092 | 0.6092 |
| 4.5 | 0.0600 | 5.3300 | 2.4900 | 0.1200 | 0.0700 | 0.8310 | 0.0387 | 0.0158 | 1.3960 | 0.5650 | 0.6852 | 0.6694 |
| 6.0 | 0.0600 | 5.9000 | 2.5000 | 0.2100 | 0.0200 | 0.8344 | 0.0678 | 0.0045 | 1.5680 | 0.7336 | 0.5534 | 0.5489 |
| 7.5 | 0.0300 | 3.0900 | 0.3000 | 0.0800 | 0.0200 | 0.1001 | 0.0258 | 0.0045 | 1.5750 | 1.4749 | 0.4402 | 0.4357 |
| 9.0 | 0.0700 | 5.1000 | 0.2900 | 0.0900 | 0.0100 | 0.0968 | 0.0290 | 0.0023 | 1.5270 | 1.4302 | 0.4333 | 0.4310 |
| 10.5 | 0.0600 | 4.4000 | 2.0600 | 0.1200 | 0.0200 | 0.6875 | 0.0387 | 0.0045 | 1.4820 | 0.7945 | 0.4685 | 0.4640 |
| 13.5 | 0.0800 | 4.8900 | 2.5200 | 0.1800 | 0.0400 | 0.8410 | 0.0581 | 0.0090 | 1.3710 | 0.5300 | 0.7521 | 0.7431 |
| 21.0 | 0.0800 | 3.3900 | 2.4300 | 0.4100 | 0.0300 | 0.8110 | 0.1323 | 0.0068 | 1.2090 | 0.3980 | 1.2050 | 1.1982 |
| 28.5 36.0 | 0.0800 | 2.9400 | 2.5300 | 1.3200 | 0.0800 | 0.8444 | 0.4260 | 0.0181 | 1.2200 | 0.3756 | 1.1320 | 1.1139 |
|  | 0.0900 | 3.8300 | 2.1900 | 0.3300 | 0.0200 | 0.7309 | 0.1065 | 0.0045 | 1.2000 | 0.4691 | 0.8174 | 0.8129 |

Table 5.27. IC data from the Schlepp Pond, June 2004. Samples are from dialyzer \#15 and \#16. The data were converted to elemental concentrations in the right hand columns and $S$ and $P$ are compared to ICP totals.

| Depth | Element ( $\mathrm{mg} \mathrm{L}^{-1}$ ) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (cm) | F | Cl | $\mathrm{SO}_{4}{ }^{2-}$ | $\mathrm{HPO}_{4}{ }^{\text {2- }}$ | $\mathrm{NO}_{3}{ }^{-}$ | $\left(\mathrm{SO}_{4}{ }^{-2}\right) \mathrm{S}$ | $\left(\mathrm{HPO}_{4}{ }^{2}\right) \mathrm{P}$ | $\left(\mathrm{NO}_{3}{ }^{-} \mathrm{N}\right.$ | S(ICP) | dif S | P(ICP) | dif P |
| June 2004, \#15 |  |  |  |  |  |  |  |  |  |  |  |  |
| -1.5 | 0.0400 | 1.0000 | 10.1500 | 0.0000 | 0.0200 | 3.3876 | 0.0000 | 0.0045 | 3.2750 | -0.1126 | 0.0736 | 0.0736 |
| 0.0 | 0.0400 | 1.3100 | 3.6600 | 0.2400 | 0.1200 | 1.2215 | 0.0774 | 0.0271 | 1.2930 | 0.0715 | 0.1592 | 0.0818 |
| 1.5 | 0.0400 | 2.5200 | 0.6400 | 0.2800 | 0.1000 | 0.2136 | 0.0904 | 0.0226 | 0.4087 | 0.1951 | 0.4888 | 0.3984 |
| 3.0 | 0.0400 | 4.2200 | 0.7500 | 0.2800 | 0.0400 | 0.2503 | 0.0904 | 0.0090 | 0.4040 | 0.1537 | 0.7783 | 0.6879 |
| 4.5 | 0.0300 | 7.1800 | 0.6000 | 0.5200 | 0.1600 | 0.2002 | 0.1678 | 0.0361 | 0.4728 | 0.2726 | 0.9055 | 0.7377 |
| 6.0 | 0.0400 | 10.1900 | 0.5300 | 1.0300 | 0.0100 | 0.1769 | 0.3324 | 0.0023 | 0.5726 | 0.3957 | 1.0910 | 0.7586 |
| 7.5 | 0.0500 | 11.3700 | 0.5800 | 1.7800 | 0.0500 | 0.1936 | 0.5744 | 0.0113 | 0.6993 | 0.5057 | 1.4420 | 0.8676 |
| 9.0 | 0.0600 | 11.8700 | 0.6300 | 1.8700 | 0.3900 | 0.2103 | 0.6035 | 0.0881 | 0.7348 | 0.5245 | 1.4250 | 0.8215 |
| 12.0 | 0.0600 | 12.5000 | 0.5700 | 1.5200 | 0.0200 | 0.1902 | 0.4905 | 0.0045 | 0.7759 | 0.5857 | 1.6940 | 1.2035 |
| 19.5 | 0.0600 | 7.5700 | 0.6300 | 1.6800 | 0.0400 | 0.2103 | 0.5421 | 0.0090 | 0.6375 | 0.4272 | 1.7760 | 1.2339 |
| 27.0 |  | 4.6900 | 0.7500 | 2.4600 | 0.0400 | 0.2503 | 0.7939 | 0.0090 | 0.6067 | 0.3564 | 1.8010 | 1.0071 |
| 34.5 | 0.0900 | 4.5300 | 0.8300 | 2.1400 | 0.0000 | 0.2770 | 0.6906 | 0.0000 | 0.6514 | 0.3744 | 1.6440 | 0.9534 |
| June 2004, \#16 |  |  |  |  |  |  |  |  |  |  |  |  |
| 0.0 | 0.0200 | 1.0300 | 5.1500 | 0.0000 | 0.0500 | 1.7188 | 0.0000 | 0.0113 | 1.9080 | 0.1892 | 0.0000 | 0.0000 |
| 1.5 | 0.0200 | 1.2100 | 1.5400 |  | 0.0800 | 0.5140 | 0.0000 | 0.0181 | 0.6882 | 0.1742 | 0.0018 | 0.0018 |
| 3.0 | 0.0200 | 1.5500 | 0.6000 | 0.0300 | 0.0500 | 0.2002 | 0.0097 | 0.0113 | 0.3903 | 0.1901 | 0.0525 | 0.0428 |
| 4.5 | 0.0300 | 2.8700 | 0.6500 | 0.3700 | 0.0800 | 0.2169 | 0.1194 | 0.0181 | 0.4947 | 0.2778 | 0.0367 | -0.0827 |
| 6.0 | 0.0300 | 3.2600 | 0.6600 | 0.1900 | 0.0600 | 0.2203 | 0.0613 | 0.0135 | 0.6363 | 0.4160 | 0.3243 | 0.2630 |
| 7.5 | 0.0400 | 3.7300 | 0.7100 | 0.3400 | 0.0700 | 0.2370 | 0.1097 | 0.0158 | 0.7177 | 0.4807 | 0.5072 | 0.3975 |
| 9.0 | 0.0300 | 3.9900 | 0.6900 | 0.4100 | 0.0700 | 0.2303 | 0.1323 | 0.0158 | 0.7043 | 0.4740 | 0.5987 | 0.4664 |
| 10.5 | 0.0200 | 4.0200 | 0.7300 | 0.4000 | 0.0400 | 0.2436 | 0.1291 | 0.0090 | 0.6703 | 0.4267 | 0.6356 | 0.5065 |
| 13.5 |  |  |  |  |  | 0.0000 | 0.0000 | 0.0000 | 0.6682 | 0.6682 | 0.7328 | 0.7328 |
| 21.0 |  |  |  |  |  | 0.0000 | 0.0000 | 0.0000 | 0.6990 | 0.6990 | 1.6390 | 1.6390 |
| 28.5 |  |  |  |  |  | 0.0000 | 0.0000 | 0.0000 | 0.7883 | 0.7883 | 1.0180 | 1.0180 |
| 36.0 |  |  |  |  |  | 0.0000 | 0.0000 | 0.0000 | 0.9743 | 0.9743 | 0.5693 | 0.5693 |

Table 5.28. IC data from the Schlepp Pond, June and August 2004. Samples are from dialyzer \#17 (June) and \#2 (August). The data were converted to elemental concentrations in the right hand columns and S and P are compared to ICP totals.



 00000000000
0.5371
0.6612
0.7354
0.7967
0.8532
0.8545
0.8589
0.7816
0.6833
0.6383
0.7619
0.7764


| August 2002, \#2 |  |  |
| :--- | :---: | :--- |
| 0.1800 | 0.0968 | 0.0290 |
| 0.2200 | 0.2737 | 0.0355 |
| 0.1100 | 0.1168 | 0.0484 |
| 0.0700 | 0.1335 | 0.1130 |
| 0.2400 | 0.1235 | 0.2679 |
| 0.3100 | 0.1469 | 0.2808 |
| 0.0800 | 0.1402 | 0.3227 |
| 0.0800 | 0.1502 | 0.3098 |
| 0.9100 | 0.6175 | 0.2065 |
| 0.0600 | 0.4072 | 0.2033 |
| 0.1000 | 0.1402 | 0.2130 |
| 0.1000 | 0.0768 | 0.1485 |

$\mathrm{HPO}_{4}{ }^{2-}$
0.1100
0.0900
0.1200
0.7200
0.0600

0.1100
0.2000
0.1200
0.0600
0.0400
0.0500
0.4900
0.1300
0.0700
0.1600
0.0800
0.1000
0.0900
0.1200
0.1400

0.2800
0.4600

| 8 |
| :--- |
|  |
| 8 |
| 0 |


| 8 |
| :--- |
| 6 |
| 0 |
| 0 |
| 0 |

O
0
0
0

| 8.8 |
| :--- |
| 6 |




0.0300
0.0300
0.0400
0.0100
0.0500
0.0500

0.0500
0.0500
0.0500
0.0500
0.0500

$\stackrel{4}{ }$
。
$\frac{\text { Depth }}{(\mathrm{cm})}$
1.5
3.0
4.5
6.0
7.5
9.0
10.5
12.0
13.5
16.5
24.0
31.5
OM
Table 5.29. IC data from the Schlepp Pond, August 2004. Samples are from dialyzer \#8 and \#12. The data were converted to elemental concentrations in the right hand columns and S and P are compared to ICP totals.

| Depth | Element ( $\mathrm{mg} \mathrm{L}^{-1}$ ) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (cm) | F | Cl | $\mathrm{SO}_{4}{ }^{\text {- }}$ | $\mathrm{HPO}_{4}{ }^{\text {2- }}$ | $\mathrm{NO}_{3}{ }^{-}$ | $\left(\mathrm{SO}_{4}{ }^{2}\right) \mathrm{S}$ | $\left(\mathrm{HPO}_{4}{ }^{2}{ }^{\text {a }}\right.$ ) P | $\left(\mathrm{NO}_{3}\right) \mathrm{N}$ | S(ICP) | dif S | P(ICP) | dif $P$ |
| August 2004, \#8 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.5 | 0.0600 | 3.6500 | 0.3400 | 0.3500 | 0.7500 | 0.1135 | 0.1130 | 0.1694 | 0.6391 | 0.5256 | 0.4142 | 0.3012 |
| 3.0 | 0.0600 | 4.0600 | 0.3500 | 0.6400 | 0.1300 | 0.1168 | 0.2065 | 0.0294 | 0.6996 | 0.5828 | 0.6801 | 0.4736 |
| 4.5 | 0.0600 | 4.5900 | 0.3200 | 0.6700 | 0.0600 | 0.1068 | 0.2162 | 0.0136 | 0.7778 | 0.6710 | 0.8282 | 0.6120 |
| 6.0 | 0.0600 | 5.1100 | 0.3500 | 1.3700 | 0.0700 | 0.1168 | 0.4421 | 0.0158 | 0.7766 | 0.6598 | 0.9428 | 0.5007 |
| 7.5 | 0.0600 | 5.9300 | 0.4700 | 1.8300 | 1.3100 | 0.1569 | 0.5906 | 0.2959 | 0.7450 | 0.5881 | 1.1670 | 0.5764 |
| 9.0 | 0.0700 | 5.8700 | 0.4200 | 2.2400 | 0.1400 | 0.1402 | 0.7229 | 0.0316 | 0.7814 | 0.6412 | 1.3490 | 0.6261 |
| 10.5 | 0.0700 | 5.3400 | 0.7900 | 2.2200 | 0.0400 | 0.2637 | 0.7164 | 0.0090 | 0.7724 | 0.5087 | 1.4030 | 0.6866 |
| 12.0 | 0.0700 | 4.9600 | 0.4100 | 2.1400 | 0.0700 | 0.1369 | 0.6906 | 0.0158 | 0.7854 | 0.6485 | 1.4670 | 0.7764 |
| 15.0 | 0.0700 | 4.2100 | 0.7600 | 2.1500 | 0.0800 | 0.2537 | 0.6938 | 0.0181 | 0.7414 | 0.4877 | 1.4060 | 0.7122 |
| 22.5 | 0.0800 | 3.6200 | 0.3600 | 1.3100 | 0.2500 | 0.1202 | 0.4228 | 0.0565 | 0.7141 | 0.5939 | 1.4490 | 1.0262 |
| 30.0 | 0.0800 | 3.5800 | 0.4200 | 1.6700 | 0.0600 | 0.1402 | 0.5389 | 0.0136 | 0.6222 | 0.4820 | 1.7570 | 1.2181 |
| 37.5 | 0.0900 | 2.7200 | 0.4000 | 2.1200 | 0.0300 | 0.1335 | 0.6842 | 0.0068 | 0.6408 | 0.5073 | 1.6700 | 0.9858 |
| August 2004, \#12 |  |  |  |  |  |  |  |  |  |  |  |  |
| 0.0 | 0.0500 | 2.6400 | 0.2300 |  | 0.0800 | 0.0768 | 0.0000 | 0.0181 | 0.6549 | 0.5781 | 0.2584 | 0.2584 |
| 1.5 | 0.0500 | 2.8100 | 0.3200 | 0.3200 | 0.5000 | 0.1068 | 0.1033 | 0.1130 | 0.7013 | 0.5945 | 0.6186 | 0.5153 |
| 3.0 | 0.0600 | 2.7300 | 0.2400 | 0.4300 | 0.0700 | 0.0801 | 0.1388 | 0.0158 | 0.6759 | 0.5958 | 0.8363 | 0.6975 |
| 4.5 | 0.0500 | 2.4100 | 0.1500 | 0.9000 | 0.1400 | 0.0501 | 0.2904 | 0.0316 | 0.6821 | 0.6320 | 1.1280 | 0.8376 |
| 6.0 | 0.0600 | 2.6500 | 0.3200 | 0.6600 | 0.1000 | 0.1068 | 0.2130 | 0.0226 | 0.7211 | 0.6143 | 1.1570 | 0.9440 |
| 7.5 | 0.0600 | 2.5900 | 0.3500 | 0.7400 | 0.3200 | 0.1168 | 0.2388 | 0.0723 | 0.6985 | 0.5817 | 1.2150 | 0.9762 |
| 9.0 | 0.0600 | 2.5500 | 0.4100 | 0.5800 | 0.6000 | 0.1369 | 0.1872 | 0.1355 | 0.6554 | 0.5185 | 1.2790 | 1.0918 |
| 10.5 | 0.0700 | 2.4900 | 0.2500 | 0.9900 | 0.1400 | 0.0834 | 0.3195 | 0.0316 | 0.6641 | 0.5807 | 1.4140 | 1.0945 |
| 13.5 | 0.0700 | 2.3600 | 0.3100 | 1.5000 | 0.2200 | 0.1035 | 0.4841 | 0.0497 | 0.6202 | 0.5167 | 1.4770 | 0.9929 |
| 21.0 | 0.0900 | 2.4400 | 0.2900 | 1.3800 | 0.1000 | 0.0968 | 0.4454 | 0.0226 | 0.7289 | 0.6321 | 1.4040 | 0.9586 |
| 28.5 | 0.0900 | 2.7400 | 0.8300 | 1.2700 | 0.1000 | 0.2770 | 0.4099 | 0.0226 | 0.5727 | 0.2957 | 1.7390 | 1.3291 |
| 36.0 | 0.0800 | 3.4600 | 0.2800 | 1.2500 | 0.3900 | 0.0935 | 0.4034 | 0.0881 | 0.6850 | 0.5915 | 1.4780 | 1.0746 |

Table 5.30. IC data from the Schlepp Pond, November 2004. Samples are from dialyzer \#4 and \#5. The data were converted to elemental concentrations in the right hand columns and S and P are compared to ICP totals.

| Depth | Element ( $\mathrm{mg} \mathrm{L}^{-1}$ ) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (cm) | F | Cl | $\mathrm{SO}_{4}{ }^{\text {- }}$ | $\mathrm{HPO}_{4}{ }^{\text {2- }}$ | $\mathrm{NO}_{3}{ }^{-}$ | $\left(\mathrm{SO}_{4}{ }^{2}\right) \mathrm{S}$ | $\left(\mathrm{HPO}_{4}{ }^{2}\right) \mathrm{P}$ | $\left(\mathrm{NO}_{3}\right) \mathrm{N}$ | S(ICP) | dif S | P(ICP) | dif $\mathbf{P}$ |
| November 2004, \#4 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.5 | 0.0500 | 0.3400 | 0.7400 | 1.7300 | 0.0300 | 0.2470 | 0.5583 | 0.0068 | 0.8766 | 0.6296 | 0.7933 | 0.2350 |
| 3.0 | 0.0400 | 0.2700 | 0.6200 | 1.8700 | 0.0600 | 0.2070 | 0.6035 | 0.0136 | 0.9371 | 0.7301 | 0.9286 | 0.3251 |
| 4.5 | 0.0400 | 0.3900 | 1.0500 | 2.8100 | 0.0700 | 0.3505 | 0.9068 | 0.0158 | 0.9272 | 0.5767 | 1.3390 | 0.4322 |
| 6.0 | 0.0300 | 0.3800 | 0.5700 | 2.5300 | 0.0200 | 0.1903 | 0.8165 | 0.0045 | 0.9077 | 0.7174 | 1.5940 | 0.7775 |
| 7.5 | 0.0300 | 0.4800 | 0.7000 | 2.9600 | 0.0200 | 0.2337 | 0.9553 | 0.0045 | 0.9572 | 0.7235 | 1.7230 | 0.7677 |
| 9.0 | 0.0300 | 0.7600 | 0.7000 | 3.5900 | 0.3700 | 0.2337 | 1.1586 | 0.0836 | 0.9990 | 0.7653 | 1.7890 | 0.6304 |
| 10.5 | 0.0200 | 0.2000 | 0.6400 | 3.5100 | 0.1500 | 0.2136 | 1.1327 | 0.0339 | 1.0550 | 0.8414 | 1.8030 | 0.6703 |
| 12.0 | 0.0300 | 0.5800 | 0.7400 | 5.0100 | 0.0600 | 0.2470 | 1.6168 | 0.0136 | 1.1250 | 0.8780 | 2.0330 | 0.4162 |
| 15.0 | 0.0200 | 0.2400 | 0.5600 | 0.1400 | 0.0100 | 0.1869 | 0.0452 | 0.0023 | 1.1060 | 0.9191 | 2.0250 | 1.9798 |
| 22.5 | 0.0300 | 0.9700 | 0.7200 | 0.2100 | 0.0500 | 0.2403 | 0.0678 | 0.0113 | 1.0890 | 0.8487 | 1.7010 | 1.6332 |
| 30.0 | 0.0400 | 0.8800 | 0.5500 | 0.1200 | 0.5100 | 0.1836 | 0.0387 | 0.1152 | 1.3190 | 1.1354 | 2.3020 | 2.2633 |
| 37.5 | 0.0400 | 0.8800 | 0.8000 | 5.7600 | 0.2200 | 0.2670 | 1.8589 | 0.0497 | 0.5111 | 0.2441 | 0.1019 | -1.7570 |





 OO O O O O O O O O O O
0
0
0
0 $\stackrel{\sim}{\sim}$
0.6041 0.7062 6と $199^{\circ}$ 0.8487
0.8136 N 0.7547 No $\stackrel{-}{\infty}$ N




Table 5.31. IC data from the Schlepp Pond, November 2004 and June 2005. Samples are from dialyzer \#6 (November) and \#1 (June). The data were converted to elemental concentrations in the right hand columns and $S$ and $P$ are compared to ICP totals.
$\square$0.4518

## November 2004, \#6

0.30340.77781.0262
1.16501.20051.2715
1.58461.5846
2.0138N0.2141$\begin{array}{ll}0.2000 & 0.1936 \\ 0.2100 & 0.2503 \\ 0.2000 & 0.2003 \\ 0.8200 & 0.2470 \\ 1.1300 & 0.2804 \\ 0.3800 & 0.2704 \\ 0.2200 & 0.2236 \\ 0.4000 & 0.2871 \\ 0.3200 & 0.2236 \\ 0.3300 & 0.2470 \\ 0.0800 & 0.1235 \\ 0.1100 & 0.1268\end{array}$
F$0.0400 \quad 12.0900 \quad 0.7300$4000.22700.21700.20700.20360.2837
0.2370
0.2303. 1268 0.2900 $\qquad$ 0.0000 0.0500 0.0200 0.0100 0.0400

$$
\begin{aligned}
& 0.0452 \\
& 0.0474 \\
& 0.0452 \\
& 0.1852 \\
& 0.2553 \\
& 0.0858 \\
& 0.0497 \\
& 0.0904 \\
& 0.0723 \\
& 0.0745 \\
& 0.0181 \\
& 0.0248
\end{aligned}
$$ 8. 0.0400

$$
\begin{aligned}
& 0.0655 \\
& 0.0090 \\
& 0.0045 \\
& 0.0000 \\
& 0.0113 \\
& 0.0045 \\
& 0.0136 \\
& 0.0023 \\
& 0.0090 \\
& 0.0000 \\
& 0.0000 \\
& 0.0090
\end{aligned}
$$

 4.6600 0.6633

$$
\begin{aligned}
& 0.9778 \\
& 0.9709 \\
& 0.9301 \\
& 0.9535 \\
& 1.0380 \\
& 1.0820 \\
& 1.0480 \\
& 0.9909 \\
& 0.8911 \\
& 0.6975 \\
& 0.6237 \\
& 0.4311
\end{aligned}
$$

$$
\begin{aligned}
& 0.5812 \\
& 0.5220 \\
& 0.5497 \\
& 0.5372 \\
& 0.5209 \\
& 0.5523 \\
& 0.5571 \\
& 0.5576 \\
& 0.5618 \\
& 0.5466 \\
& 0.5175 \\
& 0.5961
\end{aligned}
$$

$$
\begin{aligned}
& 640 \\
& 1000 \\
& 350 \\
& 1000 \\
& 790 \\
& 050 \\
& 120 \\
& 840 \\
& 060 \\
& 210 \\
& 970 \\
& 725
\end{aligned}
$$





$$
\begin{aligned}
& \text { N } \\
& \begin{array}{ll}
0.39 & 0.9493 \\
0.27 & 0.7952 \\
0.35 & 0.9664 \\
0.29 & 1.1110 \\
0.24 & 1.1400 \\
0.28 & 1.1110 \\
0.33 & 0.8493 \\
0.27 & 0.7379 \\
0.34 & 1.2760 \\
0.30 & 1.2340 \\
0.39 & 0.0144 \\
0.47 & 1.6510
\end{array}
\end{aligned}
$$

Table 5.32. IC data from the Schlepp Pond. Samples are from dialyzer \#5 (November) and \#7 (June). The data were converted to elemental concentrations in the right hand columns and $S$ and $P$ are compared to ICP totals.

| Depth | Element ( $\mathrm{mg} \mathrm{L}^{-1}$ ) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (cm) | F | Cl | $\mathrm{SO}_{4}{ }^{\text {- }}$ | $\mathrm{HPO}_{4}{ }^{\text {2- }}$ | $\mathrm{NO}_{3}{ }^{-}$ | $\left(\mathrm{SO}_{4}{ }^{2}\right)^{\text {S }}$ | $\left(\mathrm{HPO}_{4}{ }^{2}\right) \mathrm{P}$ | $\left(\mathrm{NO}_{3}\right)^{\circ} \mathrm{N}$ | S(ICP) | dif S | P(ICP) | dif P |
| June 2005, \#5 |  |  |  |  |  |  |  |  |  |  |  |  |
| 0.0 | 0.0300 | 12.6200 | 0.8500 | 2.8400 | 0.5300 | 0.2837 | 0.9165 | 0.1197 | 0.8030 | 0.5193 | 1.8410 | 0.9245 |
| 1.5 | 0.0300 | 14.1300 | 0.9300 | 3.8100 | 0.5000 | 0.3104 | 1.2296 | 0.1130 | 0.7584 | 0.4480 | 1.9330 | 0.7034 |
| 3.0 | 0.0300 | 10.7000 | 0.8300 | 2.0900 | 0.5300 | 0.2770 | 0.6745 | 0.1197 | 0.7447 | 0.4677 | 1.6980 | 1.0235 |
| 4.5 | 0.0300 | 8.6900 | 0.8400 | 4.5200 | 0.5300 | 0.2804 | 1.4587 | 0.1197 | 0.7114 | 0.4310 | 2.0960 | 0.6373 |
| 6.0 | 0.0300 | 9.1300 | 0.8200 | 4.6900 | 0.4300 | 0.2737 | 1.5136 | 0.0971 | 0.7305 | 0.4568 | 2.1000 | 0.5864 |
| 7.5 | 0.0400 | 6.9600 | 0.9600 | 4.9100 | 0.5000 | 0.3204 | 1.5846 | 0.1130 | 0.7269 | 0.4065 | 2.6260 | 1.0414 |
| 9.0 | 0.0400 | 5.6500 | 0.7600 | 3.6800 | 0.4100 | 0.2537 | 1.1876 | 0.0926 | 0.6816 | 0.4279 | 2.2110 | 1.0234 |
| 10.5 | 0.0400 | 5.0900 | 1.4700 | 8.0300 | 0.5300 | 0.4907 | 2.5914 | 0.1197 | 0.7346 | 0.2439 | 3.8040 | 1.2126 |
| 13.5 | 0.0500 | 3.6900 | 1.0300 | 13.2100 | 0.4700 | 0.3438 | 4.2631 | 0.1062 | 0.6737 | 0.3299 | 1.8280 | -2.4351 |
| 21.0 | 0.0600 | 2.2800 | 0.9300 | 2.5000 | 0.1600 | 0.3104 | 0.8068 | 0.0361 | 0.6562 | 0.3458 | 1.5820 | 0.7752 |
| 28.5 | 0.0600 | 1.8500 | 1.0200 | 3.0200 | 0.3700 | 0.3405 | 0.9746 | 0.0836 | 0.6764 | 0.3359 | 1.9390 | 0.9644 |
| 36.0 | 0.0700 | 2.1900 | 0.7200 | 6.1900 | 0.5100 | 0.2403 | 1.9976 | 0.1152 | 0.6358 | 0.3955 | 2.1160 | 0.1184 |


Table 5.33. ICP-AES data from the Schlepp Pond, March 2004. Samples are from dialyzer \#5 and \#6.

| Depth | Element ( $\mathrm{mg} \mathrm{L}^{-1}$ ) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (cm) | As | Ca | Cd | Fe | K | Mg | Mn | Na | P | Pb | S | Zn |
| March 2004, \#5 |  |  |  |  |  |  |  |  |  |  |  |  |
| -1.5 | 0.0000 | 22.960 | 0.0013 | 84.250 | 3.978 | 10.750 | 21.870 | 2.382 | 0.952 | 0.012 | 0.923 | 0.064 |
| 0.0 | 0.0000 | 32.340 | 0.0018 | 84.390 | 5.625 | 15.340 | 24.130 | 3.667 | 1.019 | 0.021 | 0.921 | 0.067 |
| 1.5 | 0.0000 | 31.940 | 0.0019 | 88.400 | 5.465 | 15.190 | 23.030 | 3.815 | 1.126 | 0.012 | 0.961 | 0.057 |
| 3.0 | 0.0000 | 30.730 | 0.0024 | 92.000 | 5.431 | 14.750 | 22.640 | 3.751 | 1.081 | 0.010 | 1.028 | 0.067 |
| 4.5 | 0.0000 | 30.040 | 0.0022 | 98.270 | 5.389 | 14.550 | 22.970 | 3.502 | 1.023 | 0.010 | 1.030 | 0.064 |
| 6.0 | 0.0000 | 28.390 | 0.0013 | 90.700 | 5.172 | 13.610 | 22.430 | 3.255 | 0.976 | 0.013 | 1.098 | 0.073 |
| 7.5 | 0.0000 | 27.420 | 0.0017 | 87.770 | 5.140 | 13.060 | 22.480 | 3.118 | 0.961 | 0.017 | 1.105 | 0.076 |
| 9.0 | 0.0000 | 26.480 | 0.0017 | 84.640 | 5.106 | 12.540 | 22.380 | 3.162 | 0.991 | 0.016 | 1.108 | 0.083 |
| 12.0 | 0.0000 | 25.380 | 0.0016 | 83.020 | 5.077 | 11.740 | 23.020 | 2.941 | 1.082 | 0.014 | 1.045 | 0.076 |
| 19.5 | 0.0000 | 25.070 | 0.0017 | 86.070 | 5.216 | 11.270 | 23.040 | 3.101 | 1.039 | 0.010 | 1.084 | 0.081 |
| 24.0 | 0.0000 | 24.410 | 0.0020 | 92.200 | 5.092 | 10.870 | 19.220 | 3.062 | 0.892 | 0.009 | 1.214 | 0.126 |
| 31.5 | 0.0000 | 26.580 | 0.0019 | 99.980 | 5.366 | 11.570 | 19.040 | 3.259 | 1.035 | 0.019 | 1.086 | 0.086 |
| March 2004, \#6 |  |  |  |  |  |  |  |  |  |  |  |  |
| -1.5 | 0.0000 | 33.410 | 0.0021 | 95.440 | 7.099 | 14.770 | 30.220 | 3.381 | 0.910 | 0.015 | 1.453 | 0.099 |
| 0.0 | 0.0000 | 33.500 | 0.0015 | 97.350 | 7.216 | 14.850 | 29.940 | 3.431 | 0.812 | 0.014 | 1.523 | 0.096 |
| 1.5 | 0.0000 | 33.480 | 0.0028 | 95.780 | 7.241 | 14.840 | 29.520 | 3.484 | 0.809 | 0.006 | 1.509 | 0.101 |
| 3.0 | 0.0000 | 30.780 | 0.0022 | 89.850 | 6.762 | 13.600 | 26.100 | 3.311 | 0.833 | 0.010 | 1.483 | 0.107 |
| 4.5 | 0.0000 | 29.070 | 0.0023 | 84.290 | 6.543 | 12.870 | 24.460 | 3.197 | 0.737 | 0.015 | 1.436 | 0.118 |
| 6.0 | 0.0000 | 27.500 | 0.0022 | 83.400 | 6.230 | 12.190 | 23.040 | 3.099 | 0.853 | 0.013 | 1.368 | 0.112 |
| 7.5 | 0.0000 | 26.610 | 0.0018 | 84.070 | 6.106 | 11.810 | 23.050 | 3.092 | 0.928 | 0.017 | 1.434 | 0.120 |
| 9.0 | 0.0000 | 25.880 | 0.0014 | 84.810 | 5.968 | 11.450 | 22.860 | 3.072 | 1.023 | 0.016 | 1.529 | 0.137 |
| 12.0 | 0.0000 | 24.990 | 0.0019 | 84.030 | 5.754 | 11.020 | 22.540 | 3.007 | 1.063 | 0.005 | 1.627 | 0.151 |
| 19.5 | 0.0000 | 24.230 | 0.0017 | 83.310 | 5.687 | 10.820 | 20.780 | 2.966 | 0.844 | 0.015 | 2.189 | 0.209 |
| 24.0 | 0.0000 | 24.350 | 0.0021 | 87.960 | 5.837 | 10.850 | 17.720 | 3.034 | 0.879 | 0.022 | 2.318 | 0.299 |
| 31.5 | 0.0000 | 25.500 | 0.0015 | 95.150 | 6.053 | 10.990 | 15.430 | 3.185 | 1.096 | 0.044 | 1.887 | 0.227 |

Table 5.34. ICP-AES data from the Schlepp Pond, March and April 2004. Samples are from dialyzer \#7 (March) and \#8 (April).
 March 2004, \#7
 0.2228
0.3228
0.3614
0.7462
1.011
0.9889
1.023
1.089
1.137
1.311
1.500
1.399

 \#8
 April



Ca



に
Table 5.35. ICP-AES data from the Schlepp Pond, April 2004. Samples are from dialyzer \#9 and \#12.

| Depth | Element ( $\mathrm{mg} \mathrm{L}^{-1}$ ) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (cm) | As | Ca | Cd | Fe | K | Mg | Mn | Na | P | Pb | S | Zn |
| April 2004, \#9 |  |  |  |  |  |  |  |  |  |  |  |  |
| 0.0 | 0 | 19.35 | 0.0036 | 40.8 | 4.867 | 10.79 | 15.54 | 3.948 | 0.2642 | 0 | 1.678 | 0.0890 |
| 1.5 | 0.0059 | 24.41 | 0.0047 | 59.66 | 6.405 | 13.05 | 16.71 | 4.969 | 0.4522 | 0 | 0.8117 | 0.0981 |
| 3.0 | 0.0017 | 28.58 | 0.0063 | 82.77 | 7.736 | 14.74 | 17.71 | 4.318 | 1.362 | 0 | 0.5301 | 0.0176 |
| 4.5 | 0 | 31.49 | 0.0066 | 93.99 | 8.352 | 15.87 | 18.06 | 4.416 | 1.485 | 0.0054 | 0.5293 | 0.0153 |
| 6.0 | 0.0005 | 33.23 | 0.0076 | 101.9 | 8.924 | 16.71 | 17.66 | 4.746 | 1.597 | 0.0043 | 0.5404 | 0.0126 |
| 7.5 | 0 | 32.73 | 0.0080 | 108.2 | 9.478 | 17.26 | 17.37 | 4.944 | 1.264 | 0 | 0.6079 | 0.0160 |
| 9.0 | 0 | 33.69 | 0.0075 | 109.5 | 9.262 | 17.06 | 16.99 | 4.774 | 1.228 | 0.0148 | 0.5702 | 0.0146 |
| 10.5 | 0 | 32.06 | 0.0068 | 111.5 | 8.794 | 16.38 | 17.47 | 4.646 | 1.166 | 0.0126 | 0.5913 | 0.0166 |
| 13.5 | 0 | 30.58 | 0.0065 | 110.1 | 8.362 | 15.38 | 17.34 | 4.568 | 1.268 | 0.0172 | 0.5909 | 0.0158 |
| 21.0 | 0 | 25.57 | 0.0057 | 99.73 | 7.027 | 12.24 | 16.54 | 4.093 | 1.074 | 0.0071 | 0.5558 | 0.0215 |
| 28.5 | 0.0018 | 26.73 | 0.0069 | 111.6 | 6.79 | 12.26 | 16.96 | 3.972 | 1.173 | 0.0082 | 0.5997 | 0.0205 |
| 36.0 | 0 | 29.66 | 0.0109 | 158.3 | 7.192 | 13.73 | 15.68 | 4.221 | 1.142 | 0.0195 | 0.7875 | 0.0205 |
| April 2004, \#12 |  |  |  |  |  |  |  |  |  |  |  |  |
| -1.5 | 0 | 7.224 | 0 | 0.0419 | 1.511 | 3.633 | 1.593 | 2.804 | 0.0184 | 0.0084 | 6.821 | 0.5021 |
| 0.0 | 0 | 12.56 | 0.0006 | 15.09 | 2.433 | 6.345 | 10.63 | 3.140 | 0.1346 | 0.0039 | 3.881 | 0.1700 |
| 1.5 | 0.0014 | 22.78 | 0.0044 | 70.38 | 5.254 | 12.88 | 16.65 | 4.318 | 0.4076 | 0.0041 | 1.486 | 0.081 |
| 3.0 | 0.0039 | 28.71 | 0.005 | 81.54 | 7.438 | 16.00 | 19.29 | 4.222 | 1.213 | 0.0115 | 0.6689 | 0.0242 |
| 4.5 | 0 | 32.34 | 0.0054 | 83.47 | 8.878 | 17.71 | 19.91 | 4.754 | 1.194 | 0.0052 | 0.6423 | 0.0152 |
| 6.0 | 0.0013 | 32.53 | 0.0054 | 84.18 | 9.014 | 17.33 | 18.19 | 4.735 | 1.086 | 0.0127 | 0.6029 | 0.0222 |
| 7.5 | 0.0017 | 34.06 | 0.0064 | 92.19 | 9.858 | 18.17 | 17.32 | 5.118 | 0.9435 | 0.0084 | 0.6204 | 0.0252 |
| 9.0 | 0 | 34.24 | 0.0068 | 99.48 | 9.799 | 18.03 | 16.65 | 5.098 | 0.8901 | 0.0148 | 0.5879 | 0.0182 |
| 12.0 | 0.0011 | 33.43 | 0.0073 | 115.7 | 9.318 | 17.13 | 17.61 | 4.829 | 0.904 | 0.0078 | 0.6376 | 0.0170 |
| 19.5 | 0.0006 | 29.44 | 0.0075 | 115.6 | 8.430 | 14.53 | 17.34 | 4.425 | 0.9306 | 0.0082 | 0.6202 | 0.0210 |
| 27.0 | 0 | 29.23 | 0.0071 | 106.4 | 8.266 | 13.98 | 17.42 | 4.412 | 1.051 | 0.0111 | 0.5930 | 0.0175 |
| 34.5 | 0 | 33.59 | 0.0101 | 134.0 | 9.467 | 15.91 | 18.62 | 5.095 | 1.754 | 0.0069 | 0.6982 | 0.0195 |

Table 5.36. ICP-AES data from the Schlepp Pond, May 2004. Samples are from dialyzer \#1 and \#2.
Depth
$(\mathrm{cm})$ 0.0
1.5
3.0
4.5
6.0
7.5
9.0
10.5
13.5
21.0
28.5
36.0

$$
0.0131
$$

$$
\begin{aligned}
& \text { Element }\left(\mathrm{mg} \mathrm{~L}^{-1}\right) \\
& \mathrm{Mg} \quad \mathrm{Mn}
\end{aligned}
$$

$$
12.70
$$

$$
22.250
$$

Zn

|  |  |
| :--- | :--- |
| 0.8053 | 0.0092 |
| 0.7800 | 0.0106 |
| 0.8401 | 0.0198 |
| 0.8991 | 0.0117 |
| 0.9395 | 0.0150 |
| 0.8898 | 0.0316 |
| 0.8828 | 0.0318 |
| 0.8706 | 0.0174 |
| 0.7936 | 0.0187 |
| 0.6955 | 0.0116 |
|  |  |
| 0.6957 | 0.0134 |

$$
\begin{aligned}
& \\
& \$ 18.630 \\
& 24.220 \\
& 24.430 \\
& 22.680 \\
& 21.250 \\
& 20.930 \\
& 20.850 \\
& 21.600 \\
& 22.830 \\
& \\
& 20.190
\end{aligned}
$$


000 monno
Table 5.37. ICP-AES data from the Schlepp Pond, May and June 2004. Samples are from dialyzer \#3 ( May) and \#15 (June).

| Depth | Element ( $\mathrm{mg} \mathrm{L}^{-1}$ ) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (cm) | As | Ca | Cd | Fe | K | Mg | Mn | Na | P | Pb | S | Zn |
| May 2004, \#3 |  |  |  |  |  |  |  |  |  |  |  |  |
| 0.0 | 0.0000 | 25.62 | 0.0094 | 113.0 | 9.513 | 13.21 | 20.99 | 4.080 | 0.2877 | 0.0185 | 1.313 | 0.0192 |
| 1.5 | 0.0003 | 27.89 | 0.0102 | 116.5 | 10.16 | 13.98 | 23.39 | 4.180 | 0.4519 | 0.0138 | 1.301 | 0.0119 |
| 3.0 | 0.0053 | 29.12 | 0.0107 | 121.7 | 10.91 | 14.56 | 22.95 | 4.366 | 0.6092 | 0.0157 | 1.333 | 0.0135 |
| 4.5 | 0.0000 | 30.00 | 0.0104 | 126.1 | 11.21 | 14.74 | 25.77 | 4.466 | 0.6852 | 0.0113 | 1.396 | 0.0136 |
| 6.0 | 0.0205 | 29.66 | 0.0121 | 145.8 | 11.56 | 14.66 | 22.47 | 4.647 | 0.5534 | 0.0247 | 1.568 | 0.0305 |
| 7.5 | 0.0324 | 29.73 | 0.0134 | 157.0 | 11.94 | 14.55 | 20.78 | 4.718 | 0.4402 | 0.0130 | 1.575 | 0.0514 |
| 9.0 | 0.0063 | 29.77 | 0.0140 | 153.1 | 11.95 | 14.25 | 20.81 | 4.672 | 0.4333 | 0.0309 | 1.527 | 0.0173 |
| 10.5 | 0.0025 | 29.58 | 0.0133 | 150.8 | 11.42 | 13.75 | 22.18 | 4.562 | 0.4685 | 0.0225 | 1.482 | 0.0156 |
| 13.5 | 0.0026 | 27.86 | 0.0123 | 138.8 | 11.25 | 12.73 | 23.77 | 4.496 | 0.7521 | 0.0207 | 1.371 | 0.0215 |
| 21.0 | 0.0000 | 24.85 | 0.0096 | 115.2 | 9.953 | 11.10 | 23.48 | 3.982 | 1.2050 | 0.0191 | 1.209 | 0.0105 |
| 28.5 | 0.0000 | 26.11 | 0.0104 | 118.3 | 9.029 | 11.46 | 23.25 | 3.918 | 1.1320 | 0.0184 | 1.220 | 0.0100 |
| 36.0 | 0.0000 | 29.60 | 0.0121 | 135.5 | 9.781 | 13.19 | 21.73 | 4.639 | 0.8174 | 0.0182 | 1.200 | 0.0130 |
| June 2004, \#15 |  |  |  |  |  |  |  |  |  |  |  |  |
| -1.5 | 0.0047 | 9.583 | 0.0008 | 4.050 | 2.339 | 4.434 | 12.00 | 1.698 | 0.0736 | 0.0088 | 3.275 | 0.0240 |
| 0.0 | 0.0002 | 11.00 | 0.0014 | 12.43 | 2.884 | 4.891 | 15.83 | 1.760 | 0.1592 | 0.0021 | 1.293 | 0.0027 |
| 1.5 | 0 | 13.61 | 0.0049 | 36.40 | 4.651 | 6.202 | 11.90 | 3.189 | 0.4888 | 0.0121 | 0.4087 | 0.0056 |
| 3.0 | 0 | 15.45 | 0.0043 | 43.33 | 6.681 | 7.319 | 11.31 | 2.717 | 0.7783 | 0.0181 | 0.4040 | 0.0060 |
| 4.5 | 0 | 17.21 | 0.0047 | 54.74 | 9.774 | 8.739 | 13.28 | 4.979 | 0.9055 | 0.0214 | 0.4728 | 0.0052 |
| 6.0 | 0 | 21.34 | 0.0080 | 90.06 | 13.19 | 11.08 | 18.95 | 3.975 | 1.091 | 0.0288 | 0.5726 | 0.0093 |
| 7.5 | 0.0004 | 26.19 | 0.0110 | 115.6 | 15.35 | 13.44 | 25.06 | 5.111 | 1.442 | 0.0307 | 0.6993 | 0.0088 |
| 9.0 | 0 | 30.28 | 0.0120 | 126.1 | 16.37 | 15.09 | 29.08 | 5.522 | 1.425 | 0.0309 | 0.7348 | 0.0122 |
| 12.0 | 0 | 32.23 | 0.0126 | 135.6 | 17.32 | 15.53 | 30.72 | 5.916 | 1.694 | 0.0305 | 0.7759 | 0.0126 |
| 19.5 | 0 | 28.20 | 0.0112 | 122.7 | 13.39 | 12.79 | 33.39 | 4.303 | 1.776 | 0.0266 | 0.6375 | 0.0175 |
| 27.0 | 0 | 26.54 | 0.0095 | 108.2 | 8.314 | 11.44 | 26.84 | 4.019 | 1.801 | 0.0333 | 0.6067 | 0.0140 |
| 34.5 |  |  |  |  |  |  |  |  |  |  |  |  |

Table 5.38. ICP-AES data from the Schlepp Pond, June 2004. Samples are from dialyzer \#16 and \#17.

| Dpeth | Element ( $\mathrm{mg} \mathrm{L}^{-1}$ ) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (cm) | As | Ca | Cd | Fe | K | Mg | Mn | Na | P | Pb | S | Zn |
| June 2004, \#16 |  |  |  |  |  |  |  |  |  |  |  |  |
| 0.0 | 0.0016 | 10.28 | 0.0013 | 7.505 | 2.714 | 4.693 | 10.95 | 1.941 | 0 | 0 | 1.908 | 0.0086 |
| 1.5 | 0.0059 | 10.02 | 0.0021 | 17.83 | 3.144 | 4.691 | 9.919 | 1.968 | 0.0018 | 0.0026 | 0.6882 | 0.0003 |
| 3.0 | 0.0066 | 10.83 | 0.0033 | 32.16 | 3.915 | 5.122 | 11.56 | 2.166 | 0.0525 | 0 | 0.3903 | 0.0046 |
| 4.5 | 0.0083 | 13.96 | 0.005 | 52.59 | 5.5 | 6.719 | 15.33 | 2.622 | 0.0367 | 0 | 0.4947 | 0.0138 |
| 6.0 | 0 | 18.17 | 0.0063 | 71.43 | 6.854 | 9.141 | 20.19 | 3.21 | 0.3243 | 0.0113 | 0.6363 | 0.0073 |
| 7.5 | 0 | 21.6 | 0.0076 | 89.13 | 8.102 | 11.05 | 23.45 | 3.794 | 0.5072 | 0.0021 | 0.7177 | 0.0088 |
| 9.0 | 0 | 22.58 | 0.0075 | 91.19 | 8.505 | 11.4 | 23.83 | 4.045 | 0.5987 | 0.0102 | 0.7043 | 0.009 |
| 10.5 | 0 | 22.92 | 0.0075 | 89.28 | 8.49 | 11.31 | 22.95 | 4.141 | 0.6356 | 0.0011 | 0.6703 | 0.0059 |
| 13.5 | 0 | 22.89 | 0.0078 | 91.83 | 8.678 | 11.01 | 20.83 | 4.292 | 0.7328 | 0.0061 | 0.6682 | 0.0058 |
| 21.0 | 0 | 23.91 | 0.0082 | 101.5 | 10.08 | 10.99 | 22.24 | 4.507 | 1.639 | 0.0173 | 0.699 | 0.0084 |
| 28.5 | 0 | 28.07 | 0.01 | 120.4 | 13.93 | 13.82 | 28.8 | 5.258 | 1.018 | 0.0164 | 0.7883 | 0.0082 |
| 36.0 | 0.0021 | 31.82 | 0.0116 | 138.4 | 15.19 | 16.43 | 28.37 | 6.434 | 0.5693 | 0.0168 | 0.9743 | 0.0143 |
| June 2004, \#17 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.5 | 0.0037 | 11.78 | 0.0034 | 36.01 | 3.995 | 5.41 | 17.9 | 2.768 | 0.1652 | 0.011 | 0.3148 | 0.0051 |
| 3.0 | 0.0030 | 15.79 | 0.0054 | 61.61 | 5.147 | 7.612 | 19.94 | 2.451 | 0.4799 | 0.0014 | 0.4849 | 0.0043 |
| 4.5 | 0.0000 | 19.99 | 0.0077 | 84.75 | 6.62 | 9.769 | 21.54 | 2.897 | 0.6456 | 0.0171 | 0.6001 | 0.0133 |
| 6.0 | 0.0000 | 22.7 | 0.0085 | 96.12 | 8.379 | 11.28 | 22.84 | 4.987 | 0.8735 | 0.0199 | 0.6074 | 0.0077 |
| 7.5 | 0.0000 | 24.09 | 0.0091 | 107 | 9.503 | 11.94 | 23.49 | 3.921 | 0.9808 | 0.0206 | 0.6455 | 0.0089 |
| 9.0 | 0.0000 | 24.29 | 0.0095 | 107.9 | 9.543 | 11.81 | 23.44 | 4.034 | 1.035 | 0.0253 | 0.6138 | 0.0112 |
| 10.5 | 0.0000 | 25.48 | 0.0097 | 112.9 | 10.07 | 12.42 | 23.64 | 4.461 | 0.9547 | 0.0207 | 0.6318 | 0.0102 |
| 12.0 | 0.0000 | 25.78 | 0.0112 | 123.8 | 10.39 | 12.67 | 24.18 | 4.569 | 0.9895 | 0.0228 | 0.663 | 0.0152 |
| 15.0 | 0.0000 | 25.62 | 0.0102 | 118.9 | 9.364 | 12.14 | 25.67 | 4.228 | 0.9973 | 0.0143 | 0.696 | 0.0131 |
| 22.5 | 0.0000 | 26 | 0.0097 | 110.2 | 9.202 | 11.67 | 29.74 | 5.333 | 1.2 | 0.0327 | 0.6427 | 0.0282 |
| 30.0 | 0.0000 | 28.92 | 0.012 | 133.9 | 12.02 | 13.54 | 27.02 | 5 | 1.014 | 0.0315 | 0.7439 | 0.0242 |
| 37.5 |  |  |  |  |  |  |  |  |  |  |  |  |

Table 5.39. ICP-AES data from the Schlepp Pond, August 2004. Samples are from dialyzer \#2 and \#8.

| Depth | Element (mg L ${ }^{-1}$ ) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (cm) | As | Ca | Cd | Fe | K | Mg | Mn | Na | P | Pb | S | Zn |
| August 2004, \#2 |  |  |  |  |  |  |  |  |  |  |  |  |
| -3.0 | 0.0553 | 16.77 | 0.0037 | 140.0 | 4.905 | 7.192 | 21.60 | 1.807 | 0.2159 | 0.0113 | 0.5371 | 0.0134 |
| -1.5 | 0.0623 | 18.39 | 0.0040 | 157.2 | 5.999 | 8.149 | 21.86 | 2.102 | 0.2508 | 0.0033 | 0.6612 | 0.0157 |
| 0.0 | 0.0728 | 19.60 | 0.0047 | 172.7 | 6.786 | 8.674 | 21.84 | 2.312 | 0 | 0 | 0.7354 | 0.0186 |
| 1.5 | 0.0728 | 20.72 | 0.0049 | 177.7 | 7.604 | 9.614 | 21.08 | 2.759 | 0.5708 | 0.0066 | 0.7967 | 0.0256 |
| 3.0 | 0.0392 | 23.64 | 0.0047 | 172.5 | 7.760 | 11.20 | 21.13 | 3.047 | 0.7882 | 0.0180 | 0.8532 | 0.0258 |
| 4.5 | 0.0177 | 25.90 | 0.0048 | 164.8 | 8.063 | 12.31 | 22.50 | 3.408 | 0.8300 | 0.0197 | 0.8545 | 0.0201 |
| 6.0 | 0.0198 | 27.17 | 0.0045 | 158.2 | 8.312 | 12.78 | 24.03 | 3.639 | 0.7674 | 0.0170 | 0.8589 | 0.0634 |
| 7.5 | 0.0070 | 27.46 | 0.0039 | 146.7 | 8.943 | 12.92 | 25.77 | 3.848 | 0.9244 | 0.0135 | 0.7816 | 0.0158 |
| 10.5 | 0 | 26.79 | 0.0030 | 121.5 | 9.993 | 11.97 | 27.06 | 4.120 | 1.160 | 0.0067 | 0.6833 | 0.0341 |
| 18.0 | 0 | 26.45 | 0.0035 | 117.0 | 11.92 | 11.84 | 28.36 | 4.543 | 1.276 | 0.0097 | 0.6383 | 0.0175 |
| 25.5 | 0 | 27.77 | 0.0041 | 153.4 | 16.74 | 13.64 | 28.86 | 5.377 | 1.165 | 0.0181 | 0.7619 | 0.0200 |
| 33.0 | 0.0042 | 28.91 | 0.0039 | 155.6 | 16.83 | 14.58 | 26.38 | 5.916 | 1.009 | 0.0160 | 0.7764 | 0.0201 |

0.0388
0.0269
0.0308
0.0212
0.0170
0.0183
0.0162
0.0175
0.0182
0.0164
0.0171
0.0240
 0.0175
0.0177
0.0144
0.0100
0.0067
0.0138
0.0164
0.0116
0.0101
0.0174
0.0087
0.0158


 August 2004, \#8 $\begin{array}{ll}4.913 & 8.965 \\ 5.005 & 10.60 \\ 5.618 & 13.24 \\ 7.068 & 14.42 \\ 9.380 & 15.84 \\ 10.90 & 16.62 \\ 10.79 & 16.62 \\ 10.89 & 16.14 \\ 11.15 & 15.60 \\ 11.32 & 12.92 \\ 10.71 & 11.68 \\ 8.915 & 11.23\end{array}$


 $\stackrel{n}{r}$
Table 5.40.

| $\frac{\text { Depth }}{} \frac{(\mathrm{cm})}{}$ | Element ( $\mathrm{mg} \mathrm{L}^{-1}$ ) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | As | Ca | Cd | Fe | K | Mg | Mn | Na | P | Pb | S | Zn |
| August 2004, \#12 |  |  |  |  |  |  |  |  |  |  |  |  |
| 0.0 | 0.0432 | 19.64 | 0.0043 | 158.00 | 6.642 | 8.628 | 22.810 | 2.142 | 0.2584 | 0.0127 | 0.6549 | 0.0159 |
| 1.5 | 0.0328 | 22.07 | 0.0045 | 156.90 | 7.840 | 9.721 | 21.530 | 2.515 | 0.6186 | 0.0131 | 0.7013 | 0.0353 |
| 3.0 | 0.0395 | 25.01 | 0.0043 | 144.30 | 8.798 | 10.930 | 20.710 | 2.928 | 0.8363 | 0.0105 | 0.6759 | 0.0184 |
| 4.5 | 0.0296 | 25.89 | 0.0039 | 145.30 | 9.004 | 11.400 | 20.700 | 3.241 | 1.1280 | 0.0098 | 0.6821 | 0.0275 |
| 6.0 | 0.0151 | 26.74 | 0.0039 | 141.90 | 9.373 | 11.790 | 20.920 | 3.406 | 1.1570 | 0.0150 | 0.7211 | 0.0403 |
| 7.5 | 0.0051 | 26.95 | 0.0037 | 141.00 | 9.290 | 11.910 | 21.400 | 4.112 | 1.2150 | 0.0195 | 0.6985 | 0.0375 |
| 9.0 | 0 | 27.11 | 0.004 | 139.00 | 9.444 | 12.110 | 21.540 | 3.771 | 1.2790 | 0.0140 | 0.6554 | 0.0149 |
| 10.5 | 0.0026 | 26.86 | 0.0036 | 140.00 | 9.138 | 11.910 | 20.940 | 3.837 | 1.4140 | 0.0147 | 0.6641 | 0.0164 |
| 13.5 | 0 | 26.7 | 0.0036 | 127.50 | 9.127 | 11.930 | 20.620 | 4.461 | 1.4770 | 0.0153 | 0.6202 | 0.0146 |
| 21.0 | 0.0386 | 28.99 | 0.0045 | 171.70 | 10.930 | 13.210 | 22.120 | 5.164 | 1.4040 | 0.0109 | 0.7289 | 0.0171 |
| 28.5 | 0 | 26.5 | 0.0032 | 130.40 | 9.575 | 11.530 | 23.080 | 4.559 | 1.7390 | 0.0074 | 0.5727 | 0.0164 |
| 36.0 | 0.0066 | 28.38 | 0.0036 | 146.50 | 10.820 | 12.780 | 21.420 | 5.100 | 1.4780 | 0.0135 | 0.6850 | 0.0166 |











Table 5.41. ICP-AES data from the Schlepp Pond, November 2004. Samples are from dialyzer \#5 and \#6.

| Depth | Element ( $\mathrm{mg} \mathrm{L}^{-1}$ ) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (cm) | As | Ca | Cd | Fe | K | Mg | Mn | Na | P | Pb | S | Zn |
| November 2004, \#5 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1.5 | 0.020 | 27.73 | 0.010 | 177.1 | 14.91 | 11.55 | 31.30 | 5.788 | 1.014 | 0.018 | 0.9534 | 0.0159 |
| 3.0 | 0.017 | 32.74 | 0.012 | 200.4 | 17.64 | 13.61 | 34.18 | 6.882 | 1.200 | 0.000 | 1.057 | 0.0105 |
| 4.5 | 0.018 | 37.17 | 0.014 | 223.6 | 19.56 | 15.54 | 35.91 | 7.852 | 1.258 | 0.000 | 1.195 | 0.0138 |
| 6.0 | 0.024 | 41.38 | 0.015 | 248.7 | 23.02 | 17.79 | 36.64 | 9.155 | 1.478 | 0.000 | 1.365 | 0.0186 |
| 7.5 | 0.020 | 43.68 | 0.016 | 264.3 | 24.40 | 18.60 | 36.60 | 10.05 | 1.430 | 0.000 | 1.465 | 0.0222 |
| 9.0 | 0.023 | 45.83 | 0.017 | 281.0 | 25.98 | 19.32 | 36.41 | 10.83 | 1.386 | 0.000 | 1.544 | 0.0211 |
| 10.5 | 0.020 | 46.36 | 0.020 | 294.1 | 26.17 | 19.74 | 36.04 | 11.18 | 1.526 | 0.000 | 1.652 | 0.0212 |
| 12.0 | 0.029 | 48.05 | 0.019 | 308.3 | 27.39 | 20.49 | 36.04 | 11.94 | 1.437 | 0.000 | 1.737 | 0.0203 |
| 15.0 | 0.041 | 51.77 | 0.023 | 331.7 | 29.36 | 21.78 | 36.82 | 13.60 | 1.342 | 0.000 | 1.928 | 0.0285 |
| 22.5 | 0.035 | 58.77 | 0.021 | 332.6 | 32.71 | 24.14 | 43.94 | 15.11 | 2.122 | 0.000 | 1.878 | 0.0329 |
| 30.0 | 0.027 | 56.11 | 0.018 | 317.0 | 31.36 | 22.18 | 57.34 | 14.40 | 2.926 | 0.000 | 1.682 | 0.0197 |
| 37.5 | 0.018 | 44.99 | 0.014 | 264.8 | 28.69 | 17.31 | 68.32 | 9.243 | 1.935 | 0.000 | 1.338 | 0.0178 |
| 3.0 November 2004, \#6 |  |  |  |  |  |  |  |  |  |  |  |  |
| -3.0 | 0.015 | 30.04 | 0.009 | 190.8 | 19.43 | 12.39 | 35.50 | 5.661 | 1.164 | 0.018 | 0.9778 | 0.0209 |
| -1.5 | 0.015 | 34.07 | 0.009 | 194.1 | 19.65 | 14.29 | 37.06 | 6.335 | 1.200 | 0.024 | 0.9709 | 0.0331 |
| 0.0 | 0.008 | 35.93 | 0.009 | 197.1 | 21.71 | 15.40 | 38.70 | 6.652 | 1.335 | 0.020 | 0.9301 | 0.0263 |
| 1.5 | 0.009 | 37.45 | 0.009 | 197.6 | 21.30 | 16.14 | 39.20 | 6.649 | 1.400 | 0.025 | 0.9535 | 0.0241 |
| 3.0 | 0.012 | 37.50 | 0.011 | 210.5 | 22.63 | 16.41 | 38.27 | 7.041 | 1.579 | 0.000 | 1.0380 | 0.0277 |
| 4.5 | 0.009 | 37.94 | 0.011 | 213.7 | 22.84 | 16.60 | 37.94 | 7.378 | 1.705 | 0.000 | 1.0820 | 0.0362 |
| 6.0 | 0.006 | 38.20 | 0.011 | 207.8 | 21.20 | 16.87 | 39.07 | 7.403 | 1.712 | 0.000 | 1.0480 | 0.0152 |
| 7.5 | 0.012 | 38.14 | 0.010 | 200.6 | 19.11 | 16.98 | 39.98 | 7.424 | 1.684 | 0.000 | 0.9909 | 0.0140 |
| 10.5 | 0.003 | 36.86 | 0.009 | 184.6 | 16.52 | 16.43 | 39.29 | 7.474 | 1.706 | 0.034 | 0.8911 | 0.0435 |
| 18.0 | 0.006 | 33.23 | 0.007 | 157.2 | 12.94 | 14.42 | 31.62 | 6.824 | 1.921 | 0.027 | 0.6975 | 0.0310 |
| 25.5 | 0.007 | 31.57 | 0.006 | 150.8 | 12.37 | 13.52 | 26.46 | 6.754 | 2.097 | 0.022 | 0.6237 | 0.0217 |
| 33.0 | 0.004 | 43.24 | 0.011 | 227.0 | 20.20 | 18.67 | 43.42 | 8.114 | 2.373 | 0.007 | 0.4311 | 0.0012 |

Table 5.42. ICP-AES data from the Schlepp Pond, June 2005. Samples are from dialyzer \#1 and \#5.

| Depth | Element ( $\mathrm{mg} \mathrm{L}^{-1}$ ) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | As | Ca | Cd | Fe | K | Mg | Mn | Na | P | Pb | S | Zn |
| June 2005, \#1 |  |  |  |  |  |  |  |  |  |  |  |  |
| -1.5 | 0.0074 | 28.99 | 0.0027 | 78.48 | 5.768 | 20.75 | 15.83 | 2.883 | 0.9493 | 0.0167 | 0.5812 | 0.0146 |
| 0.0 | 0.0129 | 27.96 | 0.0019 | 68.78 | 6.628 | 21.15 | 15.87 | 3.119 | 0.7952 | 0.0205 | 0.5220 | 0.0149 |
| 1.5 | 0.0083 | 24.88 | 0.0029 | 70.17 | 7.111 | 19.11 | 15.25 | 3.529 | 0.9664 | 0.0090 | 0.5497 | 0.0130 |
| 3.0 | 0.0047 | 21.92 | 0.0026 | 77.18 | 7.251 | 16.21 | 14.88 | 3.701 | 1.111 | 0.0139 | 0.5372 | 0.0190 |
| 4.5 | 0.0103 | 19.44 | 0.0023 | 79.05 | 7.133 | 13.04 | 14.54 | 3.817 | 1.140 | 0.0129 | 0.5209 | 0.0147 |
| 6.0 | 0.0092 | 18.36 | 0.0025 | 82.71 | 6.887 | 10.94 | 14.93 | 3.846 | 1.111 | 0.0168 | 0.5523 | 0.0158 |
| 7.5 | 0.0094 | 18.17 | 0.0027 | 84.69 | 6.844 | 9.808 | 15.69 | 3.769 | 0.8493 | 0.0097 | 0.5571 | 0.0143 |
| 9.0 | 0.0129 | 18.54 | 0.0025 | 84.93 | 6.591 | 9.398 | 15.57 | 3.714 | 0.7379 | 0.0195 | 0.5576 | 0.0144 |
| 12.0 | 0.0159 | 19.91 | 0.0027 | 85.40 | 6.385 | 9.728 | 16.41 | 3.803 | 1.276 | 0.0185 | 0.5618 | 0.0142 |
| 19.5 | 0.0094 | 22.75 | 0.0033 | 91.08 | 6.871 | 10.75 | 17.56 | 3.862 | 1.234 | 0.0140 | 0.5466 | 0.0198 |
| 27.0 | 0.0057 | 21.29 | 0.0002 |  | 7.090 | 11.17 | 12.29 | 7.828 | 0.0144 | 0.0144 | 0.5175 | 0.1019 |
| 34.5 | 0.0106 | 26.82 | 0.0035 | 107.3 | 8.005 | 12.48 | 14.24 | 4.343 | 1.651 | 0.0149 | 0.5961 | 0.0197 |


 June 2005, \#5
$9.576 \quad 24.30$

 | 0 | $\mathscr{O}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |









Table 5.43. ICP-AES data from the Schlepp Pond, June 2005. Samples are from dialyzer \#7.

| Depth | Element ( $\mathrm{mg} \mathrm{L}^{-1}$ ) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (cm) | As | Ca | Cd | Fe | K | Mg | Mn | Na | P | Pb | S | Zn |
| June 2005, \#7 |  |  |  |  |  |  |  |  |  |  |  |  |
| 0.0 | 0.0103 | 24.24 | 0.0037 | 113.5 | 7.453 | 12.43 | 19.59 | 4.315 | 1.468 | 0.0107 | 0.6633 | 0.0261 |
| 1.5 | 0.0102 | 24.12 | 0.0036 | 110.0 | 7.282 | 12.08 | 19.26 | 4.172 | 1.332 | 0.0147 | 0.6341 | 0.0226 |
| 3.0 | 0.0112 | 23.32 | 0.0037 | 104.9 | 6.962 | 11.44 | 18.76 | 3.935 | 1.187 | 0.0232 | 0.6035 | 0.0276 |
| 4.5 | 0.0103 | 23.71 | 0.0033 | 104.0 | 7.318 | 11.61 | 18.90 | 4.036 | 1.173 | 0.0116 | 0.6162 | 0.0238 |
| 6.0 | 0.0213 | 23.81 | 0.0035 | 106.0 | 7.172 | 11.62 | 18.66 | 3.992 | 1.354 | 0.0105 | 0.6299 | 0.0168 |
| 7.5 | 0.0048 | 24.24 | 0.0028 | 103.9 | 7.347 | 11.74 | 18.52 | 4.030 | 1.367 | 0.0195 | 0.6372 | 0.0164 |
| 9.0 | 0.0140 | 24.30 | 0.0032 | 101.5 | 7.303 | 11.67 | 18.40 | 3.980 | 1.138 | 0.0215 | 0.6009 | 0.0261 |
| 10.5 | 0.0092 | 24.77 | 0.0034 | 104.2 | 7.374 | 11.94 | 18.49 | 4.021 | 1.176 | 0.0203 | 0.6031 | 0.0173 |
| 13.5 | 0.0101 | 25.48 | 0.0034 | 102.3 | 7.649 | 12.01 | 17.51 | 4.089 | 1.363 | 0.0223 | 0.5968 | 0.0193 |
| 21.0 | 0.0066 | 26.24 | 0.0032 | 100.3 | 8.213 | 12.25 | 14.29 | 4.288 | 1.293 | 0.0190 | 0.5657 | 0.0247 |
| 28.5 | 0.0130 | 27.54 | 0.0027 | 98.70 | 8.389 | 12.17 | 11.93 | 4.163 | 1.321 | 0.0273 | 0.5377 | 0.0204 |
| 36.0 | 0.0123 | 29.13 | 0.0032 | 112.8 | 9.099 | 13.48 | 11.70 | 4.978 | 1.316 | 0.0141 | 0.5732 | 0.0169 |


June 2005, \#12
$\begin{array}{rrrrrr}0 & 0.08211 & 0.79310 & 0.96760 & 1.9540 & 6.7860 \\ 0 & 0.22790 & 0.74470 & 0.97710 & 0.96860 & 7.5760 \\ 0 & 0.17260 & 0.82590 & 0.99240 & 7.2290 & 18.880 \\ 0.91540 & 0.14400 & 0.72680 & 0.90880 & 3.2560 & 10.480 \\ 0 & 0.27950 & 0.79840 & 0.85620 & 2.3030 & 8.8580 \\ 0 & 0.15040 & 0.59450 & 0.79990 & 3.4260 & 7.0500 \\ 0 & 0.17620 & 0.55150 & 0.83220 & 1.6850 & 6.1450 \\ 0 & 0.27200 & 0.69660 & 0.83860 & 2.8470 & 12.620 \\ 0 & 0.22390 & 0.57510 & 0.87080 & 1.6280 & 5.9060 \\ 0 & 0.10820 & 0.57970 & 0.76740 & 3.4890 & 10.940 \\ 0 & 0.09091 & 0.60680 & 0.93020 & 2.7750 & 9.6780 \\ 0.94020 & 0.19320 & 0.73110 & 0.84560 & 3.4130 & 10.290\end{array}$



[^0]:    ${ }^{1}$ Toevs, Gordon R., Morra, Matthew J. Polizzotto, Matthew L., Strawn, Daniel G., Bostick, Benjamin C., and Fendorf, Scott, (2006), Metal(loid) diagenesis in mine-impacted sediments of Lake Coeur d'Alene, Idaho. Environmental Science and Technology, 40, 2537-2543.

