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A B S T R A C T 

LIDAR REMOTE SENSING FOR WILDLIFE HABITAT CHARACTERIZATION AND 

MODELING: INCORPORATING REMOTELY SENSED VEGETATION STRUCTURE 

INTO CURRENT ASSESSMENTS OF ANIMAL DISTRIBUTION AND 

CONSERVATION 

Remote sensing data play a key role for assessing wildlife habitat distribution and 

conservation. However, most efforts have depended on passive remote sensing data that 

poorly characterize the three-dimensional (3-D) structure of vegetation, an important 

variable influencing animal-habitat associations. In this thesis, we evaluated the 

consequences of integrating novel-data of ecosystem 3-D structure from LiDAR (i.e. light 

detection and ranging) into current assessments of wildlife habitat distribution and 

conservation, with the main goal of quantifying LiDAR value for biodiversity and 

wildlife management. Using data from temperate and tropical landscapes (i.e. Idaho and 

Puerto Rico), this research exhibited the value of LiDAR data in characterizing key forest 

structure components for wildlife species, such as snags and understory shrub 

distribution, as well as for improved assessments of wildlife habitat suitability. In this 

sense, LiDAR helped to refine species-habitat models in ways not attained using 

traditional remote sensing technologies, making it possible to delineate known species 

associations with forest structure. In addition, LiDAR significantly improved the 

accuracy of current Landsat-based forest type classifications, which represent the 

principal source of geospatial data used in wildlife habitat studies. Finally, this research 

showed that incorporating remotely sensed data of vegetation structure can improve the 

results of regional conservation efforts such as Gap Analysis. This thesis demonstrated 

that LiDAR remote sensing has a great value for improved wildlife habitat assessments, 

providing unique opportunities to advance the way we manage and conserve biodiversity 

and habitats. 
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I N T R O D U C T I O N 

Remote sensing data are essential in assessing species distributions because they allow 

the linkage of species with habitats over broad spatial extents (Nagendra, 2001; Ferrier, 

2002; Kerr & Ostrovsky, 2003; Turner et al., 2003; McDermid et al., 2005; Leyequien et 

al., 2007). However, current efforts often depend on passive remote sensing data that are 

typically unable to describe the three-dimensional (3-D) structure of vegetation (e.g. 

Landsat imagery), an important variable affecting the presence, abundance and habitat 

use of many wildlife species (Mac Arthur & Mac Arthur, 1961; Brokaw & Lent, 1999). 

This limitation can introduce uncertainty and errors in local assessments of wildlife 

habitat, therefore affecting efforts related to wildlife habitat conservation and 

management. Today, spatially explicit data about forest structure is a major need to 

advance biodiversity and wildlife habitat management efforts (Russell et al., 2007; 

Venier & Pearce, 2007). LiDAR remote sensing has therefore opened new opportunities 

for assessing wildlife habitats in forests due to its unique sensitivity to the 3-D structure 

of ecosystems (Lefsky et al., 2002; Vierling et al., 2008; Bergen et al., 2009). Evaluating 

the consequences of integrating LIDAR data into current remotely-sensed assessments of 

wildlife habitat distribution and conservation is therefore an important need, and 

constitutes the main goal of this thesis. 

While recent studies have explored the use of LiDAR data for quantifying 

different aspects of forest structure and wildlife habitat (see reviews by Wulder et al., 

2008 and Vierling et al., 2008), more research is needed to better understand the potential 

of this technology for improved assessments of species distribution, wildlife habitats and 

conservation (Vierling et al., 2008). In this study I tried to answer the following 

questions: (1) which type of information about ecosystem structure is needed to refine 

predictions of wildlife species distributions?; (2) what are the consequences of 

incorporating geospatial information about vegetation structure into local and regional 

assessments of wildlife species distribution, conservation, and biodiversity?; (3) can 

LiDAR data enable the distribution of key wildlife habitat features in forests such as 

snags (i.e. standing dead trees) and understory shrubs to be mapped?; and (4) to what 

degree can LiDAR data improve forest land cover maps -i.e. the most common remote 
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sensing product for quantifying wildlife habitat and biodiversity? During my doctoral 

work, but not presented in this thesis, I also teamed with others to review and discuss the 

potential of LiDAR data for characterizing and modeling wildlife habitats in general 

(Vierling et al., 2008), and to evaluate the capability of LiDAR data for separating forest 

successional stages -an important step towards improved quantification of ecosystem 

characteristics related to wildlife habitats and biodiversity, among other important 

functions (Falkowski et al., 2009). 

The study areas of this research encompassed temperate and tropical sites 

including Idaho (in the Inland Northwest, USA, and dominated by conifer forests) and 

Puerto Rico (in the Caribbean, characterized by tropical broad-leaf forests), and for which 

a variety of datasets were already available (e.g. airborne LiDAR, forest inventory plots, 

species-habitat models). For the purpose of assessing species distribution and 

conservation by this study, I used a methodological framework that is consistent with the 

U.S. Geological Survey's Gap Analysis Program (GAP). GAP is the major governmental 

initiative assessing wildlife habitat distribution and conservation using remote sensing, 

and the main source of geospatial data for supporting biodiversity planning in the nation 

(http://gapanalysis.nbii.gov). In GAP Analysis, species distributions are predicted using a 

deductive approach, that is, by identifying species-habitat relationships based on what is 

known about the species natural history, and then by reflecting these relationships using 

GIS environmental layers (e.g. land cover data, see Scott et al., 1993). Inductive 

approaches, on the other hand, base their inferences from the statistical relationships 

between species occurrence records and environmental layers, and are also widely used. 

The ultimate goal in GAP is to map vegetation types and to predict the distribution of 

wildlife species, and to evaluate their representation within the network of protected 

lands, so that "gaps" in conservation can be identified (Scott et al., 1993). While both 

inductive and deductive approaches have pros and cons (Scott et al., 2002a), the findings 

of this study are relevant for remote sensing, wildlife habitat assessments, and GAP 

conservation assessment, regardless of the modeling approach being used. 

This thesis includes four chapters. In Chapter 1 I evaluated which type of 

information about ecosystem structure is needed to refine GAP predictions of species 

http://gapanalysis.nbii.gov
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distributions. I focused on avian and mammal species present in Idaho and for which the 

absence of ecosystem structure data was a recognized limitation in a previous Gap effort 

(Scott et al., 2002b). This chapter identifies priorities in the development of LiDAR-

derived products of habitat structure, critical for refining wildlife habitat models in the 

Inland Northwest, USA. This chapter has been published in the Gap Analysis Bulletin 

(Martinuzzi et al., 2009a). 

In Chapter 2 I evaluated the use of LiDAR data for mapping the distribution of 

snags and understory shrubs, as well as habitat suitability for avian species that depend 

on those features. I focused on a mixed-conifer forest in northern Idaho. This chapter 

shows new value of LiDAR data in characterizing key forest structure components for 

assessing wildlife and biodiversity in temperate conifer forests, and has been published in 

Remote Sensing of Environment (Martinuzzi et al., 2009b). 

In Chapter 3 I evaluated the impacts of incorporating information about 

vegetation structure into State-wide assessments of wildlife species distribution and 

conservation. Basically, I compared the outcomes of a GAP analysis that incorporated 

percent tree canopy cover (a measure of horizontal vegetation structure) vs. a GAP 

analysis that does not (i.e. the classic GAPs). Using the avian species and the entire state 

of Idaho as a case study, this chapter highlights the value of area wide vegetation 

structure data for refined habitat assessments, and shows -among other findings- that the 

inclusion of vegetation structure can have major consequences in the results of GAP. This 

chapter has been published in the Journal of Applied Remote Sensing (Martinuzzi et al., 

2009c). 

Finally, in Chapter 4 I evaluated the utility of LiDAR data to improve current, 

Landsat-based classifications of forest types and forest successional stages. I focused on a 

complex tropical forest in the dry region of Puerto Rico. This chapter shows the value of 

LiDAR data for refining current forest land cover maps, and highlights the potential of 

LiDAR for improving our understanding of the biophysical and human dimensions of 

tropical dry forests - one of the world's most threatened habitats. This chapter will be 

submitted to Biotropica. 
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C H A P T E R 1 

IMPROVING THE CHARACTERIZATION AND MAPPING OF WILDLIFE HABITATS 

WITH LIDAR DATA: MEASUREMENT PRIORITIES FOR THE INLAND NORTHWEST, 

U S A 

Note: This chapter has been published as: Martinuzzi S, Vierling L, Gould W, & Vierling 

K. (2009). Improving the characterization and mapping of wildlife habitats with LiDAR 

data: measurement priorities for the Inland Northwest, USA. In: J. Maxwell et al., 

(Editors). Gap Analysis Bulletin, 16. USGS/BRD/Gap Analysis Program, Moscow, ID, 

USA. 

Introduction 

The development of region- and nation-wide predictive assessments of wildlife species 

distribution and habitat availability is a major component of the USGS Gap Analysis 

Program (GAP), which provides critical information for conserving biodiversity in the 

United States (Scott et al., 1993). Despite continuous advances in predictive modeling 

tools, the lack of detailed and accurate geospatial data is still a recognized, major 

challenge to improve species distribution modeling (Guisan and Zimmermann, 2000). 

Current predictions, for example, are based on environmental geospatial data that do not 

reflect the three-dimensional characteristics of vegetation (Gottschalk et al., 2005; 

McDermid et al., 2005; Leyequien et al., 2007), an important variable for determining the 

distribution and abundance of wildlife species (MacArthur and MacArthur, 1961; 

Brokaw and Lent, 1999). Modeling species distribution using environmental data that do 

not adequately represent important species-environment relationships can result in 

predictions that contain some level of uncertainty and error (Fielding and Bell, 1997; 

Beutel et al., 1999; Guisan and Zimmermann, 2000), affecting species conservation and 

biodiversity assessments such as those made through the GAP. 
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Lidar (light detection and ranging) is a relatively new source of geospatial data 

that, contrary to most available remote sensing technologies, provides fine-grained 

information about the 3-D physical structure of terrestrial and aquatic ecosystems (Lefsky 

et al., 2002), opening a novel spectrum of possibilities for characterizing wildlife habitats 

with remote sensing (Vierling et al., 2008). In forested environments, for example, lidar 

data have been useful for quantifying vegetation structure in terms of biomass (e.g. basal 

area and tree diameter), percent canopy cover, tree height, tree density, for separating 

forest sucessional stages and to characterize subcanopy topography (e.g. Nelson et al., 

1988; Harding et al., 2001; Drake et al., 2002; Hofton et al., 2002; Hudak et al., 2006). 

Recent studies evaluating the utility of lidar for mapping understory shrubs and snag 

density yield also positive results (Goodwing, 2006; Bater, 2008). While lidar data have 

recently been utilized to investigate local-scale wildlife habitat quality as it relates to 

avian (e.g. Hinsley et al., 2002, 2006; Hill et al., 2004; Broughton et al., 2006; Goetz et 

al., 2007; Clawges et al., 2008) and fish (Jones, 2006; McKean et al., 2008) biology, 

application of lidar data to broad scale species distribution prediction is still in the 

exploratory stage (see Vierling et al., 2008). 

Lidar data acquisitions are typically localized efforts conducted over small areas, 

and therefore these local efforts have not been ideal for the scales at which GAP work 

(e.g. state, region, country). However, an increasing number of states currently have or 

plan to have soon full lidar coverage (e.g. Florida, Iowa, Louisiana, Pennsylvania, North 

Carolina, Ohio, and Texas). Moreover, as a result of increasing demands from State and 

Federal agencies, academia, and private industry, the US government is currently 

evaluating the feasibility and strategy for a national acquisition of high resolution, high 

accuracy lidar data for all 50 states. This effort is known as the "National Lidar Initiative" 

(NLI) and it is organized by the USGS (Stoker et al. 2007). According to the Center for 

Lidar Information Coordination and Knowledge <http://lidar.cr.usgs.gov/>, the NLI "is 

currently in the early stages of determining viability, developing what this dataset should 

look like, what kinds of information contained in a lidar signal are most important for the 

U.S. people, and what each stakeholders' roles and responsibilities could be". 

http://lidar.cr.usgs.gov/
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The objective of this study was to evaluate which habitat structure variables are 

needed to refine GAP species distribution predictions, in order to identify priorities in 

developing lidar-derived products. This study was focused on avian and mammal species 

inhabiting the Inland Northwest, USA. In this region, previous efforts to predict species 

distribution with traditional remote sensing data (e.g. Landsat) indicated that the 

distribution of many wildlife species has been likely overestimated due to the incapability 

of incorporating information (i.e. constraints) about vegetation structure (Scott et al. 

2002). For example, species that are known to occur in closed forests have been predicted 

to occur in all forests (closed and open) due to the lack of geospatial data about 

percentage of tree canopy cover. Information from this report has direct implications for 

further ecological applications of lidar data, including from the NLI, and could have 

long-term ramifications for improving GAP species distribution predictions and land 

cover characterization. 

Methods 

First, we identified the mammal and avian species whose predicted habitat distribution 

has been overestimated, according to Scott et al. (2002). Scott et al. (2002) also provide 

information about the type of habitat variables needed to improve the predicted 

distribution of various species. We refined and expanded the habitat information using 

published material from habitat suitability models, such as those developed by the US 

Fish and Wildlife Service. For example, Scott et al. (2002) indicated that the predicted 

distribution of the pileated woodpecker was likely overestimated due to the lack of 

geospatial data about the presence of snags, which is a large determinant of the species 

habitat distribution. According to the habitat suitability model for the pileated 

woodpecker, not only the size and density of snags, but also the percentage of tree 

canopy cover, are important variables for predicting the distribution of the species 

(Schroeder, 1982). We then combined all the information in a table (one for the avian 

species and other for the mammals) that included, in the columns, the species whose 
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habitat distribution has been overestimated, and in the rows, the potential habitat 

variables needed to refine the predictive species distribution models. 

We included information (i.e. habitat variables) about vegetation structure as well 

as topography. Scott et al. (2002) indicated that the original topographic data / digital 

elevation model was not adequate to characterize relevant habitat features for certain 

species. Lidar, on the other hand, is the best available technology for topographic 

mapping. In addition, the table lists seven species whose predicted distribution performed 

well according to Scott et al. (2002), but that may benefit from Lidar data due to the high 

affinity of the species to structural characteristics of vegetation. Examples of these 

species are the downy woodpecker and hairy woodpecker, whose presence depends on 

the availability of snags, among other factors. 

Results and Conclusion 

We identified a total of eleven variables of habitat structure potentially suitable for 

refining GAP predictions of species distribution. These variables included, for forests, 1) 

% of tree canopy cover, 2) some measure of forest stand biomass, such as the mean tree 

diameter, basal area, or age, 3) diameter and density of snags, 4) height of overstory trees, 

5) diversity of the tree canopy (i.e. number of canopy strata), 6) tree density, and 7) % of 

understory shrub cover. For rangelands, the important variables were the height and % of 

shrub cover, as well as the height of the grasses. Finally, in terms of topography, 

important variables included rock outcrops (i.e. identification of rocky areas), and 

morphological measures of streams, creeks, and canyons (see Table). 

The list included a total of 86 species, including 66 avian species and 20 mammal 

species, equivalent to almost 30% and 20% of all the avian and mammal species present 

in Idaho. In addition, 10 of the 86 species are of greatest conservation need according to 

the Idaho Fish and Game. We believe the list of species presented in this study may 

represent a conservative lower-bound of the actual overall number of species whose 
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predictive distribution models would benefit from the inclusion of lidar-derived data, 

since the structural habitat preferences of many vertebrate species are either unknown or 

often not reported. 

According to the total number of species associated with each habitat variable 

(reported at the end of the Table), the results of this study indicated that the most needed 

variables are (in order of importance): 1) % tree canopy cover, 2) % shrub canopy cover 

(including understory shrubs), 3) some measure of stand biomass (mean tree diameter / 

basal area / age), 4) shrub height, and 5) size and density of snags. While lidar has been 

used to successfully quantify tree canopy cover and biomass in different forest types, 

little is known about the capabilities of this new technology for mapping the distribution 

of snags, and for measuring the characteristics of the shrub layer (whereas as part of the 

forest understory or in rangelands) (Goodwing, 2006; Bater, 2008). More research on 

these topics would serve to better evaluate the potential of lidar data to characterize 

wildlife habitats and support predictions of species distribution. In addition, in order to 

facilitate ecological and conservation applications of broad-scale lidar data such as those 

from the NLI, further studies should evaluate the type of information about the structural 

characteristics of habitats needed to model wildlife species distribution and habitat 

availability in other regions and across different taxa. For example, while information 

about vegetation structure is important for birds and mammals, information about 

microtopography appears to be critical for improving assessments of reptile habitats (C. 

Peterson, personal communication). An additional benefit of lidar data is that it allows 

the development of products and maps at a high spatial resolution, suitable not only for 

vegetation assessments in upland areas but also in riparian zones, which are important 

habitat features for wildlife species but are particularly challenging to map with 

traditional (i.e. 30m pixel) remote sensing technologies (Goetz 2006). 

The impending acquisition of a US-wide lidar dataset has the potential to provide 

new and relevant geospatial data, suitable for supporting and refining GAP predictions of 

species distribution and further species conservation assessments for the United States. In 

order to take maximum benefit from current and future lidar data for GAP related 

purposes, further studies should evaluate the performance of species distribution models 
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with and without lidar data, and its consequences for GAP assessments of wildlife species 

distribution and conservation. Finally, we recommend that GAP continue to work in 

cooperation with a variety of governmental, private and non-governmental organizations 

to achieve nationwide improvements in remotely-sensed habitat mapping. 
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Table. Species and (potential) lidar-derived habitat variables. 

Common 
name 

% Shrub 
Tree Density canopy cover Stream / 

%Tree diameter/ and Overstory Tree (including Shrub creek/ 
canopy basal area / diameter tree canopy Tree understory canopy Grass Rock canyon 

Scientific name cover age of snags height diversity density shrubs) height height outcrops morpholoi 

American 
dipper 

Cinclus 
mexicanus 

Bald eagle ± 
Haliaeetus 

leucocephalus 

Barred owl Strix varia 

Belted 

kingfisher 
Ceryle alcyon 

Black-capped Poecile 

chickadee atricapilla 

Black-headed Pheucticus 

grosbeak melanocephalus 

Blue grouse 
Dendrogapus 

obscurus 

Blue-gray Polioptila 

gnatcatcher caerulea 

Brewer's 

blackbird 

Euphagus 

cyanocepholus 

Brewer's 

sparrow ±* 
Spizello breweri 

Broad-tailed Selosphorus 
hummingbird plotycercus 

Brown-headed 
cowbird 

Cassin's finch 

Molothrus ater 

Carpodacus 

Cassin's vireo Vireo cassinii 

Catherpes 
Canyon wren 

mexicanus 

Cedar 
waxwing 

Bombycllla 

cedrorum 

Chestnut-

backed 
Poecile 
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chickadee 

Chipping 
sparrow 

Clark's 
nutcracker 

rufescens 

Spizella 
passerine 

Nucifraga 
columbiona 

Common Bucephala 
goldeneye clangula 

Common Chordeiles 
nighthawk minor 

Common Phalaenoptiius 
poorwill nuttallii 

Common 
raven 

Con/us corax 

Cordilleran Empidonax ^ 
flycatcher occidentalis 

Downy Picoides ^ 
woodpecker* pubescens 

Dusky Empidonax ^ x 

flycatcher oberholseri 

Ferruginous 
Buteo regalis X X X 

hawk ± 

Flammulated Otus ^ 
owl ± fiammeoius 

Fox sparrow Passerella iliaca X 

Aquiia 
Golden eagle , X 

chrysaetos 

Great gray owl Strix nebuiosa X 

Greater sage Centrocercus ^ 
grouse ± urophasianus 

Hairy 
Picoides viilosus X X X 

woodpecker* 

Hammond's Empidonax 
flycatcher hammondii 

Caiamospiza 
Lark bunting X 

meianocorys 

Chondestes 
Lark sparrow X 

grammacus 

Lazuli bunting „ 
Passerina 

X X 



amoena 

Lesser scaup 
+* Aythya affinis 

Lewis' 
woodpecker ± 

Melanerpes 
lewis 

Lincoln's 
sparrow 

Melospiza 
lincolnii 

Loggerhead 
shrike 

Lanius 
ludovicianus 

Long-eared 
owl 

Asio otus 

Macgillivray's 
warbler 

Oporornis 
tolmiei 

Mountain 
bluebird 

Sialia 
currucoides 

Nashville 
warbler 

Vermivora 
ruficapilla 

Northern 
flicker 

Colaptes 
auratus 

Northern 
goshawk 

Accipiter 
gentiles 

Northern 
pygmy-owl 

Glaucidium 
gnoma 

Northern saw-
whet owl 

Aegolius 
acadicus 

Olive-sided 
flycatcher 

Contopus 
cooperi 

Orange-
crowned 
warbler 

Vermivora 
celato 

Oregon (Dark-
eyed) junco 

Junco hyemalis 

Peregrine 
falcon ± 

Falco 
peregrin us 
onatum 

Pileated Dryocopus 
woodpecker pileatus 

Red-breasted Sitta 
nuthatch Canadensis 



Red-tailed Buteo 
hawk Jamaicensis 

Rock wren 

Ruffed grouse 

Salpinctes 
obsoletus 

Bonasa 
umbellus 

Spotted Pipilo 

towhee maculates 

Townsend's Dendroica 

warbler townsendi 

Turkey vulture Cathartes aura 

Catharus 
Veery* 

fuscescens 

Warbling vireo Vireo gilvus 

Western Piranga 
tanager ludoviciana 

Wilson's 

warbler 
Wilsonia pusilla 

Yellow Dendroica 

warbler* petechia 

Total 44 

MAMMAL 
SPECIES 

American Castor 
beaver* Canadensis 

Ochotona 
American pika 

prmceps 

Bobcat Lynx rufus X 

Bushy-tailed Neotoma 

woodrat cinerea 

Coyote Canis iatrans X 

Elk Cervus eiaphus X 

Fisher + Martes pennant X X 

Fox squirrel Sciurus niger X X 

Golden- Spermophilus ^ 
mantled lateralis 
ground 
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squirrel 

Hoary bat 
Lasiurus 

cinereus 
X 

Hoary marmot 
Marmoto 

caligata 
X 

Long-legged 

myotis 
Myotis volans X 

Long-tailed Microtus Y 
vole longicaudus 

A 

Mule deer 
Odocoileus 

hemionus 
X 

Northern Olaucomys x 
flying squirrel sabrinus 

Pronghorn 
AntHocopro 

americana 
X X 

Red-tailed Tamias Y 
chipmunk ruficaudus 

A 

Rock squirrel ± 
Spermophilus 
variegates 

X 

Southern red- Clethrionomys Y Y 
backed vole gapperi 

A A 

White-tailed Lepus Y 
jack rabbit townsendii 

A 

Total 13 5 2 0 1 0 3 2 0 3 0 

GRAND TOTAL 57 11 7 1 1 1 23 8 5 4 3 

+ Species of greatest conservation need in Idaho 

"Species whose predicted distribution performed well according to Scott et al. (2002), but which may benefit from lidar data 
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CHAPTER 2 

MAPPING SNAGS AND UNDERSTORY SHRUBS FOR A LIDAR-BASED 

ASSESSMENT OF WILDLIFE HABITAT SUITABILITY 

Note: This chapter has been published as: Martinuzzi S, Vierling L, Gould W, Falkowski 

M, Evans J, Hudak A, & Vierling, K. 2009. Mapping snags and understory shrubs for a 

LiDAR-based assessment of wildlife habitat suitability. Remote Sensing of Environment, 

113,2533-2546. 

Abstract 

The lack of maps depicting forest three-dimensional structure, particularly as pertaining 

to snags and understory shrub species distribution, is a major limitation for managing 

wildlife habitat in forests. Developing new techniques to remotely map snags and 

understory shrubs is therefore an important need. To address this, we first evaluated the 

use of LiDAR data for mapping presence/absence of understory shrub species and 

different snag diameter classes important for birds (i.e. > 15 cm, > 25 cm and > 30 cm) in 

a 30,000 ha mixed-conifer forest in Northern Idaho (USA). We used forest inventory 

plots, LiDAR-derived metrics, and the Random Forest algorithm to achieve classification 

accuracies of 83% for the understory shrubs and 86% to 88% for the different snag 

diameter classes. Second, we evaluated the use of LiDAR data for mapping wildlife 

habitat suitability using four avian species (one flycatcher and three woodpeckers) as case 

studies. For this, we integrated LiDAR-derived products of forest structure with available 

models of habitat suitability to derive a variety of species-habitat associations (and 

therefore habitat suitability patterns) across the study area. We found that the value of 

LiDAR resided in the ability to quantify 1) ecological variables that are known to 

influence the distribution of understory vegetation and snags, such as canopy cover, 

topography, and forest succession, and 2) direct structural metrics that indicate or suggest 

the presence of shrubs and snags, such as the percent of vegetation returns in the lower 

strata of the canopy (for the shrubs) and the vertical heterogeneity of the forest canopy 
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(for the snags). When applied to wildlife habitat assessment, these new LiDAR-based 

maps refined habitat predictions in ways not previously attainable using other remote 

sensing technologies. This study highlights new value of LiDAR in characterizing key 

forest structure components important for wildlife, and warrants further applications to 

other forested environments and wildlife species. 

Introduction 

The lack of spatially explicit data about forest three-dimensional structure is a major 

challenge for managing biodiversity and wildlife habitat (Russell et al., 2007; Venier and 

Pearce, 2007). Such information is important because characteristics associated with the 

structure of forests (e.g. height of the trees, presence or absence of understory, canopy 

closure, tree diameter, abundance and size of dead trees, etc.) are important factors 

explaining 1) the presence of many wildlife species, 2) the functional use of the habitat 

(e.g. nesting, foraging, cover, roosting), and 3) the overall diversity of wildlife species in 

forests (MacArthur and MacArthur, 1961; Davis, 1983; Brokaw and Lent, 1999). During 

the last two decades, passive remote sensing data have been used to characterize 

successfully different aspects of forested habitats over broad areas, but have been 

typically unable to describe three-dimensional (3-D) structural characteristics (see 

reviews by Kerr and Ostrovsky, 2003; Wulder and Franklin, 2003; McDermid et al., 

2005). As a result, it is necessary to develop novel ways to characterize forest structure, 

with a special emphasis on those aspects that are relevant to wildlife habitat and 

biodiversity. 

LiDAR remote sensing can be used to measure directly the 3-D structure of 

terrestrial and aquatic ecosystems across broad spatial extents (Lefsky et al., 2002). 

LiDAR data, in conjunction with various sources of ancillary data, have been used to 

quantify successfully different aspects of forest 3-D structure, such as biomass, canopy 

cover and height, canopy height profiles, successional stages, as well as subcanopy 

topography (Nelson et al., 1988; Harding et al., 2001; Drake et al., 2002; Hofton et al., 
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2002; Hudak et al., 2006, Clawges et al., 2007; Hudak et al., 2008a; Falkowski et al., 

2009). These data have been recently incorporated into assessments of biodiversity 

(Goetz et al., 2007; Clawges et al., 2008) and wildlife habitat modeling (see Vierling et 

al., 2008 for a review). However, the mapping of certain habitat characteristics requires 

more research. For instance, little is known about the capability of LiDAR data for 

mapping the distribution of snags (i.e. standing dead trees) and understory shrub species, 

two critical components of wildlife habitat in forests (Thomas et al., 1979; Davis, 1983; 

Hagar, 2007) and indicators of forest biodiversity and ecosystem health (Sampson and 

Adams, 1994; Noss, 1999, Kerns and Ohmann, 2004). 

This study advances the application of LiDAR remote sensing for mapping forest 

structure and wildlife habitat. Our objective was to evaluate the use of LiDAR data to 

map 1) the distribution of understory shrubs and snags, and 2) habitat suitability patterns 

for different wildlife species known to be dependent upon these habitat resources. This 

study was focused on Moscow Mountain, a mixed-conifer forest located in the Inland 

Northwest (US) that has previously served as a suitable testbed for numerous LiDAR 

applications (Hudak et al., 2006, 2008a,b; Evans and Hudak, 2007; Falkowski et al., 

2009). 

Background and rationale 

Mapping the distribution of snags and understory shrub species across the landscape 

presents major challenges. Recent studies using LiDAR data have been able to 

characterize height and/or cover of the understory vegetation, where understory is 

represented by all the woody vegetation in the strata (i.e. shrubs and trees), or suppressed 

trees only (e.g. Riano et al., 2003; Maltamo et al., 2005; Goodwin 2006; Skowronski et 

al., 2007; Hill and Broughton 2009). This work was done through the use of canopy 

height thresholds, cluster analysis and visual interpretation. The studies have shown, 

however, that assessments of understory vegetation with LIDAR are typically less 

accurate under dense tree canopies (e.g. Maltamo et al., 2005; Goodwin 2006; 

Skowronski et al., 2007; Su and Bork 2007), where the proportion of laser pulses 

reaching the lower forest strata decreases. Maps of understory shrub distribution should 
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be reliable under different forest density conditions so that spatially consistent ecological 

inferences can be made. In this sense, Hill and Broughton (2009) showed that it is 

possible to characterize understory vegetation in closed forests, by integrating leaf-on and 

leaf-off LiDAR data. This approach, however, requires 1) a forest dominated by 

deciduous trees, and 2) the availability of multiple LiDAR acquisitions over the same 

area. In addition, animal use of different understory vegetation components does vary. In 

the coniferous forests of the Pacific Northwest (US), for example, distinguishing 

deciduous shrubs from conifer saplings is vital for evaluating certain types of wildlife 

habitats, as these components have different ecological function (see Hagar, 2007). A 

recent study conducted in a an Aspen parkland in Canada, however, found no relationship 

(p > 0.05) between the structure of the understory (true) shrub community and the 

LiDAR reference data (Su and Bork 2007). With regard to snags, Bater (2007) was able 

to relate the structural heterogeneity of forest stands from LiDAR with proportions of 

trees in different stages of decay; in a conifer-dominated coastal forest of British 

Columbia, Canada. The study indicated that more research is required to test this 

approach in other forest environments. In addition, it is important in many wildlife 

habitat applications to understand not only the spatial distribution of snags, but also their 

size (e.g. larger animal species typically use larger snag diameters than smaller species). 

In this sense, a previous effort predicting the volume of standing dead wood material 

from LiDAR derived canopy metrics achieved poor results (RMSE 79%) (Pesonen et al., 

2008). 

A variety of environmental factors can influence the presence of snags and 

understory shrubs in forests, and therefore have the potential to serve as predictor 

variables in a distribution modeling approach. Studies evaluating the structure and 

composition of understory vegetation found that overstory canopy structure, topography 

and land use can all influence the presence of understory shrub cover in forests (Kilina et 

al., 1996; McKenzie and Halpern, 1999; Van Pelt and Franklin, 2000; Kerns and 

Ohmann, 2004; Bartemucci et al., 2006; Gracia et al., 2007), with overstory density 

being, frequently, the most important variable. Understory vegetation is consistently 
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denser in open forests, where more light can reach the ground; but it is more variable and 

less predictable in closed forests (Bartemucci et al., 2006). 

The abundance and size of snags, on the other hand, is a result of the combined 

processes of forest succession, natural snag dynamics, forest management practices, and 

episodic disturbance events (Cline et al., 1980; Ohmann et al., 1994; Flanagan et al., 

2002; Korol et al., 2002; Kennedy et al. 2008). Older forest stands typically support 

larger snags than do younger stands. In mountainous regions, topographic positions (i.e. 

slopes and aspects) exposed to more severe weather conditions tend to support higher 

abundance of snags (Flanagan et al., 2002). At the same time, managed forest stands have 

typically fewer larger snags than non-managed stands (Korol et al., 2002; Kennedy et al., 

2008). Episodic disturbance events such as drought, snow, ice, fire or insect outbreaks 

can also increase the number of snags locally (Morrison and Raphael, 1993). A previous 

study modeling snag density with Landsat and geoclimatic data showed modest results, 

with only half of the predictions falling within a 15% deviation from the field validation 

values (Frescino et al., 2001). On the other hand, Bater (2007) found that the coefficient 

of variation of the LiDAR height data was a strong predictor of the proportion of trees in 

different stages of decay at the stand level (r= 0.85, p <0.001, RMSE = 4.9%). We are 

unaware of efforts to model the presence of snags of different sizes. 

LiDAR data can be utilized to derive a variety of environmental factors known to 

explain the presence of understory vegetation and snags, including canopy structure (e.g. 

Hudak et al., 2008a,b), forest successional stage (e.g. Falkowski et al., 2009), and 

topography (e.g. Hudak et al., 2008a,b). Coupled with the fact that laser pulses can also 

interact directly with understory vegetation and dead trees, the use of LiDAR data should 

provide a way to advance the mapping of understory shrub and snag distributions in 

forested environments. In addition, while previous efforts assessing wildlife habitat with 

LiDAR have been focused from an inductive perspective, that is, by allowing the canopy 

metrics explain the variation in some type of field animal data (such as abundance, 

reproductive success, and richness) (e.g. Hinsley et al., 2002, 2008; Broughton et al., 

2006; Goetz et al., 2007; Clawges et al., 2008; Graf et al., 2009), few studies have 

assessed wildlife habitats from a deductive perspective, that is, through the mapping of 
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known, key species habitat features (Hyde et al., 2006; Nelson et al., 2006; Swatantran et 

al., 2008). 

Habitat suitability models or indices (a.k.a. HSIs) are common tools used by 

researchers and managers with the objective of assessing the potential of an area to 

support the resource, shelter and reproductive needs for given wildlife species (Turner et 

al., 2001; Edenius and Mikusinski, 2006). These models quantify species-habitat 

relationships based on empirical data and literature review on limiting resources, with 

values that range between 0.0 (unsuitable habitat) and 1.0 (optimum habitat). For the 

United States, a large number of habitat suitability models is available through the US 

Fish and Wildlife Service (USFWS) and individual efforts. Edenius and Mikusinski 

(2006) provide a comprehensive description of HSI worldwide sources and applications. 

The spatial output of HSIs is a map depicting habitat suitability values across the 

landscape, for the target species. In this sense, Nelson et al. (2006) used LiDAR to 

identify forest patches with more than 20 m in height, which are known to be suitable for 

the endangered Delmarva fox squirrel (Sciurus niger cinereus). This assessment, 

however, recognized the lack of spatial data about understory vegetation, which is a 

complementary variable explaining the distribution of the species (Nelson et al., 2006). In 

California, Hyde et al. (2005, 2006) used LiDAR data to map forest biomass, canopy 

cover and height at the landscape scale, with the expectation that these products will be 

helpful to assess habitat suitability for the California spotted owls. Finally, Swatantran et 

al. (2008) combined forest structural data from LiDAR with maps of stressed and dead 

vegetation from a hyperspectral sensor, to map potential habitats for the Ivory-billed 

woodpecker (Campephilus principalis). Here, we use known information about species 

habitat preferences to map habitat suitability. Our study includes 1) multiple species from 

a different wildlife group (i.e. avian), and 2) the use and development of additional 

habitat variables of forest structure relative to previous studies. 
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Methods 

Study area 

Moscow Mountain comprises about 30,000-ha of managed, mixed temperate coniferous 

forest in Northern Idaho (Latitude 46o44'N, Longitude 116o58'W) (Falkowski et al., 

2005). The area is topographically complex. Common tree species include ponderosa 

pine (Pinus ponderosa), Douglas fir (Pseudotsuga menziesii), grand fir (Abies grandis), 

western red cedar (Thuja plicata), and western larch (Larix occidentalis). Shrub species 

include Ocean Spray (Holodiscus discolor), Ninebark (Physocarpus malvaceus), 

Common snowberry (Symphoricarpos albus), Spiraea (Spiraea betulifolia), Huckleberry 

(Vaccinium membranaceum), and Mountain Maple (Acer galbrum) (Falkowski et al., 

2005). Forest species composition varies with temperate/moisture gradient (Cooper et al., 

1991). Private industrial forest companies manage most of the area for timber, but a large 

tract of experimental forest is also owned and managed by the University of Idaho for 

research purposes. The city of Troy, ID manages a watershed. Private landowners 

manage many land parcels, and there is a small tract of old growth forest protected as a 

county park. All these factors contribute to the structural and compositional complexity 

found in the Moscow Mountain forests. Approximately 83% of the study area is covered 

by forest in different stages of succession (Falkowski et al., 2009). Young and mature 

forests cover 65% of the total area; stand initiation (i.e. growing space reoccupied by 

seedlings, saplings, or shrubs following stand replacing disturbance) represents 10%; 

understory reinitiation (i.e. older cohort of trees being replaced by new individuals) 

represent 7%, and old growth forest 1%. The remaining 17% corresponds to non-forest, 

open areas of grasses or weeds (Falkowski et al., 2009). 

Target wildlife species 

To apply our work to wildlife habitat, we selected four bird species that inhabit Moscow 

Mountain (Scott et al., 2002), including the dusky flycatcher (Empidonax oberholseri), 

hairy woodpecker (Picoides villosus), Lewis's woodpecker (Melanerpes lewis), and 

downy woodpecker (Picoides pubescens), and made use of the published habitat 
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suitability models available for these species (i.e. Schroeder, 1982; Souza, 1982, 1987; 

Roloff 2001). The habitat requirements of these species comprise a broad range of forest 

structural variables including but not limited to snags and understory shrubs, making 

these species ideal for evaluating the potential of mapping habitat suitability from LiDAR 

data (Table 1). Furthermore, woodpecker species have been found to be indicators of 

overall forest bird diversity (Virkkala, 2006). 

Definition of understory shrub and snag classes 

We considered understory shrubs to be present if they covered more than 25% in a 20m 

by 20m pixel. This definition was based on land cover mapping standards and the species 

HSIs. A 25% threshold cover per pixel was established by the Multi-Resolution Land 

Characteristics Consortium to define the class "shrubland" in the 1992 (US) National 

Land Cover map. At the same time, the habitat suitability for the species that use 

understory was low or zero when shrub cover was less than 25%. For the purposes of our 

study, the understory shrub class is comprised of true shrub species only, and did not 

include saplings that can be common in the understory. The reason for this resides in the 

ecological function that non-coniferous vegetation has in Pacific Northwest conifer 

forests, as described by Hagar (2007). In this region, non-coniferous vegetation 

determines the abundance and distribution of many vertebrates, providing the foundation 

for food webs through direct and indirect food resources (i.e., broad leaf forage, fruits, 

flowers, and insects) that are not provided by conifers (Hagar, 2007). This is the case of 

the Lewis's woodpecker and the dusky flycatcher, which use the understory shrub layer 

as a food source of insects (see Table 1). The dusky flycatcher uses the understory shrub 

layer also for nesting, and studies in Idaho have found that nesting occurs exclusively in 

non-coniferous plants (i.e. in true shrubs) (Kroll and Haufler, 2006). 

We focused our attention on the snag diameters that are used by the woodpecker 

species of this study, based on their specific HSIs. According to these models, the snag 

diameters (at breast height, or DBH) are > 15 cm for the Downy woodpecker (Schroeder, 

1982), >25 cm for the Hairy woodpecker (Souza, 1987), and > 30 cm for the Lewis's 
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woodpecker (Souza, 1982) (Table 1). We use the term "classes", "ranges", or 

"categories" indistinctively to refer to these snag diameters. 

Field data acquisition and interpretation 

We utilized forest inventory plots and LiDAR data that have been acquired by previous 

efforts to characterize various aspects of forest structure in the region (Falkowski et al., 

2005, 2009; Hudak et al., 2006, 2008a,b; Evans and Hudak, 2007). These plots contain a 

variety of snag and understory shrub densities, and thus were suitable for this study. The 

use of standard forest inventory plots should facilitate the application of the findings of 

this study to other areas, as well as the evaluation of limitations of such datasets for 

wildlife habitat assessments. 

Eighty-three, 405 m2 fixed-radius (11.35 m radius) forest inventory plots were 

located across the study area in 2003 by Falkowski et al. (2005), using a stratified random 

sampling protocol designed to capture the full range of canopy structure conditions and 

forest species composition. Information in each plot included the number and diameter 

(i.e., DBH) of dead trees, and the percentage of (true) shrub cover, among other standard 

forest inventory data. All trees (live or dead) with diameter > 2.7 cm were measured. 

Within each plot, visual estimates of true shrub cover were obtained in 4 subplots (4m by 

4m in size), using a reference schema of 12 canopy cover classes that ranges from 0% to 

95-100% (see Falkowski et al., 2005). The percentage of shrub cover for each plot was 

obtained by averaging the estimates of the smaller subplots. More information about the 

field data used in this study can be obtained in Falkowski et al. (2005). 

Understory shrubs were present (i.e. >25% cover) in 48 of the 83 plots. The 

median shrub cover for those 48 plots was 53% (Table 2). The height of the shrubs 

observed in the individual subplots (N = 83 x 4 =332) was typically below 2 m (80% of 

the cases). In addition, there were 177 snags in the sampled population, with a diameter 

ranging from 12.7 cm to 97.0 cm. and with small snags greatly outnumbering larger 

snags (Fig. 1). Within those, there were 151 snags with DBH> 15cm, 73 snags with 

DBH > 25cm, and 46 snags with DBH >30 cm. Snags were common as they appeared in 



2 9 

about 55% of the plots. Eighty five percent of the snags sampled were smaller than 40 cm 

in diameter. Comparable snag diameters and a skewed class distribution have been found 

in other managed conifer forests (Ganey, 1999; Spiering and Knight, 2005). The median 

snag density of the Moscow Mountain plots was 1 snag per plot. Expressed at the ha-

scale, this is equivalent to 25 snags/ha, which is close to the 32 snags/ha found in a 

comparable area (Spiering and Knight, 2005). For those plots in which snags were 

present, the snags > 15 cm and > 25 cm appeared with a median density of 2 snags per 

plot, and the snags > 30 cm with a median density of 1 snag per plot. In addition, the 

presence of snags differed depending upon the successional stage of the plot (Table 3). 

LiDAR data acquisition and preprocessing 

We used LiDAR-derived metrics developed by previous studies, which have proved 

useful for mapping and predicting different attributes of forest structure (see Hudak et al., 

2006, 2008a,b; Falkowski et al., 2009). Discrete, multiple return LiDAR data (1.95 m 

nominal post spacing) was acquired by Horizons, Inc., in the summer of 2003, using an 

ALS40 system operating at a wavelength of 1064 nm and flown at approximately 2500 m 

elevation. LiDAR data were first separated into ground and non-ground returns using the 

Multi-scale Curvature Classification algorithm by Evans and Hudak (2007). Thirty four 

LiDAR-based metrics, consisting of 19 canopy height metrics and 15 topographic 

metrics, were then calculated at the plot scale (Hudak et al., 2008a; Falkowski et al., 

2009) (Table 4). This was done by clipping the row LiDAR data using the plot extent. 

LiDAR metrics were also calculated for the entire area at a spatial grid resolution of 20 

m, which corresponded to the dimensions of the field plots (Hudak et al., 2008a). We 

used these metrics as predictor variables for mapping snags and understory shrubs. We 

also utilized auxiliary, LiDAR-derived products developed in previous studies. This 

included a map of basal area (BA) by Hudak et al. (2008a) (accuracy = 98 %), and a map 

of six forest successional stages by Falkowski et al. (2009) (accuracy = 95 %). 
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Classification tool 

For mapping snag and understory shrub distribution we used the Random Forest (RF) 

algorithm (Breiman, 2001), a novel and powerful extension of classification tree 

techniques that has been shown to produce excellent results in classifications of remotely 

sensed and ecological data (Lawrence et al., 2006; Prasad et al., 2006; Cutler et al., 

2007). Random Forest can handle complex interactions among predictor variables 

without making distributional assumptions and without overfitting (Breiman, 2001; 

Lawrence et al., 2006; Cutler et al., 2007). The RF algorithm develops classification rules 

by estimating a large number of trees (100s to > 1,000s; i.e., a forest), in which each 

classification tree is based on a random subset of the training data, and each classification 

tree split is based on a random subset of the predictor variables (Breiman, 2001). After 

the iterations, the predictions from the individual classification trees are combined using 

the rule of majority votes. Classification accuracies that results from this approach 

perform very well compared to other classifiers (Liaw and Wiener, 2002). The RF 

algorithm provides a reliable internal estimate of classification accuracy using the portion 

of the data that is randomly withheld as each classification tree is developed (i.e., the out-

of-bag sample [OOB], approximately 37% of the training data), which makes it 

unnecessary to have a separate accuracy assessment (Breiman, 2001; Prasad et al., 2006; 

Lawrence et al., 2006). In addition, the RF algorithm provides information about the 

importance of each predictor variable, by quantifying changes in classification error when 

the OOB data for that variable is altered. Hudak et al. (2008a,b) and Falkowski et al. 

(2009) found the RF algorithm to be practical for analyzing the field plot and LiDAR 

data used in this study. 

We used the RF package (Liaw and Wiener, 2002) in R (www.r-project.org; R 

Development Core Team, 2005). We added a model selection step using the model 

selection algorithm varSelRF (Diaz-Uriarte and Alvarez, 2006), which is a RF-based tool 

available also in R. The varSelRF algorithm iteratively eliminates the least important 

variables (with importance as measured from RF), resulting in a model with the smallest 

possible number of variables and whose error rate is within one standard error of the 

minimum error rate of all forests (Diaz-Uriarte, 2008). Our predictor variables (i.e. the 

http://www.r-project.org
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LiDAR-derived metrics) were continuous, therefore avoiding potential bias in variable 

selection that can result from combining discrete and continuous predictors (see Strobl et 

al., 2007). Our training data involved a random component, avoiding potential bias in 

accuracy assessments involving cross validation (Huang et al., 2003). 

Understory shrub and snag mapping with LiDAR - Modeling approach and evaluation 

We modeled the distribution (i.e. presence/absence) of understory shrubs and snags with 

RF, by applying the corresponding best model to the entire region. In addition, we 

modeled the distribution of snags using a segmentation-based approach. Data 

segmentation fragments the data into smaller, more homogeneous regions based on some 

ecological, spectral, or geographic attribute. This approach typically increases the quality 

of the final classification. We evaluated the consequences of segmenting the snag data 

based on forest succession, because succession is an important ecological variable 

influencing the presence and size of snags in forests, which we observed to be occurring 

in our study area as the abundance of snags differed among the different successional 

classes (see Table 3). As a result, we segmented the study area into three regions with 

distinctive snag abundances, including 1) an area composed by the Open and Stand 

Initiation categories (OA&SI), without snags; 2) an area composed by the Young 

Multistory and Understory Reinitiation (YMS&UR) categories, with snags present but 

less than those observed in 3) the Mature Multistory (MMS) category. Finally, the MMS 

class was combined with the Old Growth forest (OF) (less than 1% of the study area) to 

form the third segmentation region (MMS&OF). As a result, the three areas defined 

were: OA&SI (without snags), and YMS&UR and MMS&OF (with snags present in 

different proportions). 

Segmentation of our data reduced the amount of training data available for 

classification and the area to be classified (i.e. the target area), but maintained the overall 

relationship between training data / target area, and therefore the representation of the 

field plots. For example, the area-wide ratio of training data / target area for Moscow 

Mountain was 0.83 (i.e. 83 plots /100% of the study area), for the MMS&OF area the 

ratio was 0.68 (i.e. 26 plots / 38% of Moscow Mountain) and for the YMS&UR area the 
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ratio was 1.14 (i.e. 40 plots / 35% of Moscow Mountain). Fu et al. (2005) showed that the 

results from bootstrap cross-validations are reliable with small sample sizes (as small as 

16). In summary, we modeled the distribution of the three different snag classes (i.e. > 15 

cm, >25cm and >30 cm) using two approaches, one that included developing a single 

predictive model/classification for the entire area, and another that resulted from a 

combination of different predictive models within three different areas (i.e. OA&SI, 

YMS&UR, and MMS&OF). Since snags were absent in the OA&SI, we did not model 

their distribution in this region. Finally, we compared the results of the final snag 

classifications with and without including the segmentation approach. 

Previous to any presence/absence classification (for either shrubs or snags) with 

RF, we ensured that the input data were balanced. Studies have shown that severe 

imbalanced data sets (i.e., when the presence of absence classes constitute a very small 

minority of the data distribution) can pose significant drawbacks in the performance 

attainable by most machine learning classification systems, including RF (see Chen et al., 

2004; Sun et al., 2007). The ratio between the number of samples for the minority class 

and the number of samples for the majority class constitutes the minority /majority ratio, 

ranging in values between 1 and >0. Unfortunately, there is not a universal ratio between 

minority and majority classes defining what constitutes an imbalanced vs. balanced data 

set. In practice, however, imbalanced data in presence/absence classifications typically 

include cases in which the minority class (whether presence or absence) represents 10% 

or less of the data, equivalent to a minority/majority class ratio <0.11 (see Chen et al., 

2004; Sun, 2007). In another study with RF, Ruiz-Gazen and Villa (2002) used a 

conservative < 0.2 class-ratio threshold to define the presence of imbalanced classes. In 

our data set, the minority/majority class ratios were much higher (i.e. closer to 1.00) than 

those reported by previous studies, indicating that the data were balanced and suitable for 

classification with RF (Table 5). 

We ran the VarSelRF algorythm several times for each classification, including 

50 runs for those that were conducted in the entire area and 20 runs for those that were 

conducted in the smaller, segmented portions. Running the varSelRF several times 

allowed us to evaluate the potential presence of different candidate solutions. Each time, 
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we incorporated the varSelRF solution model into the RF algorithm to evaluate the 

resulting misclassification error. If different candidate solutions were present, we selected 

the final model based on the criteria of smallest total and within class errors and smaller 

number of variables. The final predictive distribution models were applied across the 

region using the AsciiGridPredict command in the yalmpute package (Crookston and 

Finley, 2008) available in the R software package. We ran the RF algorithm with 5,000 

bootstrap replicates in order to stabilize individual class error. Redundant (i.e. multi-

collinear) predictor variables were removed in an early stage of this study (see Falkowski 

et al., 2009). Finally, and in order to verify that the results from our study were not 

conditioned by the variable selection method used, we compared the models identified by 

varSelRF with those from another RF-based algorithm, recently developed in ecological 

applications (Murphy et al., 2009). We found that the models selected by the VarSelRF 

were consistent with the models identified by the other routine. 

We assessed the accuracy of the final classifications (i.e. snag and understory 

shrub presence/absence) using the confusion matrices and errors generated by RF. From 

these, we calculated the overall accuracy, user and producer accuracies, commission and 

omission errors, and the kappa statistic (Congalton and Green, 1999). Although widely 

used, some studies have criticized the used of the kappa statistic for assessing binary 

classifications, due to its sensitivity to prevalecence (i.e., the proportions of Presences in 

the data) (see Alluoche et al., 2006 for a review). In order to verify the suitability of the 

kappa statistic, we compared it to the true skill statistic (TSS; Alluoche et al., 2006), 

which is a novel variation of kappa that corrects for potential biases introduced by 

prevalecence. We found insignificant differences between the kappa and TSS values (i.e. 

maximum difference of 0.03), therefore supporting the use of the kappa statistic in this 

study. 

Habitat Suitability Mapping 

The first step for mapping wildlife habitat suitability involved the aggregation of the 

LiDAR-derived layers of vegetation structure (i.e. the habitat variables) to 1 ha pixel, 

because the hectare is the spatial unit of application of the HSIs used in this study (see 
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Schroeder, 1982; Souza, 1982, 1987; Roloff, 2001; Kroll and Haufler, 2006). The 

presence/absence maps of understory shrub and snag distributions were developed at a 

spatial resolution of 20 m, similar to the field plots. We aggregated these maps to the 1 -ha 

pixel by multiplying the proportion of (20m-pixel) shrub (or snag) presences found 

within the lha-pixel, by the median plot shrub cover (or snag density) derived from the 

field data (see Figure 2). This approach allowed us not only to aggregate the data to the 

proper spatial scale for HSI mapping (i.e. 1-ha grain size), but also to transform the data 

from a presence/absence binary format to a continuous approximation of shrub cover and 

snag density at the landscape scale. This aggregation approach, however, imposed a 

maximum threshold of shrub cover and snag density per ha that we could distinguish. In 

this sense, if all the 20m-plots located within a lha-pixel were predicted as shrub 

presences, then the percentage of shrub cover for that hectare would be 53% (= 

(25/25)*52.9; where 25/25 is the proportion of 20m-pixels with presences and 52.9 is the 

median plot shrub cover). As a result, we were able to distinguish continuous shrub cover 

categories below that threshold (53%) but not above that. Similarly, we were able to 

distinguish continues snag densities below 50 snags per ha (for classes > 15 cm and > 25 

cm diameter), and below 25 snags per ha (for the class > 30 cm diameter), but not above. 

This issue, however, did not affect the HSI modeling. This is because the habitat 

suitability values above those shrub and snag densities were constant, making the 

distinction of more classes unnecessary. 

We also aggregated to lha grain size the LiDAR derived canopy density metric 

and the map of basal area by Hudak et al. (2008a). In addition, we generated two 

auxiliary habitat layers reflecting information about the mean diameter of the overstory 

trees, a variable included in the cover and reproduction components of the HSI for the 

hairy woodpecker. In this HSI model, the mean diameter (DBH) of the overstory trees 

was used as a surrogate of forest succession (see Souza, 1987). We made use of the map 

of forest succession by Falkowski et al. (2009), and recoded the different classes into 

different habitat suitability values based on 1) the mean overstory DBH values observed 

in the different classes in the field plots, and 2) the relationships between mean DBH and 
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habitat suitability established by Souza (1987). This new auxiliary layer reflects the 

species' higher preference for mature forests than younger forests. 

Once all the habitat geospatial variables were at 1 -ha pixel resolution, we applied 

the HSI formulae for the different avian species. Specifically, the HSI map for the Dusky 

flycatcher was constructed from the tree canopy cover and understory shrub cover layers; 

the HSI map for the Hairy woodpecker was constructed from the layer of DBH, tree 

canopy cover and snags > 25cm diameter; the HSI map for the Lewis's woodpecker was 

constructed from the layers of understory shrub cover, snags > 30cm diameter, and tree 

canopy cover; and the HSI map for the Downy woodpecker was constructed with the 

layers of basal area and snags > 15cm diameter (see Table 1). The original HSI for the 

Dusky flycatcher included an additional variable, which is the cover of understory 

vegetation with height less than 1 m (Roloff, 2001). This variable, however, receives only 

half of the weight of the other two variables included in the HSI (see Roloff, 2001), and 

therefore was not considered in this study. Finally, each final map of habitat suitability 

included a measure of overall accuracy based on the accuracy of the individual layers 

used to build the models, as an estimate of error propagation. 

Results 

Understory shrub distribution mapping 

The understory shrub presence/absence prediction yielded overall and individual class 

accuracies of 83%. The model included three predictor variables (i.e. LiDAR metrics), 

including two from canopy (STRATUM0 and STRATUM2) and one from topography 

(SCOSA) (Table 6). The metric STRATUM0 is the proportion of ground returns (i.e., 

height = 0 m); the metric STRATUM2 is the proportion of vegetation returns between 1 

and 2.5 meters in height, and the metric SCOSA (Stage 1976) describes the percent slope 

times the cosine of aspect transformation. 
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Snag distribution mapping 

The accuracy of the snag classifications without segmenting the data yielded acceptable 

overall accuracies, ranging between 72% and 80% (Table 7). However, the Present 

category had low accuracies, especially for the snag classes > 25cm and > 30cm. The 

kappa for classifications without segmentation ranged between 0.43 and 0.59. The 

inclusion of a segmentation approach resulted in a net increase in the quality of the 

classifications. It increased the overall accuracy (ranging now between 86% and 88%), 

the kappa values (now > 0.7), and the accuracy of both the presence and absence classes. 

At the same time, it decreased the commission and omission errors (see Table 7). In the 

classifications without segmentation the accuracy of the individual classes ranged 

between 58% and 89%, with most below 80%. After the segmentation, the accuracy of 

the individual classes ranged between 73% and 95%, with most above 80%. The number 

of predictor variables included in the models ranged between 2 and 6, and included 

typically a combination of canopy height and topographic metrics. The most common 

variable was the Median Absolute Deviation of Height (HMAD). Among the topographic 

variables, landform (i.e. BOLSTAD metrics) and distance to streams (i.e. FLDIST 

metric) appeared several times. 

Distribution maps of understory shrubs and snags 

The 20m-pixel presence/absence maps revealed that less than half of Moscow Mountain 

has shrubs present in the understory. For the snags, the extent of the different diameter 

classes decreased rapidly with increasing snag diameters, from 45% of the study area for 

the snags > 15cm to 30% for the snags > 30cm (Fig. 3). At the hectare scale, the map of 

understory shrub density revealed that less than 10% of the total area had more than 50% 

of understory shrub cover per ha. Areas with shrub cover between 25% and 50% per ha 

represented about 40% of the study area, and the remaining 50% of Moscow Mountain 

was dominated by very low or no shrub cover. The density of snags per hectare rapidly 

decreased with increasing snag diameters (Fig. 3). 
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Habitat Suitability Modeling 

The spatial representation of the HSI models revealed the presence of different patterns 

of habitat suitability and habitat availability for the four different avian species (Fig. 4). 

For the Lewis's woodpecker, a species that uses snags and understory shrubs, 

approximately half of Moscow Mountain was unsuitable (HSI=0.0). Approximately 15% 

of the area could be deemed "suitable" (considered as areas with HSI>0.6 [Prosser and 

Brooks 1998]) and there were no optimum habitats (i.e. HSI = 1.0). For the dusky 

flycatcher, a species associated with understory shrubs, the amount of suitable habitat 

was also low, with no optimum areas. For the hairy woodpecker and the downy 

woodpecker, two relatively common species, few areas were determined to be unsuitable 

(i.e. HSI - 0.0), and about one third of Moscow Mountain habitat was suitable (HSI>6). 

However, the suitable habitat for these species occurred in different portions of Moscow 

Mountain, reflecting the different habitat requirements (see Table 1). Some areas, 

although small, were classified as optimum habitats for these two avian species. 

The final accuracy of the HSI maps (after adding the errors of the input layers) 

ranged between 79% and 91%. Specifically, the HSI map accuracy was 79% for the hairy 

woodpecker, 90% for the Lewis's woodpecker, 92% for the dusky flycatcher, and 92% 

for the downy woodpecker. 

Discussion and conclusions 

The lack of spatial data about snags and understory shrub distribution is a recognized 

limitation for managing wildlife habitat in forests (Russell et al., 2007; Venier and 

Pearce, 2007). We found that LiDAR data provided valuable information for mapping the 

distribution of snags, understory shrubs, and wildlife habitat suitability in a mixed-conifer 

forest, representing an important step in the characterization of forest structure and 

wildlife habitat with remote sensing. 
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Metrics of canopy height and topography derived from LiDAR allowed us to map 

the distribution of understory shrubs with an overall and individual class accuracy of 

more than 80%. Only three metrics were needed, including two from canopy 

(STRATUMO and STRATUM2), and one from topography (SCOSA). STRATUMO (the 

percentage of ground returns) is inversely proportional to canopy density (percentage of 

non-ground returns >1 m in height; r2= 0.73). Previous research indicated that forests 

with open canopies tend to support more shrubs than those with closed canopies (Kilina 

et al., 1996; Bartemucci et al., 2006). Analysis of conditional density function plots 

(CDF) for the shrub field data vs. the percent of ground returns from LiDAR revealed 

that the previous finding (i.e. more shrubs under open canopies) is true for both young 

and mature forests (Fig. 5 top). In young and mature forest plots, which reported less than 

40% ground returns, the presence of shrubs (as measured by the proportion of shrub 

presences) decreased with decreasing amounts of ground LiDAR returns. In other words, 

forest tree canopies that intercepted fewer LiDAR pulses tended to have more shrubs than 

those that intercepted more pulses, a result agreeing with the ecological findings of Kilina 

et al. (1996) and Bartemucci et al. (2006). Information about the percentage of ground 

returns might also capture variations in shrub cover due to management practices, which 

is another factor influencing the distribution of shrubs in forested landscapes (Kerns and 

Ohmann, 2004). In plots with high values of ground returns (> 40%), and consequently 

with very low or absent tree canopy cover, shrubs were primarily absent, contrary to the 

general expectation (see Fig 5 top). This region of the CDF plot includes, among others, 

the 9 open area plots, of which 8 have no shrubs, and most of the stand initiation plots, 

half of which have no shrubs either. Management practices typically prevent the 

development of shrubs in areas with trees recently planted or to maintain the open areas 

in grasslands. Kerns and Ohmann (2004) found similar responses in the coastal forests of 

Oregon, with open forests supporting lower than expected shrub cover, due to forest 

management. 

Topography is another variable known to influence the presence of shrubs in 

temperate forests (Gracia et al., 2007). The variable SCOSA reflects topographic 

positions based on slope and aspect simultaneously. The CDF plot revealed that northern 
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aspects and steeper slopes (i.e. high SCOSA values) supported fewer shrubs than 

southern aspects and gentler slopes (lower SCOSA values) (Fig. 5 center). In the region 

of our study, northern aspects are colder and steep slopes are drier, thus less suitable for 

the development of broad-leaf understory shrubs. 

Finally, the variable STRATUM2 corresponds to the percent of vegetation returns 

between lm and 2.5m height, a range where interaction of the laser pulses with the shrub 

layer can be expected. According to the field data, the shrub cover was typically less than 

2m in height. The CDF revealed that most of the field plots (72 of 83) in the study area 

have less than 20% of the vegetation returns in the STRATUM2 layer, and within these 

plots, those with more returns in the STRATUM2 layer tend to have more shrubs (as 

measured by the proportion of shrub presences) (Fig. 5 bottom). This supports the idea 

that shrubs are contributing to many of the returns found in this layer. However, there 

were cases with no true shrubs in the understory but still high a proportion of returns 

within the STRATUM2 layer, indicating the presence of other components in the 

understory (e,g. saplings and lower branches of small trees). In the CDF plot, for 

example, the peak in the absences observed in STRATUM2 values of around 30% was 

caused by plots of stand initiation and understory reinitiation, which have low tree cover 

with high understory cover composed only by conifers. 

One of the major challenges for characterizing understory vegetation with LiDAR 

data is that increased forest cover reduces the chances of detecting understory returns 

(Goodwin, 2006, 2007), which complicates applications in areas containing dense 

canopies. In addition, not all understory "shrubby" vegetation is equally relevant for 

wildlife species, particularly in Pacific Northwest coniferous forests (Hagar, 2007). The 

use of LiDAR data allowed us to map the distribution of understory shrub species by 

quantifying not only vegetation returns from the lower strata of the canopy forest (i.e. 

where understory shrubs occur), but also ecological variables (e.g. tree canopy cover and 

topography) that are known to influence the distribution and abundance of understory 

vegetation in closed and open forests. We found that the errors in our understory shrub 

map were distributed in similar proportions under open and closed canopies (as reflected 
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by the canopy density metric, using a threshold of 50% to separate low vs. high), 

suggesting that the model was useful under both open and dense tree canopies. 

The results of this study indicated that the median absolute deviation of height 

LiDAR returns (HMAD) is an important variable for predicting the distribution of 

different diameter classes of snags, as it was the most common variable selected in the 

models. Bater (2007) found that a similar LiDAR-derived measure of canopy variation, 

the log-transformed coefficient of variation of heights, was a significant predictor of the 

proportion of trees in different stages of decay. Clark et al. (2004) and Bater (2007) 

suggested that canopies became more structurally complex (or variable) partly because of 

the presence of snags. Our CDF plot revealed that the presence of snags increased with 

increasing canopy complexity as reflected by HMAD (Fig. 6). The findings of this study 

reinforce the notion that LiDAR-derived measures of variation in canopy height are 

valuable for characterizing the distribution of snags and trees in different stages of decay, 

whether in terms of overall abundance (Bater 2007), or in terms of abundance of different 

diameter classes (this study). Pesonen et al. (2008) found that the log-transformed 

coefficient of variation of heights from LiDAR was also a significant predictor of 

downed woody debris. In addition, while the study of Bater (2007) was conducted in a 

flat area, our study was conducted in complex topography. Topography is a common 

factor influencing the abundance of snags and dead woody material in mountainous areas 

(Flanagan et al. 2002; Kennedy et al., 2008), and it appeared to be important in our study 

area as most of the models included LiDAR-derived topographic variables. For example, 

we observed a higher proportion of samples with snags in areas with more exposed, 

convex terrain (positive BOLSTAD values) than under more protected, concave terrain 

(negative BOLSTAD values) (data not shown). Similar to the shrubs, the use of LiDAR 

metrics allowed us to quantify structural variables that are known to indirectly indicate 

the presence of snags, as well as environmental variables that are known to influence 

their presence and distribution in forests. Finally, we found that the incorporation of 

information about forest succession (derived also from LiDAR; Falkowski et al., 2009) 

improved the accuracy of the predictive distribution for the different snag diameter 

classes. The age of the stand can be a natural indicator of the potential diameter of the 
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snags found in the forests (typically, the older the forests, the larger the snags). We found 

that the segmentation based on succession produced areas with different HMAD values 

(e.g. HMAD for MMS = 9.2 +- 3.5; HMAD for YMS&UR = 3.3 +- 3.4), effectively 

reducing variation in relevant data, for a better classification. The accuracy of the 

different snag diameter classes was slightly higher in the MMS&OMS successional area 

(88%) than in the YMS&UR area (77% to 82%). 

In summary, for snags and understory shrub mapping, the value of LiDAR data 

resided in the ability to quantify 1) structural metrics that are known to directly or 

indirectly indicate the presence of understory shrubs and snags, such as the percent of 

vegetation returns in the lower strata of the canopy (for the shrubs) and the vertical 

heterogeneity of the forest canopy (for the snags), and 2) ecological variables that are 

known to influence the distribution and abundance of understory vegetation and snags in 

temperate mountainous forests (e.g. canopy cover, topography, forest succession). 

The RF algorithm (Breiman, 2001) played an important role in these findings, as 

it allowed us to identify those relevant predictor variables for understory shrub and snags 

mapping, and integrate them in a predictive mapping approach. Similar to Cutler et al. 

(2007) and Falkowski et al. (2009), we found that the variables identified by RF agreed 

with the expectations based on the literature, making good intuitive sense in how the 

variables relate to the ecological processes governing snag and understory shrub 

distribution, and highlighting the value of the RF algorithm for ecological modeling using 

remote sensing data. 

For wildlife habitat suitability assessment, the value of LiDAR data resided in its 

ability to derive a variety of habitat variables related to forest 3-D structure, which are 

known to be important for wildlife species, but have been difficult or impossible to derive 

from other remote sensing technologies (see Vierling et al. 2008). In this sense, we were 

able to map habitat suitability for avian species that depend on a broad variety of forest 

structural conditions (including those related to understory vegetation, snag size and 

density, tree canopy cover, basal area, etc.). These findings are important for advancing 

the management of biodiversity and wildlife habitat in forests (Russell et al., 2007; 
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Venier and Pearce, 2007), biodiversity applications of remote sensing (Turner et al. 

2003), and species distribution modeling (Guisan and Zimmermann, 2000). For instance, 

the lack of maps of understory shrub and snag distribution has been identified as a major 

limitation for managing wildlife habitat in forests (Russell et al., 2007; Venier and 

Pearce, 2007). In our case, we mapped understory shrubs from an initial 

presence/absence approach. While the availability of a simple presence/absence layer can 

make a difference in assessing wildlife habitat suitability (see for example the Giant 

Panda's case in Linderman et al. 2005), further efforts should evaluate the capabilities of 

LiDAR data to derive continuous estimates of understory shrub cover at the plot level and 

below any type of overstory condition. Goodwin (2006, 2007) suggested that increasing 

the plot size might serve to detect more returns from the understory. In a recent study, 

Korpela (2008) found that calibrated LiDAR intensity data is sensitive to understory, 

ground-surface composition. Because true shrubs and saplings found in the understory of 

Inland Northwest forests are compositionally and functionally different (i.e. non-

coniferous vs. coniferous), there is potential in the use of calibrated intensity data for 

understory characterization (but see Su and Bork, 2007). Because the intensity data were 

not calibrated, we chose not to include intensity information in our study. 

In terms of snags, it is important to expand the LiDAR-based mapping approach 

to other diameter classes. We focused on common snags used by some species of 

woodpecker, but larger snag classes (e.g. >50 cm DBH) are also of critical interest for 

wildlife and biodiversity assessment (Davis 1983). However, especially in highly 

managed/harvested forests, these snag classes can be rare (see Figure 1), and thus, 

working with them may require other sampling approaches (see for example Bate et al., 

2002) and/or dealing with heavily imbalanced data that can present challenges for 

classification (Chen et al., 2004). The use of high-spatial resolution, color infrared aerial 

photos has proved useful for mapping the distribution of large snags in a forest by photo 

interpretation (Butler and Schlaepfer, 2004). The integration of high-density LiDAR data 

and high spatial and spectral resolution imagery might facilitate the mapping of more 

snag classes, as well as the identification of patches dominated by dead trees (see 

Swatantran et al., 2008). 
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LiDAR data have proved useful for assessing wildlife habitat in forests (see 

review by Vierling et al., 2008), including in our study. However, these efforts 

encompass a small total number of species and have been conducted at a relatively small 

spatial scale. A similar spatial situation can be found in analyses of biodiversity/species 

richness with LiDAR (see Goetz et al., 2007 and Clawges et al., 2008). As a result, 

expanding the applications to other areas and to other organisms with different habitat 

requirements is highly desired. In addition, it is also important to evaluate which type of 

LiDAR information (i.e., rough data, metrics and/or variables) are needed to support 

wildlife habitat suitability and biodiversity assessments. For instance, Bater (2008) 

evaluated which of the known indicators of forest biodiversity in Canada can be derived 

from LiDAR, and Martinuzzi et al. (2009) did the same for habitat variables that are 

needed for refining predictions of species distribution by the US Gap Analysis Program. 

Expanding the applications of LiDAR remote sensing for wildlife habitat and biodiversity 

assessments should be feasible considering the increasing availability of LiDAR data. 

Furthermore, these efforts are particularly relevant for evaluating the potential of future 

large-scale LiDAR acquisitions, such as those related to the US National LiDAR 

Initiative (Stoker et al., 2008) or the NASA's planned DESDynl (Deformation, 

Ecosystem Structure and Dynamics of Ice) mission (http://desdyni.jpl.nasa.gov/). 
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Table 1. Target avian species and habitat characteristics, based on the corresponding 

habitat suitability models (i.e. Schroeder, 1982; Souza, 1982, 1987; Roloff 2001). 

Species name Habitat variables and corresponding Optimum habitat (i.e. HSI = 1.0) 
life requisite 

Dusky flycatcher Percent tree canopy cover (nesting and Open forested conditions with a 
foraging) well-developed understory 

Understory shrub cover (nesting and shrub cover 
foraging) 

Hairy woodpecker Number of snags > 25cm diameter per Mature forest stands with 
ha (nesting) moderate tree canopy cover and 

Mean diameter of overstory trees at least 5 snags >25 cm diameter 
(cover and nesting) per ha. 

Percent tree canopy cover (cover) 
Lewis's woodpecker Percent tree canopy cover (summer Open forested conditions with a 

food) well-developed understory 
Understory shrub cover (summer food) shrub cover and at least 2.5 
Number of snags > 30cm diameter per snags > 30 cm diameter per ha. 

ha (nesting) 
Downy woodpecker Basal area (food) Forest stands with low basal area 

Number of snags > 15cm diameter per and more than 13 snags > 15 cm 
ha (nesting) diameter per ha. 



Table 2. Understory shrub cover characteristics. 

(% cover, when present) 
Understory shrub cover # of plots Mean St. dev. Min. Max. Median 
Present (i.e. > 25% cover) 48 54.0 18.7 25.8 100.0 52.5 
Absent (i.e. < 25% cover) 35 
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Table 3. Snag distribution within forest successional stages. Inventory data was not 

available for old-growth forest (only GPS locations) 

Proportion of plots with snags of different 
diameter classes (in cm) 

Successional class Area (ha) ( ;%) Plots (#) >15 >25 >30 >35 >50 
Open 5426 17 9 0.00 0.00 0.00 0.00 0.00 
Stand Initiation 3165 10 8 0.00 0.00 0.00 0.00 0.00 
Understory Reinitiation 2073 7 6 0.50 0.50 0.33 0.17 0.17 
Young Multistory 8727 28 34 0.53 0.41 0.32 0.12 0.06 
Mature Multistory 11673 37 26 0.81 0.62 0.50 0.35 0.15 
Old Multistory 393 1 NA NA NA NA NA NA 
Total 31458 100 83 



5 7 

Table 4. LiDAR-derived metrics of canopy height (top group) and topography (bottom 

group). The list does not include multi-collinear variables, as they were initially identified 

and removed using QR-Decomposition (Becker et. al., 1988) in Falkowski et al. (2009). 

Variables selected for understory shrub and snag map predictions are identified with an 

"X". Since snags were mapped using two different approaches (i.e. with and without 

image segmentation), an additional "X" was added when the variable was selected in 

both methods. 

Metric name Metric description 
Understory Snags >15 cm Snags >25 cm Snags >30 cm 
shrubs diameter diameter diameter 

HMIN Minimum Height 
HMAX Maximum Height 
HSKEW Skewness of Heights 
HKURT Kurtosis of Heights 
HMEAN Mean Height 
HMAD Median Absolute Deviation of Heights 

1.4826 * median(abs(x - median(x))) 
HIQR Heights interquartile range 
H05PCT Heights 5th Percentile 
H1OPCT Heights 10th Percentile 
H25PCT Heights 25th Percentile 
HMEDIAN Median Height 
CANOPY Canopy Cover/density (Vegetation Returns/Total 

Returns * 100) 
STRATUMO Percentage of Ground Returns = 0 m 
STRATUM 1 Percentage of Non-Ground Returns > 0 m and < 1 m 
STRATUM2 Percentage of Vegetation Returns > 1 m and < 2.5 m 
STRATUM3 Percentage of Vegetation Returns > 2.5 m and < 10 m 
STRATUM4 Percentage of Vegetation Returns > 10 m and < 20 m 
STRATUM5 Percentage of Vegetation Returns > 20 m and < 30 m 
STRATUM6 Percentage of Vegetation Returns > 30 m 
ELEV Elevation (meters) 
SLP Slope/Area (Wetness Indicator) 
SLPPCT Slope in % 
ASPDEG Aspect in degrees 
CURV Curvature (Tarboton 1997) 
EASTNESS UTM Easting (meters) 
NORTHNESS UTM Northing (meters) 
ERR Elevation to relief ratio (Evans 1972) 
SRR Slope to relief ratio (Evans 1972) 
FLDIST Flow Distance to Streams (Tarboton 1997) 
INVCTI Compound Topographic Index (Moore et al, 1993) 
BOLSTAD Bolstad's Landform index (Bolstad and Lillesand 

1992) 
SSINA Percent slope*sin(aspect) transformation (Stage 1976) 
SCOSA Percent slope*cos(aspect) transformation (Stage 1976) 
TRI Topographic ruggedness index (Riley et al., 1999) 

X 

XX 

X 

X 

XX 

x 

XX 

X 

X 

X 

X 
X 

X 

X 
X 
X 

X 

X 
XX 

X 
X 
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Table 5. Minority/majority ratios for the different presence/absence classifications. The 

number of samples per class (P denotes presence and A denotes absence) used to derive 

the ratios is shown between parentheses. 

Entire Area (n=83) YMS&UR (n=40) MMS&OMS (n=26) 
Snags >15cm 0.98 (41A/42P) 0.91 (19A/21P) 0.24(5A/21P) 
Snags >25cm 0.66 (33P/50A) 0.74 (17P/23A) 0.63 (1 OA/16P) 
Snags >30cm 0.50 (26P/57A) 0.48 (13P/27A) 1.00 (13P/13A) 
Understory shrubs 0.73 (35A/48P) 



Table 6. Accuracy statistics for the model of understory shrub presence/absence. 

Understory shrub 
Actual Data Producer's User's Omissbn Commission 

Class Present Absent Sum accuracy accuracy error error 
Predicted Present 40 6 46 83% 87% 0.17 0.13 
Data Absent 8 29 37 83% 78% 0.17 0.22 

Sum 48 35 83 
Overall accuracy = 83%; kappa= 0.66; TSS = 0.66 
Predictor variables: STRATUMO, SCOSA, STRATUM2 
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Table 7. Accuracy statistics for the different models of snags presence/absence, including 

with and without segmentation. 
Snags > 15 cm diameter 

Model 1 (without forest successional data) 
Actual Data Producer's User's Omission Commission 

Class Present Absent Sum accuracy accuracy error error 
Predicted Present 34 9 43 81% 79% 0.19 0.21 
Data Absent 8 32 40 78% 80% 0.22 0.20 

Sum 42 41 83 
Overall accuracy = 80%; kappa = 0.59; TSS = 0.59 
Predictor variables: HMAD, HIQR 
Model 2 (with forest successional data) 

Actual Data Producer's User's Omission Commission 
Class Present Absent Sum accuracy accuracy error error 

Predicted Present 37 7 44 88% 84% 0.12 0.16 
Data Absent 5 34 39 83% 87% 0.17 0.13 

Sum 42 41 83 
Overall accuracy = 86%; kappa = 0.71; TSS = 0.71 

Predictor variables: (YMS& UR) HMAD, FLDIST; ( M M S & O M S ) HMEAN, TRI 

Snags > 25 cm diameter 
Model 1 (without forest successional data) 

Actual Data Producer's User's Omission Commission 
Class Present Absent Sum accuracy accuracy error error 

Predicted Present 23 13 36 70% 64% 0.30 0.36 
Data Absent 10 37 47 74% 79% 0.26 0.21 

Sum 33 50 83 
Overall accuracy = 72%; kappa = 0.43; TSS = 0.44 
Predictor variables: HMAD, HMAX 
Model 2 (with forest successional data) 

Actual Data Producer's User's Omission Commission 
Class Present Absent Sum accuracy accuracy error error 

Predicted Present 26 5 31 79% 84% 0.21 0.16 
Data Absent 7 45 52 90% 87% 0.10 0.13 

Sum 33 50 83 
Overall accuracy = 86%; kappa = 0.70; TSS = 0.69 
Predictor variables: {YMS&UR) EASTNESS, FLDIST, HMAD; (MMS&OkS) 
INVCTI, BOLSTAD, STRATUM5, HKURT, ERR, CURVATURE 

Snags >30 cm diameter 
Model 1 (without forest successional data) 

Actual Data Producer's User's Omission Commission 
Class Present Absent Sum accuracy accuracy error error 

Predicted Present 15 6 21 58% 71% 0.42 0.29 
Data Absent 11 51 62 89% 82% 0.11 0.18 

Sum 26 57 83 
Overall accuracy = 80%; kappa = 0.50; TSS = 0.47 
Predictor variables: BOLSTAD, HMAD, HMAX, HMEDIAN 
Model 2 (with forest successional data) 

Actual Data Producer's User's Omission Commission 
Class Present Absent Sum accuracy accuracy error error 

Predicted Present 19 3 22 73% 86% 0.27 0.14 
Data Absent 7 54 61 95% 89% 0.05 0.11 

Sum 26 57 83 
Overall accuracy = 88%; kappa= 0.71; TSS = 0.68 
Predictor variables: (YMS&UR ) STRATUM4, HMAD, EASTNESS; (MMS&OMS) 
BOLSTAD, INVCTI, EASTNESS 
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Figure 1. Snag distribution based on diameter. 
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Figure 2. Aggregation approach for converting the 20m-pixel LiDAR-based products of 

understory shrubs presence/absence into continuous, lOOm-pixel (i.e. 1 ha) values. Snags 

were treated similarly. 
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15 cm 

Figure 3. LiDAR-based distribution maps for the different snag diameter classes (top) 

and understory shrubs (bottom), including the 20m-pixel presence/absence product to the 

right, and the 1 -ha density map to the left. The presence/absence maps include, between 

parentheses, the proportional cover of the two classes (i.e. present vs. absent) 
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Hairy woodpecker 

HSI Downy woodpecker 

Figure 4. Habitat suitability maps for the different avian species. The maps on the right 

are simplified, aggregated and recoded versions depicting areas with habitat suitability 

index (HSI) > 0.6 (i.e. suitable habitats). 
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Figure 5. Conditional density plots for the understory shrub distribution vs. the 3 

(LiDAR-derived) predictor variables included in the final model. 
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HMAD 

Figure 6. Conditional density plots for the snag distribution vs. the (LiDAR-derived) 

Median Absolute Deviation of Heights (HMAD). The figure shows the example for the 

snag diameter class > 25 cm, but a similar trend was observed for the other snag classes. 
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CHAPTER 3 

INCORPORATING REMOTELY SENSED TREE CANOPY COVER DATA INTO 

BROAD SCALE ASSESSMENTS OF WILDLIFE HABITAT DISTRIBUTION AND 

CONSERVATION 

Note: This chapter has been published as: Martinuzzi, S., L. Vierling, K. Vierling, W. 

Gould, A. Hudak. 2009. Incorporating remotely sensed tree canopy cover data into broad 

scale assessments of wildlife habitat distribution and conservation. Journal of Applied 

Remote Sensing, 3, 033568. 

Abstract 

Remote sensing provides critical information for broad scale assessments of wildlife 

habitat distribution and conservation. However, such efforts have been typically unable to 

incorporate information about vegetation structure, a variable important for explaining 

the distribution of many wildlife species. We evaluated the consequences of 

incorporating remotely sensed information about horizontal vegetation structure into 

current assessments of wildlife habitat distribution and conservation. For this, we 

integrated the new Landsat-derived percent tree canopy cover product (from the NLCD) 

into the US GAP Analysis database, using avian species and the finished Idaho GAP 

Analysis as a case study. We found: (1) a 15-68% decrease in the extent of the predicted 

habitat for avian species associated with specific tree canopy conditions, (2) a marked 

decrease in the species richness values predicted at the Landsat pixel scale, but not at a 

coarser (i.e. GAP hexagon) scale, (3) a modified distribution of biodiversity hotspots, and 

(4) surprising results in conservation assessment: despite the strong changes in the 

species predicted habitats, their distribution in relation to the reserves network remained 

the same. This study highlights the value of area wide vegetation structure data for 

refined biodiversity and conservation analyses. We discuss further opportunities and 

limitations for the use of the NLCD data in wildlife habitat studies. 
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Keywords: species distribution model, National Land Cover Database, avian habitat, 

GAP, horizontal vegetation structure, wildlife conservation. 

Introduction 

Maps describing the distribution of wildlife species are of great importance for 

biodiversity and conservation assessments. Because remote sensing provides the only 

means for measuring a range of habitat characteristics across broad scales, scientists 

commonly use remote sensing data to model species distribution [1-4]. Specifically, 

because vegetation characteristics hold great predictive potential for the distribution of 

wildlife species [5-7], satellite based land cover and vegetation maps are actively used in 

the modeling process [8-10]. An example of these efforts is the Gap Analysis Program 

(GAP) in the United States, a major governmental initiative to model the distribution of 

wildlife species with remote sensing and associated geospatial datasets, with the main 

purpose of assessing species conservation for the country [11-13]. Furthermore, the GAP 

approach has been applied worldwide [14,15]. 

Although land cover maps are considered adequate to derive species distribution 

models [11,16] they may not adequately represent the relevant vegetation characteristics 

for many species' habitats. For example, ecologists have long understood that the 

presence of certain bird and mammal species can be highly dependent on particular 

conditions of forest structure, such as those related to tree canopy cover [17,18]. 

However, land cover and vegetation maps typically do not characterize forest structure. If 

geospatial data used to support habitat models are not adequate to represent the relevant 

species-environment relationships, the final distribution maps may not match the 

observed or expected distributions [19-21], affecting subsequent conservation or 

biodiversity assessments generated from those maps. The lack of accurate, high spatial 

resolution biophysical data is considered a major limitation to producing more reliable 

predictions of species distribution [21]. For broad scale modeling efforts such as those 
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from GAP, detailed information about percent tree canopy cover has been recognized as a 

major need [22,23]. 

The recently completed tree canopy cover product of the 2001 National Land 

Cover Database (NLCD 2001 [24], herein after NLCD TCC), provides new information 

about horizontal vegetation structure in the United States, and therefore may serve to fill 

this important need in wildlife habitat modeling. Originally developed to support land 

cover requirements for the country, the NLCD_TCC is a nationwide map containing 

information about the percentage of tree canopy cover at a Landsat spatial resolution (i.e. 

30-meter pixel). Evaluating the consequences of incorporating forest structure 

information into broad scale predictions of species distribution is important given the 

significance that these maps have for supporting conservation and biodiversity 

assessments. 

In this study, we integrated GAP and NLCD2001data in order to (1) quantify 

differences in accuracy of GAP predictions of species distribution given the inclusion of 

tree canopy cover data (i.e. NLCD_TCC), (2) quantify differences in GAP estimates of 

species distributions and species richness patterns given the inclusion of tree canopy 

cover data, and (3) quantify differences in the GAP estimates about the species 

representation within the network of protected lands. 

We addressed these questions using a case study comprised of data from the 

finished Idaho GAP Analysis (ID-GAP, [22]). Idaho contains a diverse array of 

ecosystems and environmental gradients, and is therefore a good test bed for 

understanding the general applicability of these questions. From a total of 238 species of 

birds that occur in Idaho, the ID-GAP identified 37 species that are known to occur under 

specific tree canopy cover conditions, equivalent to 1 in every 7 birds species present in 

the state. The authors indicated that the predicted distribution of these 37 species was 

likely overestimated because the models did not incorporate tree canopy cover constraints 

[22], but no formal evaluation was made. Our study is an attempt to evaluate the 

consequences for GAP assessments brought about by the inclusion of novel remote 

sensing data of vegetation structure. We worked from a GAP perspective because GAP 



7 0 

projects are developed across the United States (although the approach has been applied 

internationally), and because data from GAP are actively used in conservation and 

planning efforts. However, lessons from this study do not relate solely to GAP and/or the 

United States; they may also help to assess the value of remote sensing products for 

advancing biodiversity and conservation assessments regardless of geographic location 

worldwide. 

Material and methods 

GAP predictions of species distribution and the NLCD2001 tree canopy cover product 

GAP predictive maps of species distribution are developed at a State or regional (i.e. 

multi-State) scale, using a two-step process [25]. First, the species' geographic range is 

determined by placing the known species occurrences (from GPS points from field 

surveys, recent museum records, and species lists) in geographic subunits (represented 

typically by the 63 5-km2 hexagon grid from the Environmental Protection Agency 

Ecological Mapping and Assessment Program, or EPA-EMAP). About four hundred 

hexagons are needed, for example, to cover Idaho. Second, information about species-

habitat associations (from the scientific literature) is used to identify the suite of (Landsat 

derived) land cover types, special habitat features (e.g. riparian areas, distance to water 

bodies, distance to roads) and/or other environmental variables that are suitable for the 

particular species. The predicted species distribution maps are obtained by intersecting 

the hexagon based range map with the fine scale habitat requirements. For more 

information please see the GAP web page <http://GAPanalysis.nbii.gov>). 

The NLCD_TCC product [24] characterizes nationwide vegetation characteristics 

for the year 2001. The product was developed using Landsat 7 ETM+ satellite imagery in 

66 different mapping zones. Within each zone, multiple digital orthophotoquads (DOQ's) 

were classified into either tree canopy or non-tree canopy areas at 1 -m resolution, and 

these values were then aggregated to the 30 meter scale to determine the percentage of 

tree canopy [24]. By combining these DOQ derived training data with Landsat spectral 

http://GAPanalysis.nbii.gov
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data and ancillary information, tree canopy cover predictions were developed using 

regression tree algorithms. Predictions were applied in areas corresponding to deciduous, 

coniferous, and mixed forests, woody wetlands, and developed open space. A cross-

validation procedure reported an accuracy of about 85%. For more information please see 

the Multi-Resolution Land Characteristics (MRLC) Consortium website 

<http://www.mrlc.gov>. 

Study area 

Idaho encompasses about 216,000 km in the northwestern United States. Forests 

represent about 78,000 km (-40% of the state), are comprised mostly of coniferous 

species, and occur principally in the mountainous regions of the north and central part of 

the state (Fig. 1). The southern portion of Idaho is dominated by sagebrush and shrub-

steppe vegetation (33% of the state), and grasslands and agricultural lands (24%). 

Riparian vegetation, wetlands, and urban areas cover less than 4% [22], Protected lands 

(i.e. reserves) represent about 12% of the state. About 70% of the lands in Idaho are 

public with a majority under US Forest Service management. Excluding riparian areas, 

forests support the highest wildlife diversity [22]. Forests are subject to a variety of 

anthropogenic and natural processes that can influence structure and function, such as 

such as those related to timber extraction, wildfires, blowdowns and landslides. 

Data 

The data used in this study are of public domain. Data from the ID-GAP were obtained 

from the GAP server <http://www.GAPanalysis.nbii.gov>, including: (1) species 

geographic range maps, (2) predicted species distribution models and maps, (3) land 

cover classification map (developed from Landsat imagery from 1996-1998) (see Fig. 1), 

(4) map of protected areas, (5) ID-GAP Final Report, and (6) metadata. The MRLC 

Consortium's portal <http://www.mrlc.gov> provided the NLCD_TCC coverage for 

Idaho (zones 01 and 03) (see Fig. 1). We used ArcGIS V9.2 (1999-2006 ESRI Inc.) and 

ERDAS IMAGINE V9.1 (Leica Geosystems) to process the data. 

http://www.mrlc.gov
http://www.GAPanalysis.nbii.gov
http://www.mrlc.gov
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Approach 

The overall approach of this study can be summarized in 3 major steps: (1) identification 

of the species' tree canopy cover preference, (2) prediction of the species distribution 

with the new biophysical data (e.g. the NLCDTCC), and (3) evaluation of species 

conservation and biodiversity patterns. Steps one and two focused on the 37 bird species 

identified by the ID-GAP as depending on specific conditions on tree canopy cover (and 

whose habitats have been probably overestimated due to the lack of such data layers). 

Step three was conducted at two different levels: one that considered the 37 species, and 

another that included the entire pool of bird species in Idaho (n=238). 

First, we identified the tree canopy preferences for the 37 species of birds using a 

classification system suggested by the ID-GAP [22], which includes 3 categories: low 

tree canopy cover (<=40%), medium tree canopy cover (>40% and <=70%), and high 

tree canopy cover (>70%). The ID-GAP provides tree canopy preferences for 20 of the 

37 species. We provided information for the other 17 species using (1) internet based 

scientific reviews, such as The Birds of North America Online 

<http://bna.birds.cornell.edu/BNA>, the Point Reyes Bird Observatory (PRBO) 

Conservation Science <http://www.prbo.org>, and reports from the US Forest Service 

Timber Management and Wildlife Interactions Project and Fire Effects Information 

System database <http://www.fs.fed.us/>; (2) recent studies (e.g. [26.27]), and (3) expert 

opinion. 

Second, we refined the ID-GAP species distribution models by adding the 

NLCD TCC data. This is equivalent to subtracting from the original ID-GAP species 

distribution maps those areas that did not meet the species' habitat preferences in terms of 

tree canopy cover. As a result, we developed 37 new species distribution maps. We 

assumed no changes in vegetation between 1998 (the year of the ID-GAP data) and 2001 

(the year of the NLCD data). 

Third, we compared the original (i.e. ID-GAP) and the refined (i.e. with the 

NLCD_TCC) predicted distribution maps. We evaluated the changes in terms of total 

http://bna.birds.cornell.edu/BNA
http://www.prbo.org
http://www.fs.fed.us/
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extent of the predicted habitat as well as in the proportion of the predicted habitat that 

occur within the network of protected lands. We created maps of species richness for the 

37 species before and after the NLCD TCC, as well as for the entire pool of species 

(n=238). For the entire species pool, we used two different spatial scales of analysis: 

GAP hexagon (635 km ) and Landsat pixel (900 m ). We compared the new maps of 

species richness with the original from the ID-GAP in terms of number of species and 

regional distribution of biodiversity patterns. 

Accuracy assessment of the new maps of bird species distribution 

We followed the GAP protocol for accuracy assessment [11], using the independent 

reference data provided by the ID-GAP. GAP uses reference information from locations 

where high confidence lists of species occurrences have been compiled [25]. Species lists 

are used because GAP projects develop maps for hundreds of species and over millions 

of hectares, which makes it impossible to conduct a thorough, field based accuracy 

assessment of each species map using randomly sampled locations [25]. With this, GAP 

provides a measure of overall agreement between the predictions and the set of known 

species locations, and a measure of omission error (failure to predict a species that was 

present). However, GAP assessments do not provide an estimate of commission errors 

(prediction of species occurrence in unoccupied area), which is an inherent limitation of 

GAP [11,25]. In species distribution assessments, commission is more difficult to 

measure than omission due to the challenges associated with the true and apparent 

absences in the reference data [28-30]. Although [31] suggested that commission errors 

can be considered risk-aversive for GAP-related purposes, information about both 

commission and omission errors is ultimately important for species distribution maps 

used in conservation assessment and planning [19,32], Finally, if five or fewer reference 

sites are available for assessing the accuracy of a given species, the accuracy assessment 

for that species is considered not reliable [25]. 

The independent reference data (i.e. species list) from the ID-GAP encompasses 

62 sites. We calculated the % of correct predictions (CP%) and the % of omissions 

(OM%) for each of the new 37 species maps, and compared the predictions' accuracy 
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(i.e. CP% and 0M%) before and after the inclusion of tree canopy cover data. Evaluating 

omission error is important for this study because incorporating tree canopy constraints in 

the original ID-GAP species-habitat models will likely reduce the extent of the predicted 

habitats in different amounts. 

In addition, we were able to evaluate commission errors. The ID-GAP indicated 

that the initial distribution of the 37 species was likely overestimated because the models 

did not incorporate tree canopy cover data [22], but no formal evaluation of the 

commission error was conducted because of the GAP limitations previously mentioned. 

We evaluated the magnitude of the initial commission errors by quantifying the changes 

in the extent of the predicted habitats after adding the tree canopy data. If omission errors 

are not added after including the tree canopy constraints, any reduction in the predicted 

habitat will be a consequence of a decrease in original overestimations, and thus, in 

commission errors. This estimate of commission error is not a result of an accuracy 

assessment using independent data, but rather is a measure of improvement that arises 

from interpreting the outputs from the original species-habitat models with the new, more 

precise ones. 

Results 

Observed species-habitat associations based on NLCD TCC and expected distribution 

patterns 

Five major groups of species emerged after evaluating the species-habitat relationships 

with respect to land over type (simplified to forest/non-forest) and tree canopy cover (i.e. 

NLCDTCC) for the 37 avian species (Fig.2). The groups covered a wide range of 

habitat characteristics; from groups of species that occur both in non-forests and open 

forests (i.e. forest cover <40%, group 1), to groups of species that occur only in closed 

forests (i.e. >70% tree canopy cover, group 5). The number of species in each group was 

variable, with more species in groups associated with forest and non-forest lands (groups 

1 and 2) than in groups exclusive from forests (groups 3, 4, and 5). These groupings 
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provided insights about potential patterns of species richness for these 37 species: 

including (1) open forest pixels were expected to support more species than closed forest 

pixels, and (2) incorporating tree canopy cover data might produce small changes in open 

forest pixels, but relatively larger changes in closed forest pixels (see Fig.2). 

Predicted species distribution incorporating NLCD TCC data 

The extent of the predicted species distributions decreased markedly after incorporating 

the tree canopy cover data. For thirty of the thirty-seven bird species, the new predicted 

habitat was 15% to 68% smaller than the original predicted by the ID-GAP (Table 1). For 

species associated with both non-forested and forested lands (i.e. groups 1 and 2), the 

decrease in predicted habitat became larger as forest affiliation increased. For example, 

the smallest reductions in habitat (<5%) occurred in six avian species that typically occur 

in grasslands and/or shrublands but use some forests marginally (e.g. Lark sparrow; Table 

1). 

Generalist species such as the Common raven, Golden eagle, or Brown headed 

cowbird, which are known to occur in almost any type of land cover, reported 

intermediate decreases in habitat size (15% to 30%), while species that utilize forested 

areas more frequently (yet occasionally use some non-forest lands; e.g. Cedar waxwing) 

reported the highest changes in habitat size (decreasing between 30% and 68% from the 

original estimates). Finally, for those species that occur exclusively in forests (groups 3, 

4, 5), the changes in the predicted habitat differed depending on the tree canopy 

preferences. The predicted habitat for species which are thought to occur in forests with 

tree canopy density <70% or >70% showed a similar decrease in habitat (between 40% 

and 50%), while those species that occur in forests with tree canopy density >40% 

showed a smaller habitat reduction (between 15% and 25%). 

Model evaluation 

The accuracy assessment of the 37 new predictive species distribution models revealed 

that the incorporation of the tree canopy cover constraints did not result in the addition of 

omission errors. This was true for all of the species. As a result, neither the percent of 
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correct predictions (CP%) nor the percentage of omission (OM%) changed after 

incorporating the tree canopy cover data (Table 2). Because model refinement resulted in 

habitat reduction without the incorporation of omission errors, the observed changes can 

be attributed to a decrease in previous commission errors/overestimations. Most of the 

species models were assessed with 10 to 40 reference sites. Only 3 species were below 

the ideal minimum of 5 sites (sensu Jennings, 2000), and thus, their accuracy assessment 

might be unreliable. 

Species representation within the network of protected lands 

The extent of the species' predicted habitat within protected lands decreased markedly 

after incorporating the tree canopy cover constraints (Table 1). For most species, these 

reductions were equivalent to 20% and 60% of the original area. Few species from 

groups 1 and 2 showed changes smaller than 5%. However, when evaluating the 

percentage of the predicted habitat within protected lands, we found practically no 

differences between the original ID-GAP estimates and the new ones incorporating tree 

canopy cover data (t = 1.48, p = 0.15) (Table 3). In this sense, the changes in the 

estimates of the species representation within the network of protected lands (i.e. before 

and after the NLCD TCC data) did not surpass 5% (see last column in Table 1). 

Patterns of species richness after adding NLCDTCC data 

The species richness values at the pixel scale changed after incorporating tree canopy 

cover information (Fig. 3). In the map of species richness created with the original 

predictions for the 37 species (i.e. from the ID-GAP), all the forested pixels appeared to 

support a high, and relatively constant, number of species (between 25 and 30). In the 

map that incorporated vegetation structure (i.e. NLCD_TCC), the number of species per 

pixel was considerably lower (between 8 and 22 for most of the forested pixels) (Fig. 3). 

The difference between the two maps revealed that the number of species decreased in 

practically all the forested pixels after incorporating tree canopy constraints, with the 

largest reductions occurring in areas corresponding to closed forests (the north and center 
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part of the state). Less severe reductions occurred in areas dominated by open forests 

(e.g. the south-central portion of Idaho). 

The pixel based values of species richness including all the birds in Idaho 

(n=238) also changed after incorporating the 37 new models (Fig. 4 top). Forested pixels 

showed a decrease in the number of bird species, in proportions that ranged mostly 

between 5% and 35%. In the original GAP map, forests were dominated by species 

richness values between 55 and 80 in the northern and central region, and by slightly 

lower values in the south. The new map (i.e. after the NLCD TCC) exhibited lower 

values of species richness in forests, mostly ranging between 40 and 60. The changes 

were higher in areas dominated by closed forests than in areas dominated by moderate 

density or open forests (see Fig. 4 center). When evaluating the location of species 

richness hotspots in the forests of Idaho in relationship with the protected lands, the most 

evident change after adding the tree canopy data was that the richest and largest hotspot 

shifted towards non protected lands, a pattern that differed from the original GAP 

outputs. 

At the hexagon scale, the species composition remained unchanged after adding 

the tree canopy cover data. After refining the predicted distributions of the 37 species 

with the NLCD TCC there was still some habitat available for all of the original species 

listed in the hexagons. Although the predicted habitat per species decreased within the 

hexagon, this change never resulted in an absence of habitat. The changes observed were 

a function of the species' preferences and of the characteristics of the dominant 

vegetation. Hexagons in areas dominated by closed forests experienced higher habitat 

reductions for species associated with non-forests and open forests (groups 1, 2, and 3) 

and smaller reductions in the habitat for species associated with denser forests (groups 4 

and 5), while the opposite was observed in areas of open vegetation (see Fig. 4). Only 6 

of the 404 hexagons showed some decrease in the species composition, however these 

were not the typical 635-km2 GAP-hexagons, but rather smaller fractions of those 

hexagons located along the state border (data not shown). 
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Discussion and conclusions 

Remote sensing data provide vital information for mapping the distribution of wildlife 

species, which is a common requisite for assessing species conservation and biodiversity 

patterns. However, broad scale assessments such as the US GAP Analysis have been 

conducted using species distribution models that do not incorporate information about 

vegetation structure, an important variables explaining the distribution of many birds and 

mammals [5,6,17,26]. In this sense, geospatial layers reflecting tree canopy closure has 

been recognized as a major data need for improving GAP assessments [22,23]. In this 

study, we evaluated the consequences for broad scale species distribution and 

conservation assessments brought about by the inclusion of novel remote sensing data 

about vegetation structure. We integrated the new tree canopy product from the 

NLCD2001 [24] into GAP species-habitat models, using the state of Idaho as a case 

study. 

The incorporation of the NLCD TCC into the GAP habitat assessment protocol 

resulted in: (1) remarkable changes in the predicted distribution of many avian species, 

(2) changes in the values of avian species richness at a certain scale, (3) a modified 

distribution of pixel based biodiversity hotspots in forested areas, and (4) surprising 

results in conservation assessment. We improved the predicted distribution models of 37 

avian species with the NLCD TCC data, allowing us to represent more precise species-

habitat relationships, and reducing previous habitat overestimations without incorporating 

omission errors. As a result, the assessments of species distribution and conservation 

based on these refined predictions differed from the original ID-GAP ones (Table 3). 

Some assessments, however, were not sensitive to model refinement. For example, the 

most representative GAP measure of conservation, that is, the percentage of the species 

habitat occurring within the network of protected lands, did not change despite 

remarkable decreases in the predicted habitat after the NLCD_TCC was added (Table 3). 

At the scale of this study (216,000 km2, with 78,000 km2 of forests) the addition 

of geospatial data of vegetation structure represented the difference between a significant 

habitat overestimation and a more accurate prediction for certain bird species. Modeling 
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the distribution of wildlife species that depend on specific conditions of tree canopy 

closure in the absence of such data resulted in large overestimation errors. Similar 

consequences have been observed in other studies with different variables of forest 

structure For example, [33] noted that giant panda (Ailuropoda melanoleuca) 

distributions were significantly overestimated without the inclusion of information about 

understory vegetation. Similarly, the potential distributions of the endangered Delmarva 

fox squirrel (Sciurus niger cinereus) decreased considerably when adding constraints 

about forest canopy height [34]. Reductions in habitat size may have consequences for 

assessing habitat connectivity [33] or for evaluating the species' conservation status 

based on available habitat. In this sense, our study showed significant habitat reductions 

for two species listed with the Idaho Department of Fish and Game as in greatest 

conservation need: the Peregrine falcon (Falco peregrinus anatum) and the Flammulated 

owl (Otus flammeolus). While our analysis did not evaluate the size and configuration of 

the new predicted habitats, we speculate that because available habitat became more 

fragmented after incorporating the NLCD_TCC data, our estimates of habitat reductions 

are conservative and could be further refined using, for example, concepts of minimum 

patch size and patch isolation. 

It was surprising to find that, after the large reductions in the predicted 

distributions for the 37 avian species that resulted from adding the NLCDTCC data, the 

estimates of the percentage of the species' habitats occurring within protected lands 

remained practically the same. The reason for this resides in the similar proportion of tree 

canopy classes inside and outside protected lands, observed in the forests of Idaho. While 

some forest types were denser within protected lands (such as Mixed Subalpine Forest or 

Mesic Forest), others more open (such as Ponderosa pine or Douglas-fir/Lodgepole Pine) 

and others were relatively similar (such as Douglas-fir or Aspen), the combination of all 

the forest types canceled such structural differences; as a result, the proportion of low, 

medium or high tree canopy cover was the same for the forests located inside or outside 

protected lands (data not shown). The inclusion of NLCD TCC data in the species 

habitat modeling process therefore reduced the predicted habitat in a similar fashion 

inside and outside the reserves, maintaining the original proportions (i.e. by the ID-GAP). 
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In absolute terms, however, the extent of the species predicted habitat (for both inside and 

outside reserves) decreased markedly after including the NLCD TCC. Further study is 

warranted to evaluate these issues in other regions (e.g. broadleaf forests). 

For the assessments of species richness, the modification of the predicted 

distributions of the 37 species produced discernable changes in the pixel based map 

habitat patterns for all the birds in Idaho (n=238). The number of bird species predicted to 

occur in forested pixels decreased as a result of adding tree canopy information. These 

changes were not homogeneously distributed, and in general, areas dominated by closed 

forests (mainly in the Rocky Mountains in the north and central part of the state) were 

more affected than areas dominated by open forests (the southern part). The reason for 

this is that the majority of the original 37 species are associated with open forests and not 

with closed forests, and thus, higher overestimations and changes were observed (see Fig. 

4) and expected (see Fig. 2) in closed forests. Areas with open forests, including the 

southern region of the state, exhibited smaller changes. A previous study in an open 

forest area of Spain comparable to the southern part of Idaho (i.e. a mix of shrublands, 

sparse forests, some closed forests, and grasslands) found that incorporating tree canopy 

cover in predictive distribution models of avian species did not result in significant 

changes [16]. However, while model refinement decreased the number of bird species 

predicted at the pixel level, it did not alter the number of species predicted at the hexagon 

scale. Differences in responses and patterns of species richness are expected because 

these products represent information with different spatial resolution (hexagon vs.-pixel) 

[35]. Between these two spatial scales, however, there will likely exist a new pixel size at 

which the consequences of model refinement with vegetation structure data are still 

imperceptible for species richness analyses, and which is worth to identify in further 

efforts. 

Because the reserve network solution from conservation planning efforts is highly 

sensitive to the quality of the environmental layers and species distribution maps [32,36], 

further research should evaluate the impacts that novel remote sensing derived data have 

on the outputs of reserve design analyses. In our study, for example, the new map of bird 

species richness at the pixel scale revealed the presence of a large biodiversity hotspot 
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located outside of the protected lands (see Fig. 5), a pattern not evident in the original ID-

GAP data due to the habitat overestimation problem that occurs in much of the forests. 

The importance of this hotspot for conservation actions may increase when considering 

that Idaho is one of the fastest growing states in terms of human population and land 

development. 

The implications of this study, including the potential use of NLCD TCC data in 

wildlife habitat assessment, reach beyond bird species. Certain mammals are also known 

to occur under specific tree canopy cover conditions; for instance the ID-GAP identified 

nine species whose habitats have been likely overestimated due the lack of tree canopy 

cover data [22]. The list includes species of major economic importance such as elk 

(Cervus elaphus) and mule deer (Odocoileus hemionus), and the fisher (Martes 

pennanti), which is a candidate to be listed under the Endangered Species Act. 

Considering the relevance of the information about the distribution of these species for 

supporting conservation and management decisions, continue evaluating the 

incorporation of tree canopy data emerges as an important task for Idaho and beyond. 

There is great potential for the immediate application of the NLCD TCC data for 

large scale biodiversity mapping and conservation assessments. For instance, the US 

GAP is developing a second generation of species distribution models for the North 

Western states, including Oregon, Washington, Idaho, Montana, Wyoming, and 

California (J. Aycrigg, personal communication). In addition, agencies such as the US 

Fish and Game are focusing efforts to improve the predicted habitat maps for their 

species of interest, such as elk and mule deer. Finally, the nationwide development of the 

State Wildlife Action Plans (SWAP), mandated by the US Congress, might provide an 

additional framework for species-specific applications. Global assessments looking for 

tree canopy data, on the other hand, can potentially benefit from the global-lkm product 

developed by the Global Land Cover Facility [37]. 

The date of the NLCD_TCC data (2001) can be a limitation for analyses seeking 

to reflect the current (i.e. year 2009) landscape. However, for species that depend on 

some specific condition of tree canopy cover, the incorporation of the NLCD TCC may 
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be more relevant than a new land cover that does not reflect vegetation horizontal 

structure, even if the structural layer is few years old. An additional limitation of the use 

of these data for wildlife habitat assessment is spatial extent. The product does not 

provide information about the percent tree canopy cover in areas dominated by grasslands 

or shrublands, which represent about 35% of the United States [24], These areas can 

contain some tree cover (< 20%), which represent important features for certain wildlife 

species. The lack of this type of information when predicting species distribution in 

rangelands has been identified as a potential cause of omission errors [22]. 

The avian modeling refinements made possible by incorporating tree canopy 

cover data in this study highlight the utility of wide area vegetation structure data 

products for improved species distribution and conservation assessments. Although our 

study focused on the horizontal component of forest structure, many species select habitat 

based on 3-dimensional forest canopy structure [5,6]. Information about understory 

conditions, location of old growth forests, and canopy height have been identified, among 

others, as important variables for improving the habitat predictions for some wildlife 

species [22,23,33,34]. While obtaining such information from satellite imagery has been 

difficult, the relatively new airborne lidar (light detection and ranging, or laser altimeter) 

data may be a potential answer to that problem [38]. The availability of such datasets 

over regions, nations, or continents will open myriad novel avenues for advancing 

biodiversity and conservation assessments. 
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Table 1. Predicted habitats before and after adding the NLCD TCC. The table includes 

estimates of total habitat area and area predicted within protected lands (i.e. reserves). 

Area unit corresponds to thousands of km . The species are presented by groups (denoted 

by the letter "G") similar to Fig. 2. The scientific names of the species is provided in 

Appendix A 

Predicted habitat % of habitat 
Predicted area within within protected 

habitat area protected lands lands 
V S= u fc: ft 

<2 5 a V 5 a V la 
Species common name u 

03 < s? 
Ol 
CD < u oa < 3 

Lark sparrow 100 99 -0.6 6 6 -0.9 5.6 5.6 0.0 
Loggerhead shrike 109 108 -0.6 6 6 -0.5 5.1 5.1 0.0 
Common nighthawk 120 119 -1.0 8 8 -1.7 6.4 6.4 0.0 
Common poorwill 86 83 -3.2 6 5 -1.6 6.4 6.5 -0.1 
Golden eagle 206 152 -26.3 25 14 -45.8 12.2 8.9 3.2 
Common raven 212 154 -27.3 25 14 -45.7 11.9 8.9 3.0 
Brown-headed cowbird 208 150 -27.9 24 13 -47.6 11.7 8.5 3.2 
Long-eared owl 143 96 -32.5 21 10 -49.7 14.5 10.8 3.7 
Lazuli bunting 158 100 -36.6 22 11 -52.4 14.0 10.5 3.5 
Cedar waxwing 123 66 -46.3 18 6 -64.5 14.5 9.6 4.9 
Broad-tailed hummingbird 62 27 -56.8 9 3 -60.9 13.8 12.5 1.3 
Western tanager 84 27 -67.8 16 5 -69.9 19.6 18.3 1.2 
Blue-gray gnatcatcher 31 31 -0.1 3 3 0.0 8.3 8.3 0.0 
Brewer's blackbird 131 130 -0.9 9 9 -1.0 6.8 6.8 0.0 
Black-capped chickadee 16 15 -8.3 1 1 -5.2 8.8 9.1 -0.3 
Peregrine falcon 138 116 -15.8 19 14 -23.6 13.5 12.2 1.2 
Red-tailed hawk 213 177 -16.8 25 18 -28.3 11.9 10.3 1.7 
Northern flicker 209 173 -17.1 24 17 -29.4 11.6 9.9 1.7 
Turkey vulture 188 155 -17.5 20 14 -31.0 10.7 9.0 1.8 
Blue grouse 114 79 -31.1 19 12 -37.9 16.6 14.9 1.6 
Dusky flycatcher 96 61 -36.9 17 10 -41.8 17.8 16.4 1.4 
Chipping sparrow 96 60 -37.1 18 10 -40.7 18.4 17.3 1.0 
Oregon (Dark-eyed) junco 95 60 -37.1 18 10 -40.8 18.4 17.3 1.1 
Black-headed grosbeak 75 46 -38.4 14 8 -42.7 18.3 17.0 1.3 
Fox sparrow 90 54 -39.4 17 10 -42.4 18.7 17.8 0.9 
Cassin's finch 88 54 -39.5 17 10 -41.2 19.6 19.1 0.5 
Northern saw-whet owl 78 43 -44.4 16 9 -44.2 20.7 20.8 0.0 
Great gray owl 76 42 -44.8 16 9 -44.3 21.0 21.2 -0.2 
Flammulated owl 37 22 -40.9 6 3 -45.1 16.9 15.7 1.2 
Cassin's vireo 81 46 -43.5 16 8 -45.7 19.2 18.4 0.8 
Clark's nutcracker 73 39 -46.7 15 8 -46.3 21.0 21.1 -0.2 
Chestnut-backed chickadee 47 39 -15.2 10 8 -15.8 21.0 20.8 0.1 
Cordilleran flycatcher 74 58 -22.4 15 12 -22.5 20.6 20.6 0.0 
Northern goshawk 80 61 -23.7 16 12 -22.6 19.4 19.7 -0.3 
Red-breasted nuthatch 80 61 -23.9 16 12 -22.6 19.6 19.9 -0.3 
Pileated woodpecker 70 36 -48.6 15 8 -50.2 21.9 21.2 0.7 
Northern pygmy-owl 78 38 -50.8 15 8 -50.7 19.8 19.9 -0.1 



Table 2. Accuracy assessment of the initial (i.e. ID-GAP) and refined (i.e. ID-GAP + 

NLCD TCC) predicted species distributions, including the number of sites used for 

evaluation, the % of correct predictions (CP%), and the % of omissions (OM%). 

Reference ID-GAP ID-GAP + NLCD TCC 
Species common name sites (#) CP% O M % CP% OM% 
Black-capped chickadee 25 100 0 100 0 
Black-headed grosbeak 18 94 6 94 6 
Blue grouse 18 100 0 100 0 
Blue-gray gnatcatcher 1 0 100 0 100 
Brewer's blackbird 32 97 3 97 3 
Broad-tailed hummingbird 8 75 25 75 25 
Brown-headed cowbird 31 100 0 100 0 
Cassin's finch 14 100 0 100 0 
Cassin's vireo 14 93 7 93 7 
Cedar waxwing 17 100 0 100 0 
Chestnut-backed chickadee 5 100 0 100 0 
Chipping sparrow 26 92 8 92 8 
Clark's nutcracker 15 93 7 93 7 
Common nighthawk 25 96 4 96 4 
Common poorwill 9 100 0 100 0 
Common raven 29 100 0 100 0 
Cordilleran flycatcher 5 100 0 100 0 
Dusky flycatcher 13 100 0 100 0 
Flammulated owl 4 100 0 100 0 
Fox sparrow 10 100 0 100 0 
Golden eagle 25 100 0 100 0 
Great gray owl 5 100 0 100 0 
Lark sparrow 11 100 0 100 0 
Lazuli bunting 19 100 0 100 0 
Loggerhead shrike 10 100 0 100 0 
Long-eared owl 14 100 0 100 0 
Northern flicker 40 100 0 100 0 
Northern goshawk 15 100 0 100 0 
Northern pygmy-owl 11 100 0 100 0 
Northern saw-whet owl 14 100 0 100 0 
Oregon (Dark-eyed) junco 21 100 0 100 0 
Peregrine falcon 2 100 0 100 0 
Pileated woodpecker 13 100 0 100 0 
Red-breasted nuthatch 16 100 0 100 0 
Red-tailed hawk 38 100 0 100 0 
Turkey vulture 21 100 0 100 0 
Western tanager 20 100 0 100 0 
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Table 3. Summary table of the consequences for GAP assessments brought about by the 

inclusion of broad scale remote sensing data about vegetation structure. 

Outcome after adding 
GAP estimates/assessments the NLCD TCC 
Predicted Species Distribution Maps 

Area Decreased 
Omission error No change 
Commission error Decreased 
Overall accuracy Increased 

Species Richness 
Pixel-based richness Decreased 
Hexagon-based richness No change 

Species Conservation Assessment 

Predicted habitat within the network of protected lands (in km2) Decreased 
Predicted habitat within the network of protected lands (in %) No change 



Figure 1. Simplified land cover map and tree canopy for Idaho. 
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Figure 2. Distribution of the 37 avian species according to land cover (simplified 

to forest/non-forest) and tree canopy cover preferences (three classes). Five 

groups of species were identified based on similar species-habitat relationships. 

Potential values of maximum species richness for scenarios with and without tree 

canopy information are also shown. Overestimation range refers to areas (in terms 

of habitat associations) where the distributions of the species have been 

overestimated according to the knowledge of the species' natural history. 
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Figure 3. Pixel based, species richness maps for the 37 avian species, including from the 

original ID-GAP predicted habitats and from the new ones incorporating the 

NLCD_TCC. The comparison of species richness between these products is also 

presented. 
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Figure 4. Pixel based, species richness layers for all the birds in Idaho (n=238), before 

and after incorporating the NLCD_TCC. Subsets of areas dominated by closed forest and 

mid-open forest are shown in the center. Patterns of species richness and distribution of 

protected lands are displayed in the bottom. 
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Appendix A 

Species' scientific names in order of appearance in Table. Gl: Lark sparrow (Chondestes 

grammacus); Loggerhead shrike (Lanius ludovicianus); Common nighthawk (Chordeiles 

minor)-, Common poorwill (Phalaenoptilus nuttallii); Golden eagle {Aquila chrysaetos)-, 

Common raven (Corvus corax); Brown-headed cowbird (Molothrus ater); Long-eared 

owl (Asio otus); Lazuli bunting (Passerina amoena); Cedar waxwing (Bombycilla 

cedrorum); Broad-tailed hummingbird (Selasphorus platycercus); Western tanager 

(Piranga ludoviciana). G2: Blue-gray gnatcatcher (Polioptila caerulea); Brewer's 

blackbird (Euphagus cyanocephalus); Black-capped chickadee (Poecile atricapilla); 

Peregrine falcon (Falco peregrinus anatum); Red-tailed hawk (Buteo jamaicensis)-, 

Northern flicker (Colaptes auratus); Turkey vulture (Cathartes aura); Blue grouse 

{Dendragapus obscurus)-, Dusky flycatcher (Empidonax oberholseri); Chipping sparrow 

(.Spizella passerina)-, Oregon (Dark-eyed) junco {Junco hyemalis); Black-headed 

grosbeak (Pheucticus melanocephalus); Fox sparrow (Passerella iliaca); Cassin's finch 

{Carpodacus cassinii); Northern saw-whet owl (Aegolius acadicus); Great gray owl 

(Strix nebulosa). G3: Flammulated owl (Otus flammeolus); Cassin's vireo (Vireo 

cassinii)-, Clark's nutcracker (Nucifraga columbiana). G4: Chestnut-backed chickadee 

{Poecile rufescens); Cordilleran flycatcher {Empidonax occidentalis); Northern goshawk 

{Accipiter gentiles)-, Red-breasted nuthatch {Sitta Canadensis). G5: Pileated woodpecker 

{Dryocopus pileatus)\ Northern pygmy-owl {Glaucidium gnoma). 
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CHAPTER 4 

CLASSIFYING FOREST TYPE AND SUCCESSION IN A TROPICAL DRY FOREST: A 

L i D A R PERSPECTIVE. 

Abstract 

Improved remote sensing technologies are needed to advance the research and 

management of tropical dry forests, one of the world's most threatened ecosystems. This 

study evaluated the use of airborne LiDAR data to (1) classify forest types and (2) 

identify successional stages in a mature tropical dry forest of Puerto Rico. We used 

classification tree techniques and compared the results with classifications made from 

commonly available remote sensing data, including Landsat satellite imagery and non-

LiDAR topographic data from the Shuttle Radar Topography Mission (SRTM). We 

found that the accuracy of the LiDAR-based forest type classification was substantially 

higher than those from previously available remote sensing data (i.e. kappa value 0.90 

and 0.63 respectively), with the best result obtained when combining LiDAR-derived 

data of canopy structure and topography. Surprisingly, adding Landsat spectral data did 

not improve the LiDAR-based classification. For the second objective, we observed that 

LiDAR-derived variables of vegetation structure were better predictors of forest 

successional stage (including the identification of primary and different secondary 

forests) than spectral information from Landsat. Finally, we found that the most 

important LiDAR-based predictors of forest types (including native- and exotic-

dominated classes) and succession tend to follow previous ecological knowledge of 

canopy structural variations in these forests. Our study highlights the value of LiDAR 

data for supporting forest land cover mapping and land use legacy assessments in tropical 

dry forests, and warrants applications in other areas in order to further advance our 

knowledge of the biophysical and human dimensions of these important ecosystems. 
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Introduction 

Remote sensing is an important tool for supporting research and management of tropical 

dry forests (Sanchez-Azofeifa et al., 2003), one of the world's most threatened 

ecosystems (Janzen, 1988). However, current uncertainties in remotely sensed 

assessments of forest types and succession hamper efforts to quantify important 

ecosystem characteristics such as those related to biodiversity and carbon storage (e.g. 

Sanchez-Azofeifa et al., 2005, 2009; Quesada et al., 2009). Improved technologies are 

therefore needed to advance our knowledge of the biophysical and human dimensions of 

these ecosystems (Sanchez-Azofeifa et al. 2005). In particular, hyperspectral and LiDAR 

remote sensing hold a special interest because they can add a great deal of dimensionality 

to the spectral and structural information available to make ecological inferences 

(Kalacska and Sanchez-Azofeifa, 2008; Sanchez-Azofeifa et al., 2009). The process of 

applying these technologies in tropical dry forests is just beginning within the scientific 

community. In this study we evaluated the utility of LiDAR relative to other commonly 

used remote sensing datasets to (1) classify forest types and (2) identify successional 

status in a tropical dry forest of Puerto Rico. 

LiDAR (i. e. light detection and ranging) uses a laser to directly measure canopy 

height, subcanopy topography, and the vertical distribution of intercepted surfaces, 

opening new opportunities for assessing ecosystem structure and function with remote 

sensing data (Lefsky et al., 2002). LiDAR datasets are becoming increasingly common 

and they are part of the next generation of satellite and airborne-based systems for 

ecological observations (e.g. Carnegie Airborne Observatory [Asner et al., 2007], 

National Ecological Observatory Network [NEON; Keller et al., 2008], NASA DESDynl 

mission [http: desdyni.jpl.nasa.gov]). 

Because different forest types support different groups of plants and animals, 

maps of forest types derived from remote sensing are commonly used to assess 

biodiversity (Turner et al., 2003). While the combination of Landsat satellite imagery 

with environmental GIS layers is the most common approach for classifying vegetation 



9 8 

types with remote sensing (Cohen and Goward, 2004), accurately delineating tropical dry 

forest types has been problematic. Frequent confusion has been reported, for example, 

between semi-deciduous forests and shrublands/woodlands, semi-deciduous forests and 

evergreen forests, and scrub forest, shrublands and pastures, among others (e.g. Helmer et 

al., 2002, 2008; Kennaway and Helmer, 2007; Gould et al., 2008; Martinuzzi et al., 

2008). Further classification challenges may arise by the presence of forest types in 

different successional stages, as well as by invasive species creating novel forest types 

(Lugo, 2009). 

Recent studies in temperate zones found that LiDAR-derived information of 

canopy height can be powerful predictor of vegetation types, either alone or in 

combination with spectral imagery (Antonarakis et al., 2009; Geerling et al., 2009). In 

particular, LiDAR data can improve the delineation of forest classes that are spectrally 

similar but structurally different (Neuenschwander et al., 2009), a problem that confounds 

accurate classification in tropical dry forests. In addition, because topography influences 

the distribution of tropical forest types at a local scale (Lugo, 2005), the use of 

topographic information derived from the LiDAR derived digital elevation model (DEM) 

may prove useful for further refining forest classifications. 

Understanding succession and land use legacy is important for managing tropical 

forests, as they affect the structure, function, and services of these ecosystems (Chazdon 

et al., 2009; Quesada et al., 2009). Today, tropical dry forests occur in a dynamic mosaic 

of different human land uses and forest patches in different stages of development 

(Quesada et al., 2009). In this context, the delineation of successional stages (i.e. young, 

mature, and primary) is a topic of major research interest, but of major technological 

challenges (Sanchez-Azofeifa et al., 2003, 2009; Quesada et al., 2009). Previous studies 

were able to separate successional stages in forests up to 30 yr of a age (i.e. in young to 

mid-secondary forests) using the Landsat-derived Normalized Difference Vegetation 

Index (NDVI) (Arroyo-Mora et al., 2005; Hartter et al., 2008). In these studies, the value 

of the NDVI resides in its sensitivity to tree canopy cover (Feeley et al., 2005), and the 

fact that tree canopy cover increases during the first 20-30 years (Arroyo-Mora et al., 
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2005; Hartter et al., 2008). After that, however, the overall horizontal structure of the 

forest (including canopy cover) tends to stabilize (Lugo, 2005), limiting the use of NDVI 

to further track succession. As a result, assessing succession in tropical dry forests of > 

30 yr old has been difficult (Sanchez-Azofeifa et al., 2003, 2009). Because the vertical 

structure of tropical dry forests can further change after the horizontal structure stabilizes 

(Lugo, 2005), LiDAR data may be helpful for tracking successional changes in more 

mature stands. This includes, for example, the identification of mature and old growth 

forests, which are of major value for biodiversity and conservation (Chazdon et al., 

2009). 

Scientists in other regions are using LiDAR to characterize succession. Pioneering 

work by Drake et al. (2002) showed that LiDAR was sensitive to successional changes in 

a tropical moist forest. In a temperate broadleaf forest, Weber and Boss (2009) 

successfully separated young, intermediate, and mature forests. In a temperate conifer 

forest, Falkowski et al. (2009) mapped six successional stages, ranging from stand 

initiation to old growth, with an accuracy of > 95%. 

We investigated two major objectives in this study. First, we evaluated the use of 

airborne LiDAR data for classifying tropical dry forest types in an area exhibiting varied 

composition, including different native forest formations and a class dominated by an 

exotic species. Second, we explored the value of LiDAR data for identifying successional 

status in forests of > 30 years old. An overarching goal in both objectives was to compare 

the performance of LiDAR with similar classifications made from available Landsat 

ETM+ imagery and non-LiDAR topographic data. 

Methods 

Study area 

We conducted this study in the Guanica Dry Forest Biosphere Reserve in southwestern 

Puerto Rico (17°58' N, 66°52' W; Fig. 1). Guanica is considered to be one of the best 
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examples of subtropical dry forests because it has been protected since the 1930s. The 

area is a local biodiversity hotspot (Gould et al., 2008), and is a core site for the 

upcoming NEON program (Keller et al., 2008). The reserve comprises two areas 

covering nearly 4,000 ha from the shoreline of the Caribbean Sea to an elevation about 

230 m, and our study area corresponds to the largest of these portions (approx 3,000 ha; 

see Fig. 1). Annual rainfall is 860 mm with a major period of drought from December to 

March and a minor one between June and August (Medina and Cuevas, 1990). The 

substrate is derived from limestone with common presence of exposed rock outcrops. 

Vegetation and land use history 

Guanica forests are structurally smaller than tropical/subtropical dry forests from other 

parts of the world, although they are similar to other Caribbean islands (Murphy and 

Lugo, 1986). Three intergrading and edaphically determined forest types occupy most of 

Guanica, including: semi-deciduous forest (the most common vegetation type) in the 

internal hills and coastal areas, semi-evergreen forest in valleys and ravines with well 

developed soils, and scrub forest in coastal areas and limestone outcrops. A narrow fringe 

of dwarf forest occurs along coastal rocky areas exposed to the ocean winds. Finally, a 

distinctive stand dominated by the exotic Prosopispallida (i.e. mesquite) occurs along an 

alluvial fan in the southern part of the reserve. Forested wetlands (i.e. mangroves) are not 

considered in this study. A detailed description of the forest types is provided in Table 1. 

Guanica is a mosaic of mature secondary forests and primary forests. Most 

secondary forests are a result of land use abandonment that occurred between the 1930s 

and the 1950s. Before that, the area was used mostly for charcoal and fence-post 

production (involving logging and harvesting of stems and branches from trees), with 

smaller areas used for agriculture and forest plantations. Studies in the semi-deciduous 

forests revealed that Guanica has recovered significantly over the last decades (Murphy et 

al., 1995; Lugo, 2005). After 45 years of land use abandonment, for example, Molina 

Colon and Lugo (2006) found that the structure of stands previously used for charcoal 

production or agriculture recovered in >75% (i.e. tree height, basal area, stem density, 
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and crown area index), with slightly higher recovery values observed in the first group 

(i.e. charcoal production). According to Agosto Diaz (2008), the height of mature trees in 

Guanica may be reached after 60 to 70 years of land use abandonment. In addition, past 

agricultural lands are today dominated by Leucaena leucocephala (exotic), while the 

others are dominated by native tree species. Despite decades of recovery, past land use 

still explains most of the variation in found in the structure and composition of semi-

deciduous forests (Agosto Diaz, 2008). 

Data 

The data consisted of location samples for the different forest types, information about 

land use history, airborne LiDAR data, Landsat ETM+ satellite imagery, and topographic 

information from the SRTM DEM. 

For the first objective, we obtained location samples for the different forest types 

using previous studies and field visits. Most samples for the semi-deciduous forest class 

were based on field plots established by Agosto Diaz (2008). These plots were designed 

using a stratified random sample technique with the objective of identifying the human 

and environmental factors explaining variations in forest structure, and therefore they 

represented a useful training data set for our study. We visited the area during 2009 to 

collect additional vegetation location samples. We used GPS surveys and visual 

interpretation of 1 -m spatial resolution color aerial photos supported by expert 

knowledge, to total 83 sample locations. We ensured that all samples represented an area 

of at least 30m x 30m of the same forest type (to coincide with the geospatial grain size 

used by this study), and were separated by > 60 meters (measured from the pixel border; 

consistent with Agosto Diaz, 2008). Finally, Agosto Diaz (2008) and E. Medina (personal 

communication) contributed with sample locations for the scrub forest and dwarf forest, 

respectively. 

To support our second objective, we utilized historic land use information for 25 

plots of semi-deciduous forest, as reported by Agosto Diaz (2008). The author 
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reconstructed the land cover and land use history of these plots using aerial photos from 

the 1930s, 1950s, and 1970s. Based on the inferred year of land use abandonment and the 

type of past land use, we identified and named four different successional classes. These 

included: (1) mid-secondary forests with a logging past (i.e. -40 yr old stands previously 

logged and harvested for charcoal and fence post production), (2) late-secondary forests 

with a logging past (i. e. -60 yr old stands previously logged and harvested for charcoal 

and fence posts), (3) late-secondary forests with an agricultural past (i.e. -60 yr old 

stands previously cleared for agriculture), and (4) primary forests (i.e. undisturbed, > 90 

yr old stands). Although small in sample size (n=3), the past agricultural class allowed us 

explore the potential separability of different historic land uses (i.e. agriculture or 

charcoal production) within the same successional stage (i.e. late-secondary forest). 

The airborne LiDAR data were collected during January and February 2004 by 

3001 Inc. and the US government, covering Puerto Rico and the US Virgin Islands. The 

sensor recorded first, last and intermediate return height values, with varied post spacing. 

In the case of Guanica, the Western half was acquired at 2.8 m post spacing (resulting in 
9 9 

0.25 points/m ) and the Eastern half at 6.0 m post-spacing (0.06/m ). These are very low 

data densities relative to more recent acquisitions. The reported mean vertical error was 

9.27 cm. 

The satellite imagery consisted of 30-meter pixel Landsat ETM+ scenes from 

October 2002 (i.e. wet season) and January 2003 (i.e. dry season), with precision and 

terrain correction (i.e. Level IT). The reported horizontal error was 2.3 m for the 2002 

scene and 2.6 m for the 2003 scene. 

Auxiliary topographic information came from the Shuttle Radar Topography 

Mission (SRTM), which provides digital elevation data for great part of the globe. We 

used the 30-meter gridded DEM product. The mean horizontal and vertical errors for the 

SRTM DEM are less than 12 m and 10 meters respectively, although they may vary 

locally (Rodriguez et al., 2006). 
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Data preprocessing 

The LiDAR preprocessing involved several steps, following general methods found in 

other studies (e.g. Hudak et al., 2008; Falkowski et al., 2009). We first thinned the 
'j 

Western portion of the data (0.25 points /m ) to the same point density of the Eastern 

portion (0.06 points /m2). We then used an algorithm (Evans and Hudak, 2007) to classify 

the LiDAR data into ground vs. canopy returns, and calculated a suite of canopy metrics 

at a 30-meter grid size (see Table 2). We considered vegetation returns to those located > 

30 cm above the ground to avoid confusion with limestone outcrops. Because most 

vegetation returns (/. e. 95%) were first or single returns, the metrics of canopy density by 

this study (calculated as # of vegetation returns above a specific height * 100 / total 

number of returns, within each 30m x 30m grid cell) can be used also as a physical 

measure of canopy cover (i.e. horizontal structure). 

We calibrated the Landsat data to reflectance values and then applied a 

radiometric normalization method (i.e. Canty and Nielsen, 2008) using ENVI 4.5 (ITT 

Visual Information Solutions ®). We calculated the NDVI and the Tasseled Cap 

transformation for the two scenes. The Tasseled Cap (Kauth and Thomas, 1976) reduces 

the image data to three ecologically meaningful bands or indices of brightness, greenness 

and wetness, which have shown useful for separating successional stages and forest types 

in other areas (e.g. Helmer et al., 2000; Song et al., 2007). Finally, we calculated 

differences in the band spectral values and indices between the two image dates (see 

Table 2). 

We horizontally co-registered the 30m SRTM DEM to the 30m LiDAR DEM and 

calculated a suite of topographic variables from both DEMs using ArcGIS 9.2 (ESRI®) 

Spatial Analyst (see Table 2). Finally, we created a GIS layer quantifying the distance 

from the coast. 
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Data analysis 

We used classification tree techniques for both objectives. Classification trees partition 

the data hierarchically using binary splits based on discrete values of the predictor 

variables, such that each split successively reduces the misclassification error in the 

partitioned group. For the first objective we used the Random Forest (RF) algorithm 

(Breiman, 2001), implemented in R (R development core 2005, Liaw and Wiener, 2002), 

which is a bootstrap-based extension of classification tree methods that has shown 

excellent results in classifications of ecological and remote sensing data (e.g. Lawrence et 

al., 2006; Cutler et al., 2007; Martinuzzi et al., 2009). In RF, classification rules are 

developed by combining 100s to > 1,000s of classification trees, which are constructed 

from random subsets of the training data and explanatory variables. The algorithm 

provides a robust internal measure of misclassification error (using observations that are 

randomly withheld in each tree development), which has shown to eliminate the need for 

a secondary dataset for accuracy assessment (Breiman, 2001; Lawrence et al., 2006; 

Falkowski et al. 2009). The algorithm provides measures of variable importance (derived 

from the permutation of the independent variables), which can be used to compare with 

ecological expectations based on published literature (Cutler et al., 2007). We identified 

the most parsimonious model using a RF-based method by Murphy et al. (2010), which 

iteratively reduces the number of variables using the variable's importance measure from 

RF, identifying the model with the lowest total error and maximum within-class error. 

Collinear variables were initially removed. 

We classified forest types in two ways, first using single sources of remotely-

sensed explanatory variables (e.g. LiDAR canopy alone, Landsat wet season alone, etc.) 

and then by combining multiple data sources. The variables Elevation (ELEV) and 

Distance to the coast (DIST) were added at the end, in a separate new mode. This is 

because the importance of these variables appears to be too specific of Guanica (i.e. they 

explain much of the distribution of the mesquite and dwarf forest) and we wanted to test 

the ability of LiDAR to classify forest types in spite of their relative location on the 

landscape (i.e. coastal or inland forest). Therefore, creating classification models with 
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and without the variables ELEV and DIST allowed us to better transfer our findings to 

other areas. 

Classification trees were applied differently in classifying past land use. Because 

the sample size was smaller (n=25, restricted to Semi-deciduous forests), we were able to 

partition the data visually. We developed decision trees using the smallest number of 

binary partitions possible to explain the data (three splits; i.e. # of land use history classes 

- 1). We compared the results of using LiDAR canopy metrics vs. Landsat multi-season 

imagery. Topography was not included in objective 2 because it is not an important 

variable explaining variations in forest structure within Semi-deciduous forests (Agosto 

Diaz, 2008). For all the classifications made, we reported global and class-level errors 

rates (from 0 to 1) and the kappa statistic. The kappa statistic (Landis and Koch 1977) 

measures overall classification accuracy compensating for agreement due to chance. 

Kappa value of 1.0 denotes perfect agreement and 0.0 no agreement other than that which 

would be expected by chance, with ranges of 0.41- 0.60, 0.61-0.80, and 0.81- 0.99 

describing moderate, substantial, and almost perfect accuracies. 

Results 

We first classified forest types using one source of remotely-sensed explanatory 

variables. The classification using LiDAR canopy metrics alone yielded the highest 

accuracy (kappa = 0.69), followed by the LiDAR DEM metrics (kappa = 0.58; Table 3). 

The classifications using Landsat or STRM DEM data, on the other hand, had kappa 

values ranging between 0.30 and 0.37. In addition, the classification from the LiDAR 

DEM had a higher accuracy than the classification from SRTM DEM (kappa values of 

0.58 and 0.30 respectively). In these models, the semi-evergreen forest showed the largest 

error difference, with a misclassification rate of 0.05 from the LiDAR DEM vs. 0.57 from 

the SRTM DEM. Finally, classification accuracies from the two Landsat scenes were 

very similar (kappa values of 0.37 and 0.32). 
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The most important predictors in the LiDAR-canopy model included the median 

absolute deviation of vegetation heights (HMAD), the 90th percentile of vegetation 

heights (H90th), and the percent of returns > 1.0 m (CDENSITY2, Table 3). The NDVI 

and the wetness and greenness indices were important in the Landsat-based models. 

Finally, the variable curvature (CURV) appeared among the most important variables in 

the classifications using topographic data (i.e. LiDAR and SRTM DEMs). 

The combination of the two different sources of LiDAR explanatory variables 

(i.e. canopy and topographic metrics) reduced the error from 0.23 (observed using 

LiDAR canopy metrics alone) to 0.14, resulting in a kappa statistic of 0.81 (Table 3). The 

class-level errors ranged between 0.13 and 0.16. On the other hand, combining the two 

Landsat seasons did not substantially improve the classification accuracy over the dry 

season imagery alone (kappa values of 0.39 and 0.37 respectively). The class-level errors 

for the Landsat multi season classification ranged between 0.21 and 0.76, with two of the 

three most extensive forest types in Guanica (i.e. semi-deciduous and semi-evergreen) 

greater than 0.40. 

The addition of SRTM variables to the multi-date Landsat model increased the 

classification accuracy from a kappa of 0.39 observed in the Landsat-only model to 0.51 

(Table 3). The class-level error ranged between 0.21 and 0.67, with the largest error 

found in the semi-evergreen forest. Finally, the addition of Landsat variables did not 

improve the accuracy observed using LiDAR explanatory variables (canopy plus DEM; 

i.e. kappa 0.82 vs. 0.81). The variables included in the models developed from multiple 

sources of remotely sensed based explanatory variables were typically a combination of 

the most important variables observed in the models using one source at a time. 

Adding the variables elevation (ELEV) and distance to the coast (DIST) improved 

the classification accuracy. The kappa value increased from 0.81 to 0.90 in the LiDAR-

based model, and from 0.51 to 0.63 in the Landsat-SRTM one (Table 3). The final 

models included ELEV and DIST in addition to other variables that were important in the 



1 0 7 

previous classifications. The resultant LiDAR-based map of forest types for Guanica is 

shown in Figure 2. 

In addressing our second objective we classified past land use within the semi-

deciduous forest using LiDAR (canopy) vs. Landsat variables (Fig. 3). The model 

constructed from LiDAR had the highest accuracy (kappa values of 0.88 and 0.77 

respectively), and both models separated the mid and late secondary forest classes 

equally. The LiDAR based model, however, separated the primary forests perfectly (i.e. 

error rate = 0.00) while the Landsat based models produced some confusion (error rate = 

0.18). The three explanatory variables included in LiDAR-based model included the 

percentage of vegetation returns between 0.3m and 3m (STRATI), the 75th percentile of 

vegetation heights (H75th), and the median absolute deviation of vegetation heights 

(HMAD; Fig 3). On the other hand, the Landsat based model included the Band 4, Band 

5 and the Brightness index, all from the dry season. 

Discussion and conclusions 

Because improved remote sensing technologies are needed to advance the research and 

management of tropical dry forests, we explored the use of LiDAR data to classify forest 

types and quantify forest succession, which are challenging aspects of remote sensing in 

these ecosystems. Furthermore, our study focused on mature secondary and primary 

forests and involved native- and exotic-dominated forest types, which are research-need 

areas in the face of tropical forest conservation and global change (Chazdon et al., 2009; 

Lugo, 2009). 

We found that LiDAR data were powerful predictors of tropical dry forest types, 

achieving higher accuracies than classifications made from previously available remote 

sensing data (i.e. Landsat ETM+ and SRTM). The best results were obtained when 

combining LiDAR data of canopy structure and topography. As a result, forest types that 

have been difficult to separate in previous efforts using Landsat, such as semi-deciduous 
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forests and shrublands/scrub forest or semi-deciduous forests and semi-evergreen forests 

(e.g. Helmer et al., 2002, 2008; Kennaway and Helmer, 2007; Gould et al., 2008; 

Martinuzzi et al., 2008), were possible to separate using LiDAR data. 

In addition, we detected no enhanced value for classifying forest types in Guanica 

after integrating Landsat with LiDAR data. In fact, with a misclassification rate of 0.14 

(and 0.07 when adding the variables elevation and distance to the coast; Table 3), the 

results from LiDAR yielded little room for improvement. Expanding to other land cover 

types is however important to better understand the role of LiDAR for mapping and 

characterizing tropical dry forest landscapes. 

The forests of Guanica vary in terms of canopy height, canopy cover and vertical 

complexity, and are profoundly affected by soil conditions (Lugo 2005). The most 

important LiDAR-derived predictors seem to reflect those variations, providing a novel 

and meaningful picture of the vegetation (Fig 4). The metric H90th, for example, tends to 

correspond well with the mean tree height of a stand (Hopkinson et al., 2006; Li, 2008). 

We likewise observed an increase in canopy height as going from the dwarf forest to the 

scrub forest, semi-deciduous (and mesquite), and finally to the semi-evergreen forest, 

with median values of about lm, 3m, 5m, and 10m that match the general descriptions 

found in the literature (see Lugo, 2005; Agosto Diaz, 2008). The metric CDENSITY2, a 

surrogate of canopy cover in this study, showed that well-developed forests such as the 

semi-deciduous, semi-evergreen and mesquite have high canopy cover (e.g. > 70% for 

the semi-deciduous and consistent with Murphy and Lugo [1986]), while the naturally 

open scrub forest reported much lower values, as expected (Fig. 4). The fact that the 

dwarf forest appeared with little or no canopy cover is an artifact of the threshold 

established at > 1 m, above which little or no vegetation exists for this forest type. 

Finally, the metric HMAD (median absolute deviation of vegetation heights) seems to 

reflect known patterns of vertical heterogeneity. According to Lugo (2005), the semi-

evergreen is the most structurally diverse forest type in Guanica because it supports the 

largest variations in tree height and diameter. In our study, these forests showed the 

highest HMAD values, agreeing with Lugo (2005). 
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Distinctive characteristics of the invasive Mesquite forest also related to the 

HMAD LiDAR metric. Our study showed that the mesquite forest is similar to the semi-

deciduous forest in terms of horizontal cover (i.e. CDENSITY2) and height (H90th; 

Wilcoxon W Test [W] = 87.5, p-value = 0.68 for CDENSITY2 and W = 107.5, p-value -

0.71 for H90th). However, this exotic-dominated forest appeared less vertically diverse 

(in HMAD values) than the semi-deciduous forest (Wilcoxon W Test [W] - 167, p-value 

= 0.005; see Fig. 4). This might be a result of the different number of tree strata naturally 

present in these two forest types, i.e. one for the mesquite (Stromberg, 1993) vs. one to 

three for the semi-deciduous (Lugo, 2005). This difference in strata, in turn, will cause 

the laser returns to be more scattered along the vertical dimension, resulting in different 

HMAD values. These findings agreed with Asner et al. (2008a,b), who found that exotic 

species can transform the 3D structure of the forest, and that LiDAR can be sensitive to 

those transformations. In this sense, there are great opportunities to continue investigating 

the role of this powerful technology in the context of biological invasions and novel 

forests. For example, we observed little variation in H90th between the different plots of 

Mesquite (Fig. 4), suggesting the presence of a tree cohort established likely after a single 

disturbance event (e.g. agricultural abandonment), rather than gradual recruitment over 

time. 

Topographic (/. e. DEM-based) variables were important for refining classification 

of tropical dry forest types, agreeing with previous remote sensing studies (e.g. Helmer et 

al., 2008; Martinuzzi et al., 2008; Sesnie et al., 2008). However, although both LiDAR 

and SRTM DEMs added predictive power to the classifications, the LiDAR DEM did a 

better job in discriminating vegetation types. This difference was largely attributed to the 

semi-evergreen forest, which was better separated from the rest with the LiDAR DEM. 

We believe that this is a result of a lower ability of SRTM data to depict topographic 

changes under forest canopies compared to LiDAR. While LiDAR returns can reach the 

true ground even under very dense forest canopies (Hofton et al., 2002), elevations 

retrieved from SRTM are located somewhere between the canopy top surface and the 

ground (Hofton et al., 2006). As a result, valleys and ravines, which are the distinctive 



1 1 0 

locations of semi-evergreen forests, were well defined in the LiDAR DEM, but were 

more difficult to distinguish from the surrounding terrain in the SRTM DEM (see Fig. 5). 

In these areas, the lower surface elevations might be canceled by the simultaneous 

presence of taller forests, resulting in a final SRTM elevation that is not very different 

from the nearest cells. The different values of curvature (i.e. CURV, which describe 

convexity and concavity of slope profiles with positive and negative values respectively) 

observed in the LiDAR and SRTM DEMs for the semi-evergreen forests might further 

confirm the previous point (Fig. 4). 

LiDAR metrics of canopy structure were useful for separating mid and late 

secondary forests, as well as stands of primary forests. Identifying these habitats is 

critical for conservation and management, yet has been difficult in previous studies 

(Sanchez-Azofeifa et al., 2009). We also observed that the LiDAR variables that best 

classified succession were those describing vertical canopy structure (rather than 

horizontal, i.e. STRATI, H75th, and HMAD). This supports the idea that horizontal 

structure might have stabilized in these mature forests, while changes in the vertical 

dimension might still be occurring (Lugo, 2005). Although more research is needed to 

better understand the biophysical meaning of these metrics, our findings reinforced the 

value of LiDAR to assess land use legacy (Falkowski et al., 2009). Finally, the fact that 

an exotic species (Leucaena leucocephala) dominates forest recovery in one of the past 

land uses perfectly classified (i.e. the one with agricultural history), adds further value to 

use of LiDAR for assessing novel forests. Expanding and testing succession assessments 

in other tropical dry forest types and land use histories are warranted. 

Our findings provide also valuable information for further applications using 

optical imagery (e.g. Landsat). For instance, our study supported the use of dry season 

imagery to assess succession in tropical dry forests, similar to Arroyo-Mora et al. (2005) 

and Kalacska et al. (2007). However, we found that the variables that appeared useful for 

classifying succession in mature forests by this study (/'. e. Landsat bands 4, 5 and 

brightness, achieving a kappa of 0.77) were different to those identified by previous 

authors in younger forests, i.e. NDVI (see Arroyo-Mora et al., 2005 and Hartter et al., 
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2008). This might be related to the fact that NDVI captures differences in horizontal 

structure between successional stages, which are more evident in young forests than in 

mature ones (Kalacska et al. 2005; Lugo 2005). The successional classes by this study 

showed very similar NDVI and canopy cover values (CDENSITY2), which might reflect 

this point (Fig. 6). Finally, the variables identified by this study were consistent with 

Helmer et al. (2002) assessing succession in other tropical forests. 

Our study highlights the value of LiDAR remote sensing data -even low density 

LiDAR- for supporting forest land cover mapping and land use legacy assessments in 

tropical dry forests, and complements recent findings by Kalacska et al. (2007) using 

hyperspectral data. Continued application of these promising technologies (see Asner and 

Martin, 2009) is important to advance the research and management of these valuable 

ecosystems. 
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Figure 1. Locations of the study area. 
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Figure 2. Map of forest types for Guanica derived from LiDAR data. 
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Figure 3. Classification trees decisions and resultant accuracy statistics for different 

successional stages using LiDAR (top) or Landsat ETM+ (bottom) variables. Mid-sec. = 

Mid-secondary; Late-sec. = Late-secondary; (A) and (L) describe agricultural or logging-

based past land uses respectively. 
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Figure 4. Forest types vs. remotely sensed predictor variables. Mesq. = Mesquite; S-dec. 

= Semi-deciduous; S-everg. = Semi-evergreen. 
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Figure 5. Topographic detailed captured by the 30-meter pixel LiDAR and SRTM digital 

elevation models. 
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Figure 6. Successional classes vs. remotely sensed predictor variables. 1 = Mid-

secondary forest; 2 = Late-secondary forest; 3 = Primary forest; (A) and (L) describe 

agricultural or logging-based past land uses respectively. 
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Table 1. Forest types in Guanica based on Lugo et al. (1978), Lugo 2005, Murphy and 

Lugo (1986), Farnsworth (1993), and Gould et al. (2008). The number of field samples 

used by this study (N) is also presented. 

Class name N Description 

Semi-
deciduous 
forest 

28 

Covers about 60 % of Guanica. Average tree height is 4.3 m 
with tallest trees between 7 m and 12 m. Most trees are less 
than 10 cm in diameter, with up to 14,000 trees per hectare and 
basal area about 20 m2/ha. Canopy cover fluctuates from 97 % 
in the wetter month to 77 % in the drier month, and leaf area 
index from 4.3 to 2.1. 

Semi-evergreen 
forest 21 

Represents about 20 % of the area, in moist ravines and valleys 
with thicker soils, abundant leaf litter, and springs or runoff 
catchments. Trees are taller with some species reaching 10 to 
15 meters, and high species diversity. Includes evergreen 
forests. 

Scrub forest 19 

Covers about 15% of Guanica, also known as shrubland/cactus. 
Open shrubland with cactus and widely spaced stunted trees 
found on areas with poor soil development and much exposed 
bedrock. 

Dwarf forest 8 

Along coastal rocky areas exposed to ocean winds and salt 
spray, and composed by gnarled and twisted trees with 
horizontal stem and canopy growing close to the ground. 
Believed to support the oldest trees in Puerto Rico. 

Mesquite forest 7 Relatively homogenous stand of Prosopis pallida with a dense 
herbaceous understory. 
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Table 2. Remote-sensing based explanatory variables. 

Variable name Description 

CDENSITY1 Canopy density 1; % of returns > 0.3 m 

CDENSITY2 Canopy density 2; % of returns > 1.0 m 

CDENSITY3 Canopy density 3; % of returns > 2.0 m 

STRATI Stratum 1; % of vegetation returns between 0.3 m and 3 m 

STRAT2 Stratum 2; % of vegetation returns between 3 m and 8 m 

u 1-1 
STRAT3 Stratum 3; % of vegetation returns > 8 m 

3 o 
5 

HI Oth 10th percentile of vegetation heights 
t/3 

n. H25th 25th percentile of vegetation heights 
o a a a HMEDIAN Median height of vegetation returns 
o 
cn 

.2 
<s 

H75th 75th percentile of vegetation heights o 
cn 

.2 
<s 

H90th 90th percentile of vegetation heights 
> 

eaeS < HMEAN Mean height of vegetation returns 
Q J HMAX Maximum height of vegetation returns 

HMAD Median absolute deviation of vegetation heights 

HSD Standard deviation of vegetation heights 

HSKEW Skewness of vegetation heights 

HKURT Kurtosis of vegetation heights 

HIQR Interquartile range of vegetation heights 

B1 Band 1 
<D 

1 
' 5 > 

B2 Band 2 <D 

1 
' 5 > B3 Band 3 

£3 o o 
B4 Band 4 

O. 

+ B5 Band 5 

H 
W B7 Band 7 
t/5 

T3 
C 

NDVI Normalized Difference Vegetation Index 
cG 

J TCAP-B Tassel ed cap brightness 
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TCAP-G Tasseled cap greenness 

TCAP-W Tasseled cap wetness 

(Note: The suffix "wet" or "dry" before the variable's name is added to identify 
the image season when needed [e.g. NDVIdry], Similar, the symbol "A" before 
the variable's name is added to denote multitemporal change [e.g. ANDVI]). 

ELEV Elevation 

SLP Slope 
t/3 « 

> 

ASP Aspect 
t/3 « 

> CURV Curvature 
o 
IS a-
S 

SRAD Area Solar Radiation 
i-r 60 o a. Q 

IMI Integrated Moisture Index (Iverson et al. 1997) 
H CTI Compound Topographic Index (Gessler et al. 1995) 

(Note: Derived from both 30-meter LiDAR and SRTM DEMs) 

Other DIST Distance to the coast 



1 2 8 

Table 3. Forest type classification models, including sources of predictor variables (top 

section), accuracy statistics (center) and variables included in the final models (bottom). 

Models 1-5 developed from single sources of predictor variables; models 6-9 from 

multiple sources, and models 10-11 after adding elevation (ELEV) and curvature 

(CURV). 

Model 1 2 3 4 5 ( g l J J l l l l P i l 8 mm 10 11 

LiDAR canopy X X X X 

ETM+ wet season X X X X X 

ETM+ dry season X X X X X 

LiDAR DEM X X X X 

SRTM DEM X X X 

ELEV and DIST X X 

Scrub forest 0.16 0.21 0.37 0.68 0.58 0.16 0.21 0.21 0.11 0.05 0.11 

Semi-deciduous forest 0.21 0.46 0.43 0.25 0.46 0.14 0.46 0.21 0.14 0.07 0.25 

Dwarf forest 0.13 0.38 0.38 0.50 0.75 0.13 0.38 0.38 0.13 0.13 0.25 

Semi-evergreen forest 0.29 0.86 0.67 0.05 0.57 0.14 0.76 0.67 0.14 0.10 0.57 

Mesquite forest 0.43 0.57 0.43 0.14 0.29 0.14 0.29 0.43 0.14 0.00 0.00 

Overall error rate 0.23 0.51 0.47 0.31 0.53 0.14 0.46 0.36 0.13 0.07 0.28 

Kappa 0.69 0.32 0.37 0.58 0.30 0.81 0.39 0.51 0.82 0.90 0.63 

Model 1 - HMAD, H90th, CDENSITY2, HMAX, H75th, CDENSITY3, STRAT2 

Model 2 - NDVI, TCAP-W, TCAP-G 

Model 3 - NDVI, TCAP-W, TCAP-G, TCAP-B 

Model 4 - CURV, IMI, CTI, SRAD, SLP 

Model 5 - SRAD, CURV, SLP, ASP 

Model 6 - CURV, CDENSITY2, HMAD, H90th, CTI, CDENSITY3, SLP, HMAX, H75th, STRAT2, 
HMEDIAN, CDENSITY1, STRATI 

Model 7 - NDVI(wet), TCAP-W(dry), TCAP-G(wet), TCAP-W(wet), ATCAP-B, NDVI(dry), TCAP-
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G(dry), AB2, AB5 

Model 8 - NDVI(wet), TCAP-G(wet), TCAP-W(dry), NDVI(dry), TCAP-W(wet), AB2, ATCAP-B, 
TCAP-G(dry), CURV, AB5, TCAP-B(wet), SLP, ASP, AB1, CTI 

Model 9 - CURV, HMAD, H90th, CDENSITY2, CTI, HMAX, H75th, CDENSITY3, B2(wet), STRAT2, 
TCAP-G(wet), SLP, HMEDIAN, TCAP-W(wet) 

Model 10 - CURV, ELEV, DIST, HMAD, CDENSITY2, H90th, CTI, CDENSITY3 

Model 11 - ELEV, DIST, NDVI(wet), TCAP-W(dry), TCAP-G(wet), TCAP-W(wet), NDVI(dry), 
ATCAP-B, AB2, CURV, TCAP-G(dry), SLP, AB5, TCAP-B(wet), CTI, ASP 



1 3 0 

CONCLUSIONS AND FUTURE WORK 

This dissertation evaluated the consequences of integrating LIDAR remote sensing data 

into current assessments of wildlife habitat distribution and conservation. The main 

findings were: 

(1) Species distribution models for a large number of wildlife species can immediately 

benefit from LiDAR-derived variables of canopy structure (Chapter 1). In the Inland 

Northwest (USA), for example, this represents about 30% of the avian species and 

20% of the mammal species, including several species of great conservation need. 

The most important habitat variables appeared to be: tree canopy cover, shrub canopy 

cover (including understory shrubs), some measure of stand biomass (mean tree 

diameter / basal area / age), shrub height, and size and density of snags. Furthermore, 

the number of wildlife species that could potentially benefit from such data is 

expected to increase since the structural habitat preferences of many species are either 

unknown or often not reported. 

(2) LiDAR data can be used to map the distribution of key wildlife habitat features in 

forests, such as snags and understory shrubs (Chapter 2). In a mixed-conifer forest of 

northern Idaho, the combination of LiDAR-derived metrics of canopy height and 

topography allowed us to predict the distribution of snags and understory shrubs with 

an accuracy of > 80%. This represents an important step towards improved 

assessments of forest structure and wildlife habitat relative to previous efforts using 

traditional remote sensing technologies. 

(3) LiDAR improve the mapping of wildlife habitat suitability at local scales (Chapter 2). 

For the first time, avian-habitat relationships that have been known for decades (e.g. 

woodpeckers with specific snag sizes, flycatchers with dense understory areas, etc) 

were possible to map with the help of LiDAR. This resulted in refined patterns of 

habitat distributions that better reflect species' preferences for particular conditions of 

forest structure. In this sense, LiDAR data helped reduce the gap between the 

environmental variables that are important for assessing wildlife habitat, and the 

variables that we can effectively map. 
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(4) Novel data of vegetation structure impacts traditional GAP analysis assessments 

(Chapter 3). We observed that the incorporation of vegetation structure into a recent 

Idaho GAP Analysis Project resulted in: improved species-habitat models (i.e. that 

better reflect known species-habitat relationships), smaller predicted habitats (i.e. 

15% to 68% smaller than those previously developed without information about 

vegetation structure), higher model accuracy by reduced commission errors (one of 

the major criticism to GAP data), and lower values of species richness calculated at 

the Landsat pixel scale. On the other hand, species richness values calculated at the 

GAP hexagon scale, as well as the species representation within the network of 

protected lands, did not change after adding vegetation structure information. 

Surprisingly, all of these changes resulted from the incorporation of only one aspect 

of vegetation structure (i.e. tree canopy cover). 

(5) LiDAR data facilitate forest land cover mapping (Chapter 4). Forest land cover maps 

are the main source of environmental geospatial data for assessing wildlife habitat 

and species distribution; however, accurate maps of detailed forest types have been 

difficult to obtain. In a complex tropical forest, we observed that the use of LiDAR 

data increased forest type classification from 60% (using Landsat) to about 90%. 

Both canopy and topographic data from LiDAR seemed important for refining forest 

land cover classifications. 

(6) LiDAR data facilitate forest succession assessments (Chapter 4). Because forest 

succession is one of the major forces affecting forest structure, it is also a key variable 

for determining wildlife habitat. However, forest successional stages have been 

typically difficult to map with traditional remote sensing data (e.g. Landsat). Our 

efforts in temperate and tropical landscapes showed the value of LiDAR for 

accurately separating successional classes in forests (i.e. accuracies >90%; see 

Falkowski et al., 2009 and Chapter 4). This included the ability to identify remaining 

patches of old growth forests, which are important components for biodiversity and 

conservation, and represent one of the most endangered ecosystems in the United 

States (Noss et al., 1995). 
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Expanding and testing the findings from this thesis are important future steps. 

Although very promising for advancing wildlife habitat and conservation assessments 

with remote sensing, the research presented by this thesis warrants further applications in 

other landscapes and involving other wildlife species in order to fully evaluate the 

potential of LiDAR data. For example, can snags and understory shrubs be mapped from 

LiDAR in other forest types? Which are the most important variables of vegetation 

structure for assessing wildlife habitat in broad-leaf forests? To what degree can LiDAR 

improve wildlife habitat assessments for critical groups of species such as amphibians? 

Great opportunities also exist to further advance wildlife habitat modeling using 

LiDAR-based structure mapping. These include, for example, improving our 

understanding of the scales at which species respond to the environment, and identifying 

potential relationships between ecosystem 3-D structure and habitat quality. While most 

of the studies -including this thesis- have used LiDAR to identify areas where wildlife 

species are most likely to occur (i.e. habitat suitability approach, or presence/absence 

analyses), only few efforts have used LiDAR to identify areas where species "can do" 

better (i.e. to evaluate habitat quality or fitness, and considering survival and 

reproduction, e.g. Hill et al., 2004). Because such information is critical for managers, 

and because our knowledge about the local habitat characteristics that influence fitness is 

poor, evaluating the use of LiDAR for assessing habitat quality emerges as an important 

need. 

In addition, measuring vegetation structure at spatial scales that are relevant for 

wildlife is critical for developing accurate habitat-association models. However, such 

work has been limited due to logistical constraints to measuring vegetation structure in 

the field. As a result, our knowledge of the relationships between wildlife and vegetation 

structure is restricted to field plots of 1-ha or less in size. In this thesis, for example, I 

mapped habitat suitability using indices that are based on information at 1 -ha scale 

(Chapter 2). LiDAR, on the other hand, allows forest structure characteristics to be 

quantified at varying grain and extent, and therefore provides a unique opportunity to 

identify the scale at which species respond to vegetation structure. By doing so, for 

example, a recent study by Seavy et al. (2009) found that avian relationships with canopy 
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height in a riparian forest were best explained at scales that ranged between 0.2 ha to 50 

ha, depending on the species. These findings can be used to further enhance the 

biological meaning of geospatial data sets, and therefore to advance current assessments 

of wildlife habitat distribution and conservation such as GAP analysis. 

The increasing availability of LiDAR data opens new opportunities for the GAP 

Analysis Program. In previous GAP efforts, the lack of geospatial data about forest 

structure for supporting wildlife habitat models, and the difficulties for accurately 

separating forest land cover types, have been major limitations (e.g. Laba et al. 2002; 

Scott et al., 2002; Lawry et al., 2005; McKerrow et al., 2006). This thesis showed that 

LiDAR data can be used to refine GAP habitat distribution models, as well as to improve 

forest land cover mapping; and furthermore, that refined habitat data can significantly 

impact many of the results from GAP. 

Today, ten states in the country have wall-to-wall LiDAR data available (Jason 

Stoker, personal communication). With remote sensing data at the core of GAP, the 

presence of these powerful -and freely available- datasets is definitively good news. 

Improving GAP assessments with LiDAR data is recommended, as it would increase the 

relevance of GAP data for conservation planning today, and help prepare GAP for 

tomorrow, as LiDAR collections become even more widely available. A critical step for 

making this happen would be to develop approaches that facilitate the operational use of 

large (i.e. State-wide) LiDAR datasets. 

Finally, further efforts should also explore the use of satellite-based LiDAR data, as 

well as the integration of LiDAR with radar, multi spectral and/or hyperspectral imagery 

for assessing wildlife habitat. Indeed, a recent paper by Bergen et al. (2009) evaluated the 

potential of future LiDAR and radar spaceborne missions for assessing biodiversity and 

habitat, and Asner & Martin (2009) showed that the integration of LiDAR with 

hyperspectral data can tremendously advance assessments of vegetation diversity in 

forests. 
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