PRELIMINARY DRAFT

CALCULATION OF AGRICULTURAL RETURN FLOWS AND LAG FACTORS

Idaho Department of Water Resources

Richard Lutz August 29, 2003

Eastern Snake Plain Aquifer Model Enhancement Project Scenario Document Number DDW-005

Site Selection

The selection of drains and returns included in the study was a joint effort of the Department of Water Resources and the Idaho Power Company. The returns on the Snake River below American Falls Reservoir were suggested by IDWR to match the ones used in a study conducted in 1985- 86. Idaho Power created a video taken from a helicopter over flight of the Snake above American falls and the Henry's Fork, which was used to help select obvious returns to the river. A standard eight digit USGS gage identification number was assigned to each site selected.

See Table 1 for site name, location (lat/long) and USGS Identification number. Maps of site locations above and below American Falls are included in Figures 1 and 2 respectively.

Results of Field Data

The over-all results of the first year's field measurements were very good. Sporadic gage failure of five to ten days was seen at some sites. Linear interpolation between the last and beginning data point filled in any missing data (cfs/day). On a monthly volume basis (ac-ft per month) any error induced by this process would have very little effect on the total water returned.

Table 1: Selected site identification and location

Site #	Station #	Site Name	Location	
Henry's I	Fork River ba	asin:		
1	13055300	Farmers Own Canal - Black Spring	Lat. 44 02'59"	Long. 111 32'20"
2	13055337	Rexburg Canal drain nr Thornton	Lat. 43 48'55"	Long. 111 53'15"
3	13050543	Independent Canal drain		
4	13056550	Texas Slough Canal nr Thornton	Lat. 43 47' 58"	Long. 111 54' 49"
5	13056600	Texas Slough nr Rexburg	Lat. 43 47'17"	Long. 111 53'45.
6	13056650	Liberty Park Canal	Lat. 43 47'24"	Long. 111 55'27"
7	13056850	Bannock Jim Spring Slough	Lat. 43 46'30"	Long. 111 56'11"
Snake Ri	iver to Ameri	can Falls Reservoir:		
8	13057000	Scott's Slough	Lat. 42 44'32"	Long. 111 58'20"
9	13057020	Dry Bed	Lat. 43 42'11"	Long. 112 04'13"
10	13057030	South Parks	Lat. 43 41'19"	Long. 112 03'47"
11	13057045	Butte Market Lake Canal	Lat. 43 39'20"	Long. 112 05'27"
12	13057100	Burgess drain nr Idaho Falls	Lat. 43 36'60"	Long. 112 03'03"
Near to a	and just belo	w American Falls Reservoir:		
13	13069548	Sterling Waste	Lat. 43 01'49"	Long. 112 43'40"
14	13069565	Aberdeen Waste Drain	Lat.	Long.
15	13076210	Tartar Waste	Lat. 42 52'40"	Long. 112 51'23"
16	13077650	Rock Creek nr American Falls	Lat. 42 39'10"	Long. 113 01'00"
Below A	merican Falls	s Reservoir to King Hill:		
17	13082060	F drain nr Declo	Lat. 42 32' 48"	Long. 113 37' 14"
18	13082032	D-3 drain	Lat. 42 36'49"	Long. 113 36'10"
19	13082062	D-5 drain nr Rupert	Lat. 42 33'15"	Long. 113 38'38"
20	13082064	D-4 drain nr Rupert	Lat. 42 34'15"	Long. 113 38'25"
21	13082320	Marsh Creek nr Declo	Lat. 42 31'26"	Long. 113 40'02"
22	13082330	Spring Creek nr Declo	Lat. 42 31'01"	Long. 113 41'03"
23	13084705	D-16 drain nr Heyburn	Lat. 42 32'30"	Long. 113 45'24"
24	13084707	B drain nr Heyburn	Lat. 42 33'33"	Long. 113 47'01"
25	13085060	D-17 drain nr Heyburn	Lat. 42 32'53"	Long. 113 50'51"
26	13085065	Main drain North nr Heyburn	Lat. 42 33'02"	Long. 113 51'59"
27	13085070	G drain nr Burley	Lat. 42 31'56"	Long. 113 53'12"
28	13085080	J drain nr Burley	Lat. 42 31'53"	Long. 113 53'29"
29	13089690	Irr drain nr Hansen	Lat.	Long.
30	13089695	Twin Falls Coulee	Lat. 42 34'11"	Long. 114 20'32"
31	13090370	Fish Hatchery Waste 0	Lat. 42 35'29"	Long. 114 26'03"
32	13090460	Perrine Coulee nr Twin Falls	Lat. 42 35'53"	Long. 114 28'20"
33	13091733	Jerome Golf Course Drain 1	Lat. 42 38 03"	Long. 114 31'03"
34	13093150	Sonnickson drain	Lat. 42 38'40"	Long. 114 33'26"
35	13093190	Sucker Flat drain nr Filer (LSLQ)	Lat. 42 38'25"	Long. 114 35'30"
36	13093550	Cedar Draw nr Filer	Lat. 42 39'13"	Long. 114 39'15"
37	13093900	Waste I nr Buhl	Lat. 42 39'33"	Long. 114 41'28"
38	13094050	J8 at Rivers Edge	Lat. 42 40'27"	Long. 114 44'27"
39	13094700	Mud Creek nr Buhl	Lat. 42 39'33"	Long. 114 47'20"
40	13095060	Fish Hatchery drain upper	Lat. 42 32'60"	Long. 114 49'21"
41	13095061	Fish Hatchery drain lower	Lat. 42 40'01"	Long. 114 48' 60
42	13095360	S. Coulee (Cedar Draw)	Lat. 42 41'46	Long. 114 48'19"
43	13095490	Irr Ditch to Blind Canyon	Lat. 42 42'28"	Long. 114 4730"
44	13133785	Drain nr Bickel Springs	Lat. 42 45'28"	Long. 114 50'48"
45	13152450	Irr Ditch nr Bliss	Lat. 42 55'56"	Long. 115 00'19"

Figure 1: Return flow gage sites from Ashton to American Falls

Figure 2: Return flow Gage sites from Bliss to Minidoka

Assignment of Return Flows to Irrigations Entities

Each return flow was assigned to an appropriate Irrigation Entity as defined in Design Document DDW-008 "Aggregation of Surface Water Canal Companies into Surface Water Irrigation Entities". A straightforward procedure was followed using the entity maps included in the above referenced document and the drain locations from Figures 1 & 2. The number of returns per entity ranged from as many as ten for IESW032 (Twin Falls Southside) to one for three entities on the Henry's Fork. On close examination of the entity maps including the land elevations, canals, and return flows, it became clear that some of the returns on the Henrys Fork serviced more than one irrigation entity. It was decided to group several entities together for the purpose of return flow calculation rather than try to parse the amount diverted from a single diversion between two or more entities. This procedure resulted in aggregating the returns and diversions into ten unique groups that were used to calculate the surface water returns.

The determination of water supplied to each entity (input) was the simple sum of each diversion referenced for that entity in DDW-008. The Idaho Department of Water Resource's historic database supplied these diversions values as acre feet per month.

This procedure resulted in aggregating the returns and diversions into ten unique groups that were used to calculate the surface water returns. Table 2 contains a complete listing of groups with entities, return flows, and diversions defined.

		Below American Falls :				
Group Irr. Entity		Assigned Return flows	Water Supply: Historic Diversions			
1	IESW032	 13152450 Irr. Ditch nr Bliss 13152895 W. Dr. Nr Tuttle (to Malad) 13133785 Drain Nr Bickel Srings 13094050 J8 at Rivers Edge 13095490 Irr. Drain to Blind Canyon 13095360 S. Coulee(Ceder Draw) 13093150 Sonnickson drain 13091733 Jerome Golf drain 	13087000 T. F. Northside 13086510 'A' Lateral in Gooding 13086520 N. Side Cross-cut			
2	IESW028	13085060 D-17 drain nr Heyburn 13085065 Main drain North nr Heyburn 13084707 B drain nr Heyburn 13084705 D-16 drain nr Heyburn 13082064D-4 drain nr Rupert 13082062 D-5 drain nr Rupert 13082032 D-3 drain	13080000 Minidoka Northside			
3	IESW010	13082060 F drain nr Declo 13082320 Marsh Creek nr Declo 13082330 Spring Creek nr Declo 13085070G drain nr Burley <u>13085080J drain nr Burley</u>	Minidoka South (13080500)			
4	IESW041	13089690 Irr drain nr Hansen 13089695Twin Falls Coulee 13090370 Fish Hatchery Waste 0 13090460 Perrine Coulee nr Twin Falls 13093190 Sucker Flat drain nr Filer (LSLQ) 13093550 Cedar Draw nr Filer 13093900 Waste I nr Buhl 13094700 Mud Creek nr Buhl 13095061 Fish Hatchery drain lower 13095060 Fish Hatchery drain upper	13087500 Twin Falls Southside Ca.			

Table 2: Assignment of return flows, diversions to entities.

Table 2: (continued) Above American Falls

<u>Gro</u> <u>Irr. Entity</u> <u>up</u>		Assigned Return flows	Water Supply: Historic Diversions			
5	IESW002	13069548 Sterling Waste 13069565 Aberdeen Waste Drain 13076210 Tartar Waste	13061610 Aberdeen Springfield Ca			
6	IESW031	13055300 Farmers Own Canal - Black Sprin	g13047575 Farmers Own 13047305 Yellowstone 13047415 Marysville			
7	IESW016	13050543 Independent Canal drain (Ave. of 1989-90 USGS Data)	13049725St Anthony canal13049550Last Chance13050525Egin Canal13050530St Anthony Union Fdr13050535Independant Canal			
8	IESW011	13057045 Butte Market Lake Canal	13057025 Butte Market Lake			
9	IESW036 IESW038	13056550 Texas Slough Canal nr Thornton 13056650 Liberty Park Canal 13056850 Bannock Jim Spring Slough 13055337 Rexburg Canal drain nr Thornton 13056600 Texas Slough nr Rexburg	13038392 Sunnydell Ca 13038398 Arnsberger 13038426 Lenroot Ca 13038431 Reid Canal 13038435 Bannock Jim 13038436 Hill Pitinger 13038437 Nelson Cory 13038434 Texas Feeder 13055323 Rexburg canal	36 36 36 36 36 36 36 36 38 38		
10	IESW009 IESW023 IESW024 IESW026	13057000 Scott's Slough 13057020 Dry Bed 13057030 South Parks 13057100 Burgess drain nr Idaho Falls	13038110 Burgess 13038115 Clark & Edwards 13038110 Rigby Ca 13037975 Eagle Rock 13037977 Eagle Rock ab Will Cr 13037977 Eagle Rock ab Will Cr 13037985 Enterprise 13038025 Butler Island 13038050 Steele Ca. 13038055 Harrison Ca. 13038065 Cheny Ca 13038065 Cheny Ca 13038065 Cheny Ca 13038065 Cheny Ca 13038095 Boomer Ca 13038095 Boomer Ca 13038095 Boomer Ca 13038098 Kite & Nord 13038145 Croft Pump 13038387 Nelson Ca 1303838150 East Labelle 13038205 Dilts Ca 13038340 White Ca 13038360 Bramwell 13038362 Ellis Ca	9 9 20 20 20 20 20 20 20 20 20 20 20 20 20		

Calculating per cent returned and development of Lag Factors

Upon examining typical hydrographs of surface water returns it is evident that a time delay is involved. The sum of the returns from the Minidoka South Side Canal shown below indicates a general increase as the irrigations season progresses. The actual diversions will remain constant or actually decrease during this same time period.

This phenomenon was dealt with by developing an algorithm that included the concept of lag factors. Lag factors are the portion of total annual percentage of water returned in the current and each successive month.

That is:

Lag Factor 1 (LF₁) = percent returned the same month diverted. Lag Factor 2 (LF₂) = percent returned one month after diverted. Lag Factor 3 (LF₃) = """ two months after diverted. Etc. -----

Up to twelve lag factors could be used but never more than five were needed to obtain a "best fit". Each monthly diversion would be returned per the following time profile.

Assume June Diversion: Returned in June = $\text{Div}_J(\text{LF}_1)$ " July = $\text{Div}_J(\text{LF}_2)$ " Aug = $\text{Div}_J(\text{LF}_3)$ " Mth_{m+n}= $\text{Div}_m(\text{LF}_{n+1})$ With the constructs above an algebraic expression defining the water returned in any month as a function of water diverted can be written as:

Ret $_{(m)} = \text{Div}_{(m)}(LF_1) + \text{Div}_{(m-1)}(LF_2) + \text{Div}_{(m-2)}(LF_3) \dots \text{Div}_{(m-n)}(LF_n)$

This formula was programmed into an Excel spreadsheet and used to estimate the monthly return flow for each irrigation entity. These calculated values were graphically compared to the actual measured returns and the number and value of lag factors varied until a "best fit" was found. Below are the graphical plots of Group 9 comparing the measured and calculated returns. The improvement in fit of calculated values with measured values is clear with the introduction of lag factors

Above : No lag factors – 29% returned same month a diverted.

Below: Lag Factors used - LF₁=.12, LF₂=.10, LF₃=.05, LF₄=.02, LF₅=01

Figure Three: Example of Spreadsheet used to calculate lag factors

				Total Annual Returned (%) => 29.2											
	Grou	<u>. 10 9</u>					Month	=>	1	2	3	4	5		
	Irrigation Entity: IESW036 & IESW038					Lag. R	et. (%) =>	12	10	5	2	1			
	Recorded Diversions: Middle Henry's fork (Sum of 10 Div)					10 Div)	[Ac-Ft]	Ratio	Returned :	turned = 0.2917					
	OCT	NC	DV DEC	JAN	FEB	MÁR	APR	MAY	′ JUN	JUL	. AUC	G SEP	AN	NUAL	
200	1	0	0	0	0	0	0	0	0	0	0	0	0	0	Total
2002	2		0	0	0	0	0	0	38600	53900	51200	37700	21100	202500	
2003	3 1	2600	0	0	0	0	0	0						0 2	215100
Time Lag(months)		0	1	2	3	4	5	6	7	8	9	10	11		
Return Lags Factor		0.120	0.100	0.050	0.020 0	.010 0.	.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.300
	Calcul	ated Ret	urns [Ac-F	t]											
	OCT	NC	DV DEC	JAN	FEB	MAR	APR	MAY	′ JUN	JUL	. AUC	G SEP	Y AN	NUAL	
2002	2		0	0	0	0	0	0	4632	10328	13464	13111	10326	51861	
2003	3	7070	3581	1429	463	126	0	0	0	0	0	0	0	12669	
plo	ot	7070	3581	1429	463	126	0	0	4632	10328	13464	13111	10326		
			-												
	Measu	Jred Retu	Irn Flows:	[AC-Ft					/ II IN I		A L L C				
		NC	DV DEC	JAN	FEB	MAR	APR		JUN	JUL	. AUC	J SEP			
2002	2							0	3/12	10994	14370	14901	10717	54694	
2003	3	6825	1218											8043	62738
plo	ot	6825	1218	0	0	0	0	0	3712	10994	14370	14901	10717		

<u>A summary of the results for all ten groups follows</u>:

Group Irr. Entity Results: Ann. Return and Lags

1	IESW032	Total Annual Returned (%) =>		4.6			
		Month =>	1	2	3	4	5
		Lag. Ret. (%) =>	3	1.6	0	0	0
2	IESW028	Total Annual Returned (%) =>		4.80			
		Month =>	1	2	3	4	5
		Lag. Ret. (%) =>	2	1	1	1	0
3	IESW010	Total Annual Returned (%) =>		10.0			
Ũ	12011010	Month =>	1	2	3	4	5
		Lag. Ret. (%) =>	4	3	3	0	0
4	IESW041	Total Annual Returned (%) =>		6.4			
		Month =>	1	2	3	4	5
		Lag. Ret. (%) =>	3	2	1.5	0	0
5	IESW002	Total Annual Returned (%) =>		59			
Ũ	.2011002	Month =>	1	2	3	4	5
		Lag. Ret. (%) =>	3	2	1	0	0
C		Total Approal Datumed (0/)		10 F			
0	1ESW031	North	4	19.5	2	4	5
		NOnth =>	1	2	3	4	5
		Lag. Ref. (%) =>	1	4	3	3	2
7	IESW016	Total Annual Returned (%) =>		1.6			
		Month =>	1	2	3	4	5
		Lag. Ret. (%) =>	1	0.6	0	0	0
8	IESW011	Total Annual Returned (%) =>		1.8			
		Month =>	1	2	3	4	5
		Lag. Ret. (%) => 1	.8	0	0	0	0
9	IESW036	Total Annual Returned (%) =>		29.2			
	IESW038	Month =>	1	2	3	4	5
		Lag. Ret. (%) =>	12	10	5	2	1
10	IESW009	Total Annual Returned (%) =>		27.2			
	IESW020	Month =>	1	2	3	4	5
	IESW023 IESW024 IESW026	Lag. Ret. (%) =>	11	7	4	4	0

General Discussion of Results

It is evident, upon examining the summary of results listed on the following page that the amount of water returned on the Snake River (Groups 1- 5) is less than is returned on the Henry's Fork. This seems to be explained by the difference in depth of water applied to each group. Bryce Condor has conducted an extensive examination of this phenomenon. In fact, the extrapolation of "percent returned" to entities without data used the depth of water applied as a guide.

The amount percentage (1.8%) of water returned for Irrigation entity IESW11 (Butte Market Lake) was not reasonable. The hydrograph of the field returns was not consistent with a typical return flow profile. Flow was high and inconsistent in May and June and receded to near zero in August and September.

The amount returned for entity IESW016 (Group7 – Independent drain) was also very low. Since the irrigation district refused access to the gage, an average of 1989-90 data from the USGS was used. Hopefully this data will be able to be collected in the 2003 irrigation season and current data will improve the results.

The 2002 water year was a relatively dry year the irrigation practices and availability of water would have skewed the overall results. It would seem logical that the average returns for a low year would be lower than for a normal or wet year. Although the study will continue into water year 2003 it appears that it also will be a low year.