Raspberries 1991 production costs in northern Idaho 161993

A. E. Levi, D. L. Barney, B. B. Davis, L. D. Makus, and R. L. Smathers
UNIVERSITY OF IDAHO

This budget shows typical costs of producing red raspberries in northern Idaho for sale in the fresh market. Assumptions used in constructing this budget are discussed below. This budget represents typical cultural practices based on limited grower surveys. However, individual operations will differ depending on management style and horticultural practices.

The raspberry stand

A 10 -acre stand is assumed. Years 0 and 1 are the establishment years. Land preparation occurs in year 0 , followed by planting in year 1 . Partial production occurs in years 2 and 3 , and in years 4 through 7 the stand is in full production. Starting in year 8, the existing stand declines in quality and yield, resulting in a 10 percent decline in production each year during years 8 through 10 .
Typically, when the stand has declining yields and quality due to mature plantings, the recommended practice would be to replant 33 percent of the rasp-
berry stand annually in years 8 through 10 . Replanting was not accounted for in this budget, but should be considered as a long-term cost. Table 1 provides per-acre raspberry yields, per-acre total costs, and cost per pound for the assumed 10 -acre stand.

Machinery and equipment

Equipment, tractors, and vehicles used in this operation are typical for a farm growing raspberries in northern Idaho. Table 2 provides detailed information on all machinery and equipment used in the operation. The machinery costs estimated in Table 2 were generated using standard coefficients from the American Society of Agricultural Engineers.

The values assumed on all machinery and equipment reflect 1991 prices. One third of the pickup use is devoted to the raspberry stand. The other two-thirds is for other farm production or household use. All other equipment is assumed to be used entirely for the raspberry operation.

Table 1. Assumptions of red raspberry production over the 10 -year expected life of the stand.

Year	Stage of production	Yield (Ib/acre)	Cost/acre (\$)	Cost/pound (\$)
0	Preparation	0	$1,542.67$	0
1	Establishment	0	0	
2	Partial production	$3,392.25$	3.61	
3	Partial production		$1,332.32$	1.28
4	Full production	5,600	1.14	
5	Full production	5,200	1.14	
6	Full production	6,500	1.14	
7	Full production	6,500	1.14	
8	Down 10\% from year 73	6,500	$7,391.43$	1.21
9	Down 20\% from year 73	6,500	$7,391.43$	$7,391.43$
10	Down 30\% from year 73	5,850	$7,050.73$	1.29

[^0]
Resources

This budget assumes land is owned by the operator and was previously used for dryland grazing. Property taxes are $\$ 6.25$ per acre.

Table 3 includes information on the permanent structures needed for the raspberry operation. Purchase price and useful life will vary depending on type of materials used and age of the facility.

This 10 -acre raspberry stand is equipped with a drip irrigation system. The cost of the system, including installation, is approximately $\$ 15,000$. Table 4 includes detailed information about the irrigation system. The system is supplied by surface water.

All labor in this operation is classified as either general hired, owner labor, or harvest labor. General hired labor is valued at $\$ 6.25$ per hour, and includes worker's compensation, unemployment insurance, and other labor overhead expenses. Owner labor is valued at $\$ 7.00$ per hour, and harvest labor is $\$ 0.50$ per pound of harvested raspberries.

Establishment costs

The cost of establishing the raspberry stand must be recovered over the stand's useful life. The process involves carrying forward, with interest, total establishment costs for year 0 (the preparation year) and year 1 (the planting year). Preparation year and establishment year costs are presented in Tables 5 and 6. Total establishment costs (including interest) for both years $(\$ 5,120.04)$ are amortized over the useful life of the raspberry stand (9 years at 12 percent interest). Amortized establishment costs are identified under fixed costs in Table 7.

Budgets

The two categories of costs listed in the budgets are fixed and variable costs. Variable costs are costs that the producer has direct control over and can be increased or decreased at his/her discretion. These costs increase as the level of production increases. Examples of variable costs are raspberry plants, fertilizer, chemicals, fuel, repairs, hired labor, and interest on operating capital. Fixed costs are costs that remain unchanged no matter how much is produced or whether production takes place at all. These costs
are those associated with owning capital assets and certain overhead costs, and include depreciation, taxes, insurance, and interest.

Fixed and variable costs can be either cash or noncash costs. Cash costs require payment, which means they are out-of-pocket expenses. They can be variable like fuel or fixed like property taxes. These expenses must be paid outright. Noncash costs do not necessarily need to have an immediate "cash" payment. For example, when the owner provides labor, cash is not exchanged, hence it is a noncash cost. If the owner chooses to hire labor for that operation, then the payment for labor becomes a cash cost. Both cash and noncash costs are treated as expenses in this budget.
Long-term, intermediate, and short-term capital are used in this budget to finance establishment costs, machinery, equipment, permanent structures, irrigation, and operating inputs. Interest on operating capital is treated as a cash expense. The cost of operating capital is 12 percent. Overhead accounts for 5 percent of each year's variable costs. (University of Idaho field crop and livestock budgets generally assume an overhead rate of 2 percent, but a manage-ment-intensive, high-valued crop like raspberries is expected to have a higher overhead cost. Thus, a 5 percent overhead rate is used.)

For further reading

To order copies of this and other University of Idaho College of Agriculture publications, contact the University of Idaho Cooperative Extension System office in your county or write to Agricultural Publications, Idaho Street, University of Idaho, Moscow, Idaho, 83843-4196 or call (208) 885-7982.

The authors - Annette E. Levi, assistant professor of agribusiness, Chico State University, California, and former research associate, Department of Agricultural Economics and Rural Sociology, University of Idaho; Danny L. Barney, Extension horticulturalist and superintendent of the Sandpoint Research and Extension Center, University of Idaho Department of Plant, Soil, and Entomological Sciences; Larry D. Makus, associate professor of agricultural economics; Bruce B. Davis, former research associate; and Robert L. Smathers, research associate, all of the University of Idaho Department of Agricultural Economics and Rural Sociology, Moscow.

Table 2. Estimated equipment investment for a 10 -acre northern Idaho raspberry farm.

Item	Size	1991 price (\$)	Annual use	Years to trade	Cost/hour (\$)	Cost/year (\$)
Tractor	24 hp	10,700	100 hr	15	14.09	1,409.00
Trailer	8 ft	1,000	4 hr	15	0.32	1.28
Boom sprayer	50 gal	650	50 hr	15	1.13	56.50
Fertilizer spreader	10 ft	3,500	15 hr	15	31.46	471.90
Cone fertilizer attachment	-	525	10 hr	15	-	- 1118
Mower	5 ft	1,000	10 hr	15	11.18	111.80
Cultivator	8 ft	700	18 hr	15	4.42	79.56
Spike tooth harrow	10 ft	600	10 hr	15	0.38	3.80
Pickup	$1 / 2$ ton	12,600	1,000 mi	7	0.26/mi	260.00
Misc. equipment (handspreader, backpac	yer, sh	625 weedeater, sca	uckets, 15 pi	stands)		

Table 3. Permanently installed resources for a 10 -acre northern Idaho raspberry farm.

Item	Size/type	1991 purchase price (\$)	Useful life
Refrigeration	$10 \times 16 \mathrm{ft}$	10,000	20 yr
Trellis	3 wire	13,200	20 yr
Deer fence	New Zealand	3,195	20 yr

Table 4. Drip irrigation system for 10 acres of raspberries.

Item	Size	Quantity	Cost (\$)
Mainline PVC	$11 / 2^{\prime \prime}$	700 ft	389
Tubing (\$.12/ft)		44,000 ft.	5,280
Valves (\$24 each)		10	240
Fittings and tees			240
Timer			72
Major shut-off	$2^{\prime \prime}$		160
Filters			600
Emitters (\$.16 each)		22,000	3,520
Wire (\$.045/ft)	12 gauge	44,000 ft	1,980
Fertilizer injector $6 \mathrm{gal} / \mathrm{min}$			160
Power pump and power unit	3 hp		2,000
Total cost			14,641

Note: Installation labor requirements for 10 acres are 400 hours of hired labor and 180 hours of owner labor. This drip irrigation system is supplied by surface water.

Table 5. Costs per acre in preparation year (year 0) for red raspberries in northern Idaho.

Activity	Machinery (\$)	Labor (\$)	Materials (\$)	Total (\$)	Your cost
Variable costs					
Custom soil tests	-	-	-	26.50	
Percolation test	1.50	7.70	-	9.20	
Spray nonselective herbicide (twice)	1.34	11.64	60.78	73.76	
Custom plow	-	-	-	12.50	
Custom subsoil	-	-	-	12.50	
Harrow (twice during year)	0.70	3.50	-	4.20	
Adjust soil pH (liming)	1.11	7.76	345.00	353.87	
Cultivate (twice during year)	1.16	5.82	-	6.98	
Custom backhoe	-	-	-	210.00	
Irrigation main line installation	8.10	123.20	-	131.30	
Custom rodent control	-	-	-	15.00	
Deer fence installation	-	107.50	-	107.50	
Pickup	-	-	-	152.25	
Overhead (5\%)	-	-	-	55.78	
Interest on operating capital	-	-	-	54.38	
Total variable costs	-	-	-	1,225.72	
Fixed costs					
Machinery and equipment				229.75	
Land (taxes and interest)				30.25	
Permanent fixtures				56.95	
Total fixed costs				316.95	
Total costs				1,542.67	

Table 6. Costs per acre in establishment year (year 1) for red raspberries in northern Idaho.

Activity	Machinery (\$)	Labor (\$)	Materials (\$)	Total (\$)	Your cost
Variable costs					
Custom soil test	-	-	-	10.00	-
Fertilize:	0.54	2.33	21.00	23.87	
Borated gypsum	0.54	2.33	124.00	126.87	\square
Super phosphate	-	-	12.50	\square	
Custom plow	1.50	7.70	-	9.20	\square
Mark rows	-	376.0	-	376.00	
Install drip irrigation system	2.26	11.31	-	13.57	\square
Cultivate (5 times during year)	0.39	1.68	54.15	56.22	\square
Seed covercrop	12.13	286.44	-	298.57	\square
Set up trellis	-	4.70	4.70	\square	
Trellis maintenance	-	112.00	700.00	812.00	\square
Planting raspberries					

(cont'd, next page)

Table 6. (cont'd).

Activity	Machinery (\$)	Labor (\$)	Materials (\$)	Total (\$)	Your cost
Spray:					
Pre-emergent herbicides	0.96	8.38	46.10	55.44	
Grass herbicide	0.48	4.19	19.96	24.63	
Weeding (5 times during year)	-	224.00		224.00	
Drip irrigation system operating expense	-	-	-	86.76	
Custom rodent control	-	-	-	15.00	
Deer fence maintenance	-	2.60	-	2.60	
Pickup	-	-	-	152.25	
Overhead (5\%)	-	-	-	114.72	
Interest on operating capital	-	-	-	133.05	
Total variable costs	-	-	-	$\overline{2,551.95}$	
Fixed costs					
Machinery and equipment				297.74	
Land (taxes and interest)				30.25	
Permanent fixtures				284.79	
Drip irrigation system				227.52	
Total fixed costs				840.30	
Total costs				3,392.25	

Table 7. Costs per acre in full production years (years 4-7) for red raspberries in northern Idaho.

Activity	Machinery (\$)	Labor (\$)	Materials (\$)	Total (\$)	Your cost
Variable costs					
Custom soil tests	-	-	-	10.00	
Custom foliage test	-	-	-	17.50	
Spray:					
Fungicide (twice)	0.96	8.38	13.28	22.62	
Pre-emergent herbicide (twice)	0.96	8.38	90.72	100.06	
Grass herbicide	0.48	4.19	19.96	24.63	
Summer fungicide	0.48	4.19	15.40	20.07	
Insecticides	0.96	8.38	20.15	29.49	
Pruning (twice during year)	-	560.00	-	560.00	
Fertilize:					
Gypsum, K, $\mathrm{NH}_{4} \mathrm{NO}_{3}$	0.39	1.68	144.00	146.07	
Ammonium nitrate	0.39	1.68	21.00	23.07	
Mowing (4 times during year)	1.76	15.08	-	16.84	
Bees	-	-	20.00	20.00	
Harvesting	-	3,250.00	-	3,250.00	
Portable toilet	-	- .	-	24.00	
Refrigerator	-	-	-	7.40	
Raspberry flats	-	-	157.00	157.00	
Weeding (5 times during year)	-	210.00	-	210.00	
Drip irrigation system operating expense	-	-	-	86.76	
Custom rodent control	-	- 70	-	15.00	
Trellis maintenance	-	4.70	-	4.70	
Deer fence maintenance	-	2.60	-	2.60	
Pickup	-	-	-	152.25	
Overhead (5\%)	-	-	-	245.00	
Interest on operating capital	-	-	-	255.66	
Total variable costs	-	-	-	$\overline{5,400.72}$	
Fixed costs					
Establishment costs				973.78	
Machinery and equipment				300.13	
Land (taxes and interest)				30.25	
Permanent fixtures				457.09	
Drip irrigation system				227.52	
Total fixed costs				1,990.71	
Total costs				7,391.43	

Note: The differences in costs between full production years and partial production years are discussed in Table 1.

> The Alternative Agricultural Enterprises publication series was supported by a grant from the Northwest Area Foundation, St. Paul, Minnesota.

[^0]: ${ }^{1}$ The lower cost per acre in Year 2 relative to full production years is caused by: not spraying with fungicides and insecticides, saving $\$ 72.18$; lowering interest on operating capital by $\$ 151.57$; a reduction in overhead of $\$ 145.55$; lowering harvest labor by $\$ 2,650$; reducing the purchase of raspberry flats by $\$ 128.02$; increasing weeding labor by $\$ 84.00$; and increasing mowing costs by $\$ 4.21$.
 ${ }^{2}$ The lower cost per acre in Year 3 relative to full production years is caused by: lowering harvest labor by $\$ 650$; reducing the purchase of raspberry flats by $\$ 31.40$; lowering weeding labor by $\$ 42.00$; and increasing mowing costs by $\$ 4.21$.
 ${ }^{3}$ The lower cost per acre in Years 8, 9, and 10 is caused by lowering harvest labor by $\$ 325$ and reducing the purchase of raspberry flats by $\$ 15.70$. Each year's costs are $\$ 340.70$ less than the previous year to reflect this decrease in harvest labor and purchases of raspberry flats.

