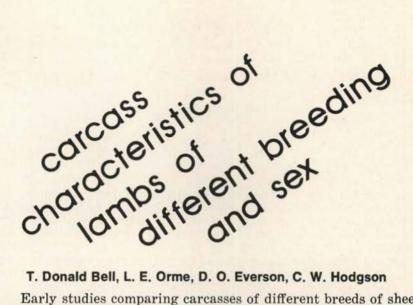


summary

Two hundred and nine market lambs representing 5 breeds and 3 crosses were compared using linear live animal and carcass measurements and scores, carcass cutout, physical separation (lean, fat and bone) and organoleptic tests. Carcasses of the blackface breeds and crosses excelled in conformation and quality grades. Suffolk and Suffolk-cross lambs had significantly larger loin eye area and more pounds of lean. Panama lambs had higher consumer scores for palatability. The whiteface breeds generally had less subcutaneous fat but more internal carcass fat. No significant breed differences were found for aroma and flavor of the loin chop nor were sex differences important in the comparison made of Panama x Targhee wether and ram lambs. When expressing carcass composition on an absolute (weight) basis age-regression coefficients had negative values with lean and bone, and positive coefficients with measurements of fat.


About this research

This study was supported in part by the Idaho Agricultural Experiment Station and partly by Western Regional Project W-61, "Development of selection criteria for the genetic improvement of carcass merit in sheep."

Drs. T. D. Bell, L. E. Orme and C. W. Hodgson were all members of the Department of Animal Industries as this research was done. Dr. D. O. Everson is Agricultural Experiment Station Statistician.

IDAHO AGRICULTURAL EXPERIMENT STATION

University of Idaho Moscow, Idaho College of Agriculture 2M 9-74

T. Donald Bell, L. E. Orme, D. O. Everson, C. W. Hodgson

Early studies comparing carcasses of different breeds of sheep emphasized dressing percentage and overall carcass grade since these were the criteria determining market price. In recent years, more attention has been given to the yield of lean cuts or "yield grade" as a factor in price determination. Sheepmen and research scientists are looking for breeds or breed crosses that will best produce desirable, high-yielding carcasses.

Rambouillet lambs have been found to have longer bodies. longer bones, and deeper chests than either Columbia, Hampshire or Suffolk-whiteface crossbred lambs (Knight and Foote, 1965). Hampshire and Suffolk lambs were wider through the chest, loin and hips than Rambouillets, while blackface crosses and Columbia lambs were intermediate in these characteristics.

Bell et al. (1967) also found Rambouillet lambs were narrower and more upstanding, with lower carcass conformation, condition and overall grade scores than Panama, Targhee or crossbred lambs from these breeds. Rambouillet lamb carcasses had a higher percentage of lean and a lower percentage of fat than carcasses of Panama, Targhee, or Panama x Targhee crossbred lambs, Panama and Panama x Targhee crosses were more heavily muscled than Rambouillet lambs, but these differences were small when expressed as a ratio of carcass weight. Rambouillet lambs had the highest ratio of bone to carcass weight. Targhee lambs had smaller loin eves than lambs from the other breeds and their crosses.

As wool breeding changes from coarse to fine the percent of lean cuts increases and the relative degree of fatness decreases (Cramer, 1970). Furthermore, lambs from fine wool breeding (Rambouillet) tend to have heavier kidney knobs, more fat trim and smaller loin eyes than lambs from half-blood (Targhee) and quarter-blood (Indian) breeding (Ray and Mandigo, 1966; Ray, 1972). Hampshire and Dorset sired lambs tend to fatten faster than Rambouillet, Suffolk or Columbia sired lambs (Shelton and Carpenter, 1970).

Suffolk x Columbia lambs slaughtered at heavy weights (135 lbs.) have been shown to be superior to Columbia lambs in cutability and most carcass characteristics (Botkin, 1972). However, Suffolk x Columbia crossbred lambs tend to be fatter but less tender than Columbia lambs (Galgon, 1972).

Most studies have shown little difference in desirability of meat from different breeds of sheep (Fox, 1964; Light, Johnson and Faller, 1970). However, Gates (1964) found that Suffolk x Panama lambs were more tender than either Panama or Suffolk lambs.

Numerous researchers have reported sex differences in carcass characteristics. Knight and Foote (1965) found only small differences between ewe and wether lambs in loin eye size, cutout proportions and carcass component percentages. Oliver (1967) and Carpenter (1969) found ewe lamb carcasses were fatter and less muscular than ram or wether lamb carcasses. Cunningham (1967) reported wethers were wider through the shoulders than ewe lambs.

The Idaho Experiment Station, as a contributor to Western Regional Research Project W-61, was interested in examining carcass differences between breeds and breed crosses adapted to Idaho. Physical dissection and separation were done for the lean, fat and bone from half carcasses of wether lambs of the Suffolk, Targhee, Rambouillet, Hampshire and Panama breeds, Targhee x Panama and Suffolk x Panama 2-way crosses, and Rambouillet x Panama x Targhee 3-way crosses. Ram and wether lambs of the Suffolk x Panama cross were compared to ascertain sex differences. These investigations were conducted during the 5 year period 1964-68.

Group N	Height	Width	Width	Depth	Depth of
	at	behind	of	of	leg at
	shoulder	shoulder	Ioin	chest	twist
Overall	44.0	16.4	9.8	23.7	18.3
Suffolk 36 Targhee 14 Rambouillet 29 Hampshire 15 T x P 30 Panama 39 S x P 28 R x P x T 18	46.4a	17.6a	10.5a	23.5bc	18.7a
	42.3bc	16.1bcd	9.6bc	24.4a	18.7a
	41.9c	14.9d	8.8d	23.4bc	17.4b
	46.8a	17.3ab	10.2ab	23.1c	18.2a
	43.2b	16.3c	10.0abc	24.1ab	17.8b
	43.1bc	16.1c	9.7bc	23.6abc	18.5a
	45.3a	17.1abc	10.2ab	23.5abc	18.7a
	42.9bc	15.8cd	9.4c	24.2ab	18.7a
Days age partial regression Standard deviation	019** 1.78	002 1.09	001 .83	006 1.04	.003 1.51

Table 1. Least square means and standard deviations for live measurements
of height, width and depth after shearing.*

* Means in the same column with different suffixes are significantly different (P \leq .05).

** P≤ .01.

experimental methods

The 209 lambs in this study were slaughtered at an average weight of 107.3 lbs. (Table 3). Lambs ranged from 4 to $5\frac{1}{2}$ months old and would be classed as milk-fat genuine spring lambs.

Extensive live animal measurements and scores were recorded for the lambs in both unshorn and shorn conditions. Body width and height were measured with metal calipers; length and circumference were measured with a flexible metal rule or tape. Circumference and length of the leg were measured with the lamb hanging by its hind legs for comparison with similar carcass measurements. Live conformation quality scores and grades were estimated for each lamb. Lambs were slaughtered after evaluation and without shrinking.

Chilled weight, linear carcass measurements and subjective grades and scores were taken 24 to 48 hours after slaughter. Carcass measurements taken are described by Ney (1966). The carcasses were cut into wholesale cuts using the W-61 (1959) recommended method with slight modifications. Weights of untrimmed wholesale cuts were recorded. Fat and loin eye area were measured at a point between the 12th and 13th rib. Each wholesale cut from half of each carcass was physically separated (lean, fat and bone) and weighed. Carcass fat and lean were thoroughly mixed, ground and analyzed chemically by AOAC methods for protein, moisture and fat content. Specific gravity of all wholesale cuts taken from the left side (before trimming) was determined by the method of Brown (1951). Organoleptic studies were made of loin and leg chops as described by Gates (1964). Models were fitted by leastsquares procedures and tested by Duncan's Multiple Range test (Harvey, 1960).

and the second se	_	shear	ing (inch	es). [^]			
Group For	ecannon	Circumfe Arm	rence Leg	Length of body	Length of Ioin	Lenght of forecannon	Length of leg
Overall		11.2	15.9	28.8	6.3	4.4	25.3
Suffolk 3.7i Targhee 3.4i Rambouillet 3.4i Hampshire 3.7i T x P 3.5i Panama 3.5i S x P 3.6i R x P x T 3.5i	c c a b c ab	11.5a 10.9ab 10.6b 11.7a 11.2ab 10.9b 11.1ab 11.4ab	17.0a 15.4b 15.5b 15.8b 15.7b 15.7b 16.0b 15.8b	28.7a 29.1a 28.7a 27.9b 28.9a 28.8a 29.0a 29.1a	6.3a 6.4a 6.3a 5.8b 6.2a 6.3a 6.3a 6.3a 6.5a	4.1c 4.6ab 4.8a 4.0c 4.6ab 4.6ab 4.4b 4.4b	27.6a 24.4abc 24.5bc 27.3ab 22.2c 23.2ab 25.9ab 25.1abc
Age regression		.001 .79	.010* 1.16	001 .90	.002 .43	.001 .29	.011 4.29

Table 2. Live lamb measurements of circumference and length after shearing (inches).*

* Means in the same column with different suffixes are significantly different ($P \leq .05$).

		arosonig	portoonnug	,		
Group	Live conformation score**	Slaughter grade**	Live weight (lb.)	Cold carcass weight (lb.)	Carcass dressing percentage	Carcass grade**
Overall	11.5	11.5	107.3	51.6	48.0	11.5
Suffolk	13.7a	13.0a	109.2a	54.1ab	49.5a	12.4b
Targhee		10.9bc	108.6a	51.4abcd	47.1ab	11.ld
Rambouillet		9.3d	100.0b	47.9d	47.7ab	9.8f
Hampshire		12.8a	105.6ab	50.4bcd	47.7ab	12.9a
ТхР		11.5b	110.0a	52.7abc	47.8ab	11.6c
Panama	10.9c	11.3b	107.2a	52.9ab	49.0a	11.2d
S x P		12.5a	109.8a	54.6a	49.4a	12.3b
R x P x T		10.5c	107.8a	49.2cd	45.8b	10.4c
Age regression	003	.006	115**	024	.028**	.001
Standard deviation		1.07	7.32	4.66	2.73	.31

Table 3. Live and slaughter score, grades, weights and dressing percentage.*

* Means in the same column with different suffixes are significantly different ($P \le .05$).

** Numerical scores correspond to $\frac{1}{3}$ grades as follows: 12 = high choice, 11 = average choice, 10 = low choice, etc.

results and discussion-

Tables 1 and 2 list means for 12 live linear measurements by breed, crosses and total. These tables show Suffolk, Hampshire and Suffolk x Panama (SxP) lambs were not significantly different from each other for leg circumference and cannon length. In contrast, Rambouillet lambs measured average or lower. Targhee, Targhee x Panama (TxP), Panama and Rambouillet x Panama x Targhee (RxPxT) lambs were intermediate in structural size and usually not significantly different from each other.

Table 3 lists means for several subjective live animal and carcass scores in addition to live and carcass weight and dressing percentages by breed, cross or total. Suffolk, Hampshire and the SxP lambs were superior to other breeds and crosses for live conformation score, slaughter grade and carcass grade. Rambouillet lambs were significantly inferior for these traits. They also had lighter carcasses reflecting less efficiency in rate of gain.

The dressing percentage is lower for all breeds and crosses than normally would be expected because lambs were killed without prior fasting or shrinking.

Means for several carcass measurements are listed in Table 4. Although lambs from "mutton-type" breeds differed from "wooltype" breeds for these several measures, there are few significant differences between the breeds and crosses.

Tables 5-10 list measurements of carcass composition.

		(11	ncnes).				
Group	Vidth of leg	Depth of chest	Depth of twist	Length of leg	Length of carcass	Circumfe Both legs	erence Heart girth
Overall	18.6	24.4	7.8	17.1	25.1	25.7	29.8
Suffolk . Targhee . Rambouillet Hampshire . T x P Panama S x P R x P x T	18.1cde 17.7e 19.2ab 18.7bcd 18.4cd 18.8abc	23.9bd 24.9ab 24.5abcd 23.6bd 24.9a 24.8abc 24.4abcd 24.5abcd	7.1c 8.3ab 8.4a 7.2c 8.0b 8.1ab 7.3c 8.1ab	16.0b 17.9a 17.9a 15.8b 17.4a 17.5a 16.3b 17.5a	25.1abc 25.6ab 25.3abc 24.3d 25.8abc 24.9c 24.9bc 25.6a	26.6a 25.3de 24.9c 26.2abc 25.8bcd 25.7cd 26.3ab 25.2dc	29.8ab 30.1ab 29.1c 29.5ab 30.3a 30.2a 30.3a 29.3bc
Age regression Standard deviation		003 1.32	004 .44	-008** .85	006** .72	004 .87	001 .95

Table 4. Carcass measurements of width, length, depth and circumference (inches) *

* Means in the same column with different suffixes are significantly different (P \leq .05).

** P≤ .01.

Loin-eye area has been used as an index of the degree of muscling and, in some cases, as a predictor of total carcass leanness, although this use has often not proven to be valid. Table 5 shows the breed means for loin eye area taken at 3 carcass locations. Loin eye varied by location and breed. The loin eyes of Suffolk and Suffolk-cross lambs were significantly larger for the average of the 3 locations and when multiplying loin-eye area by carcass length to estimate volume of this muscle (*longissimus dorsi*). With these 2 exceptions, average loin eye x carcass length did not differ by breed. Age showed no influence on loin-eye area after day-age partial regressions approached zero.

Table 5. Loin eye areas (square inches).*

Group	Loin eye area 5th rib	Loin eye area 12th rib	Loin eye area last lumbar	Avg. Ioin eye area	Avg. loin eye area x carcass lengti
Overall	1.10	2.07	1.53	1.57	39.4
Suffolk Targhee		2.25ab 1.92cd	1.63a 1.46ab	1.70a 1.46b	42.6a 37.3b
Rambouillet	1.03cd	2.00cd	1.40b 1.54ab	1.48b 1.54b	37.4b 37.4b
Hampshire T x P	1.05c	1.82d 2.06c	1.55ab	1.55b	39.0b
Panama S x P		2.12bc 2.35a	1.47b 1.68a	1.57b 1.75a	39.2b 43.6a
R x P x T	1.00de	2.01cd	1.53ab	1.52b	38.9b
Age regression		.001	001	000	014
Standard deviation		.247	.241	.161	4.35

* Means in the same column with different suffixes are significantly different ($P \leq .05$).

Table 6 lists the percent wholesale cuts by breeds and crosses. In this study, no breed differences were found in the percentage of leg, rack or foreshank. Generally, fatter lambs had a lower percentage leg and a higher percentage loin, rack and breast (note the Panama). Leg volume is 3-dimensional, with length contributing quite heavily. Whiteface breeds generally had the highest percentage of kidney and pelvic fats. Again, data indicates age has an insignificant influence on wholesale cut percentages.

The lean, fat and bone were physically separated for one-half of each carcass. The effects of breed and year including age, partial regression are listed on Table 7. Rambouillet lambs yielded the highest percentage lean and bone and the lowest percentage fat.

Group Leg	Loin	Rack	Shoulder	Breast	Foreshank	Kidney knob
Overall	9.6	9.8	27.4	13.9	4.5	2.7
Suffolk	9.6bcd	9.5	27.6ab	14.0b	4.6	2.1b
Targhee	9.4bcd	9.5	27.5ab	14.2ab	4.5	3.1a
Rambouillet	9.3d	9.7	27.9a	13.0c	4.6	2.9a
Hampshire	9.3b-d	9.5	27.2abc	14.8a	4.6	2.6ab
ТхР	9.4d	9.8	27.5ab	13.9b	4.5	2.6a
Panama	9.9abc	11.7	27.1bcd	13.8b	4.4	2.8a
S x P	10.2a	9.6	26.4c-e	14.2ab	4.3	2.6a
R x P x T	10.1ab	8.8	28.1a	13.0c	4.6	2.7a
Age regression	0.009**	0.004	-0.008*	-0.004	-0.004*	0.009**
Standard deviation 1.15	.76	5.88	.91	.92	.47	.66

Table 6. Wholesale cuts as percent of carcass.*

* Means in the same column with different suffixes are significantly different ($P \le .05$).

** P ≤ .01.

Table 7. Percent and total carcass lean, fat and bone.	Table 7. Pe	ercent and	total carcass	lean, fa	at and bone."
--	-------------	------------	---------------	----------	---------------

	Total percen	t of physical se	eparation	Grams	s total carcass	
Group	Lean	Fat	Bone	Lean	Fat	Bone
Overall		29.4	15.6	6283	3459	1802
Suffolk Targhee		28.3cdef 30.4abc	15.5b 15.9ab	6726a 6105bc	3502ab 3567ab	1879a 1835abc
Rambouillet	56.0a	26.6df	16.6a	6018c	2870c	1775abc
Hampshire T x P		29.6abcd 29.5bcde	15.3b 15.9ab	6128bc 6342bc	3373ab 3533ab	1731bc 1875ab
Panama S x P		32.2a 31.3ab	15.1b 14.2c	6199-c 6578ab	3855a 3884a	1787abc 1752-c
R x P x T		27.5cdef	16.1ab	6167bc	3084bc	1778abc
Age regression		.042***	017***	-4.966**	4.315	-2.758**
Standard deviation.	2.77	3.54	1.28	542	654	159

* Means in the same column with different suffixes are significantly different (P \leq .05).

** P ≤ .01.

*** P≤ .05.

The latter results partially because Rambouillet lambs were lighter in weight than the other breeds. Panama lambs yielded the lowest percentage of lean and the greatest percentage of fat. When lean was expressed as total weight, Suffolk and Suffolk-cross lambs yielded more total pounds of lean. The age-regression coefficient disclosed an increase in weight and percentage of fat and a de-crease in the percentage and weight of lean and bone. This was expected and has been established by other researchers.

This study showed small and in most cases insignificant breed differences in the weight of several of the major bones (Table 8).

Specific gravity is a physical measure of the degree of fatness. Values for selected wholesale cuts are listed in Table 9. Leaner cuts have higher specific gravity values. Values for breeds shifted positions for various wholesale cuts; however, Hampshire, Panama, and SxP lambs generally had lower specific gravity values. Conversely, Rambouillet, Suffolk, and RxPxT lambs usually had higher values. All cuts showed negative age-regression coefficients except the shoulder.

Protein, fat and moisture analyses were made of a sample representing the soft tissues of the carcass (Table 10). Rambouillet, Rambouillet-cross and Suffolk lambs generally had significantly less fat and more moisture and protein than Panama and SxP lambs when expressed in percentages. These results support physical separation and specific gravity data. The percentages of fat moisture and protein of the sample were multiplied by chilled carcass weight to convert these percents to actual carcass weight. Suffolk and SxP lambs had 8.2 pounds of protein each as opposed to 7.2 pounds for RxPxT lambs (Table 10). Rambouillet and 3-way cross lambs had less fat. This same pattern was evident for weights of the separated lean, fat and bone. The age-regression coefficients for chemically determined fat, moisture and protein approach zero.

No significant breed differences were found for organoleptic aroma and flavor for the cooked loin chop. Significant (P .05) breed

Group	Radius + ulna	Metacarpal	Metatarsal	Tibia	Femur
		39.1	44.3	117.8	160.7
Suffolk Targhee Rambouillet Hampshire T x P Panama S x P R x P x T		38.2abcde 40.2ab 40.7a 35.8e 40.3a 40.0abc 37.3b-de 39.9abcd	42.8bc 46.4ab 46.6a 39.6c 46.4a 45.4ab 42.5bc 45.0ab	119.8a 118.8a 105.7b 122.3a 123.4a 116.2a 117.4a	165.4ab 162.7abc 159.2bcde 151.5cde 173.5a 162.2bcd 151.9c-e 159.1bcde
Age regression Standard deviation		-0.050** 3.78	-0.058** 4.59	-0.139** 10.64	-0.230** 14.80

* Means in the same column with different suffixes are significantly different (P ≤ .05).

** P ≤ .01.

differences were found for the other organoleptic qualities. SxP lambs received highest scores for consumer acceptance. When comparing lamb carcasses of equal weight, these studies suggest that the most desirable carcass traits—less fat, more protein, or lean and higher grades—may be achieved by using Suffolk rams on whiteface ewes.

Sex differences were found only in PxT lambs (Table 11). Compared to wether lambs, ram lambs had significantly less fat and more protein (P .01). However, wethers were significantly (P .01) more desirable in the aroma of the leg slice. Other organoleptic comparisons between rams and wethers were not significant. No significant sex differences were found for shear values of the leg slice; however, the loin eye of the wethers ranked 1.4 units more tender than the rams. (P .05).

Table 9. Coded specific gravity (S.G.-1.000) (105).*

Group	Leg	Loin	Rack	Shoulder	Loin eye
Overall	5456	3681	4392	4617	6183
Suffolk		4226a	4964ab	4649abc	6217ab
Targhee		3679ab	4347bcd	4442abc	6060b
Rambouillet		4321a	5192a	4897ab	6496a
Hampshire		3443bc	4251cd	4577abc	6223ab
ТхР		3599b	4187cd	4922ab	6200ab
Panama		2923c	3694d	3944c	6108b
S x P		3311bc	3877d	4042bc	6005b
R x P x T		3942ab	4627abc	5461a	6154ab
Day age regression	510	-5.261	-3.872	1.994	-3.250
Standard deviation.		805	1038	1175	447

• Means in the same column with different suffixes are significantly different (P \leq .05).

Table 10. Percent chemical analyses and calculated carcass weights	Table	10. Percen	t chemical	analyses	and	calculated	carcass	weights.
--	-------	------------	------------	----------	-----	------------	---------	----------

		Chemical anal	ysis %	Pounds calculated carcass weights (based on chemical analyses)			
Group	Fat	Water	Protein	Protein	Water	Fat	
Overall	28.6	55.5	15.2	7.8	28.4	14.9	
Suffolk	27.3bc	56.6ab	15.4ab	8.2a	30.0a	15.0-c	
Targhee	30.2ab	54.5bc	14.8ab	7.6bc	27.8b	15.7abc	
Rambouillet	25.0c	58.1a	15.8a	7.5c	27.7b	11.9e	
Hampshire	29.0abc	55.1abc	15.0ab	7.5c	27.7b	14.7bcd	
ТхР		54.8bc	15.1ab	7.8abc	28.5ab	15.7abc	
Panama		53.4c	14.8-b	7.8abc	28.0b	16.6ab	
S x P	30.8	53.8c	15.0ab	8.2ab	29.2ab	16.9a	
R x P x T	25.4c	57.4ab	15.9a	7.2abc	28.1ab	12.5de	
Day age regression	0.030	-0.024	0.002	-0.002	-0.030**	0.015	
Standard deviation	4.61	3.62	1.10	.692	2.43	3.42	

* Means in the same column with different suffixes are significantly different (P \leq .05).

** P≤ .01.

raighee wether and rain failure.												
	Grams total carcass		Acceptance		Sensory Tests <u>Flavor</u>		Tenderness		Shear Test			
Group N	Lean	Fat	Loin	Leg	Loin	Leg	Loin	Leg	Leg	Chop		
Overall66	6,386	3,154	6.10	6.02	6.21	5.82	5.65	5.55	8.89	7.19		
Sex												
Wether	6,358b	3,261a	6.04	6.20a	6.22	5.88	5.69	5.60	8.81	6.50b		
Ram	6,414a	3,048b	6.16	5.84b	6.20	5.76	5.61	5.31	8.98	7.89a		
Days age regression	-13.4	-5.1	.008	.000	.004	.007	.001	.006	.021	.015		
Standard deviation	513	652	.81	.57	.96	.55	1.07	.72	1.89	2.58		

Table 11. Least squares means and standard deviations for Panama x Targhee wether and ram lambs.*

* Means in the same column with different suffixes are significantly different (P \leq .05).

literature cited-

- Bell, T. D., L. E. Orme, C. W. Hodgson, R. E. Christian and D. O. Everson. 1967. Weanling and carcass characteristics of purebred and crossbred Rambouillet, Targhee and Panama lambs. Idaho Agr. Exp. Sta. Res. Bul. 75.
- Botkin, M. P. 1972. Development of selection criteria for the genetic improvement of sheep. Annual Report W-61 Technical Committee.
- Brown, C. J., J. C. Hillier and J. A. Whatley. 1951. Specific gravity as a measure of the fat content of the pork carcass. J. Anim. Sci. 10: 97-103.
- Carpenter, Z. L., G. R. King, Maurice Shelton and O. D. Butler. 1969. Indices for estimating cutability of wether, ram and ewe lamb carcasses. J. Anim. Sci. 28:180.
- Cramer, D. A., J. B. Pruett, V. B. Swanson, W. C. Schwartz, R. M. Kattnig, B. L. Phillips and L. E. Wookey. 1970. Comparing breeds of sheep: II Carcass characteristics. Proc. West. Sec. Amer. Soc. Anim. Sci. 21:267b.
- Cunningham, N. L., Z. L. Carpenter, G. T. King, O. D. Butler and J. M. Shelton. 1967. J. Anim. Sci. 26:683.
- Fox, C. W., R. Eller, L. Sather and J. A. B. McArthur. 1964. Effect of sire and breed on eating qualities from weaning lambs. Proc. West. Sec. Amer. Soc. Anim. Sci. 15:XXIII.
- Galgon, M. W. 1972. Development of selection criteria for the genetic improvement of sheep. Annual Report W-61 Technical Committee.
- Gates, T. R., L. E. Orme, R. E. Christian, T. D. Bell and D. O. Everson. 1964. Tenderness, flavor and chemical composition of lambs as influenced by breed and sex. Proc. West. Sec. Amer. Soc. Anim. Sci. 15:LXVI.
- Hartman, R. R., D. W. Cassard, C. M. Bailey and A. L. Lesperance. 1968. Breed-type effects on measures of lamb quality. Proc. West. Sec. Amer. Soc. Anim. Sci. 19:235.
- Harvey, W. R. 1960. Least-squares analysis of data with unequal subclass numbers. A.R.S. 20-8 Agr. Res. Service, U.S.D.A.

Knight, Arlin D. and W. C. Foote. 1965. Lamb carcass characteristics. J. Anim. Sci. 24:786.

- Light, M. R., C. L. Johnson and T. Faller. 1970. Productivity of selected breeds and crosses of sheep. N. Dak. Farm Research 28 (1):26.
- Ney, J. J. The usefulness of live animal and carcass scores and measurements including fat probes in estimating carcass composition of lambs Thesis. Univ. of Idaho Dept. of An. Sci. 1966.
- Oliver, W. M., Z. L. Carpenter, G. T. King and J. M. Shelton. 1967. Qualitative and quantitative characteristics of ram, wether and ewe lamb carcasses. J. Anim. Sci. 26:307.
- Ray, E. E. 1972. Development of selection criteria for the genetic improvement of sheep. Annual Report W-61 Technical Committee.
- Ray, Early E. and Roger W. Mandigo. 1966. Genetic and environmental factors affecting carcass traits of lambs.
- Shelton, Maurice and Zerle Carpenter. 1970. The influence of sex, breed, and sire on certain carcass traits in lambs. Proc. West. Sec. Amer. Soc. Anim. Sci. 21:
- Wilson, L. L., J. H. Ziegler, M. C. Rugh, J. L. Watkins, T. L. Merritt, M. J. Simpson and F. L. Kreazberger. 1970. Comparisons of live slaughter and carcass characteristics of rams, induced cryptorchids and wethers. J. Anim. Sci. 31:455.