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ABSTRACT 

Quantifying bidirectional reflectance factors for delineating shrub-steppe 

vegetation functional types across scales from the plant to the landscape 

 

Annual invasive grasses increases in sagebrush steppe have degraded vast 

areas in the Western US reducing biodiversity and production of rangelands. 

Discriminating this plant functional type (PFT) from other vegetation types such 

as shrubs and perennial grasses at the landscape scale has been challenging 

because of background (soil and litter) reflectance and effects of shadows using 

nadir-only view angle passive remote sensors. However, changes in vegetation 

structure and anisotropic behavior in the middle and late stages of the growing 

season have enabled us to differentiate some of these PFTs using remote 

sensing measurements collected at different spatial scales within a shrub-steppe 

rangeland ecosystem in west-central Idaho. Changes from erectophile to 

planophile leaf orientation of annual invasive grasses, comprised in this area 

mostly by medusahead (Taeniatherum caput-medusae [L.] Nevski) produced a 

distinctive set of vegetation reflectance values for this PFT at ground level during 

the transition from green to senesce stages. However, measuring plant canopy 

reflectance depends on the geometry between sensor view angle and solar 

position. We therefore further demonstrated that medusahead can be detected 

from native perennial vegetation near solar noon, which could be useful when 

scheduling multispectral or hyperspectral aerial image surveys. Medusahead did 

not exhibit strong anisotropic reflectance behavior, quantified through the 
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measurement of bidirectional reflectance factors (BRF) and anistropy index 

(ANIX), however the shrub PFT did exhibit high anisotropy in field 

measurements. We therefore tested whether we could classify areas dominated 

by shrubs, non-shrubs, and crops at the landscape scale to generate PFT-based 

productivity estimates using the MODIS Gross Primary Productivity product. 

Although accuracy classification at moderate scales was high (Khat 88-98%), 

GPP shrub partitioning was very poor (R2<0.06). 
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CHAPTER 1.  Remote sensing of rangeland ecosystem structure and 

function: A review of techniques 

 

1. Introduction 

Vast expanses of grasslands, shrublands, and savannas comprise the 

semi-arid rangelands of western North America. While these ecosystems 

constitute a large fraction of the Western landscape, it has been difficult to 

establish quantitative methods for objective and repeatable assess rangeland 

vegetation status across broad scales. Rangeland ecosystem health has been 

assessed at the ground level using a wide variety of indicators, but these 

techniques are often limited in the spatial extent of the area assessed.  

A relatively fast and cost effective protocol to assess rangeland health that 

uses site-specific data derived from 17 indicators has been adopted by federal 

organizations (Pellant et al. 2000, Havstad and Herrick 2003). Rangeland 

ecosystem health is defined as “The degree to which the integrity of the soil, 

vegetation, water, and air as well as the ecological processes of the rangeland 

ecosystem are balanced and sustained”, where integrity is defined as 

“maintenance of the functional attributes characteristics of a locale, including 

normal variability” (USDA 1997). Assessments of individual sites may limit 

interpretation of vegetation dynamics within landscapes and minimize the 

confounding effects of landscape heterogeneity (Stafford-Smith 1996, Briske et 

al. 2005). In addition, the rate and magnitude of vegetation change studies based 

on individual ecological sites may have been overemphasized compared with 
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changes at large scales (Briske et al. 2003). Thus, assessment and monitoring of 

the rangeland functionality related to structural attributes across broad scales 

represent the major approach of rangeland health (Tongway and Ludwig 1997, 

Hunt et al. 2003, Briske et al. 2005) 

Vegetation structure affects light use efficiency (Ross 1981, Ryel et al. 

1994, Widlowski et al. 2004), water uptake (Smith and Nobel 1977, Ryel et al. 

2004, Loik 2007), and wildlife habitat (McNaughton 1979, Bradford et al. 1996, 

Stewart et al. 2006). At the plant canopy level, vegetation characteristics such as 

cover, leaf position and leaf area index affect reflectance, absorption and 

transmittance of the incoming radiation or irradiance (Asner 1998a, Larcher 

2003). In addition, community and ecosystem structure affect how incoming 

irradiance is utilized by the plants as a result of variations in soil characteristics, 

slope and aspect of the terrain, vegetation cover, biomass and physiognomy, 

foliage density and layering, canopy openness and gap proportions (West 1993). 

Monitoring changes in vegetation structure due to natural or human 

disturbances is needed to maintain ecological services of rangelands (Walker 

1992, West 1993). Although the value of theses ecological services is difficult to 

conceptualize and quantify (Walker 1992, West 1993), maintenance of the 

gaseous composition of the atmosphere; genesis, fertility and stability of soils; 

energy flow; cycling of nutrients; and natural control of pathogenic and parasitic 

organisms are some examples of ecological services provided by rangelands 

(West 1993, Holecheck et al. 1995).  
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Plant functional types bridge the gap between plant physiology and 

community and ecosystem processes (Diaz et al. 2002). For instance, the 

estimation of the amount of plant production (Pellant et al. 2000), the fraction of 

invasive species present (D’Antonio and Vitousek 1992), and the amount of 

woody vegetation occurring across the landscape (Hibbard et al. 2001, Hughes 

et al. 2006) present promising opportunities for rangeland monitoring using 

remote sensing (Hunt et al. 2003, Lass et al. 2005, Strand et al. 2006). 

Computer-based technological advances have allowed scientists to develop 

deep insights about the structure and function of ecological systems around the 

globe. In particular, analyses of vegetation spectral patterns in remotely sensed 

imagery have revealed unprecedented information about ecosystem dynamics 

occurring across almost every major biome (Skole and Tucker 1993, Myneni et 

al. 1997, Nemani et al. 2003).  

Research of rangeland ecosystems using remote sensing techniques 

have mainly focused on ecological structural pattern through image interpretation 

(processing), image classification, and validation of remote sensing products 

using field collected data (Tueller 1989, Hunt et al 2003). For example, 

classification techniques have been used to detect invasive species, distinguish 

different vegetation types and estimate cover fractions of bare ground and 

vegetation. Spectral vegetation indices such as the normalized difference 

vegetation index (NDVI) have been used in models to derive information about 

rangeland ecosystem function such as net primary production and to monitor 

changes in vegetation greenness over time (Tueller 1989, Turner et al. 2004). 
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However, studies that examine the interplay between rangeland ecosystem 

structure and function are relatively few. Thus, the objective of this paper is to 

review new techniques in remote sensing such as multi-view angle spectrometry 

that can enhance delineation of plant functional types as well as potential to 

complement existing rangeland ecosystem health monitoring techniques. In 

addition, a review of studies of structural and functional ecosystem attributes 

related with remote sensing techniques is presented.  

  

2. Nadir view imagery for assessment of rangeland structure and function 

The vast majority of remote sensing-based vegetation studies share the 

common measurement technique such that the sensor is pointed vertically down 

at the ground (also called the nadir position). For instance, multispectral remote 

sensors such as Landsat collect the reflected radiance of the surface in a defined 

range of wavebands at the nadir position. Moreover, the first hyperspectral (more 

than ~30 spectral wavebands) airborne sensors also collect measures of 

reflected light along lines of flight pointed vertically to the ground. These 

reflectance values recorded at nadir view have been extensively used to extract 

spectral indices, generate vegetation type cover and develop and test ecological 

models (Tueller 1989, Hunt et al. 2003).  
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2.1 Applications of Spectral Data to Quantifying Semi-Arid Ecosystem 

Properties 

Structural and functional components of the vegetation such as LAI, 

biomass, fraction of absorbed photosynthetically active radiation (fPAR) and 

plant cover have been extracted using spectral indices (Tueller 1989, Hunt et al. 

2003). Vegetation spectral characteristics in the red (R) and near infrared (NIR) 

wavebands have been used to generate different vegetation indices like the 

Normalized Difference Vegetation Index (NDVI; Rouse et al. 1974), the Soil 

Adjustment Vegetation Index (SAVI; Huete 1988) and the Enhanced Vegetation 

Index (EVI; Huete and Justice 1999) (Table 1-1).  

Multispectral remote sensors using red and NIR wavebands provide data 

for estimating vegetation indices and developing spectrally-based ecological 

modeling products. For example, the Moderate Resolution Imaging 

Spectroradiometer (MODIS) and the Advanced Very High Resolution Radiometer 

(AVHRR) NDVI values have been related to gross primary productivity (GPP) 

(Tucker et al. 1985, Running et al. 1994). Hunt et al. (2003) used Advanced Very 

High Resolution Radiometer (AVHRR, 1000-m spatial resolution) NDVI as a 

surrogate of fPAR to estimate gross primary production using the following 

equation (1) (after Monteith 1972, Running et al. 1994): 

GPP = ε x fPAR x PAR ≈ ε x NDVI x PAR    (1) 

Where: 

GPP  = Gross primary production 

ε  = light use efficiency 
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fPAR= fraction of absorbed photosynthetically active radiation  

PAR  = photosynthetic active radiation 

NDVI = Normalized Difference Vegetation Index 

Broad scale GPP estimates resulting from these analyses have enabled 

numerous studies of carbon cycle dynamics, vegetation phenology, and 

vegetation productivity over the past two decades. 

 

Vegetation indices have also been used to detect invasive plants because 

of differences in phenology between invasive and native vegetation (Lass et al. 

2005). Bradley and Mustard (2005) established that satellite scenes must be 

chosen to capture peak productivity of cheatgrass. Bradley and Mustard (2005) 

showed that NDVI values derived from Landsat TM (30-m spatial resolution) and 

Advanced Very High Resolution Radiometer (AVHRR, 1000-m spatial resolution) 

detect interannual variation in productivity in ecosystems dominated by 

cheatgrass. In addition, Bradley and Mustard (2005) utilized similar phenological 

differences among grasses of the Great Basin to differentiate areas dominated 

by cheatgrass from those dominated by bunchgrasses. Lass et al. (2005) 

reviewed remote sensing techniques and algorithms used in different invasive 

plants that including multispectral and hyperspectral imagery at very high spatial 

resolution. However, similar spectral reflectance to other vegetation and 

coexistence with other vegetation remain challenging in annual invasive plant 

detection (Shafii et al. 2004) 
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Other analyses using different spectral bands are related with soil erosion 

in semi-arid regions. For instance, Pickup and Nelson (1984) developed an 

empirical model that transforms Landsat MSS data into an approximate measure 

of erosion and deposition. It uses the MSS 4/6 and 5/6 band ratios that when 

plotted against each other for each pixel, occupy a space between two parallel 

lines. Values close to the upper line are usually associated with areas of severe 

erosion. Points midway between the lines tended to depict areas of apparent 

stability. The lower part of the data space is occupied by depositional sites with 

the intensity of deposition. Measurements of ground cover are correlated with soil 

stability, watershed function and grazing management (Booth and Tueller 2003). 

Thus, measuring ground cover using remote sensing imagery enhances the 

ability to detect soil degradation and erosion (Pick up and Nelson 1984, Wang et 

al. 2002, Vrieling 2006).  

 

2.2 Classification techniques 

Rangeland cover-type classification using remotely sensed imagery has 

been mainly based on pixel classification. At coarse scales this represents a big 

challenge because traditional rangeland ecosystem monitoring requires 

quantifying trends in assemblages of vegetation species. However, many of 

these species assemblages do not exhibit spectral reflectance patterns 

distinctive enough for remote detection/delineation throughout most of the year 

(Hunt et al. 2003). Although hyperspectral imagery can help distinguish among 

different vegetation types, it cannot distinguish spectral differences among 
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species due to similar spectral reflectance characteristics at the nadir view 

(Asner et al. 1998c). Nonetheless, because only remote sensing can provide cost 

effective data to evaluate ecosystems across broad extents at frequent return 

intervals (twice daily, in some cases), creative approaches are warranted to 

better relate these observations to rangeland ecosystem health.       

A variety of classification techniques have been used in rangelands. 

Supervised and unsupervised classification techniques depend on having 

separable spectral signatures of different vegetation types and spatial resolution. 

Therefore, similar spectral responses within vegetation communities would 

potentially cause pixel misclassification, leading to omission and commission 

errors (Tueller 1989). Other approaches such as discrete Fourier transform, 

tasseled cap components and spatial wavelet analysis have been assessed to 

classify rangelands. Annual NDVI cycle and discrete Fourier transform were used 

to determine pixel class membership for different shrub types as characterized by 

differences in length of their growing period (Evans and Geerken 2006). Discrete 

Fourier transform has been used to minimize noise in NDVI time series and 

enhance key vegetation features. On the other hand, classified Landsat-7 ETM 

(+) imagery using mean values in tasseled cap brightness, greenness, and 

wetness components had 98% overall accuracy in identifying locations with 

normal or anomalous productivity within ecological site descriptions (Maynard et 

al. 2007).  

In addition, location of individual shrubs was assessed using spatial 

wavelet analysis (SWA) and high spatial resolution (0.25 and 1 m) aerial 
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photography (Garrity et al. 2008). SWA convolves ever-increasing size (dilation 

scales) of the wavelet shape, called the basis function, with the imagery (Strand 

et al. 2006, 2008). The basis function to detect shrubs location was set between 

0.2 and 0.4 m with a step interval of 0.1 m (Garrity et al. 2008) 

  

3. Multi-view angle imagery for assessment of structure and function 

The nadir measurement method has been used out of necessity, because 

until recently a large fraction of satellite and aircraft imagery has been collected 

at or near nadir to minimize problems relating to image distortion and differing 

atmospheric path length. However, nadir measurements in rangeland systems 

can suffer from several potential pitfalls. First, nadir measurements include the 

highest fraction of background (i.e. soil, senesced vegetation litter) vs. green 

plant material; relative to measurements at the same location taken at oblique 

angles. As a result, the spectral data collected at nadir can be confounded by 

background reflectance properties, making interpretation of green plant material 

difficult (Huete et al. 1985), particularly in semi-arid rangeland landscapes. 

Second, because shadows play a large role in dictating the direction and amount 

of light being reflected off of vegetated rangeland surfaces, it is difficult to 

constrain the amount of shadow being included in a nadir measurement at 

different times of the day (Vierling et al. 1997). 
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3.1 Multi-angular reflectance theory 

Angular spectral information has been shown to improve nadir view 

surface cover classification in some instances (Martonchik et al. 1998, 

Schaepman-Strub et al. 2006). Rangeland surfaces, like many other land 

surfaces, show complex structure that reflects the incoming light in many 

different directions, a phenomenon described as anisotropy. Middleton et al. 

(1987) were among the first researchers to quantify the anisotropy of rangeland 

reflectance. Walthall et al. (1985) showed that most bidirectional information of 

vegetated and soil surfaces is found in the principal solar plane within viewing 

angles approximately 50˚ either side of nadir. The relationship between the 

directional radiance reflected from a target and the sun’s irradiance (incident flux) 

illuminating the target at a single incidence angle is called the bi-directional 

reflectance distribution function (BRDF) (Nicodemus et al. 1977, Diner et al. 

1999, Schaepman-Strub et al. 2006). However, the BRDF cannot be directly 

measured (Nicodemus et al. 1977).  

Nine possible relations between incoming and reflected radiance can 

result from combinations of three beam geometries; directional, conical and 

hemispherical (Nicodemus et al. 1977, Martonchik et al. 1998, Schaepman-Strub 

et al. 2006). Four of these combinations have been mostly used in ecological 

applications. The hemispherical directional reflectance factor (HDRF) is defined 

as the ratio of the view-angle-dependent surface-reflected radiance at location 

x,y to the reflected radiance from an ideal Lambertian target for the same 

incident radiance field at the same location (Figure 1-1). The bihemispherical 
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(BHR) reflectance or albedo is defined as the ratio of the reflected surface flux to 

the incident surface flux (Figure 1-1). Both the HDRF and BHR include diffuse 

and direct irradiance. From the definition of HDRF, the bidirectional reflectance 

factor (BRF) and the directional hemispherical reflectance (DHR) are determined. 

BRF and DHR are equivalent surface properties to HDRF and BHR but are 

defined for direct irradiance only. BRF can be obtained from HDRF only if the 

effects of diffuse irradiance are removed using BRF models (Martonchik et 

al.1998, Schaepman-Strub et al. 2006).  

 

3.2 Multiangle sensing systems 

Sensors that acquire simultaneous multi-angular radiance data have been 

used in aircraft and, more recently, launched on satellites. Airborne multi-angle 

sensors include the Advanced Solid-State Array Spectroradiometer (ASAS) and 

AirMISR. ASAS is an airborne, off-nadir pointing imaging spectroradiometer used 

to acquire bidirectional radiance data in 29 spectral bands in the visible and NIR 

portions of the spectrum (Irons 1991). AirMISR acquires imagery at nine different 

angles. Multi-view sensors launched to the space include the Compact High 

Resolution Imaging Spectrometer (CHRIS), the Polarization and Directionality of 

the Earth’s Reflectance (POLDER-1 and 2), the Advanced Spaceborne Thermal 

Emission and Reflectance radiometer (ASTER) and the Multi-angle Imaging 

Spectroradiometer (MISR), with specifications listed below. 

The CHRIS sensor onboard of the Belgian PROBA platform and operated 

by ESA (European Space Agency) was launched in 2001. It provides data for 62 
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spectral channels in the range of 415-1050 nm with a spectral resolution of 5-12 

nm from five viewing angles (Chopping et al. 2004). The POLDER sensor 

onboard the Japanese platform ADEOS has 15 spectral bands which range from 

443-910 nm and pixel size at nadir of 6 by 7 Km.  

The ASTER sensor onboard the NASA’s Terra spacecraft provides visible 

and near infrared a nadir view and additional backward telescope for stereo (15 x 

15-m pixel size) as well as thermal infrared data at 90-m spatial resolution 

(Yamaguchi 1998, Diner et al. 2005). 

The MISR sensor also onboard the NASA’s Terra spacecraft acquires off-

nadir imagery from 9 data acquisition cameras pointed in different directions in 4 

spectral bands (446, 558, 673 and 866 nm) with a 275- or 1.1-Km spatial 

resolution depending on the channel (Diner et al. 1998, 2002) and whether the 

sensor is operated in local mode or general mode.  

 

Other sensors include the Moderate resolution imaging spectroradiometer 

(MODIS – onboard both NASA’s Terra and Aqua spacecraft), which acquires one 

view per overpass but obtains multiangle information based on its broad swath 

every 16 days (Diner et al. 2005). Moreover, SPOT (Systeme Pour l’Observation 

de la Terre) orbital characteristics allow the same area to be temporally visited 

every 9 and 18 days but some selected sites can be covered more often because 

the scanning instrument can be pointed off-nadir. All these sensors but CHRIS 

are multispectral, meaning that they can be used to detect spectral 
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characteristics long known to be characteristic of photosynthetically active 

vegetation (Gates et al. 1965, Tucker 1979).  

 

3.3 Algorithms and models used to interpret multi angle remote sensing 

data 

Algorithms to detect vegetation structure include spectral vegetation 

indices such as those listed in Table 1-1. Vegetation structural characteristics 

have been extracted using land surface radiation models. These models can be 

grouped into three general classes: radiative transfer models, geometric-optical 

models, and computer simulations (Liang 2007).  

 

Radiative Transfer models 

Radiative transfer models simulate radiation transfer processes in a 

specific media, such as the interaction between solar radiation and plants. For 

instance, recent efforts in vegetation studies are focused on determining the 

three-dimension (3D) structure of the canopy using one-dimensional (1D) models 

(Liang, 2007). The Rahman-Pinty-Verstraete (RPV) model performs a functional 

decomposition of any reflectance field into an amplitude and a shape function. 

Among the parameters related with the shape function the modified Minnaert 

function parameter, k, which quantifies the degree by which the angular 

variations in the BRF values resemble a bowl-shaped (i.e. dense quasi-

homogeneous vegetation layer in the red spectral domain) or bell-shaped pattern 

(i.e. relative sparse ensemble of vertically elongated foliage structure) (Widlowski 



14 

 

et al. 2004). Pinty et al. (2002) confirmed that bell-shaped anisotropy pattern 

exhibited some significant degree of heterogeneity at the scale of a few tens of 

meters in a study using the MISR airborne simulator, AirMISR, in the Konza 

prairie in Kansas.  

 

Geometric optical models 

Geometric optical (GO) models assume that the canopy consists of a 

series of regular geometric shapes, placed on the ground surface in a prescribed 

manner that interacts with direct solar radiation. Li and Strahler (1992) include 

ellipsoidal crown shapes and the effects of mutual shadowing into this model. 

Franklin and Turner (1992) tested geometric optical models using SPOT 

multispectral imagery to estimate crown size, shrub size and density for three 

different shrubs (Flourensia cernua, Prosopis glandulosa, Larrea tridentata) 

located in the Chihuahuan desert. Predictions of shrub size and density were 

reasonably accurate when grouped by shrub classes but not for individual sites 

(Franklin and Turner 1992).  

 

Hybrid radiative transfer and geometric optical models, which include the 

diffuse radiation into GO models, have been developed recently (Liang 2007). 

Chopping et al. (2008) described a hybrid geometric-optical model (simple 

geometric model) to retrieve understory background reflectance of large woody 

plants (shrubs) using MISR (275-m spatial resolution).   
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3.4 Applications of multi angular remote sensing data in rangelands and 

similar ecosystems 

Early studies during the late 1980’s and early 1990’s showed that 

multiangle measurements improved accuracies of depicting vegetation 

characteristics relative to single view angle measurements of plant geometric and 

radiometric variation (Deering and Eck 1987, Deering et al. 1990). These studies 

gave rise to a series of subsequent work demonstrating that observations 

collected using multiple sensor view angles can improve the classification of 

rangeland vegetation type and canopy structure (Vierling et al. 1997), ecosystem 

function (e.g. fPAR; Braswell et al. 1996) and soil surface texture identification 

(Asner et al. 1998a). Asner et al. (1998a) and Diner et al. (1999) summarize how 

multi-angle remote sensing might be applied to quantify a variety of ecological 

parameters across a wide range of ecosystems.  

 

CHRIS studies  

Chopping et al. (2006) attempted to determine fractional cover at the 

landscape scale of woody shrubs in dessert grasslands in the Jornada 

Experimental Rangeland (JER) using CHRIS multiangle data and modeling 

techniques. Separation of background and upper canopy contributions was 

determined with GO modeling and kernel weights of a Li-Ross model to obtain 

the background soil reflectance contribution to the overall signal. The results 

showed that the CHRIS directional signal can be explained in terms of the soil-
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understory background response and woody shrub cover (Chopping et al. 2004, 

2006). 

 

POLDER studies 

Because of its coarse spatial resolution, POLDER imagery has been used 

to assess vegetation structure at global scales (Chen et al. 2003). For example, 

the foliage clumping index and LAI were derived to separate sunlit and shaded 

leaves in uniform pixels of grassland, deciduous forest and conifer forest in 

Canada (Chen et al. 2003, 2005). The clumping index quantified the level of 

foliage grouping within different canopy structure types providing new structural 

information such as tree crowns, shrubs and row crops (Chen et al. 2005). In 

addition, POLDER observation provides measurements near the principal plane 

where BRDF effects are most pronounced, such as the hotspot. The hotspot is 

observed when the illumination and view directions coincide (principal plane), 

resulting in the absence of visible shadows (Hapke et al. 1996). Thus, to 

characterize the anisotropic behavior Chen et al. (2003) proposed the 

Normalized Difference between Hotspot and Darkspot (NDHD) which is linearly 

related to the clumping index. 

 

ASTER studies 

French et al. (2000) used aerial multiband thermal infrared (8-12 um) 

imagery combined with Landsat TM and ground observations to discriminate 

senesced vegetation and bare soil to simulate ASTER performance prior that 
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sensor’s launch. They showed that senescent vegetation can be distinguished 

from bare surfaces using thermal infrared emissivity differences. Later, French et 

al. (2008) using ASTER images between 2001 and 2003 assess the relationship 

between spectral emissivities (8.5-9.5 µm) and density of sparsely covered 

surface in the Jornada Experimental Range. They found that the thermal infrared 

data in combination with visible and NIR (NDVI) data can delineate bare soil, 

senesce and green vegetation. 

Other ASTER land surface assessment that can be applied to rangeland 

classification are classifying land cover surfaces (Marcal et al. 2005, Yan et al. 

2006, Gamanya et al. 2007), estimating fuel combustible in forested areas 

(Falkowski et al. 2005) and validating coarser spatial resolution sensors 

(Stefanov and Netzband 2005)  

 

MISR studies 

Chopping et al. (2003) used multi-angle aerial photography combined with 

physical light transfer models to derive shrubland structural canopy attributes 

(shrub density, width and canopy height). They found that variation between 

desert grassland and grass-shrub transition was related with structural canopy 

attributes. Later, Chopping et al. (2008) used the moderate resolution of MISR 

sensor (275 m) and bidirectional reflectance factors (BRFs) for the nadir blue, 

green and NIR cameras combined with light transfer and geometric optical 

models to separate shrubs canopy reflectance from their background (litter and 
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senesced grass) in the Jornada Experimental Range. They found good 

agreement between BRFs and the background.  

Other assessments relating to MISR used the AirMISR simulator to 

delineate different landscape characteristics in the Konza prairie in Kansas. 

Using a radiative transfer model (RPV model described previously), differences 

among pasture and agricultural areas were detected (Pinty et al. 2002). Other 

applications of MISR surface analysis included the detection of three different 

cover types in the Brazilian Amazon region using a principal component analysis 

of the MISR spectra (Xavier and Galvao 2005). Off-nadir viewing data acquisition 

may improve discrimination of close and open lowland forest, open submontane 

forest and green/emerging pastures (Xavier and Galvao 2005). 

 

Furthermore, multi-angle data acquired from different satellite and aircraft 

sensors can enhance understanding of rangeland ecosystem structure and 

functional components at regional scales. Discriminating land cover types (Xavier 

and Galvao 2005, Su et al. 2007), distinguishing upper canopy and background 

(Chopping et al. 2003, 2008), and estimating bidirectional reflectance distribution 

for different vegetation types (Lavergne et al. 2006) are some of the notable 

advances achieved recently using multi-angle reflectance data of rangelands. 

 

4. Active remote sensing for assessment of structure and function 

 Active remote sensors create their own electromagnetic energy and do not 

dependent on the Sun’s electromagnetic energy. These sensors transmit laser 
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light and then record the amount of light backscattered from the terrain. Among 

the active remote sensors, Light Detection and Ranging (LIDAR) has shown 

great potential for vegetation classification (Ritchie et al 1992, Streutker and 

Glenn 2006, Bork and Su 2007) and for providing explicit three-dimensional 

structural information (Lefsky et al. 2002, Vierling et al. 2008). LIDAR sensors 

measure the horizontal distribution and vertical location of plant canopy elements 

using wavelengths in the infrared and near infrared.  

 

4.1 Applications of LIDAR in rangeland ecosystems.  

Few studies have addressed LIDAR applications in rangeland 

ecosystems. Weltz et al. 1994 have shown high correlation between lidar 

measurements of vegetation heights and cover with ground measurements. 

Streutker and Glenn (2006) used LIDAR to calculate vegetation heights and 

determine shrub presence and absence classification in a semi-arid sagebrush 

steppe. They found that the LIDAR heights were approximately 50% of the shrub 

heights because of the possibility that the pulse penetrates into the canopy to 

some extent before a detectable reflection occurs. They also found an overall 

86% classification of sagebrush presence and absence with poor user accuracy 

because LIDAR missed low sagebrush (54 cm). Combination of LIDAR data and 

digital data improved the quality of land cover mapping. Bork and Su (2007) 

found that the accuracy classification improved 16 to 20% when integrate LIDAR 

and digital image classification compared to multispectral imagery classification 

(spatial resolution 0.5 m). Despite the potential of these sensors to detect 
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structural aspects of vegetation, they have not yet been used widely to 

characterize functional types (Ustin and Gamon 2010). 

  

5. Linking observations and modeling to understand ecosystem structure 

and function at the landscape scale 

Strengthening our understanding of the linkage between structural and 

functional components in rangeland ecosystems needs to be addressed 

(Provenza 1991, West 1993, Briske et al. 2005). Rangeland health assessment 

and monitoring at landscape and regional scales using remote sensing tools may 

be more appropriate for rangeland management and conservation (Hunt et al. 

2006). Thus, understanding the structure of species with similar physiological 

response to management and disturbance factors is relevant to determine 

rangeland health at broader scale.  

Previous plant functional type (PFT) studies in rangeland ecosystems 

have focused on regional distribution of C3 and C4 plants, photosynthetic and 

nonphotosynthetic vegetation. Paruelo and Lauenroth (1996) evaluated the 

distribution of C3 and C4 plants in temperate grasslands and shrublands of North 

America as related with temperature, precipitation and geographic location. 

Breshears and Barnes (1999) developed models to predict proportions of plant 

functional types and soil moisture heterogeneity that can be applied to assess 

combine effects of climate and land use on semiarid plant communities within the 

grassland/forest continuum. Aguiar et al. (1996) used a model to predict 
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maximum biomass from mean annual precipitation to later partition this in the 

main PFTs for this location.  

 Few studies that link rangeland vegetation structure and function have 

been related to remote sensing. Asner et al. (1998b) used a combination of 

imaging spectrometry (AVIRIS) and radiative transfer inverse modeling to 

quantify structural and biophysical attributes of plant canopies and landcover 

types in a southern Texas savanna. A relationship between canopy structural 

attributes and fraction of photosynthetically active radiation absorbed by plant 

canopies and live and non-live foliage was found. Geerken et al. (2005), using 

MODIS and SPOT Vegetation NDVI time series, identified the distribution and 

fractional cover of species with an extended growing period in the Syrian steppe. 

Differences in the temporal spectral signature and length of growing period were 

related to other functional vegetation characteristics such as palatability and soil 

stabilization. However, no previous studies have combined remotely based 

productivity estimates with measurements of shrub, native grasses, and invasive 

grass abundance to derive productivity specific to vegetation functional groups.  

This stands as a research need to be filled in the future.  

 
6. Conclusions 

Assessment and monitoring of the rangeland functionality related to 

structural attributes across broad scales represent a major approach used to 

understand rangeland health. A review of multi-angle remote sensing techniques 

shows the potential for these techniques to provide a better understanding of 

rangeland ecosystem structure components at regional scales. In addition, 
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combining spectrometry and plant functional types would strengthen the linkage 

between structural and functional components. Although not all aspects of 

rangeland ecosystem structure and function (including interrelations between 

these two qualities) are well understood, ecosystem responses to disturbances 

and their potential effects need to be addressed at regional and global scales 

(Aguiar et al. 1996). 

This review of remote sensing techniques to delineate rangeland ecosystem 

and structure using multi-angle imagery will guide the next key questions 

addressed in the following chapters: 

 

1. How does bidirectional reflectance factor (BRF) vary among the physiological 

and structural status of three different rangeland functional groups; shrubs, 

perennial native grasses, and annual invasive grasses?  

2. What are the effects of sun zenith angle and view zenith angle on vegetation 

reflectance and vegetation indices? 

3. Using the BRF response for these plant functional types, can we generate a 

fractional cover index using MISR BRF’s values to partition MODIS gross 

primary production (GPP)? 
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CHAPTER 2. Bidirectional reflectance of shrub-steppe vegetation:  

delineating native and invasive functional groups 

 

Abstract 

The application of remote sensing for delineating invasive grasses from 

native plant assemblages is important for improved understanding of rangeland 

ecology and management. When characterizing native and invasive rangeland 

vegetation across broad scales, the vast majority of remote sensing-based 

studies utilize the nadir-only view angle. However, nadir measurements in 

rangeland systems can suffer from several potential shortcomings, such as 

effects of background (soil and litter) reflectance and the effects of shadows. 

Ground-based and off-nadir radiometric measurements were collected on a 

shrub-steppe vegetated landscape located in west-central Idaho throughout the 

mid- to late-growing season to: 1) quantify the bidirectional reflectance factors of 

four rangeland vegetation functional groups (shrub, native grasses, invasive 

annual grasses, and forbs), and 2) examine ways in which these bidirectional 

reflectance values can help to delineate the various native vegetation types from 

invasive plants relative to nadir-only viewing angles. The multiple spectro-

radiometric measurements were acquired within two hours of solar noon to 

facilitate comparison of these ground datasets with orbiting sensors such as the 

Multi-Angle Imaging Spectroradiometer (MISR). In addition, MISR bidirectional 

reflectance factor (BRF) was simulated using the PROSPECT and Scattering by 

Arbitrarily Inclined Leaves (SAIL) vegetation reflectance models for medusahead 
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rye (Taeniatherum caput-medusae [L.] Nevski) invasive grass at green and 

senesced stages because of influence of leaf orientation on red and near infrared 

bidirectional reflectance signal. Because of changes in leaf orientation, 

medusahead could be discriminated from other vegetation types at nadir and 

across four forward viewing zenith angles. For instance, the normalized 

difference vegetation index (NDVI) difference between medusahead and other 

vegetation types was significant during the transition of green to senesced stages 

(p<0.05). In addition, the NDVI of invasive grasses, on the other hand, was flatter 

and lower than the other plant functional types across all view angles, and similar 

to bareground NDVI. We also confirmed that shrubs exhibited the highest 

amount of anisotropy in all wavebands, as the relatively complex structure of the 

shrub canopy and concomitant shadowing greatly affected values of NDVI across 

all view angles. The anisotropy index (ANIX) helped to quantify these shifts, and 

provided additional information that allowed us to differentiate shrubs from other 

plant functional groups. In order to delineate rangeland vegetation types at 

coarser scales (i.e. across the landscape) further study is needed to quantify the 

spectral angular signatures of these plant groups using satellite-based multiangle 

imagers. 
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1. Introduction and background 

Invasive plant species are changing the ecosystem structure and function 

of rangelands worldwide. In particular, increased prevalence of annual grasses in 

shrub-steppe communities has had several detrimental effects. For example, 

medusahead (Taeniatherum caput-medusae [L.] Nevski) and cheatgrass 

(Bromus tectorum L.), invasive Eurasian annual plants that have proliferated in 

the Great Basin of the western United States, germinate and establish their root 

systems prior to native species (Harris 1977, Sharp et al. 1957) and therefore 

alter the seasonal soil moisture and nutrient regimes available to all plants (Dahl 

and Tisdale 1975, Evans and Young 1972). In addition, invasive annuals have 

altered historic fire regimes and permanently modified Great Basin plant 

communities because they produce a large amount of litter that decomposes 

slowly, further competing with native plant regeneration (Young 1992). Beyond 

these effects on interspecific competition, invasive grasses may affect carbon 

storage through volatilization of carbon and nitrogen during fires, and exhibit 

relatively low carbon storage below ground (Bradley et al. 2006). In the Great 

Basin, cheatgrass shows high inter-annual variability in response to precipitation 

and exhibits five times more inter-annual live cover than perennial communities 

with 20-cm variance in rainfall (Elmore et al. 2003, Bradley and Mustard 2005).  

The ecological impacts of invasive grasses, coupled with their widespread 

distribution, have spurred a variety of investigations to detect the presence, 

abundance, and ecological characteristics of these plants. These studies 

underscore the importance of developing remote sensing tools to identify and 
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characterize invasive grass outbreaks. For example, Bradley and Mustard (2005) 

found that phenological differences between cheatgrass and bunch grasses in 

the Great Basin could be detected using Landsat TM (30-m spatial resolution) 

and Advanced Very High Resolution Radiometer (AVHRR, 1000-m spatial 

resolution) data, thereby allowing wide scale mapping of these species. In 

addition, Bradley and Mustard (2005) showed that the variation in interannual 

productivity could be quantified using these remote measurements. Lass et al. 

(2005) reviewed characteristics of different remote sensing instruments and 

algorithms used to detect a wide variety of invasive species and found that weed 

detection depends on unique growth patterns (such as those found in leafy 

spurge (Euphorbia esula L.); formation of large dense patches (such as is the 

case with broom snakeweed (Gutierrezia sarothrae [Pursh] Britt & Rusby), and, 

in some cases, the availability of hyperspectral instruments (i.e., which are 

needed to detect some species such as yellow startthistle (Centaurea solstitialis 

L.). 

Several remote sensing techniques and algorithms have been recently 

developed to detect invasive grass species using multispectral and hyperspectral 

imagery at very high spatial resolution. As with cheatgrass, the different 

phenology between invasive plants and the native species allow for the invasives 

to be identified. For instance, Andrew and Ustin (2008) showed that 

hyperspectral imagery taken in different phenological states of perennial 

peppergrass (Lepidium latifolium L.) can improve its detection in uniform sites. 

Noujdina and Ustin (2008) showed that it is more likely to detect cheatgrass 
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using hyperspectral data acquired in different seasons rather than when using 

single-date datasets. Hunt et al. (2007), using a canopy reflectance model, 

predicted that leafy spurge can be detected when leaf area index is greater than 

1.0 and flower-bract cover is greater than 10%. Despite the ability to detect 

phenological differences, however, the spectral reflectance of invasive species 

can often be similar to native vegetation and it is often challenging to detect 

invasives when they are well mixed with native species (Shafii et al. 2004). The 

application of remote sensing in delineating some major invasive grasses, such 

as medusahead is still developing. 

When characterizing native and invasive rangeland vegetation across 

broad scales, the vast majority of remote sensing-based studies utilize the nadir-

only view angle. Reflectance values recorded at nadir view have been 

extensively used to generate vegetation type cover and develop and test 

ecological models in rangelands (Tueller 1989, Hunt et al. 2003). The nadir 

measurement method has been used out of necessity, because until recently 

most satellite and aircraft imagery has been collected at or near nadir to minimize 

image distortion problems. However, nadir measurements in rangeland systems 

can suffer from several potential shortcomings. First, nadir measurements 

include the highest fraction of background (e.g. soil, senesced vegetation litter) 

vs. green plant material relative to measurements at the same location taken at 

oblique angles. As a result, the spectral data collected at nadir can be 

confounded by background reflectance properties, making interpretation of green 

plant material difficult (Huete et al. 1985), particularly in semi-arid rangeland 
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landscapes. Second, because shadows play a large role in dictating the direction 

and amount of light being reflected off of vegetated rangeland surfaces, it is 

difficult to constrain the amount of shadow being included in a nadir 

measurement at different times of the day (Vierling et al. 1997).   

 
1.1 Multi-angular reflectance for rangeland ecosystem monitoring 

Multi-angular reflectance information can improve surface vegetation 

cover classification relative to nadir-based assessment (Martonchik et al. 1998, 

Schaepman-Strub et al. 2006). As with most land surfaces, rangelands possess 

complex structures that result in highly anisotropic reflectance characteristics 

(Figure 2-1). The relationship between the directional radiance of a target and the 

sun’s irradiance illuminating the target at a single incidence angle is called the bi-

directional reflectance distribution function (BRDF) (Nicodemus et al. 1977, Diner 

et al. 1999, Schaepman-Strub et al. 2006). While the BRDF cannot be directly 

measured (Nicodemus et al. 1977), the anisotropic nature of vegetation canopies 

can be quantified in various ways for use in ecological applications. One of these 

ways is through the measurement of the bidirectional reflectance factor (BRF). 

The BRF is the ratio of the reflected radiant flux from a sample surface to the 

radiant flux reflected from an ideal and diffuse standard surface under identical 

view geometry and single direction illumination.  

Early studies during the late 1980’s and early 1990’s showed that 

multiangle measurements added substantial information to those using single 

view angles alone (Walthall et al. 1985, Middleton et al. 1987, Deering and Eck 

1987, Deering et al. 1990). These studies gave rise to a series of subsequent 
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work demonstrating that observations collected using multiple sensor view 

angles can improve the classification of rangeland vegetation type and canopy 

structure (e.g. Vierling et al. 1997), ecosystem function (e.g. the fraction of 

absorbed photosynthetically active radiation; fPAR, Braswell et al. 1996) and soil 

surface texture identification (e.g. Asner et al. 1998b). Asner et al. (1998b) and 

Diner et al. (1999) summarized how multi-angle remote sensing might be applied 

to quantify a variety of ecological parameters across a wide range of 

ecosystems. More recently, studies incorporating the bidirectional reflectance of 

rangeland vegetation using aircraft and satellite data have improved our 

understanding of rangeland ecosystem structure and functional components at 

regional scales. Notable recent work in rangeland systems includes 

discrimination of land cover types (Su et al. 2007, Xavier andGalvao 2005), 

distinguishing upper canopy from background (Chopping et al. 2003, 2008), and 

estimating bidirectional reflectance distribution functions for different vegetation 

types (Lavergne et al. 2006).  

Because invasive annual grass species often exhibit different structure 

and phenology as compared with other rangeland plant functional groups, 

characterizing the temporal and angular reflectance characteristics of rangelands 

may assist in making important distinctions among these plant types. The 

objectives for this study are therefore: 1) to measure and report the bidirectional 

reflectance factors of four rangeland vegetation functional groups (shrub, native 

grasses, invasive annual grasses, and forbs) throughout the mid- to late-growing 

season, and 2) to examine ways in which these bidirectional reflectance values 
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can help to delineate vegetation types dominated by native species from those 

dominated by invasive plants relative to nadir-only viewing angles. In achieving 

these objectives, we hope to improve techniques for mapping various rangeland 

plant functional groups over broad areas. 

 

2. Methods 

2.1 Study area 

The study area comprises 38,000 ha of sagebrush steppe and grassland 

vegetation managed by the Soulen Livestock Co., near Weiser, Idaho. The area 

includes private and public grazing lands, and is mostly grazed by livestock. The 

land is fenced and cross-fenced to facilitate livestock grazing management. In 

addition, the company’s private lands are leased for big game and bird hunting 

during the fall season. The annual precipitation at the site measures 300 mm, 

with elevation ranging from 950 to 1300 m above sea level. Garrity et al. (2008) 

provide additional information about the study area. 

Study sites were selected with respect to ecological site classes (USDA – 

NRCS; http://websoilsurvey.nrcs.usda.gov/). Four study sites, each measuring 5 

by 5 km, were selected because of the uniformity in soil types, vegetation and 

topography (Figure 2-2). These ecological sites included mostly the Loamy 12-16 

(ARTRX-PSSP6; 28.4%), which represents loamy soil type, 12-16 inches (304-

406 mm) of precipitation, and vegetation dominated by foothill big sagebrush 

(Artemisia tridentata Nutt ssp. xericensis Winward ex R. Rosentreter & R. 

Kelsey), and bluebunch wheatgrass (Pseudoroegneria spicata (Pursh) A. Love). 

http://websoilsurvey.nrcs.usda.gov/
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Other ecological sites occurring within the study sites were the very shallow (12-

20 ARRI2-POSE; 20.8%), dominated by scabland sagebrush (Artemisia rigida 

(Nutt.) A. Gray) and Sandberg bluegrass (Poa secunda J.Presl), and the South 

slope loamy (12-16 ARTRX-PSSP6; 12.1%). In addition, over the past five 

decades two exotic species, cheatgrass and medusahead, have spread 

throughout this landscape (Novak 2004).   

  

2.2 Bidirectional reflectance factor (BRF) ground measurements 

Reflectance values of four different vegetation types at nine different 

angles were acquired with an Ocean Optics spectroradiometer (USB2000+; 

Ocean Optics, Dunedin, FL, USA) and a GER 1500 spectroradiometer 

(SpectroTech Inc., Clemson, SC). In 2008, the Ocean Optics spectroradiometer 

was used to acquire spectral data of the target vegetation surfaces, a dark 

reference, and a Spectralon white reference panel to calculate the reflectance 

(Rג) for each 0.4 nm bandwidth within the range of 350 - 1000 nm spectral range 

using the formula (1): 

 

                                                   (1) 

Where: 

  = reflectance at wavelength ג 

  = sample intensity at wavelength ג 

  = dark intensity at wavelength ג 

  = Spectralon panel intensity at wavelength ג 
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 To ensure the quality of the data collected with the Ocean Optic 

spectroradiometer, the sensor integration time was optimized prior to each 

measurement of the dark and reference spectra (Ocean Optics, Walsh et al. 

2000). The integration time of the spectrometer is similar to the shutter speed of 

a camera and was set to between 1 and 3 seconds. In addition, to decrease the 

likelihood of spurious readings, we specified the number of discrete spectral 

acquisitions that should be averaged for each measurement to be five scans. A 

personal computer recorded the radiometric data. 

 The GER 1500 spectroradiometer was used in 2007 to acquire spectral 

data of invasive annual grasses and a Spectralon white reference panel to 

calculate reflectance (Rג) for each 1.5 nm bandwidth within the spectral range of 

300-1050 nm using the mathematical relationship described in equation (2).  

 

                                                   (2) 

Where: 

  = reflectance at wavelength ג 

  = radiance from target at wavelength ג ((W/cm2/nm/sr) x 10^-10) 

  = Reference irradiance at wavelength ג((W/cm2/nm/sr) x 10^-10) 

  

In addition to the invasive annual grasses, we characterized the spectral 

response of perennial forbs, native grasses (sparse and bunch types), and 

shrubs present at each of the sites. These four plant functional groups 
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represented a range of canopy structure, phenology, biomass and soil 

background reflectivity. The perennial forbs group included lupine (Lupinus spp.), 

curlycup gumweed (Grindelia squarrosa [Pursh] Dunal) and western yarrow 

(Achillea millefolium L.). Curlycup gumweed was usually mixed with sparse grass 

vegetation. The sparse grass group included bulbous bluegrass (Poa bulbosa L), 

which exhibits different structure and phenology than the bunch type perennial 

grasses. Bunchgrasses were mainly comprised of bluebunch wheatgrass and 

squirreltail (Elymus elymoides [Raf.] Swezey). The shrub group was comprised of 

big sagebrush and bitterbrush (Purshia tridentata [Pursh] DC.). Invasive annual 

grasses were represented mainly by medusahead and some scattered samples 

of cheatgrass. Medusahead was more abundant in the area and found in open 

areas, whereas cheatgrass was mainly found in closed communities of 

sagebrush.  

We measured the bidirectional reflectance factor of each of the vegetation 

groups using different sensor view angles and sun zenith angles. The multiple 

spectroradiometric measurements were acquired within two hours of solar noon 

to facilitate comparison of these ground datasets with orbiting sensors such as 

the Multi-angle imaging spectroradiometer (MISR; Diner et al. 1998). We also 

measured the BRF at the same nine view zenith angles (nadir, plus 26.1˚, 45.6˚, 

60.0˚ and 70.5˚ in both the forward and back viewing directions) as measured by 

MISR. Reflectance measurements were acquired during clear days in four 

different weeks between the period of July 5th and August 18th, 2008 with sun 

zenith angles (SZA) ranging from 25 to 35 degrees around noon. Reflectance 
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data was also acquired for invasive annual grasses for three different weeks 

between the period May 30th and July 27th of 2007 with SZA ranging from 25 to 

35 degrees around noon.  

To enable multi-angle measurement, the spectrometer was attached to a 

2m-tall T-bar. The field of view Ocean Optics spectrometer was 14 degrees, 

resulting in a ground instantaneous field of view (GIFOV) diameter of 0.30 m at 

nadir, while the GIFOV of the GER 1500 was 0.25 m in diameter. In order to 

quantify the composition of the spectrometer footprint, an 8-megapixel digital 

camera was attached to the T-bar and remotely triggered for every reflectance 

measurement (after Seefeldt and Booth 2006). Each picture was resized to the 

footprint area of the spectrometer and classified in vegetation (forbs, grass, 

invasive, shrub), litter, shadow, rock and bare ground components. We used a 

100-pixel grid overlaid on the picture to classify each image (Figure 2-3). 

Footprints with more than 70% uniformity in any vegetation component were 

selected to calculate BRF. However, it should be noted that particularly at 

forward scatter viewing angles, shadowed vegetation was common and included 

in the analysis (Figure 2-3).  

BRF ground measurements can be difficult to acquire because the 

spectroradiometer captures small parts of plants (Chopping et al. 2003). To 

address this issue, measurements of shrubs having different heights and 

diameters were collected and averaged. Invasive grasses and native grasses 

(bunchgrasses and sparse grasses) were usually uniform in cover. Four different 

species of forbs were dominant in the area but these were mostly surrounded 
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with grasses; thus, footprints of pictures with 50% or more of the pixel 

representing forbs were selected for further analyses. 

 

2.3 BRF data processing 

Bidirectional reflectance factors were estimated for the blue, red and near 

infrared wavebands using bandwidths similar to those used by the MISR sensor: 

blue (404-488 nm), red (660-682 nm) and near infrared (846-886nm). Because 

spectroradiometer measurements were collected mostly on clear days, the BRF 

was assumed to be the same as the reflectance value acquired with the 

spectroradiometer, and the diffuse component of the reflectance value was 

assumed to be negligible (Deering and Eck 1987, Martonchik 1994). In addition, 

MISR BRF was simulated for medusahead at green and senesced stages 

because of influence of leaf orientation on BRF signal. The simulation was run 

using the Prospect model and Scattering by Arbitrarily Inclined Leaves (SAIL) 

model. Prospect is a radiative transfer model that represents leaf optical 

properties spectra from 400 to 2500 nm with a limited number of input 

parameters: leaf biochemistry like chlorophyll content and a structure parameter 

such as leaf mesophyll structure index (Jacquemoud and Baret 1990, 

Jacquemoud et al. 1996). Once we set the parameters at the leaf scale we then 

ran the SAIL model that uses transmittance and reflectance spectra of leaves to 

simulate the directional spectral reflectance of a canopy (Verhoef 1984). The 

chlorophyll content ranges to simulate the spectral reflectance of medusahead at 

green (erectophile) and dead (planophile) stages were derived from Bokari 
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(1983) and Gaborcik (1985). The leaf mesophyll structure index was set based 

on Jacquemoud and Baret (1990). 

Although temperature and precipitation regimes were different between 

2007 and 2008, we adjusted the dates of BRF collections by calculating the 

growing degree days (GDD) for these two years using an averaging method. The 

GDD approach is based upon the principle that development of a plant occurs 

when temperature exceeds a specific base temperature for a certain period of 

time (Frank and Hofmann 1989). The averaging method was calculated as GDD 

= (average daily temperature) – (base temperature). A base temperature of 4.4 

˚C was used for all vegetation groups. The starting date for accumulation of GDD 

was set at January 1st. For example, the accumulated GDD for May 30th, 2007 

was similar to Jun 19th 2008. Therefore, we then calculated the Julian day that 

corresponded with each date in order to compare BRF from these two years.  

We calculated the commonly-used normalized difference vegetation index 

(NDVI; Rouse et al. 1974) and enhanced vegetation index (EVI; Miura et al. 

1998, Huete et al. 1997) using data values of the MISR-convolved bandwidths. 

These spectral vegetation indices can minimize the reflectance effects relating to 

the soil background and within-canopy shading, and therefore can provide 

information that can complement single-band reflectance values. The vegetation 

spectral characteristics in the red (R) and near infrared (NIR) wavebands were 

used to generate the NDVI (equation 3). 

 

        (3) 
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Where: 

   = Normalized Difference Vegetation Index at ө zenith angle 

  = Near infrared waveband at ө zenith angle 

  = Red waveband at ө zenith angle 

 

The EVI, which is less sensitive to soil and atmospheric effects, was 

calculated using the following formula (Huete et al. 1997) (equation 4). 

 

     (4) 

 
Where  

 G   = gain factor 

 C1 and C2 = adjustment factor for atmospheric aerosol scattering  

 L  = soil adjustment factor 

 

Values used for G, C1, C2 and L were 2.5, 6, 7.5 and 1 respectively (after Huete 

et al. 1997). 

In addition, we calculated two anisotropic indices that incorporate the 

variation in target reflectance that can occur as the target is viewed from multiple 

angles along the solar principle plane. The reflectance on the forward scattering 

direction, called the “dark spot”, registered the minimum reflectance, while the 

reflectance of the retrosolar position, called the “hot spot”, registered the 

maximum reflectance (Figure 2-1; Hapke et al. 1996, Sandmeier and Itten 1999). 

The anisotropy index (ANIX) represents the ratio between the hotspot and dark 

spot BRF for a spectral band (Sandmeier and Itten 1999). Using the ANIX values 
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for the red and NIR wavebands, the normalized difference anisotropic index 

(NDAX) was calculated (Sandmeier and Deering 1999) following equation 5: 

 

        (5) 

 

 We also explored the use of an approach to depict canopy characteristics 

based on the correlation between red and NIR BRFs with view zenith angles 

(Zhang et al. 2002 a,b, Hu et al. 2007). Three metrics developed by Zhang et al. 

(2002 a, b) characterized the angular signature in spectral space (Figure 2-4; Hu 

et al. 2007). Two of the metrics are the location in the spectral space determined 

by each plant functional group, and the inclination determined by the slope and 

intercept of the signature of the red and NIR BRF. These angular signatures are 

affected by the structure of the canopy as well as by soil and leaf optical 

properties. The third metric is the length of the signature that describes variations 

in the shape of BRF due to heterogeneity in vegetation canopies such as 

orientation of foliage, mutual shadowing and spatial discontinuities. For example, 

for isotropic surfaces the length is zero because in spectral space the angular 

signature is a point (Zhang et al. 2002 a, b). We calculated the inclination metric 

using linear regression for each vegetation type in order to get the slope and the 

intercept (Figure 2-4, Hu et al. 2007). However, Zhang et al. (2002 a, b) 

described other methods to calculate the inclination and length metrics. 
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2.4 Sampling design and statistical analysis 

To evaluate differences among BRF values for each of the vegetation 

types we randomly selected two representative areas in each of the four study 

sites. In each of these areas we selected 6 plant individuals that were not grazed 

and exhibited a representative plant height from which to collect spectral 

measurements. These areas were located at least 50 m away from fence lines or 

roads. 

We acquired a large enough dataset to run a randomized complete block 

design analysis with 3 x 3 factors where each of the two study sites, in addition to 

the time of sampling, were defined as a separate block. However, because we 

also wanted to explore vegetation type and view angle as factors, we had to 

change the analysis to a non-parametric statistical analysis to compare mean 

reflectance values among plant functional groups and between periods of 

spectrometer collection. We had many spurious data that were due to dropouts in 

the spectroradiometer signal that could not be detected at the moment of the 

measurement. The other reason we had low number of data is that we 

constrained our database to singular SZA values described in Table 2-1. Hence, 

we used the Kruskal-Wallis test as a nonparametric ANOVA. We also compared 

means between vegetation groups using Wilcoxon rank sum test. We assumed 

results to significantly differ from random chance when the p-value was less than 

0.05. 
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3. Results and Discussion  

3.1 Reflectance at nadir view 

Nadir reflectance spectra of senesced invasive annual grasses, which 

were mainly composed of medusahead, differed substantially from the other 

vegetation types during the third week of July (Figure 2-5). Although sparsegrass 

showed the same pattern (July, week 1), it is difficult to draw a conclusive pattern 

because of the small number of samples considered for this analysis (n=1). In 

contrast, the reflectance spectra of shrubs in all periods show the chlorophyll 

absorption in the red region and the strong near-infrared reflectance related to 

the internal structure of living leaves. The same spectral pattern might happen 

with green forbs and bunchgrasses during the first and third week of July despite 

the low number of samples. In addition, it was difficult to separate the spectral 

reflectance patterns of any of the vegetation types from the bareground 

reflectance spectra especially when vegetation types were senesced (Figure 2-5; 

Gates 1965, Tueller 1987, Asner 1998a). However, the spectral reflectance 

exhibited by medusahead during senescence showed surprising results, as 

described in the next two sections. Spectral differences among forbs, native 

grasses and shrubs were difficult to distinguish at the nadir viewing angle (Figure 

2-5). The same differences and similarities are quantified by the NDVI values 

(Table 2-1). Even though we selected a small number of samples for some of the 

vegetation types during parts of the study period, we could still establish that the 

invasive annual NDVI was significantly lower than the other vegetation types 

(p<0.05). However, significant differences between invasive annual grasses and 
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bareground NDVI were only found between weeks 1 and 3 of July (We did not 

include values for the first week of August because of the number of samples 

n=1). In other words, during the transition from green to senescence, invasive 

annual grasses could be distinguished from bareground based on NDVI values. 

Moreover, although we would expect significant differences between shrubs and 

bunchgrasses especially when the latter are senesced (August, week 3), it was 

not possible to clearly distinguish these two groups in any but the red waveband 

(Table 2-1). Further separation among the other vegetation types NDVI was not 

possible (Table 2-1). Thus, nadir spectral measurements did not allow forbs, 

native grasses and shrubs to be clearly differentiated during the measurement 

period.  

 

3.2 Red and NIR BRF 

Invasive annual grass red and NIR BRF differed substantially from that of 

the other plant functional groups across all forward view angles (Figure 2-6). This 

differentiation was greater during the late July-early August period when invasive 

grasses were senesced yet most native plants still contained some green foliage. 

The higher red BRF signal was likely due to the decreased foliar starch, 

chlorophyll, and protein that occur during senescence (Gausman 1985). This 

differentiation was also possible due to the strong effects of high chlorophyll 

absorptance on the BRF of red wavelengths (Sandmeier and Itten 1999). The 

near infrared BRF of invasive annual grasses also exhibited significant 

differences from NIR BRF of the other functional groups in late July and early 
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August, but this differentiation did not always occur across all view zenith angles 

(Figure 2-6). Although sagebrush is considered evergreen vegetation, shrub red 

and NIR BRFs was not substantially different from the other vegetation types 

(Figure 2-6).  

 

3.3 Effects of leaf orientation in medusahead detection 

We found that the NIR reflectance at nadir and multiview angle of the 

invasive medusahead substantially increased during the onset of senescence in 

late July and early August relative to pre-senesced values (Figures 2-5 and 2-6). 

This finding seems to be unique to medusahead canopies, as the NIR 

reflectance of all other vegetation canopies (of which we are aware) generally 

decreases, rather than increase, as the canopy senesces (Gates 1965, Tueller 

1987, Elvidge 1990, Asner 1998a). The long-held explanation for this 

phenomenon is that, as interior mesophyll cells degrade during senescence, the 

intercellular pore spaces that so effectively reflect NIR radiation also break down, 

creating a marked decrease in NIR reflectance. Indeed, this phenomenon, 

combined with the higher reflectance that occurs in the red portion of the 

spectrum, is the basis of using the NDVI as an indicator of plant greenness 

(Rouse et al. 1974).   

Two lines of reasoning may help to explain the temporal differences in red 

and NIR BRF of senesced medusahead versus other functional groups (including 

senesced sparse grass, which has similar canopy characteristics to 

medusahead). One possible explanation is that the high content of silica present 
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in medusahead may affect these reflectance properties. Upon burning, 

medusahead contains 10% more ashes than other grass species, where 75% of 

the ash includes silica deposit mainly on the barbs of awns and the epidermis of 

leaves (Bovey et al. 1961, Swenson et al. 1964). Leaf optical properties are 

primarily determined by leaf structure and chemistry, including water content, the 

concentration of structural carbon constituents (e.g. cellulose, lignin), chlorophyll 

and other biologically active pigments (Gausman 1985). However, since 

refractive indices are similar among silica (1.45; Swenson et al. 1964), cellulose 

(1.4-1.5; Wooley 1975) and lignin (1.604; Donaldson et al. 2001), it cannot be 

possible that the high content of silica in medusahead would have an effect on 

red and NIR BRFs (Dr. Peter Griffiths, personal communication). In addition, 

because the high silica content occurs within medusahead leaves both before 

and after senescence, it would be unlikely that the silica content would affect 

reflectance characteristics during this phenological shift. 

Another possible explanation for the enhanced NIR reflectance of 

medusahead canopies relates to its changed canopy morphology as 

medusahead makes the transition from green to senesced. Medusahead 

produces tillers that reach a maximum height of 15 cm to 60 cm high and exhibit 

very few leaves. The seedhead of medusahead becomes twisted as the seed 

matures, but it does not break apart completely after dehiscence (Sharp et al. 

1957). As a result, while prior to senescence medusahead canopies are 

comprised of mostly narrow, upright plants, after senescence the still-heavy 

seedhead causes the plants to lay down, creating a matted plant canopy with a 
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near-planophile leaf orientation (Figure 2-7). Canopies with horizontal-leaves 

tend to have higher canopy reflectance, especially in the NIR because multiple 

scattering dominates the reflected radiation field (Myneni and Williams 1994). 

Changes in leaf inclination angle can drive changes in spectral reflectance 

similar to those caused by variation in leaf area index (LAI) or tissue chemical 

content (Asner 2004, Myneni and Williams 1994). We simulated changes in 

canopy reflectance using the Scattering by Arbitrarily Inclined Leaves (SAIL) 

model. Two different leaf orientations were used in this model, erectophile and 

planophile, to simulate the change in medusahead canopy structure (Figure 2-7). 

Figure 2-8 shows that NIR reflectance (730-1000 nm) is more sensitive to 

changes in leaf orientation than is red reflectance (600-700 nm), a result that 

agrees with previous findings (Asner 2004, Myneni and Williams 1994). This 

increase in NIR reflectance after senescence also affected the NDVI of this 

canopy such that differences in the NDVI of the medusahead canopy vs. other 

plant functional groups were not as stark as differences seen in the individual red 

and NIR bands (Figures 2-6 and 2-10). Leaf orientation in medusahead grass 

can also explain differences in NIR BRF between green and senesced vegetation 

measured in the two growing seasons characterized in this study (Figure 2-9). In 

2007, invasive annual grasses senesced earlier in the summer because of 

different precipitation and temperature regime compared to 2008. 
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3.4 Bidirectional vegetation indices of plant functional groups  

The NDVI of senesce invasive annual grasses was significant lower than 

that of the other vegetation groups over a range of view angles (from 70˚ forward 

scatter to nadir view) in the solar principal plane (Figure 2-10). These low values 

of invasive grasses’ NDVI are significant lower than that of the shrub (p<0.05). 

However, because of the number of samples, we could not establish statistical 

differences between shrubs and either forbs or grasses and between invasive 

annuals and either forbs or grasses. In addition, when invasive grasses started to 

senesce, the NDVI angular signatures showed a flatter shape than that of other 

functional groups (Figure 2-10). The flat shape could be related to the high 

reflectance in both red and NIR wavebands. Because the ‘hotspot’ effect 

increases reflectance in the red band, the reflectance contrast between NIR and 

red is reduced (Myneni and Williams 1994). Another reason could be related to 

confounding effects of bare ground BRF values. 

Although there is a clear separation of red and NIR BRF values for 

invasive annual grasses from those of the other vegetation types, this 

differentiation was not clear when comparing medusahead and bare ground 

bidirectional NDVI values (Figures 2-6 and 2-10). Bare ground or soil also 

exhibits an anisotropic behavior that would depend on soil texture, roughness 

and moisture (Deering et al. 1992, Jacquemoud et al. 1992). For instance, a 

rough soil surface shows a ‘hotspot’ effect (Jacquemoud et al. 1992). Moreover, 

Myneni and Williams (1994) reported that the reflectance contrast between NIR 

and red is reduced for top of the canopy (TOC) peat NDVI as a function of view 
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zenith angle gathered in the principal plane. TOC peat NDVI exhibits similar flat 

spectral patterns to the medusahead NDVI when it is senesced. Although 

senesced medusahead leaf orientation changed, dark litter reflectance, 

accumulated in the understory from previous years, would affect the 

medusahead bidirectional signal (Figure 2-7; Young 1992). 

NDVI was affected by view zenith angle at all time periods measured 

(Figure 2-10). The degree of change varied as a function of the phenological 

stage and the vegetation functional group. For instance, the presence of a 

‘hotspot’ in bunchgrasses changed from 60˚ forward scatter when this functional 

group was green (July, week 1 and week 3), to 45˚ and 26˚ forward scatter when 

these plants started to senesce (August, week 1 and August week 3, 

respectively). This result coincides with Goodin et al. (2004), who reported 

greater NDVI values at large off-nadir view than values near nadir for green 

tallgrass prairie. Middleton (1991) reported that tallgrass prairie NDVI was 

significantly affected by differences in view zenith angle and SZA. We tried to 

avoid effects of changing SZA by constraining our measurements to the period 

around solar noon. Middleton (1991) also suggested that vegetation indices 

measured at solar noon (high sun elevation angles or low SZA) could generate 

good indicators of percent cover but not canopy attributes. For instance, we 

could distinguish a shrub NDVI “hotspot” that is mostly located at 26˚ forward 

scatter. The presence of these hotspots must be due to the large presence of 

bright green leaves in the footprint of the handheld spectroradiometer (Figure 2-

10). In addition, decreases in NDVI values occurred at larger backscatter view 
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zenith angles as a result of gaps between leaves allowing within-canopy 

shadows to be viewed by the sensor. Despite the fact that measurements of 

shrubs were taken in mostly open communities with few shadows, at large zenith 

angles, within-canopy shadowing from other surrounding vegetation becomes an 

important factor constraining canopy reflectance (Li and Strahler 1992). 

Class differentiation based on bidirectional NDVI for forbs, sparse grass 

and bunchgrasses was not possible at any of the view zenith angles. EVI angular 

signatures showed the same pattern as the NDVI signatures but slightly 

enhanced the differences among invasive grasses, shrubs, and the other native 

plant functional groups (data not shown). Although EVI values are generally less 

sensitive to soil and atmospheric effects (Huete et al 2002), shadowing effects in 

the vegetation did not allow us to get new information to differentiate other plant 

functional types different from shrubs and invasive plants. 

 

3.5 Reflectance anisotropy of rangeland plant functional groups 

All plant functional groups exhibited anisotropic reflectance in the red and 

NIR BRF (Figures 2-6). The location of greatest reflectance, or ‘hotspot’, was 

mostly present in the backscatter direction, while low reflectance ‘darkspots’ were 

present in the forward scatter direction depending on the canopy of the plant 

functional group. These observations agree with previous studies of plant BRF 

which have shown that the locations of the ‘hotspot’ and ‘darkspot’ correspond 

with a low shadow fraction in the backscatter view direction and a high shadow 

fraction in the forward scatter direction (Hapke et al. 1996, Sandmeier and Itten 
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1999). Shrubs had the highest anisotropy behavior, most likely because of their 

relatively complex canopy dimensions and canopy understory characteristics. 

The height of shrubs determined the amount of shadow viewed by the 

instruments, which in turn affects values of reflectance in the forward scatter 

direction (Li and Strahler 1992). The diameter of sagebrush and bitterbrush 

samples range from 1.06 to 1.89 m. Thus, depending on the dimension of the 

shrubs, the footprint of the reflectance measurement at very high view zenith 

angle (>45  ۫ ) varied from shrub leaves and wood, to understory vegetation (forbs 

and grasses), and to litter (Li and Strahler 1992).  

The anisotropy of invasive annual plants was different from other plant 

functional groups during the first days of senescence (July, week 3). Its concave 

shape (two hotspots occurring at the limbs of the angular observation range) is 

likely due to the change in position of seed heads and lack of shadows (see 

Figures 2-7 and 2-8). The view footprint of senesced medusahead was mostly 

comprised of seed-heads and stems, compared to the footprints when plants 

were green. While the reflectance of the green invasive canopy included not only 

the erect plants, but also background litter and within-canopy shadowing, the 

senescent canopies had reduced litter and shadow fractions due to the 

planophile orientation of the grass (Figure 2-7).  

The anisotropy index (ANIX) confirmed that shrubs exhibit high anisotropy 

behavior compared to other plant functional groups (Figure 2-11; Sandmeier and 

Deering 1999, Pocewicz et al. 2007). Forbs also exhibited a slight anisotropy 

index that is clearly different from the other vegetation types (July, week 1 and 
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August, week 3). However, measurements taken on forbs were not consistent 

throughout the season. During the first weeks, we took measurements for lupine, 

curlycup gumweed and western yarrow because these species were abundant, 

and had almost the same height. However, their canopy reflectance is not similar 

because lupine ANIX was completely different from the others when measured 

alone (August, week 3). To our knowledge there is not information related to this 

species reflectance. Further research is needed to better understand the 

reflectance anisotropy of forb species in this location.  

Although ANIX showed distinctive patterns between shrubs and the other 

vegetation types, NADX values did not contain the same trend at all periods 

(Figure 2-12). Moreover, when we compared NADX with NDVI at the nadir 

viewing angle, we could detect almost the same pattern for NDVI along the 

season for each vegetation type. This NDVI pattern still could be detected even 

though NDVI values decreased due to changes in phenology (Figure 2-12). The 

only ANIX-related pattern that might be distinguished occurred during the third 

week of July.  

Shrubs, vertically elongated foliage, exhibit a bell-shaped angular 

signature, while compact vegetation canopies, such as native and invasive 

grasses, exhibit bowl-shaped reflectance patterns (Pinty et al. 2002, Wildowski et 

al. 2004). For example, in boreal land cover types NDAX allowed discrimination 

between planophile and erectophile canopy structures (Sandmeier and Deering 

1999). However, high NADX for shrubs could not be detected at all periods. 

NDAX may be influenced by canopy characteristics (Sandmeier and Deering 
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1999). However, at the scale of our study variations in the spectral response of 

some components of shrubs, such as gray leaves, senesced leaves, gray bark, 

gray wood and brown wood, might have affected ANIX values in the red 

waveband (Tueller 1989). 

 

3.6 Red and NIR angular signatures in spectral space 

 We depicted the angular spectral signature of each plant functional group 

building a curve shaped by the entire range of view zenith angles measured in 

this study. Figure 2-13 shows angular signatures plotted on the red and NIR 

plane for the third week of July. The location of invasive annual grasses in 

spectral space can be differentiated from the other plant functional types. Sparse 

grasses and bunchgrasses have different slope values (1.63 vs 1.89) because of 

differences in canopy structure. In addition, the slope generated from shrub 

reflectance values (2.41) was steeper than the rest of plant functional types 

because of its canopy structure and leaf optical properties (high absorption in the 

red bandwidth).  

The length of signature for all the vegetation groups was similar, indicating 

that these canopies are heterogeneous. For example, the length of the invasive 

grasses revealed that this heterogeneity occurred due to changes in leaf 

orientation. Hu et al. (2007) indicated that forest biomes exhibit large length 

magnitudes because of their high degree of vertical heterogeneity. This method 

highlights the high level of differentiation that could be achieved when examining 
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the BRF of invasive grasses relative to the native plant functional groups during 

the onset of senescence (Hu et al. 2007).   

 

4. Conclusions 

We conclude that the red BRF and NIR BRF at nadir and four forward 

view zenith angles allowed spectral differentiation between the invasive annual 

grass medusahead from other plant functional groups. This differentiation was 

most possible when the invasive grass was in the transition period from green to 

senescent phenology status (July, week 3 and August, week 1). The relationship 

of red and NIR BRF in the spectral plane clearly depicted this differentiation. 

Vegetation indices such as the NDVI were not as useful for differentiating 

medusahead when senesced because of the unprecedented observation that 

medusahead canopies increased their reflectance in the NIR even after 

senescence (Elvidge 1990). Medusahead canopy structure changed in that while 

green stems were erect, and senesced stems exhibited a drooped planophile 

orientation. We also conclude that shrubs exhibited the highest amount of 

anisotropy in all wavebands, as the relatively complex structure of the shrub 

canopy and concomitant shadowing greatly affected values of NDVI across all 

view angles. The NDVI of invasive grasses, on the other hand, was flatter and 

lower than the other plant functional types across all view angles. The anisotropy 

index (ANIX) helped to quantify these shifts, and provided additional information 

that allowed us to differentiate shrubs from other plant functional groups. 
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 Further study is needed to quantify the spectral angular signatures of 

these plant groups at coarser scales (i.e. across the landscape) in order to 

delineate rangeland vegetation types. Red BRF from the MISR local mode 

satellite product (pixel size: 275 x 275m) might be useful for detecting invasive 

plant distributions. In addition, BRF values for earlier spring (April), when annual 

invasive grasses are still dormant, may also allow perennial grasses to be 

discriminated from other groups because BRF values for this plant functional 

type proved to be different from shrubs but not from annual invasive grasses. 

Finally, because changes in leaf orientation for annual grasses allowed this plant 

functional group to be detected at nadir, intermediate spatial resolution imagery 

(e.g. Landsat, with-30 m pixel size) could be used to map medusahead patches 

during its transition from green to senesced phenology. 
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Figure 2-1. Anisotropy behavior along the solar plane recorded with the MMR 

spectroradiometer (Asner 1998). Strong backward scatter is brighter and the 

location of a hotspot is at 25˚ from nadir. Forward scatter is affected by 

shadowing (darkspot). BRF is determined by canopy structural characteristics. 
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Figure 2-3. Spectroradiometer footprint classifications. A one-hundred grid cell 
overlay on the picture in ENVI 4.3 to classify vegetation type, sunlit and 
dead/green vegetation for each pixel. 
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Figure 2.4. Angular signature in spectral space form by red and NIR BRF as a 
function of view zenith angles (Zhang et al. 2002a).The signature is 
characterized by (a) its location in the spectral space, determined by the 
directional hemispherical reflectance (HDR), (b) inclination (intercept and slope) 
of the signature, and (c) the length of the signature. (Taken from Hu et al. 2007) 
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Figure 2-7. Erectophile (left) versus planophile (right) leaf orientation for 
medusahead annual grass. The large fraction of shadow was only present when 
the vegetation was green. 
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Figure 2-8 Simulated reflectance for planophile (senesced medusahead) versus 

erectophile (green medusahead) leaf orientation. Leaf inclination angle drives 

changes in spectral reflectance especially in the near infrared bandwidth. 

Chlorophyll content ranges from 30 µg/cm2 to 0 µg/cm2 for green and senesce 

medusahead, respectively (Bokari 1983, Gaborcik 1985). Leaf mesophyll 

structure index ranges from 1.3 (green) to 2.5 (senesce) (Jacquemoud and Baret 

1990). Water content values vary from 0.02 g/cm2 to 0 g/cm2 and dry matter 

values vary from 0.005 g/cm2 to 0.003 g/cm2 for green and senesce 

medusahead, respectively. 
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Figure 2-9. Invasive NIR BRF variations for 2007-2008. Growing degree days 

were calculated for 2007 and 2008 so we could compare data from 2007 with 

2008. NIR BRF is affected by leaf orientation. 
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Figure 2-13. Angular signatures on the red and NIR plane for the third week of 

July. Invasive annual grasses location in spectral space can be differentiate from 

the other plant functional types. Shrub slope (2.41) is different from other plant 

functional types because of the structure of its canopy.  
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CHAPTER 3. Effects of sun zenith angle and leaf orientation on detecting 

the invasive grass medusahead (Taeniatherum caput-medusae [L.] Nevski) 

using narrow band canopy reflectance. 

Abstract 

Extensive areas of shrublands have been invaded in the western US by 

annual grasses such as medusahead (Taeniatherum caput-medusae [L.] Nevski) 

and cheatgrass (Bromus tectorum L.). Although vast areas have been degraded, 

the high cost of mapping and monitoring these invasive annual grasses lead to 

great challenges in monitoring and protecting affected areas at the ground level. 

However, it has been shown that medusahead reflectance values can be 

discriminated from other vegetation groups based on changes in the leaf angle 

orientation of medusahead plants when they senesce. Because measuring plant 

canopy reflectance is dependent on the geometry between the sensor view angle 

and solar position, variations in this geometry can also assist in delineating 

vegetation types over time. This study was conducted to detect the effects of 

changes in solar geometry on vegetation indices, visible and near infrared (NIR) 

reflectance of perennial grasses and medusahead, as well as to evaluate 

seasonal changes in spectral reflectance between these two functional groups. 

We used twenty four lightweight, low power spectral radiometers (after Garrity et 

al. 2010) in sixteen enclosures to monitor reflectance of perennial grasses and 

medusahead. Analog measurements were recorded every twenty minutes to 

measure diurnal variation of photosynthetic active radiation (PAR), green, and 

NIR reflectance during four different phenological periods. In addition, we 
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quantified seasonal spectral reflectance patterns. High sun zenith angles (early in 

the morning and late in the afternoon) affect NIR more and the contrary (sun 

zenith angles close to solar noon) affects the visible light wavebands. In addition, 

the reflectance of medusahead in the NIR and green bands (28.9% and 15.57%, 

respectively) was considerably higher than that of perennial grasses (19.48% 

and 9.74%) at the latest stages of senescence due to changes in leaf orientation. 

Medusahead can also be distinguished from perennial grasses throughout the 

season because of differences in its green and NIR reflectance near solar noon. 

These differences could be useful to detect medusahead from perennial grasses 

when scheduling multispectral or hyperspectral aerial image surveys. 
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1. Introduction and background 

Detection and mapping of invasive annual grasses is important in 

rangelands of the western United States. Annual grasses such as medusahead 

(Taeniatherum caput-medusae [L.] Nevski) and cheatgrass (Bromus tectorum L.) 

have become dominant across many semiarid landscapes, and have led to the 

degradation of several ecosystem properties associated with changing 

disturbance regimes and biodiversity loss across a wide range of trophic levels 

(Davies 2008). Areas previously occupied by annuals are more likely to be 

invaded by medusahead than areas occupied by perennial vegetation (Dahl and 

Tisdale 1975, Davies 2008). Characteristics of medusahead invasion include 

rapid spread (Dahl and Tisdale 1975), reduction of grazing capacity by 50 – 90% 

(Hironaka 1961, Davies and Svejcar 2008), slow litter decomposition (Harris 

1965), and low diversity. Davies and Svejcar (2008) compared medusahead -

invaded and non-invaded sagebrush communities and found that medusahead 

invasion substantially altered vegetation cover, density, biomass, species 

richness and diversity. For example, medusahead -invaded communities 

produced only 13% of the biomass produced by non-invaded communities 

(Davies and Svejcar 2008). In addition, medusahead invasion appeared to 

reduce the cover and density of Sandberg bluegrass (Poa secunda J.Presl) as 

much as or more than the large perennial bunchgrasses. Accumulation of 

medusahead litter could shade the photosynthetically active tissue of the 

relatively short-stature Sandberg bluegrass (Davies and Svejcar 2008). 
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 Although extensive areas within shrublands have been invaded by 

medusahead and other annual grasses, the high cost of mapping and monitoring 

these invasive annual grasses lead to great challenges in monitoring and 

protecting affected areas at the ground level. However, recent advances in 

utilizing passive multispectral and hyperspectral remote sensing technology have 

enabled improved detection of invasive annual grasses across the western US. A 

large fraction of these studies have focused on detecting and quantifying 

cheatgrass cover and productivity. Most of these studies include multitemporal 

imaging because the phenology of invasive annual grasses often differs 

substantially from native vegetation. For example, Bradley and Mustard (2005) 

used multitemporal Landsat TM and Advanced Very High Resolution Radiometer 

(AVHRR) data to detect interannual productivity variation in Great Basin 

ecosystems, and analyzed phenological differences among grasses to 

differentiate areas dominated by cheatgrass from those dominated by native 

bunchgrasses. These results were corroborated by studies by Noujdina 

and Ustin (2008), which showed that it is more likely to detect cheatgrass using 

hyperspectral data acquired in different seasons rather than single-date datasets. 

A primary reason that multitemporal studies assist in invasive annual 

grass detection is that the radiation regime of a plant canopy results from an 

integrated outcome of photon scattering by leaves, stems, and soils (Asner et al. 

1998a). As a result, plant canopy reflectance will be modified by leaf area index 

(LAI), leaf angle distribution (LAD), and foliage clumping that accompanies 

changes in vegetation phenology (Ross 1981). In semiarid rangelands, it has 
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been shown that changes in leaf angle resulting from maturity of some invasive 

grasses can increase the reflectance values in the visible and near infrared 

regions relative to green vegetation (Chapter 2; Figure 3-1). Changes in 

medusahead leaf angle occur because the plant seedhead becomes twisted as 

the seed matures, but it does not break apart completely once the seeds mature 

(Sharp et al. 1957). In contrast, stands of native grasses such as bluebunch 

wheatgrass (Pseudoroegneria spicata (Pursh) A. Love) maintain a more upright 

(erectophile) canopy structure throughout their phenological development, which 

results in a different balance of sunlit and shaded foliage and canopy radiation 

regime relative to medusahead (Chapter 2; Gold and Caldwell 1990). Many 

grasses maintain this erectophile canopy structure so that they can maintain 

higher levels of canopy light penetration even in dense canopies, which can lead 

to higher production (Gold and Caldwell 1990), net photosynthetic rates, and 

water use efficiency (Ryel and Beyschlag 1995) relative to those with more 

prostrate foliage.  

Because measuring plant canopy reflectance is dependent on the 

geometry between the sensor view angle and solar position, (Vierling et al. 1997, 

Asner et al. 1998c, Goodin et al. 2004, Middleton 1991) variations in this 

geometry can also assist in delineating vegetation types over time. The sun-

target-sensor geometry can be characterized by the illumination or incidence 

angle and the view angle that are determined by the solar elevation angle 

(counterpart of the solar zenith angle) and off-nadir sensor position, respectively. 

The reflectance resulted from these sun-target-sensor geometry is governed by 
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the bidirectional reflectance distribution function (BRDF) or its quantified 

expression BRF (Asner et al. 1998c).  

We found in Chapter 2 that by using multiple off-nadir sensor viewing 

angles, differences between the bidirectional reflectance factors (BRFs) of 

various rangeland canopy types allowed distinct delineation of annual grasses 

and sagebrush relative to native bunch grasses during much of the growing 

season. Vierling et al. (1997), using off-nadir radiometric measurements, were 

able to discriminate two tussock tundra sites (woody vs non-woody) that could 

not be distinguished at nadir view. Chopping et al. (2003) reported variations in 

canopy structure within two transition communities in the Jornada Experimental 

Range using aerial photography at different view angles and model inversion of 

BRDF parameters. These studies indicate that additional study using various 

sun-sensor geometries, when coupled with variation in plant canopy phenology, 

may lead to improved understanding in the detection of invasive grasses using 

remote sensing data. Hunt et al. (2007) using spectral angles from SAIL model 

simulation predicted that flowering leafy spurge (Euphorbia esula L.) (LAI >1.0) 

may be detected from co-occurring vegetation at a threshold spectral angle of 

3.5˚. However, Hunt et al. (2007) had to include flower-bract cover (>10%) of 

leafy spurge to increase the overall accuracies (from 50 to 60%) of classifying 

leafy spurge with Landsat ETM+ and SPOT data with the Spectral Angle Mapper 

(SAM) algorithm. Similar studies to classify hyperspectral images using the SAM 

algorithm (but without an assessment of the sun-viewing geometry) have been 

reported in detecting spotted knapweed (Centaurea maculosa Lam. Syn. C. 
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biebersteinii DC. or C. stoebe L. subsp. microanthos (Gugler) Hayek) and 

babysbreath (Gypsophila paniculata L.) infestations, where overall accuracies of 

57% and 97% were achieved (Lass et al. 2005).  

We conducted this study to measure: 1) the effects of changes in solar 

geometry on vegetation indices and visible and NIR reflectance of perennial 

grasses and medusahead over the course of a growing season, and to evaluate 

2) seasonal reflectance changes between these two functional groups. Our 

accompanying hypotheses are therefore that: 1) illumination angle affects values 

of spectral vegetation indices and broadband reflectance in pre-senesced and 

senesced perennial grasses and medusahead, and 2) perennial grass can be 

distinguished from medusahead at different phenological stages based on 

differences in vegetation indices and broadband reflectance.  

 

2. Methods 

2.1 Study area 

The study area comprises 38,000 ha of sagebrush steppe and grassland 

vegetation managed by the Soulen Livestock Co., near Weiser, Idaho. The area 

includes private and public grazing lands that are mostly grazed by cattle and 

sheep in addition to native ungulates, small mammals and insects. The land is 

fenced to facilitate livestock grazing management. The average daily maximum 

temperature ranges from -7.3 ˚C in January to 33.6 ˚C in July and average total 

annual precipitation is 298.4 mm. The elevation of the study sites ranges from 

950 to 1300 m above sea level. 
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Sixteen 3 x 3-m enclosures were established in pairs along the Loamy 12-

16 ARTRX-PSSP6 ecological site which covers 28.4% of the study area (USDA 

– NRCS, http://websoilsurvey.nrcs.usda.gov/). Each pair of enclosures was 

located on relatively flat terrain and was separated by approximately 200 m, with 

one enclosure situated in a native perennial grass canopy and one situated in 

medusahead canopy. Perennial grasses bluebunch wheatgrass 

(Pseudoroegneria spicata (Pursh) A. Love), squirreltail (Elymus elymoides [Raf.] 

Swezey)  and bulbous bluegrass (Poa bulbosa L ) and the annual invasive 

grasses like medusahead (Taeniatherum caput-medusae [L.]Nevski) and 

cheatgrass (Bromus tectorum L.) were the primary species in each type of 

enclosure, respectively. In one corner of each enclosure, an L-shaped boom pole 

was installed to mount a box containing a radiometer that recorded nadir spectral 

reflectance.  

 

2.2 Reflectance measurements 

Twenty four lightweight, low power spectral radiometers were constructed 

following a modified version of Garrity et al. (2010) and used to monitor the 

reflectance of perennial grasses and medusahead. Each radiometer consisted of 

three filtered photodiodes with band centers at 532, 568, and 800 nm, each with 

a 10 nm full width half maximum bandwidth (Garrity et al. 2010) and one 

unfiltered GaAsP photodiode to record photosynthetically active radiation (PAR; 

400-700 nm; Gutschick et al. 1985). Analog measurements were recorded using 

a Hobo data logger (Onset Computer Corp., Natick, MA). The data loggers 

http://websoilsurvey.nrcs.usda.gov/
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recorded voltage signals every 20 minutes from June 25th to September 8th 2008 

but only values from 7 a.m. to 5 p.m. (local daylight savings time) were used for 

the analysis. The field of view of the sensor was approximately 60  ۫  and the 

footprint was 2 m in diameter at 1.60 m height. Canopy cover for each light 

sensor field of view is described in Table 3-1. Eight radiometers included two 

sets of detectors, with one set to measure solar irradiance (to serve as a 

standard for calculating reflectance) and one set to measure upwelling radiance. 

The other 8 radiometers measured only radiance, and used their paired 

counterparts as irradiance reference measurements.  

Reflectance was calculated using ratios between down- and up- dwelling 

readings recorded by the light sensors in each of the measured bandwidths. This 

“raw” reflectance was calibrated using correction factors obtained by cross-

calibration between the irradiance (upward pointing) sensors and radiance of 

downward pointing sensors positioned over a white Lambertian panel (Gamon et 

al. 2006). This procedure is summarized in equation 1. 

Rcorrected = (Vtarget/Vupwelling) * (Vupwelling/Vpanel)   (1) 

Where: 

Rcorrected: corrected reflectance 

(Vtarget/Vupwelling): raw reflectance  

(Vupwelling/Vpanel): correction factor based on cross validation 

Correction factors were calculated for 5 different sun zenith angle classes 

under clear sky conditions similar to clear sky conditions over the study period 

(after Middleton 1991). Linear or polynomial equations were then used to 
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estimate correction factors for sun zenith angles that ranged from 21 to 75 

degrees (Figure 3-2). The solar elevation angles during the data collection and 

light sensor reflectance calibration was calculated with an online program 

provided by the US Naval Oceanography, Astronomical Applications Department 

(http://aa.usno.navy.mil/data/docs/AltAz.php). Measurements under cloudy sky 

conditions were discarded to minimize influences of high diffuse sky irradiance, 

and because clear sky conditions are necessary for subsequent comparison with 

aircraft and satellite data.   

 

2.3 Data analysis 

Green normalized difference vegetation index (NDVIg; Gitelson et al. 

1996) was calculated using spectral characteristics in the green (G) and near 

infrared (NIR) wavebands in equation 2.    

        (2) 

Where: 

  = Green NDVI 

  = 800 nm or near infrared waveband   

  = Green waveband  

To measure diurnal variation of both broadband PAR and NDVIg 

reflectance, comparisons between perennial grasses and medusahead were 

analyzed during four different phenological periods: pre-senescent, early 

senescent, mid senescent and late senescent (Table 3-2). Because of the 

reflectance variation along the day, especially at noon, and in order to compare 

http://aa.usno.navy.mil/data/docs/AltAz.php
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seasonal changes in reflectance, PAR and NDVIg between perennial and 

medusahead, we set the seasonal analysis at 40  ۫  sun zenith angle per each 

clear day (after Middleton 1991). 

T-student for means with equal variance was also calculated to compare 

diurnal reflectance means between perennial grass and medusahead at different 

phenological stages (Table 3-3).  
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3. Results and Discussion  

3.1 Diurnal reflectance variation at different phenological stages 

NDVIg shows higher values for medusahead at the four different 

phenological stages (Figure 3-3, Table 3-3). These differences are highly 

significant (p<0.01) at the pre-senescent and late-senescent phenological stages. 

Although the phenological stages were collected at different dates (Table 3-2), 

the NDVIg of medusahead and perennial grasses showed similar trends, with 

higher values at the pre-senescent stage and lower values during the early-, mid- 

and late-senescent stages. However, perennial grasses did not show significant 

differences in NDVIg between pre-senescent and senescent stages. The small 

amount of variation in NDVIg for perennial grasses could be related to the 

presence of bulbous bluegrass (which was senescent throughout the course of 

the measurements and comprised approximately 25% of the plot coverage) and 

litter (3% plot coverage), and the proportion of green/standing dead biomass in 

the footprint of the sensor (Table 3-1). In addition, because of the early 

senescence of bulbous bluegrass, only six radiometers of the sixteen were used 

for reflectance analysis (Table 3-1). NDVIg was affected by interactions between 

sun angle and structure of the vegetation. Although with a nadir-sensing view 

angle the least amount of shaded material occurred in the field of view at solar 

noon, lower values of NDVIg occurred mostly around solar noon. Caldwell et al. 

(1983) demonstrated that over half of the foliage of a typical desert wheatgrass 

(Agropyron desertorum (Fisch. Ex Link) Schult) is shaded at midday in the 

spring. Thus, photosynthetic rates of shaded desert wheatgrass foliage are 
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considerably less than fully illuminated foliage (Caldwell et al. 1983). Similar 

results in diurnal effects on NDVI were found by Gamon et al. (2006) and Sims et 

al. (2006). In addition, Sellers (1985) and Huete (1992) showed that NDVI values 

increase as solar zenith angles increase. However, diurnal variation of the NDVIg 

of perennial grass was not as great as the values for medusahead (Figure 3-3). 

Full day PAR reflectance followed an inverse pattern relative to NDVIg.  

PAR was more highly absorbed when plants were pre-senescent, relative to 

plants in other stages of senescence (Figure 3-4). In addition, the PAR 

reflectance of medusahead was significantly higher for all phenological stages 

than that from perennial grasses (Table 3-3). Similarly to NDVIg, PAR was 

affected by sun angle and plant structure, but to a lesser degree. However, this 

decrease did not occur in a linear fashion relative to NDVI (Walter-Shea et al. 

1992). Variations in PAR reflectance can likely be attributed to the changing 

proportion of shaded area, leaf litter and soil (Walter-Shea et al. 1992).  For 

example, standing grass litter canopies can absorb almost as much PAR as 

green grass canopies (Asner 1998b). Nonphotosynthetic materials such as twigs, 

branches, stems, senescent foliage and soils can also be strong absorbers of 

PAR (Asner and Wessman 1997), which may partially explain the trends seen in 

our data.   

Green and near infrared reflectance of medusahead were higher than the 

reflectance of perennial grasses along different phenological stages (Figure 3-5). 

In addition, green reflectance at 568 nm was higher than reflectance at 532 nm. 

These two wavelengths were chosen initially to calculate the photochemical 
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reflectance index (PRI). PRI is highly correlated with light use efficiency (LUE) in 

growing plants (Gamon et al. 1997) and it can be used as a surrogate of LUE in 

the gross primary productivity algorithm developed by Monteith (Rahman et al. 

2004). However, during the period of evaluation there was not significant 

vegetation growth that could have been detected by clipping and weighing 

biomass method (Bonham 1989). Nevertheless green reflectance was used for 

the calculation of NDVIg. Perennial grass green reflectance showed anisotropic 

behavior at the four different stages especially at solar noon. However, there 

were not significant differences among the green reflectance values of perennial 

grass at different phenological stages.  

The NIR and green reflectance of medusahead were higher at the latest 

stages of senescence than the early-senescence and pre-senescence (green) 

stages (Figure 3-5). This reflectance response is more closely related with 

changes in leaf orientation than with physiological changes. The seedhead of 

medusahead becomes twisted as the seed matures but it does not break apart 

completely once the seeds mature (Sharp et al. 1957). Thus, when medusahead 

is green, the orientation of the leaves is usually erectophile, changing to 

planophile when the plants start to senesce. Leaf inclination angles drives 

changes in spectral reflectance similar to those driven by variation in LAI or 

tissue content (Asner 2004). Generally the NIR waveband (730-1300 nm) is more 

sensitive to changes in leaf orientation than the visible region (400-700 nm) 

(Asner 2004). Furthermore, medusahead cover was sparser at early green 

stages where litter from previous years was more abundant, but this component 
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plays a less significant role in overall canopy reflectance when the plant matures 

and covers up the litter component. 

Changes in NIR canopy reflectance were sensitive not only to leaf 

orientation, but also to sun illumination angles. As seen in the results of our study 

(Figures 3-4 and 3-5), higher reflectance of NIR early in the morning (high sun 

zenith angles) often occurs. As sun zenith angle increases, the proportion of 

shaded area increases affecting visible BRF values; however, the shaded effect 

is less evident in NIR because this wavelength is multiply scattered by the 

vegetation, decreasing the contrast between sunlit and shaded areas within the 

canopy (Walter-Shea et al. 1992). Higher NIR reflectance was also observed 

when the sun zenith angles were high in the evening (higher than 75 degrees), 

but because our calibration factors exhibited less repeatability at these angles 

(data not shown) we did not consider these values in the analysis. However, 

based on the multiple scattering of NIR at high sun zenith angles we expected 

high NIR values in the evening. This behavior of high NIR values at high sun 

zenith angles was more significant in medusahead than in perennial grasses.  

The strong reflectance anisotropy of perennial grasses relative to 

medusahead seen in this study was likely due to the more complex structure of 

perennial grasses. The native perennial grass species measured in this study are 

taller than medusahead, so the proportion of shaded areas in the field of view of 

the sensors was higher in perennial grasses than in medusahead at larger solar 

zenith angles (i.e. early in the morning and late in the afternoon). Thus, hotspots 

were expected at solar noon, especially with the lower shadowing in perennial 



102 

 

grasses at that time. This hotspot presence would allow separating medusahead 

from perennial grasses, especially when medusahead start to senesce (Table 3-

3). This finding could be useful when scheduling multispectral or hyperspectral 

aerial image surveys, as the differences in reflectance between native and 

invasive grasses were more pronounced at solar noon. Middleton (1991) 

suggested that vegetation indices measured at high sun elevation angles (i.e. low 

SZA) could be good indicators of cover but not canopy attributes. 

 

3.2 Seasonal reflectance changes between native perennial grasses and 

medusahead 

Seasonal reflectance, PAR and NDVIg variation for perennial grasses and 

medusahead are shown in Figure 3-6 and 3-7. Because of the effects of sun 

zenith angle on reflectance values especially early in the morning and late in the 

evening (Sellers 1985, Huete 1992) we set the analysis for PAR, NDVIg and 

reflectance values at 40  ۫  sun zenith angle (after Middleton 1991). Data recorded 

at this angle were mostly found around 10 a.m. and 3 p.m. between June 27th 

and August 16th. Values recorded at this angle are more consistent than values 

recorded at noon because of the variation in sun zenith angles at this time (Table 

3-2). Sims et al. (2006) found that different conclusions could be drawn about 

NDVI seasonal changes comparing values at noon or at constant sun zenith 

angles between winter and summer. Conversely, Middleton (1991) suggested 

that a standard SZA could provide a good correspondence of vegetation indices 

and canopy characteristics such as LAI for values recorded during the summer 
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and early fall. In addition, medusahead started to show significant reflectance 

differences in PAR and reflectance values for NIR, 568 and 532 nm bandwidth 

relative to perennial grasses when medusahead started to senesce (Figures 3-6 

and 3-7). However, these differences were not observed when we calculated 

NDVIg (Figure 3-6). Medusahead displayed slightly lower NDVIg values than 

perennial grasses when the former started to senesce. We expected much lower 

values of NDVIg for medusahead because most of the samples were already 

senescing by early July. In fact, medusahead NDVIg was similar to perennial 

grass NDVIg between the early senescent and mid senescent stage for 

medusahead (Table 3-2). A reason for high medusahead NDVIg values during 

senescence could be related to factors that cause simultaneous high increments 

in NIR and reduction of the green reflectance values (Epiphanio and Huete 

1995). For example, NIR is more sensitive to changes in leaf orientation than is 

the visible region (Asner 2004). The other reason could be related with footprint 

composition of sensors pointing vertically at perennial grasses. Perennial grass 

NDVIg might be higher if bulbous bluegrass and soil background reflectance 

could be masked from the plot reflectance signal.  

Green reflectance was not significantly different between the two plot 

types when both medusahead and perennial grasses were photosynthetically 

active (Figure 3-7). In addition, NIR reflectance for medusahead and perennial 

grasses showed similar trends to the green reflectance for these functional 

groups. Even though perennial grasses remain green for a longer period of time 

than medusahead, reflectance in the NIR is lower than the reflectance of 
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medusahead. After medusahead proceeded to senescence, there is a 100% 

increase in green reflectance due to changes not only in tissue content but also 

in leaf orientation. As mentioned above, as medusahead underwent senescence, 

its leaf orientation changed from erectophile to planophile. Reflectance 

comparisons between erectophile and planophile leaf orientation showed higher 

reflectance when leaf orientation was planophile (Aster 2004 Chapter 2). For 

instance, Jackson and Pinter (1986) found that wheat (Triticum aestivum L.) 

canopy with similar LAI and leaf optical properties showed nadir-viewed BRF to 

be 20% higher in a planophile canopy compared to an erectophile canopy.  

High PAR reflectance is indicative of low photosynthetic activity of 

chloroplast pigments when plants begin to senesce. PAR reflectance was 130% 

higher when medusahead was fully senesced (Julian Day 200) than during the 

pre-senescent stage. In contrast, the perennial grass PAR reflectance increased 

only 30% during this same phenological transition. The low variation of PAR 

reflectance in perennial grass could be related with presence of bulbous 

bluegrass (cover around 25% of the sensor field of view), which might mask or 

diminish the changes in perennial reflectance because bulbous bluegrass 

senesced early in the season. The increment in PAR reflectance follows the 

same trend as the green reflectance for both perennial grasses and 

medusahead. Middleton (1992) demonstrated that grassland PAR reflectance 

can be estimated from either green or red bidirectional reflectance using linear 

regression equations with an r-square higher than 0.9. In addition, Middleton 

(1992) suggested that green is preferable because “it provides the highest visible 
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flux, falls in the midrange of PAR, and a simple approximation for PAR 

reflectance is 2/3 (green)”.  

 
4. Conclusions 

We conclude that sun zenith angles affect reflectance in the visible (PAR 

and green) and NIR wavebands. However, high sun zenith angles have a greater 

effect on NIR and small sun zenith angles have a greater effect on green 

bandwidth and PAR. The effects on visible light reflectance were amplified by the 

structure of perennial grasses, which demonstrated higher reflectance values 

near solar noon. These differences could be useful to detect medusahead from 

perennial grasses when scheduling multispectral or hyperspectral aerial image 

surveys. However, in order to detect seasonal changes in biomass, based on the 

relationship between vegetation indices and canopy properties such as LAI or 

absorbed PAR (APAR), we selected a fixed sun zenith angle to avoid variation of 

sun zenith angles at midday (Middleton 1991). Our results did not show 

differences between perennial grass and medusahead NDVIg along the season 

but differences in PAR, green and NIR reflectance were found. This could be 

interpreted as no differences in biomass changes when these vegetation groups 

start to senesce. However, further research to measure variation in biomass 

along the season would request assessment of red reflectance and other 

vegetation indices.  
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Table 3-1. Canopy cover classification of vegetation under light sensor field of 

view (Footprint 1-m radius). 

 

Sensor Bunchgrass Bulbous 
bluegrass 

Medusahead Forbs Litter Green:dead 
dry matter 

ratio  

1  32   68   1:0 
5 79 18   3 3:1 
8 69 28   3 2:1 

11     97  3 1:0 
12  10   90   1:0 
16     98 2  1:0 

 
 
Table 3-2. Collection dates samples and sun zenith angles (SZA) for full day 

reflectance measurement at four different phenological stages. 

 

Vegetation 
group 

Pre senescent Early 
senescent 

Mid 
senescent 

Late 
senescent 

Perennial 
grass 

    

Date 26 – 27 Jun 24 – 25 Jul 15 – 16 Aug 6 – 7 Sept 
SZA * 72 – 21 – 54  75 – 25 – 56  79 – 30 – 60   83 – 38 – 67  

Medusahead     
Date 27 – 28 Jun 9 – 10 Jul 24 – 25 Jul 14 – 15 Aug 
SZA * 72 – 21 – 54 73 – 22 – 55  75 – 25 – 56 79 – 30 – 60   

* SZA values for three different times of the day; 7 a.m., noon, and 5 p.m. 

 

 
Table 3-3. Results for T-test analysis between perennial grass and medusahead 

for full day reflectance comparisons (p<0.05).  

 

Reflectance Pre senescent Early 
senescent 

Mid 
senescent 

Late 
senescent 

NDVIg <0.01 0.19 0.08 <0.01 
PAR <0.01 <0.01 <0.01 <0.01 
NIR <0.01 <0.01 <0.01 <0.01 
Green 
(568nm) 

0.39 <0.01 <0.01 <0.01 

Green 
(532nm) 

0.38 <0.01 <0.01 <0.01 
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Figure 3-1. Near infrared (NIR) and Red bidirectional reflectance factor (BRF) for 
annual grasses for two different phenology periods. Changes in leaf orientation 
from erectophile to planophile affects reflectance values especially in the NIR 
region. Standard errors are depicted with vertical bars. Results from Chapter 2.  
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Figure 3-3. Green NDVI (NDVIg) of perennial and medusahead at four 
phenological stages.  
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Figure 3-4. Photosynthetically active radiation (PAR) reflectance of perennial 
grass and medusahead for four phenology periods.  
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Figure 3-6. Green NDVI (NDVIg) and PAR reflectance variation of perennial 
grass and medusahead throughout the observational period. Standard errors are 
depicted with vertical bars. 
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Figure 3-7. Green and NIR reflectance variation of perennial grasses and 
medusahead throughout the observational period. Standard errors are depicted 
with vertical bars. 



118 

 

CHAPTER 4. Bidirectional reflectance of shrub-steppe vegetation: towards 

MISR-based GPP partitioning 

Abstract 

Quantifying the cover fractions of various plant functional groups existing 

within the MODIS Gross Primary Productivity (GPP) model grid cells would be of 

great advantage for monitoring biomass changes within shrub steppe vegetation.  

We conducted shrub-steppe vegetation classification based on field data and 

remote sensing imagery collected at two different spatial resolutions (Landsat, 30 

m; and Multi-angle Imaging Spectro Radiometer (MISR) local mode, 275 m) in 

order to obtain a fractional cover index to weight MODIS GPP product according 

to plant functional types. We hypothesized that: 1) multiangular data from MISR 

local mode data can improve plant functional type accuracy assessments relative 

to Landsat image classification at the end of the growing season and 2) 

vegetation classes generated from multiangular data can be used to produce 

GPP estimates using the MODIS GPP (1 x 1 Km) product. Maximum likelihood 

supervised classification was used to identify three classes based on field 

transect data: shrub, non-shrub and crop vegetation types. These classes were 

used to generate a fractional cover for MODIS GPP 1-km grid cells at different 

periods throughout the growing season. The overall classification accuracy was 

high for Landsat and the nadir MISR camera (An) images (88% and 98%, 

respectively). We additionally plotted the bidirectional reflectance factor (BRF) 

values for each of the MISR bands and cameras to evaluate whether the 

differences between shrub and non-shrub groups could be better discriminated 
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using the other cameras. Our results show that we could separate shrub and 

non-shrub for image classification because of the absolute difference between 

these two vegetation groups. Although we could separate all three cover types, 

the relationship between MODIS GPP and shrub cover variation was not 

significant (R2<0.06), likely because of the ‘mixed’ pixels that increased the 

variance and thus confounded the response within each MODIS GPP grid cell. 

However, a relationship between MODIS GPP and crop fractional cover was 

observed. Further studies that span longer time periods may be necessary to 

derive the productivity of individual plant functional groups using the MODIS GPP 

product. 
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1. Introduction and background 

Rangeland inventory and mapping is used to characterize aspects of 

ecosystem structure that can be later linked to ecological processes. Classifying 

and mapping large areas of these heterogeneous ecosystems have relied mostly 

in the availability of remotely sensed imagery at various spatial and temporal 

resolutions (McGraw and Tueller 1983, Tueller 1989, Wylie et al. 2002, Cingolani 

et al. 2004).  

The study of plant functional types provides new insights into the 

dynamics of shrub-steppe vegetation change in the western North America. Plant 

functional types such as shrubs greatly affect ecosystem properties such as 

carbon and water budgets (Gilmanov et al. 2003, 2004) and productivity (Wylie et 

al. 2003). Moreover, shrubs tend to be the dominant overstory species that can 

be distinguished by most nadir viewing remote sensing measurements, which 

generally extract information of the upper canopy without including information of 

the understory vegetation (Ustin and Gamon 2010). Although there is not a 

universal system in place to classify vegetation functional types, shrubs combine 

different functional attributes that can be used to predict relationships between 

characteristic plant physiological patterns and structural responses detectable by 

remote sensing (Ustin and Gamon 2010). These functional attributes include a 

distinctive growth form, perennial life history and evergreen leaf duration 

(DeFries et al. 1999). In addition, differences in plant functional types can affect 

interrelationships among plants, between plants and animals, and between 

plants and the environment. It is therefore helpful to estimate vegetation 



121 

 

production of shrubs versus other vegetation groups across the landscape. 

Although differentiating plant functional types using coarse scale remote sensing 

data can be challenging in semi-arid ecosystems, a fractional cover index to 

weight remote sensing products, such as the MODIS Gross Primary Productivity 

(MODIS GPP) product, may be useful to monitor ecosystem change as a 

function of plant functional types.   

 The principal application of the MODIS GPP product (MOD17) is to 

document and monitor global biospheric health (Running et al. 2000). In order to 

measure vegetation productivity, MODIS GPP is based on the productivity 

efficiency model proposed by Monteith (1972) or light use efficiency approach 

(Running et al. 2000):  

GPP = PAR * fPAR * ε    (1) 

Where PAR is the photosynthetically active radiation incident on a plant canopy, 

fPAR is the fraction of PAR absorbed by a canopy and ε is the radiation use 

efficiency (RUE), in terms of g C MJ-1. In this model, GPP is a function of 

absorbed photosynthetic radiation (APAR=PAR * fPAR) and RUE. fPAR for each 

MODIS GPP 1-km cell is measured using NDVI calculated from reflectance 

detected by the MODIS sensor (Sellers 1985, Myneni et al. 2002). The maximum 

radiation use efficiency (εmax) to produce the final (ε) is derived from a lookup 

table and modified by scalars (0-1) associated with daily minimum temperature 

(TMIN) and vapor pressure deficit (VPD). PAR, TMIN and VPD are obtained from 

the meteorological data provided by the NASA Data Assimilation Office (DAO) at 

a resolution of 1 x 1.25˚ in contrast to the 1-Km gridded MOD17 outputs. Thus, 
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the entries of this model are subject to uncertainties and assumptions (Heinsch 

et al. 2003). For instance, comparison of meteorological data recorded by 

MODIS DAO and flux tower in hardwood and boreal forest sites showed good 

agreement for VPD and TMIN, while the DAO PAR resulted in high bias (Turner 

et al. 2003). 

One drawback of MODIS GPP products is that the scale of land cover 

variation is usually smaller than the ~ 1-km resolution. Classifying coarse 

resolution pixels as a unique type of land cover generally results in poor accuracy 

(Nelson and Holben 1986). Thus, quantifying fractional cover within MODIS GPP 

pixels would be of great advantage for monitoring biomass changes within shrub 

steppe vegetation. Building upon findings from Chapters 2 and 3, we therefore 

hypothesized that: 1) multiangular data from MISR local mode data (pixel size: 

275 x 275m) can improve plant functional group accuracy assessments relative 

to Landsat image classification at the end of the growing season and that 2) 

vegetation classes generated from multiangular data can be used to produce 

GPP estimates using the MODIS GPP (1 x 1 Km) product. Our objectives were 

to: 1) detect differences in land cover types using bidirectional reflectance factor 

values at the landscape scale and 2) estimate non-shrub and shrub fractional 

cover using MISR and Landsat-based classification in order to refine plant GPP 

estimates using MODIS. 
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2. Methods 

2.1 Study area. 

Four square macroplots measuring 5 by 5 km, and separated from each 

other by 5 to 12 km, were delineated to include multiple MODIS 1 km GPP 

product grid cells (after Turner et al. 2003). These areas were emplaced on 

ecological site classes (USDA-NRCS; http://websoilsurvey.nrcs.usda.gov/) on 

lands managed by the Soulen Livestock Co., near Weiser, Idaho (Figure 2-2). 

Consequently, the macroplots included the dominant Loamy 12-16 ARTRX-

PSSP6 ecological site, which extends over 28.4% of the overall study area 

shown in Fig. 2-2. This ecological site represents loamy soils with 12-16 inches 

(304-406 mm) of precipitation and it is cover predominantly by foothill big 

sagebrush (Artemisia tridentata Nutt ssp. xericensis Winward ex R. Rosentreter 

& R. Kelsey) and bluebunch wheatgrass (Peudoroegneria spicata (Pursh) A. 

Love) (http://websoilsurvey.nrcs.usda.gov/). Other ecological sites that are 

dominant in the area include the Very shallow 12-20 ARRI2-POSE (20.8%) and 

the South slope loamy 12-16 ARTRX-PSSP6 (12.1%). Additional information 

relating to the study area was described in the previous chapters. 

 

2.2 Field data collection 

Training sites for remote imagery classification were chosen based on 

canopy cover measurements collected in 2007 and 2008. Canopy cover was 

estimated using permanent transects established within each of the macroplots. 

In 2007, cover was estimated in 36 225-m line transects with readings in 5-m 

http://websoilsurvey.nrcs.usda.gov/
http://websoilsurvey.nrcs.usda.gov/
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sections; thus a total of 115 readings were obtained per transect. In an attempt to 

capture variability caused by wind and terrain effects, in 2008 the number of 

transects were increased to 72, while reducing their length to 30 m each.  

Transects were located within each macroplot in representative areas at different 

elevation levels (from 1000 to 1200 m) and close to the measurement enclosures 

described in Chapter 3. In addition, transects were located on areas with slope 

less than 15% to facilitate calibration and comparison with remotely sensed data. 

Canopy cover of four vegetation types was derived using the line intercept 

method. Shrubs, native grasses (sparse and bunch types), perennial forbs, and 

invasive annual grass canopy cover were measured in these transects. These 

four plant functional types represented a range of canopy structure, phenology, 

and biomass, and grew on a variety of soil types. The shrub group was 

comprised of foothill big sagebrush (Artemisia tridentata Nutt ssp. xericensis 

Winward ex R. Rosentreter & R. Kelsey) and bitterbrush (Purshia tridentata 

[Pursh] DC.). Bunchgrasses were mainly comprised of bluebunch wheatgrass 

(Pseudoroegneria spicata [Pursh] A. Love) and squirreltail (Elymus elymoides 

[Raf.] Swezey). The sparse grass group included bulbous bluegrass (Poa 

bulbosa L), which exhibits different structure and phenology than the bunch type 

perennial grasses. The perennial forbs group included lupine (Lupinus spp.), 

curlycup gumweed (Grindelia squarrosa [Pursh] Dunal) and western yarrow 

(Achillea millefolium L.). Annual grasses were represented mainly by 

medusahead (Taeniatherum caput-medusae [L.] Nevski) and some scattered 

samples of cheatgrass (Bromus tectorum L.).  
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Cover readings were measured for two periods: growth (late spring) and 

senescent period (transition summer-fall). Because the line intercept method is 

more suitable for reading shrub and bunch grass cover, cover of annuals 

grasses, forbs and sparse vegetation was visually estimated (Canfield 1941). 

Therefore, we clustered annual and forbs as a non-shrub vegetation group for 

the supervised classification. The non-shrub vegetation group included also 

senesced crop areas and pasture/hay land.  

 

2.3 Imagery acquisition 

Vegetation cover classification can be improved in some areas when 

nadir-based remote sensing imagery are supplemented by reflectance 

information collected from multiple sun and viewing geometries (Martonchik et al. 

1998, Schaepman-Strub et al. 2006). As with most land surfaces, rangelands 

possess complex structures that result in highly anisotropic reflectance 

characteristics (Figure 2-1). We quantified the anisotropic nature of the 

vegetation canopies within our study area through the measurement of the 

bidirectional reflectance factor (BRF). The BRF is the ratio of the reflected radiant 

flux from a sample surface to the radiant flux reflected from an ideal and diffuse 

standard surface under identical view geometry and single direction illumination 

(Nicodemus et al. 1977, Diner etal. 1999, Schaepman-Strub et al. 2006).  

MISR Level 1B2 Local Mode Terrain Radiance Data (Version F03_0024) 

were acquired for the Crane Creek ID Site on July and August 2008 (Table 4-1). 

The local mode imagery was requested and granted by the MISR Local Mode 
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Science Coordinator (Figure 4.2). The local mode imagery corresponded to the 

nine pushbroom MISR cameras described as Df, Cf, Bf, Af, An, Aa, Ba, Ca and 

Da where A, B, C and D describe increasing viewing angles (26.1,45, 60 and 

70.5 degrees, respectively) and where the letters f, n, and a describe foreward, 

nadir and aftward viewing cameras, respectively (Diner et al. 1999). 

We downloaded Landsat 5 TM imagery from the USGS Global 

Visualization Viewer (http://glovis.usgs.gov/) for the July and August 2008 

periods. We also downloaded and utilized Landsat 5 TM data to locate the 

training sites using the geolocated transect data. 

MODIS products (MODIS GPP 8-Day L4 Global 1 Km (MOD17A2) and 

MODIS Vegetation Index 16-Day L3 Global 1 Km (MOD13A2)) were downloaded 

from the NASA Warehouse Inventory Search Too (WIST) 

(https://wist.echo.nasa.gov/). MOD17A2 images were downloaded for the 

growing season from Julian date (DOY) 177 to 241. According to the MODIS 

science team, the L3 and L4 products are ready for use in scientific analysis and 

publication. 

 

2.4 Imagery pre-processing 

We used the band minimum subtraction method to atmospherically correct 

Landsat and MISR local mode data (Chavez 1988). Prior to this step, and in 

order to get minimum values in the MISR image, zero values of bad pixels were 

change to NaN (Not a Number) values in the Environment for Visualizing Images 

(ENVI) software package. In addition, all the images were spatially resized using 

http://glovis.usgs.gov/
https://wist.echo.nasa.gov/
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ENVI nearest neighbor resampling to a rectangular area set to UL corner 44.5 N, 

-116.8 W and LR corner 44.0 N, -116.4 W geographic coordinates. MISR local 

mode and MODIS GPP images were re-projected using ENVI nearest neighbor 

resampling to Landsat UTM projection and WGS 84 datum. 

 
2.5 Data analysis 

BRF calculation 

BRF values for each of the MISR images were obtained using the MISR 

Toolkit (Mtk) provided by the NASA Atmospheric Science Data Center (ASDC). 

The Mtk is a programming that involves different routines to extract and utilize 

MISR data sets like MISR level L1B2 and Level 2 (Rheingans et al. 2006). 

Among these routines the MtkFileToGridList, MtkFileGridToFieldList and 

MtkMisrToEnvi utilities were used. The MtkFileToGridList utility lists the following 

grids: BlueBand, GreenBand, RedBand, NIRBand, BRF conversion factors, and 

geometric parameters. Then, given a file and a grid, MtkFileGridToFieldList utility 

retrieves the 7 different fields of a file/grid. For instance for the red band the 

following fields are available: RedBand, Red Radiance/Radiometric data quality 

indicator (RDQI), Red Radiance, Red RDQI, Red DN, Red Equivalent 

Reflectance, Red Brf. From this list only the Red Radiance/RDQI is a real field. 

The others are derived by unscaling and unpacking or otherwise using the Brf 

conversion factors. The MtkMisrToEnvi utility imports MISR data into ENVI, 

preserving the projection parameters that are stored in a header (.hdr) file 

(Rheingans et al. 2006).  
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Image classification and accuracy assessment 

Maximum likelihood supervised classification was used because it is a 

standard classification algorithm based on Gaussian distribution of pixels from 

each class (Foody et al. 1992). Hence, data samples for training sites should be 

representative of each class (Prenzel and Treitz 2005, Su et al. 2009). Two 

classes were selected based on transects information: shrub and non-shrub 

vegetation. Since Landsat image pixels have a unique coordinate system located 

in the center of the pixel, it was possible to extrapolate the information provided 

by the line intersects onto the 30 x 30-m Landsat pixel size (Figure 4-1). 

Therefore, based upon the field data, 39 shrub and 53 non-shrub pixels were 

randomly selected as a training set and the other pixels (37 shrub and 49 non-

shrub) were retained for accuracy assessment for maximum likelihood 

classification. The minimum coverage for each pixel for quantifying an area as 

shrub or non-shrub was 70%. Furthermore, because there are irrigated crop 

areas in the study area that can be distinguished in the imagery, we used this 

vegetation type as an additional class because of the differences in biomass 

production compared to shrubs and non shrub vegetation groups. Therefore, 40 

crop-training sites were selected to classify the Landsat image and the other 36 

pixels were used for accuracy assessment. Pixels having a slope greater than 

5% were eliminated to reduce interference due to complex terrain. 

Using the three classes obtained using the Landsat classification; we 

selected training sites for the MISR image classification. All MISR pixels that had 

more than 70% cover of any of these three Landsat classes were selected as 
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training sites. First, we classified the MISR nadir camera image (An) so we could 

compare this classification with a classification using the MISR cameras 

positioned at the other viewing angles because MISR off-nadir cameras would 

enhance the overall accuracy of nadir image (Armston et al. 2007, Su et al. 2007, 

Su et al. 2009). In addition, we also tested if all MISR cameras could distinguish 

the three classes in all bands. After the supervised classification was completed 

for both Landsat and MISR images, we built error matrices and calculated a Khat 

statistic to gauge the level of agreement that cannot be attributed to random 

chance (Jensen 1986). 

 

Scaling up from Landsat (30 x 30 m) to MISR local mode (275 x 275 

m) to MODIS GPP product (1 km) 

 Each MISR pixel, after being reprojected in UTM projection, contains 

coordinate values set at the center of the pixel in ENVI. Using these coordinates 

and the location of each pixel edge we could estimate that each MISR local 

mode pixel (275 x 275 m) corresponded to approximately 9 x 9 Landsat pixels 

(Table 4-2). This analysis was similar to when trying to integrate MODIS GPP 1-

km pixels, which output pixel size measures 926.6 m (LPDAAC 2008), to Landsat 

and MISR local mode pixels. However, because the MODIS GPP product 

coordinates correspond with the upper left corner of each pixel and proceeds 

right and downward (Table 4-2), additional considerations had to be made to 

spatially match the various datasets.  
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 GPP Fractional cover 

 MODIS GPP 1-Km pixels were classified using aggregations of Landsat-

based class data. Because each MODIS pixel was comprised of approximately 

90 and sometimes 120 pixels (Table 4-2) we selected the MODIS pixels that 

included at least 65% of the Landsat and MISR pixels located in flat areas (Table 

4-3). After this evaluation we were able to choose 16 pixels with different 

percentages of shrub cover and we evaluate the relationship between cover and 

GPP via regression analysis. We did the same analysis with GPP and crop 

areas. In addition, we display the MODIS Enhanced Vegetation Index (EVI) 1-Km 

pixels to validate relationships between shrub and crop cover with MODIS GPP 

at the same spatial resolution. 
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3. Results and Discussion 

3.1 Vegetation type classification 

 The classification accuracies are shown in Table 4.4. The overall accuracy 

was high for both image classifications. In addition, the Khat statistic shows 

excellent or full agreement for Landsat and MISR classification (Table 4-4). We 

inferred that the low number of classes (3) was likely to affect the accuracy 

classification. Even at the finer Landsat spatial resolution, we were unable to 

locate enough training sites with the cover of a particular plant functional group 

higher than 70% to split the non-shrub vegetation type into at least perennial 

grasses and invasive annual grasses. For instance, training sites of invasive 

annual grasses with a canopy cover higher than 70% were difficult to estimate; 

because of the complex variability of the community there were few areas 

dominated by this vegetation group. In addition, areas covered with squirreltail 

were also covered with sparse grass, which made it difficult to select a training 

site for perennial grasses. Furthermore, the crop areas were so few that the 

validation of these areas was almost 100%. However, commission errors 

occurred with riparian areas southwest of the Crane Creek Reservoir that were 

classified as crop areas in both image classifications (Figure 4-3). 

To achieve better estimates of shrub fractional cover, we selected the 

MISR image from August 18th for the supervised classification because most of 

the non-shrub vegetation was senescent during this time. In addition, some 

croplands were still green because of irrigation, but those that were senesced 

during this time were classified as non-shrub to avoid problems in the relation 
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between MODIS GPP and crop cover. We first classified the MISR-nadir (An) 

because it has the same vertical observation angle that the Landsat sensor uses 

(Chapter 1, Table 4-4). We had originally planned to classify the images collected 

by the other MISR cameras to attempt to improve the nadir-based classification, 

but because the overall accuracy and Khat statistic of the MISR-An image 

classification was 98.3% and 97.1% respectively, we did not try any further 

refinement of the classification for each of the other cameras because we 

expected to achieve the same or better accuracy (Su et al. 2007,  2009, Braswell 

et al. 2003, Armston et al. 2007, Liu and Kafatos 2007). However to test this 

hypothesis we plotted the BRF values for each of the MISR bands and cameras 

to evaluate differences between shrub and non-shrub groups (Figure 4-4 and 

Figure 4-5).  

 Before analyzing each MISR band at each off-nadir camera, we examined 

differences among these three classes based on ratio-based vegetation indices 

like the NDVI (Figure 4-4). It is clear that crop NDVI at all MISR cameras was 

substantially different from shrubs and non-shrub NDVI values. Most crop areas 

have irrigation systems that allow the farmers harvest barley (Hordeum vulgare 

L.) and alfalfa (Medicago sativa L.) during the summer season for storing hay 

during the winter season. On the other hand, there were small differences 

between shrub and non-shrub NDVI values. Even though shrub and non-shrub 

NDVI followed the same pattern along all MISR cameras, small differences 

between these two groups did occur. 
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NDVI is affected by the view angle, especially at the farthest forward and 

aftward MISR cameras (Figure 4-4). At the ground level less soil or litter 

background and greener canopy can be observed with large off-nadir view 

angles (Middleton 1991, Goodin et al. 2004). However, even with the 

determination of vegetation indices, variations in reflectance introduced by sun 

and view angle effects are not completely removed because these directional 

effects are dependent upon both the target anisotropy as well as spectral band 

region of interest (Middleton 1991, Epiphanio and Huete 1995, Walter-Shea et al. 

1997, Galvao et al. 2004). Topographic effects can also increase NDVI values. 

Goodin et al. (2004) suggested that ratio-based vegetation indices do not entirely 

compensate for surface terrain effects (Goodin et al. 2004). Even though we 

selected flat areas for our training set, occlusion by some geological forms could 

affect NDVI values, especially in the area near the Crane Creek reservoir where 

steep terrain existed. In order to avoid high BRF values at off-nadir view angles, 

Walthall et al. (1985) showed that most bidirectional information of vegetated and 

soil surfaces are found in the principal solar plane within viewing angles approx 

50˚ either side of nadir. In addition, Pinty et al. (2009) recommended that NDVI is 

not optimal for deriving one single and unique vegetation attribute for large 

spatial domains because it generally translates into an increasing set of 

constraints to be satisfied (Woodcock and Strahler 1987, Verstraete and Pinty 

1996). 

Shrub and non-shrub BRF at each band and camera are shown in Figure 

4-5. The shape of the angular BRF signature for each band showed similar 
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shapes for shrub and non-shrub vegetation, with low BRF values at forward-

viewing cameras and high BRF values at the aftwards cameras. Even though 

non-shrub vegetation is mostly senesced by this period, this exhibited higher 

green and NIR BRF values than ‘evergreen’ shrub vegetation. This behavior may 

be explained by data presented in Table 4-4. The selection of MISR ‘pure’ pixels 

was designed to include pixels with a minimum cover of 70% of either shrub or 

non-shrub vegetation. However, non-shrub ‘pure’ pixels still included 

approximately 16% of shrub vegetation that may affect the BRF response in all 

MISR bands (Table 4-4).  

Vegetation structure and shadowing within pixels have been related to the 

shapes of BRF signatures (Nolin 2004, Pinty et al. 2002, Widlowski et al. 2004) 

where the presence of vertically elongated foliage clumps of moderate to high 

densities can exhibit a bell-shaped angular signature in the red BRF across the 

solar principal plane, while compact vegetation canopies exhibit bowl-shaped 

reflectance patterns (Pinty et al. 2002, Widlowski et al. 2004). In addition, a bowl-

shaped NDVI pattern was described by Deering et al. (1994, 1999) in studies of 

spruce-hemlock forest and boreal forest ecosystems. In our study, the average 

height of sagebrush was 1.01 m while the average height for perennial grasses 

was approximately 0.5 m. These two dominant species grow surrounded by 

native annual grasses like bulbous bluegrass which senesce at the end of the 

spring remain as standing dead vegetation throughout the growing season. We 

considered that the physiognomy of the vegetation in the study area would not 

allow distinguishing differences in the shape of BRF signatures at moderate 
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resolution like the MISR local mode images. In addition, it is difficult to define a 

regular ‘bowl shape’ or ‘bell shape’ BRF shape for all the bands. Because these 

shapes did not occur in our BRF curves, we tried to distinguish these two 

vegetation types at the landscape scale using the anisotropy index (ANIX) as we 

did at the plant scale in Chapter 2 (Figure 4-6).  

We observed that shrub ANIX was higher than non-shrub ANIX at the 

spatial resolution of MISR (Figure 4-6). However, this difference was not as high 

as the difference observed at the fine plant-scale resolution where shrubs 

showed high anisotropic reflectance behavior compared to other plant functional 

types (Chapter 2). Asner (2004) suggested that remote sensing observations in 

dryland ecosystems tend to integrate plant-to-plant variations in canopy structure 

when the spatial resolution is greater than 10 to 20 m. The exception to this 

observation takes place when a major change in vegetation structure occurs 

(Asner, 2004). Thus, the height difference between shrubs and perennial grasses 

were likely not great enough to represent a major structural change at MISR 

resolution; that the effect of anisotropic behavior recorded by ANIX at fine 

resolution may be smoothed at MISR resolution (Woodcock and Strahler 1987).  

Although the shapes of BRF signatures for shrubs and non shrub 

vegetation were found to be similar, we were still able to use these values for 

image classification because of the absolute difference between these two 

vegetation groups (Figure 4-3). Therefore, we expected similar accuracy 

classification for each MISR off-nadir image compared to the MISR An image 

classification (Figure 4-3, Table 4-3). This is a different finding from other studies 
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such as Su et al. (2007, 2009) who demonstrated that multi-angular reflectances 

raised overall classification accuracy in 15% compared to nadir-only analyses in 

New Mexican arid and semi-arid grasslands. In addition, parameters derived 

from MISR data products have been found to improve the accuracy of moderate 

resolution mapping of semi-arid vegetation (Su et al. 2009). 

 

3.2 MODIS GPP fractional cover 

 Increments in shrub cover estimates using MODIS GPP pixel size show 

low R-square value (Figure 4-7). Logarithmic regression fit the curves with 

R2<0.06. In fact, based on the figure we can establish that there was no 

relationship between GPP and shrub cover for our study area. The shrub 

fractional cover for GPP pixels was estimated using the Landsat image classes 

because this image provided more detail compared to the MISR An image. For 

instance, we observed that there were more clumped shrub areas in the MISR-

based map than the Landsat-based map (Figure 4-3). In addition, we compared 

MODIS GPP with variation in crop cover to verify that this product pixel size 

responded to changes in coverage (Figure 4-7). We observed a slightly positive 

trend between crop cover increments and GPP (R
2
 =0.22-0.54, Figure 4-7). 

Based on the MOD17 model assumption, it seems that TMIN and VPD for this 

area may work fine for the crop areas. This is also supported by the trends in 

vegetation indices such EVI (Figure 4-7), which displays an upward-trending 

relationship with fractional crop cover at higher (>25%) crop cover values 

(R2=0.5-0.7). Thus, the lack of relationship between shrub cover and GPP may 
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be due to other factors such as smaller relative changes in biomass and leaf area 

index, and effects of non-shrub vegetation. 

Pixels that represent areas comprising a mixture of two or more features 

(i.e. ‘Mixed pixels’), present a common problem, confounding the classifier, in 

identifying vegetation types in imagery of low spatial resolution (Strahler et al. 

1986, Ustin and Gamon 2010). Poor classification accuracy and overall 

underestimation of non dominant classes represent some common problems 

when classifying coarse resolution pixels as a unique type of land cover (Nelson 

and Holben, 1986). We surmise that the heterogeneity of the vegetation types 

and that the selection of shrub and non-shrub ‘pure’ pixels may affect the 

estimation of MOD17A2 sub-pixel land cover fractions (Table 4-4). Thus, it is 

possible that the classification of the three ‘pure’ classes in Landsat 5TM and 

MISR An may be affected by mixed pixel effects (Figure 4-7). Other sources of 

misclassification would be misregistration of the pixels and mapping errors and 

technical differences in sensor design and calibration (Foody 2002, Ustin and 

Gamon 2010) 

Even though there is no relationship between MOD17A2 and shrub cover 

we could observe changes in GPP from high values to low values along the 

growing season, but at the end of the summer: GPP at DOY 233 was higher than 

GPP at DOY 217 (Figure 4-7). This fluctuation can be related to changes in VPD 

or TMIN. Reeves et al. (2006) found that GPP estimates for monitoring grassland 

biomass fluctuations improved when plant growth conditions, for instance 
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precipitation, were more favorable. Thus, it may also be helpful to have data from 

earlier in the growing season to assess these fluctuations.  

 
4. Conclusions 

We conclude that the overall accuracy of the Landsat and MISR An local 

mode supervised classification for our three class types was excellent. This high 

accuracy could have been related to the low number of classes set at moderate 

and coarse spatial resolution (MISR local mode and MODIS GPP, respectively). 

In addition, we conclude that this high accuracy classification could be obtained 

at different MISR off-nadir cameras because of the absolute differences between 

the spectral reflectance of shrub and non-shrub vegetation types. However, no 

distinction was observed between the shape of shrub and non-shrub BRF. In 

addition, anisotropic behavior that was recorded by ANIX at fine resolution was 

smoothed at MISR resolution, likely because the height difference between 

shrubs and perennial grasses were not great enough to represent a major 

structural change at the coarse scale. However, we were still able to use BRF 

signatures for image classification because of the absolute difference between 

these two vegetation groups. Even with the high accuracy classification of 

shrubs, non-shrubs and crop land cover types, we did not observe a significant 

relationship between MODIS GPP values and GPP pixel shrub fractional cover. 

Presence of ‘mixed pixels’ as well as other sources of misclassification such as 

misregistration of the pixels and mapping errors, as well as possible technical 

differences in sensor design and calibration would affect this relationship in low 

spatial resolution imagery.   
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Although classification of heterogeneous shrub-steppe vegetation is 

challenging, further studies to derive MODIS GPP fractional cover may be 

needed. However, the new approaches not only should consider the structural 

characteristic of vegetation functional types but also the spatial distribution of 

these in the landscape. For instance, biomass would be different for shrubs in 

clustered and dispersed spatial distribution. Selecting a significant number of 

transects for training sites at different shrub cover could increase the 

opportunities to obtain significant relationships between MODIS GPP values and 

shrub cover variation. In addition, further validation of classification of green 

cropland at earlier periods during the growing season would be needed to 

validate the relationship between MODIS GPP and cropland cover variation.  
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Table 4-1. Orbit number, acquisition date and time for two MISR local mode over 

passing the study site. * 

 

Site Name Acquisition Date Orbit # GMT Day (Df) 

Crane Creek ID Jul 17, 2008 45645 2008/199/18:45:49 

Crane Creek ID Aug 18, 2008 46111 2008/231/18:46:00 

 
*  Times are shown for the start of Local Mode acquisition for Df camera, duration of Local Mode 
is 7:35 minutes. The local time for study area was around 12:45 pm (including saving time). Both 

images correspond to Path 42 and Block 55. 
 

 
 
 
 

Table 4-2. Scaling up Landsat pixels to MISR and MODIS pixels. Re-projection of 

MISR and MODIS to UTM projection and WGS 84-datum was performed before 

scaling up. 

 

Landsat MISR MODIS 

Sample Line Sample Line Sample Line 

37-67 110-152 6-9 14-18 8 11 

68-98 153-195 10-12 19-22 9 12 

99-129 196-238 13-16 23-27 10 13 

130-160 239-281 17-19 28-32 11 14 
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Table 4-3. Composition of MISR shrub and non-shrub vegetation ‘pure’ pixels 

located at different locations. 

 
Macroplot MISR Shrub ‘pure’ pixel MISR Non-shrub ‘pure’ pixel 

# Shrub Non-

shrub 

Crop # Shrub Non-

shrub 

Crop 

A 29 79.3±5.4 20.7±5.4 0.0±0.0 9 22.6±6.0 77.2±5.7 0.2±0.6 

B 41 84.5±5.3 15.4±5.3 0.1±0.3 17 14.6±8.5 85.4±8.5 0.0±0.0 

C 13 76.3±4.5 23.6±4.4 0.1±0.2 41 17.3±9.0 82.6±9.0 0.1±0.3 

D 14 79.1±4.4 20.8±4.4 0.1±0.2 93 14.3±8.4 85.6±8.4 0.0±0.2 

 
 
 

Table 4-4. Accuracy classification for shrub using Landsat and MISR nadir (An) 

images. 

 

Image 
Accuracy for shrub (%) 

Khat (%) 
Overall Producer User 

Landsat-Set 87.7 72.9 94.6 81.6 

MISR Nadir-Aug 98.3 96.2 98.1 97.1 
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Figure 4-1. Line transect (225 m in length) overlain on Landsat pixels. Red dots 

represent stakes set at every 45 m. In 2008, 30-m transects were set at each end 

of the 225-m transect set in 2007. 
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Figure 4-2. MISR paths over CraneCreekID, Local Mode Site # 313 (44.300, -

116.600). Path 042 and block 55 are shown with a dot (MISR Local Mode team) 
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(a)       (b) 
 
 
 
 
Figure 4-3. (a) Landsat and (b) MISR An image classification. Observe the 
aggregation of small patches into large cover types (clumpiness) when using a 
coarser spatial resolution.  
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Figure 4-4. NDVI variation for MISR 9-view cameras. There are slight differences 

between shrub and non-shrub vegetation types while large substantial 

differences are detected between crop vegetation and the other two. 
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CHAPTER 5. Conclusion 

 

In pursuing research relating to the use of multi-angle remote sensing data 

to delineate plant functional types in a shrub-steppe rangeland ecosystem in 

west-central Idaho, three key questions formed the crux of the work. Each of 

these questions relate to future understanding of how these plant functional types 

can be mapped and monitored in the future across large spatial scales to better 

understand plant community responses in a highly changing environment (see 

review by Ustin and Gamon 2010). We discuss each of these questions below. 

 

Question 1. How does the bidirectional reflectance factor (BRF) vary among the 

physiological and structural status of three different rangeland functional groups; 

shrubs, perennial native grasses, and annual invasive grasses?  

 

We found that two of the plant functional types could be distinguished 

using different physiological and structural analyses. It was possible to 

distinguish medusahead (Taeniatherum caput-medusae [L.] Nevski) during the 

transition period from green to senescent phenological status (late July through 

early August). Changes in medusahead canopy structure from erectophile 

(green) to planophile (senesced) leaf orientation increased the reflectance in the 

visible light and the near infrared allowing us to detect it even at nadir view using 

these individual wavebands. However, the confounding effects of soil and litter 

reflectance did not allow this observation past the third week of medusahead 
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senescence. The other plant functional type that could be detected was shrubs. 

Because of their strong anisotropy behavior due to their complex structure, the 

anisotropy index (ANIX; Sandmeier and Itten 1999) provided additional 

information that allowed us to differentiate shrubs from other plant functional 

groups throughout the mid and late growing season.  

In addition, NDVI calculated at the nine view angles (from -70º forward to 

70º backward scattered reflectance) in the principal plane revealed that the NDVI 

of senescent invasive annual grasses was significantly lower than that of the 

other vegetation groups over the 70º forward scatter to nadir view. The NDVI 

angular signatures of this functional type was a flatter shape than that of other 

functional groups because the ‘hotspot’ effect increases reflectance in the red 

band reducing the reflectance contrast between NIR and red (Myneni and 

Williams 1994). Confounding effects of bare ground BRF values could also 

explain this shape. Finally, NDVI was affected by view zenith angle and the 

degree of change varied as a function of the phenological stage and the 

vegetation functional group (Goodin et al. 2004, Middleton 1991). 

 

Question 2. What are the effects of sun zenith angle and view zenith angle on 

vegetation reflectance and vegetation indices? 

 

We used filtered photodiodes to record data for two green wavelengths 

(centered upon 530 and 570 nm) as well as in the near infrared portion of the 

spectrum (centered upon 800 nm; after Garrity et al. 2010) and one unfiltered 
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GaAsP photodiode to record photosynthetically active radiation (PAR; 400-700 

nm; Gutschick et al.1985) to record 1) diurnal reflectance variation at different 

phenological stages and 2) seasonal reflectance changes between native 

perennial grasses and medusahead. We found that high sun zenith angles (early 

in the morning and late in the afternoon) have bigger effects on NIR reflectance 

while small sun zenith angles (near solar noon) have bigger effects on green 

waveband and PAR reflectance. The anisotropy behavior of the bunchgrasses 

amplified the reflectance of the visible light (green and PAR sensors) that made 

its reflectance different from that of medusahead, especially near solar noon 

(Middleton 1991, 1992). These differences could be useful to detect medusahead 

from perennial grasses when scheduling multispectral or hyperspectral aerial 

image surveys. 

 

Question 3. Using the BRF response for these plant functional types, can we 

generate a fractional cover index using MISR BRF values to partition MODIS 

gross primary production (GPP) and net primary production (NPP) products? 

 

 Because of the coarse scale of the MODIS GPP product, we only could 

find representative training sites for shrubs. These sites were the only ones 

distinguishable even at the spatial resolution of Landsat. The other plant 

functional types were aggregated as non-shrub vegetation type. Thus, we shifted 

our goal to detect shrub fractional cover for MODIS GPP. Hence, we first 

classified Landsat TM images for these two groups (shrubs and non-shrubs) plus 
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crop areas that were detectable at moderate spatial resolution (MISR local mode 

images). We found that high accuracy classification (overall accuracy and Khat 

statistic) can be obtained with these three classes using Landsat and MISR nadir 

view (An) imagery. We also inferred that the same accuracy may be obtained 

with the off-nadir MISR cameras because of the absolute differences between 

the spectral signature of shrub and non-shrub vegetation types.  

 Even through the high accuracy classification, we could not establish a 

substantial relationship between MODIS GPP and variation in shrub fractional 

cover. Presence of ‘mixed pixel’ as well as other sources of misclassification 

would affect this relationship in low spatial resolution imagery (Foody 2002, 

Woodcock and Strahler 1987). Further studies to derive MODIS GPP fractional 

cover would need larger number of training sites and validation of biomass 

production to develop a robust relationship among MODIS GPP, shrub and other 

plant functional types fractional cover in shrub-steppe ecosystems.  In addition, it 

is possible that the algorithms used to derive the MODIS GPP product operate at 

too coarse a spatial resolution to be reconciled at the resolution of 1 km2 grid 

cells. 
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